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1 Introduction

Cosmological inflation remains so far the most compelling mechanism accessible in effective

quantum field theory to describe an epoch of extremely fast accelerated expansion of the very

early universe. If present, inflation solves various initial condition problems of the hot big

bang and provides a mechanism for generating the primordial nearly scale-invariant spectrum

of curvature perturbations needed for structure formation.
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Similarly, the observed late-time accelerated expansion of the universe is most simply

described in terms of a positive yet tiny cosmological constant producing an asymptotic de

Sitter (dS) state of the universe to the future.

The simplest mechanism to realize inflation consists of a scalar field with a positive

scalar potential satisfying the slow-roll conditions ensuring a regime of slow-roll: The two

slow-roll conditions ensure sustained dominance of the scalar potential over the kinetic energy

of the slowly-rolling inflaton scalar field. The near-dS quantum vacuum of slow-roll inflation

generates a nearly scale-invariant spectrum of primordial gravitational waves, the tensor

modes, besides the scalar curvature perturbation. It turns out, that the relative strength

of these tensor modes (the tensor-to-scalar ratio r) is tied to the field range ∆φ which the

inflaton scalar traverses during the observable 50. . . 60 e-folds of inflationary expansion. Our

current level of technological ability to detect these tensor modes as B-mode polarization

patterns in the cosmic microwave background (CMB) radiation implies a reach of r & 10−3.

This corresponds to an inflationary field range ∆φ & MP.

It is a curious coincidence that such a field range of ∆φ ∼ MP correlates with the

change from the need for suppression of dimension-six operators to suppression of an infinite

series of higher-dimension operators as a condition to maintain smallness of the slow-roll

parameters against quantum corrections induced by heavy states. Hence, ∆φ ∼ MP separates

large-field models of inflation (∆φ & MP) producing detectable tensor modes and needing

suppression of an infinite series of corrections from small-field models (∆φ < MP) which

do and need neither of those.

Clearly, realizing large-field inflation models is of special interest as the detectable tensor-

mode signal of such models offers a strong test of the slow-roll inflation paradigm. The

required suppression of an infinite series of corrections has been argued to arise from the

scalar field being axion-like, possessing a shift symmetry which is softly broken predominantly

by the inflationary scalar potential itself (this was originally shown for scalar self-interactions

in [1], and for graviton loop corrections in [2–4]; for a review see e.g. [5, 6]).

However, the technical naturalness of such an assumption rests on the quality of the

underlying source of the shift symmetry as well as the suppression of the axion-inflaton

couplings to heavy states in the theory. Realizing such an axion with an approximate shift

symmetry and controlled sources of soft breaking generating the large-field scalar potential is

possible in string theory compactifications using the mechanism of axion monodromy [7, 8].

The protection of the shift symmetry there arises from underlying gauge symmetries, which

were discovered in [6, 9] to allow for a fully four-dimensional effective description axion

monodromy inflation in terms of the spontaneously broken gauge symmetries of an axion

coupled to an effective four-form field strength. For a review of this idea and much subsequent

related work see, for instance, [10].

Already the initial string theory models of axion monodromy revealed that energetic

backreaction [11–13] from the finitely massive moduli of the stabilized extra dimensions

as well as from energy connected to the monodromy charge accrued by an axion displaced

over multiple axion periods generically lead to a flattening of the large-field axion scalar

potential. This effect is present in both ten-dimensional string models [12, 14–24] and in

the effective four-dimensional descriptions [6, 25–27].
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The underlying starting point for models of inflation in critical string theory is the

realization of string vacua describing meta-stable dS space with small positive cosmological

constant and stabilized moduli. Following the path-breaking initial mechanisms in [28–30],

considerable evidence was assembled over many works, as recently reviewed in [10], that

moduli stabilization produces AdS vacua from a two-term structure with a third ‘slower’

term providing an uplift to positive vacuum energy.

Again, similar to the situation for large-field axion monodromy inflation, the uplift part

of string constructions of meta-stable dS vacua shows a certain susceptibility to backreaction

effects from moduli stabilization and the field energy connected to charges tied to localized

uplift sources such as anti-D3-branes. In this context, it is relevant to note the increasing

evidence for uplift sources ‘distributed in the extra dimensions’ from F-term SUSY breaking

minima of the flux-induced complex structure moduli scalar potential of type IIB Calabi-

Yau orientifold compactifications [31, 32] based on the initial idea in [33]. Similar F-term

breaking uplifts arise from the quasi-axion partners of the complex structure moduli under

the combined effects of three-form fluxes and instanton corrections [34, 35].

The susceptibility of both string inflation mechanisms and the uplift part of stringy

dS construction to backreaction effects has led to the formulation of two conjectures, that

are now part of the so called Swampland program. Such a program ambitiously tries to

infer which lower-dimensional effective field theories (EFTs) admit an ultraviolet completion

within string theory, by formulating a set of criteria, the Swampland conjectures, that the

effective theories need to obey.

Among the proposed conjectures within the program, are the Distance conjecture [36],

and the de Sitter conjecture [37–39]. The Distance conjecture states that, upon approaching

a field space boundary located at infinite geodesic distance in the moduli space of string

compactifications, an infinite tower of states become light, with the mass scale decreasing

exponentially with the geodesic distance towards the boundary. Instead, the de Sitter

conjecture asserts that it should be impossible to find meta-stable four-dimensional dS

solutions in the asymptotic regions of moduli space (the original and stronger conjecture [40],

which applied to the interior of moduli space as well, was contradicted by nature itself [41]).

At the level of string compactifications with four-dimensional N = 2 effective theories,

and increasingly also for four-dimensional N = 1 effective theories, there is considerable

evidence [42–49] for the general validity of the distance conjecture, and the closely related

Emergent string conjecture [50, 51] in the parametric limit, that is, at distances parametrically

large compared to a displacement of O(MP). Similarly, evidence suggests that the de Sitter

conjecture is realized towards strict asymptotic regimes [52, 53].

However, things are less clear when crossing from the interior region of the moduli space,

to which we refer as ‘umbra’, into the ‘penumbra’. The latter is the cross-over regime at

finitely large field displacements between the umbra and the strict asymptotic regime, where

distances are parametrically large and all terms in the flux-induced complex structure moduli

scalar potential have been dropped, except for the strictly leading ones. In the penumbra the

appearance of the first tower state of the Distance conjecture depends both on the exponential

coefficient determining the fall-off of the infinite tower of states, and on the initial gap between

the characteristic scale of the effective theory and the tower mass scale [19, 20, 54–56].

– 3 –
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This paper delves into the features that the flux-induced scalar potential displays in such

a penumbra region. Indeed, we will provide evidence for the following:

• we move inwards from the strict asymptotic regions of the complex structure moduli

space into the penumbra, where the moduli vevs are only moderately large;

• within the penumbra, in the expansion of the periods, which govern the effective field

theory interactions, we also retain the subleading contributions, those that would not

survive in the strictly asymptotic limit;

• then, we find meta-stable uplifting complex structure vacua realizing the proposal

of [33] at moderately large moduli vevs; moreover, we also find long-range axion valleys

showing axion monodromy and flattening from complex structure moduli backreaction.

The plan of the paper goes as follows. In section 2 we review some basic features of

multi-field slow-roll inflation, highlighting how some of the recently formulated Swampland

conjectures may hinder the realization of inflation in consistent effective theories.

Section 3 presents the four-dimensional type IIB effective field theories, defined towards

either a large complex structure or a Tyurin boundary, that are the main objects of the

analysis that follows.

In section 4 we study concrete examples of four-dimensional type IIB effective field

theories where the complex structure modulus delivers a de Sitter uplift. The analysis is

expanded in section 5, where we compute the scalar potential valleys for some selected

examples, and study the field backreaction; therein, we further present a family of toy models

that could host viable inflationary valleys.

In section 6 we illustrate how four-dimensional type IIB effective field theories exhibiting

axion monodromy valleys can be searched via machine learning algorithms.

Finally, appendix A presents a brief overview of the moduli space of four-dimensional

effective field theories, obtained compactifying type IIB string theory over an orientifolded

Calabi-Yau three-fold, and appendix B contains an overview of the main concepts of asymptotic

Hodge theory that are employed in the main text.

2 Swampland constraints and inflation

In order to lay the foundations for the upcoming sections, here we briefly review the basic

features that an effective theory should be endowed with in order to accommodate for multi-

field inflation. We then overview to what extent some of the proposed Swampland conjectures

may obstruct inflation in effective field theories that admit an ultraviolet completion within

string theory.

2.1 A brief review of multi-field inflation

Preliminarily, let us specify the class of effective field theories which we will be focused on.

In order to keep the discussion general, we will consider effective theories formulated in d

spacetime dimensions, and coupled to gravity. The effective theory is additionally endowed

with N scalar fields ϕA, with A = 1, . . . , N . Since the effective theories that we will be

– 4 –
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working with stem from the compactification of higher, D-dimensional string, or M-theory

compactified over some (D − d)-dimensional internal manifold, the scalar fields ϕA serve as

moduli of the internal manifold. Specifically, the internal manifold is assumed to be endowed

with a moduli space Mmod, and a local patch within Mmod can be parametrized with the

coordinates ϕA and is equipped with the positive-definite metric GAB(ϕ). However, we

shall assume that the scalar fields ϕA are not free within the moduli space Mmod; rather,

they are constrained to vary only within some submanifolds thereof due to the presence of

a scalar potential V (ϕ). With these ingredients, the two-derivative effective field theories

locally encoding the dynamics of gravity and the scalar fields ϕA which we will consider

are described by the following action:

Sd
EFT =

∫

ddx
√−g

(
1

2
Md−2

P R − 1

2
Md−2

P GAB(ϕ)∂ϕA · ∂ϕB − V (ϕ)

)

, (2.1)

where MP denotes the d-dimensional Planck mass, and R is the Ricci scalar.

The explicit functional forms of both the field metric GAB(ϕ) and the scalar potential

V (ϕ) critically depend on the choice of the geometric data of the internal manifold. Indeed,

we additionally assume that the scalar potential displays a critical locus and, along such a

locus, the value of the scalar potential is very close to zero. Using the field space metric

and the scalar potential, it is convenient to introduce

γ =
‖∇V ‖

V
, with ‖∇V ‖2 := GAB∂AV ∂BV , (2.2)

where we have employed the shorthand notation ∂A := ∂
∂ϕA . As in [53], we will refer to γ

as ‘de Sitter coefficient’, and it plays a pivotal role in determining whether inflation can be

realized within string theory-originated effective theories.

Let us now overview how inflation takes place within effective theories of the form (2.1).

Assuming that the universe is isotropic and homogeneous, its evolution can be described

with the FLRW metric

ds2 = −dt2 + a(t)2dℓ2
d−1 (2.3)

with dℓd−1 being the (time-independent) line element of a (d − 1)-dimensional space with

Euclidean signature and constant curvature. In turn, the scale factor a(t) defines the Hubble

parameter H = ȧ
a
, with the dot denoting the time derivative. Additionally, we shall assume

that, over the FLRW background, the scalar fields ϕA evolve only in time, namely ϕA := ϕA(t).

Given these hypotheses, the equations of motion determining the dynamics of the scalar

fields ϕA reduce to

ϕ̈A + ΓA
BC ϕ̇Bϕ̇C + (d − 1)Hϕ̇A +

1

Md−2
P

GAB∂BV = 0 (2.4)

with ΓA
BC being the Christoffel symbols computed out of the scalar metric GAB. On the

other hand, the Einstein equations lead to the following equation that governs the evolution

of the scale factor a(t):

(d − 1)(d − 2)Ḣ + (d − 1)GABϕ̇Aϕ̇B − κ

a2
= 0 , (2.5)

– 5 –
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where κ is the constant curvature of the Euclidean (d − 1)-dimensional space. Alternatively,

the scale factor a(t) can be computed via the equation

(d − 1)(d − 2)

2
H2 − 1

2
GABϕ̇Aϕ̇B +

κ

2a2
− 1

Md−2
P

V = 0 . (2.6)

In the following, we shall assume the Euclidean (d − 1)-dimensional space to be flat, thus

implying κ = 0.

The inflationary equations (2.4) can be recast in a more useful form by introducing the

number of e-folds N := log a(t); indeed, by expressing the time derivatives appearing in (2.4)

in terms of the number of e-folds and employing (2.5) and (2.6), the equations (2.4) become

ϕA′′ +
1

2

[

(d − 1)(d − 2) − GBCϕB′ϕC′
] ( 2

d − 2
ϕA′ + GAB ∂BV

V

)

+ ΓA
BCϕB′ϕC′ = 0 , (2.7)

where we have introduced the shorthand notation ( )′ := d
dN

.

It is worth remarking that, although the evolution of the scalar fields happens in the

physical spacetime, we can think of this path as being threaded in (a local patch of) the moduli

space. Concretely, we can define the inflationary path Pinfl within the moduli space Mmod as

Pinfl = {ϕA(t) ∈ Mmod | t ∈ ∆Tinfl} (2.8)

where ∆Tinfl is the interval of time during which inflation take place.

Inflation is defined as a period of accelerated expansion, characterized by ä > 0. By

employing the Einstein equations (2.5) and the equations of motion for the scalar fields

ϕA (2.4), it can be shown that this condition can be recast as

ε := − Ḣ

H2
=

1

(d − 2)H2
GABϕ̇Aϕ̇B < 1 , (2.9)

where we have introduced the first slow-roll parameter ε. However, most of the proposed

inflationary models are of the slow-roll kind, obeying more stringent conditions. Firstly,

slow-roll inflation requires the Hubble parameter to be constant, so as to deliver an exponential

growth of the scale factor a(t); this can be achieved by requiring

ε ≪ 1 , (2.10)

which, by (2.6), implies that

V ≃ Md−2
P

(d − 1)(d − 2)

2
H2 . (2.11)

Secondly, slow-roll inflation requires that inflation lasts for enough time to be consistent with

the cosmological observations. This can be achieved by imposing the following constraint

on the second slow-roll parameter η:

η :=
ε̇

Hε
= 2ε +

2

(d − 2)H2
GABϕ̇Aϕ̈B ≪ 1 . (2.12)

Now, although the de Sitter coefficient (2.2) does not deliver direct information about

whether slow-roll inflation can be realized in a direct way, it can be related to the slow-roll

– 6 –
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parameter ε as follows. Preliminarily, we define the unit-vector T A, tangent at every point

to the path Pinfl as

T A :=
ϕ̇A

‖ϕ̇‖ , with ‖T‖2 := GABT AT B = 1 . (2.13)

Then, we can introduce a basis of vectors {NA
(a)}, a = 1, . . . , n − 1, orthogonal to T A along

every point of the inflationary path and obeying GABNA
(a)T

B = 0. Thus, the gradient of the

scalar potential can be split along the directions of T A and NA
(a) as

GAB∂BV = VT T A +
n−1∑

a=1

VN(a)
NA

(a) , with VT := T A∂AV , VN(a)
:= NA

(a)∂AV .

(2.14)

Employing the newly introduced local basis of vectors, we can also project the scalar field

equations (2.4) along their directions, yielding

∂

∂t
‖ϕ̇‖ + (d − 1)H‖ϕ̇‖ +

1

Md−2
P

VT = 0 , (2.15a)

NA
(a)GABDtT

B +
1

Md−2
P ‖ϕ̇‖

VN(a)
= 0 , (2.15b)

where we have introduced DtT
A := Ṫ A + ΓA

BCT Bϕ̇C . Finally, by introducing the turning

rate Ω, defined via

Ω2 :=

n−1∑

a=1
V 2

N(a)

M2d−4
P ‖ϕ̇‖2

= ‖DtT‖2 , (2.16)

one can show that the de Sitter coefficient (2.2) can be recast as

γ2 ≃ 4ε

d − 2

(

1 +
Ω2

(d − 1)2H2

)

, (2.17)

where we have exploited the decomposition (2.14), alongside (2.15a), (2.9), (2.6) and the

definition (2.16).

2.2 Swampland obstructions to inflation

With the advent of the Swampland program, whose start can be traced back to [36, 57], a

novel viewpoint for exploring consistent effective field theories has been pursued. Namely,

rather than obtaining effective field theories methodically, by compactification of the higher

dimensional string, or M-theory, one can start with the lower dimensional effective field

theories, and investigate which conditions these ought to obey in order to be obtainable

from string, or M-theory. These conditions, named Swampland conjectures, are guided by

string theory predictions in their formulation, and are intended to apply to any consistent

effective field theory.

– 7 –
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Crucially, some of the conjectures postulate that the scalar potential of any effective

field theory that has to be consistent with quantum gravity needs to obey certain conditions,

which we will review below.

de Sitter conjecture. Formulated in [38, 40], the de Sitter conjecture asserts that the de

Sitter coefficient (2.2) is lower-bounded as

γ ≥ cd (2.18)

with cd a positive constant, allegedly of order one. It is worth stressing that, since

the de Sitter coefficient (2.2) is moduli-dependent, the statement (2.18) offers a lower

bound over γ that supposedly holds throughout Mmod.

The de Sitter conjecture seems a common feature that scalar potentials obtained from

string theory obey asymptotically in the moduli space, namely sufficiently close to

boundaries of the moduli space [52]. However, the realization of the de Sitter conjecture

towards the bulk of the moduli space, where the conjecture is harder to check, is an

open question.

Strong de Sitter conjecture. Based on the consistency of the de Sitter conjecture under

dimensional reduction, the strong de Sitter conjecture [58, 59] proposes the following

value for the constant cd unspecified in (2.18):

cstrong
d =

2√
d − 2

. (2.19)

Distance conjecture. The Distance conjecture, originally proposed in [36], states that any

effective field theory that is consistent with string theory breaks down when the moduli

fields approach a field space boundary located at infinite field distance. The reason of

such a break down is rooted in the appearance of an infinite tower of states, whose

masses become exponentially light in the geodesic distance. Namely, consider the masses

Mn(ϕ0) of the states composing the tower at a given point ϕA
0 , close enough to an

infinite-distance boundary. Then, the masses Mn(ϕ1) of the states within such a tower,

evaluated at a different point ϕA
1 closer in geodesic distance to the boundary, behave,

with respect to the former, as

Mn(ϕ1) ∼ e−αd(ϕ0,ϕ1)Mn(ϕ0) . (2.20)

Here, d(ϕ0, ϕ1) is the geodesic distance, measured in Planck units, between the points

ϕA
0 , ϕA

1 , and α is a positive constant, supposedly of order one. Thus, as d(ϕ0, ϕ1) → ∞,

the masses of the states within the tower become massless, and ought to be included

within the effective field theory, rendering the effective description invalid.

The conjectures inevitably influence the possibility of realizing slow-roll inflation in

consistent effective field theories. Among the most pressing possible obstructions to inflation

that the above Swampland conjectures imply are the following:

– 8 –
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Geodesic inflationary paths. The equation (2.17), relating the de Sitter coefficient with

inflationary quantities, is the crucial one for examining the interplay between the de Sitter

conjecture and inflation. Indeed, if the inflationary path Pinfl, obtained after solving (2.4)

and (2.5), is geodesic within Mmod, then Ω = 0 by the very definition of geodesicity, and

the slow-roll parameter ε is related to γ via the simpler relation ε = γ2

2 . In turn, if the

Swampland conjectures stated above are true, this implies that the slow-roll parameter ε is

lower-bounded by an O(1)-constant, in stark contrast with the first slow-roll condition (2.10).

Non-geodesic inflationary paths. Inflation may still be allowed, given the Swampland

conjectures above, if the inflationary path is non-geodesic. Indeed, the generic constraint (2.18)

may still be consistent with the first slow-roll condition (2.10) provided that the turning

rate Ω is sufficiently large. However, such ‘rapid-turn inflation’ seems to be disfavored in

supergravity [60] for light fields; otherwise, one could achieve rapid-turn inflation by including

heavy fields, with masses above the Hubble scale, as in the ‘fat inflation’ scenarios [61].

Effective theory breakdown along the inflationary path. In order to guarantee the

realization of inflation within a given effective theory, it is crucial that, along the inflationary

path Pinfl, the effective field theory hosting inflation remains well-defined. However, owing to

the Distance conjecture (2.20), moving in the moduli space may lead to a breakdown of the

effective theory: if the inflationary path Pinfl, stretching from the field configuration ϕA
0 to

ϕA
1 , has a geodesic length d(ϕ0, ϕ1) of order one, several states composing the tower (2.20)

may become lighter than the cutoff. As such, these need to be included within the effective

theory, potentially causing either controlled backreaction leading to flattening of the effective

scalar potential or even a breakdown of slow-roll. In this sense, the Distance Conjecture (2.20)

constrains the path that fields can draw before a breakdown occurs; however, the length,

in Planck units, of the path that scalar fields can consistently traverse before an effective

theory breakdown critically depends on the constant α that appears in (2.20) [19, 20, 54–56]

as well as the gap between the EFT cutoff and the mass scale of the tower at the origin

of scalar field space.

2.3 Difficulties and possibilities of inflation in strictly and not-so-strictly

asymptotic regions of moduli space

The realization of the de Sitter conjecture may appear discomforting for the realization

of inflation in string theory scenarios. However, as we have mentioned earlier, in string

theory-originated effective theories, concrete checks of the de Sitter conjecture (2.18) have

been performed in asymptotic regions of the field space, namely when scalar fields are so

close to the field space boundary, that effective theories are under arbitrarily good parametric

control, for they are arbitrarily weakly coupled. Towards the ‘bulk’ of the moduli space,

where effective theories can often enough be under sufficient (but not full) parametric control

the validity of the de Sitter conjecture is questionable. In the following, we quickly overview

the arguments against the realization of inflation in the asymptotic regions of the moduli

space, indeed suggesting that achieving inflation in string theory effective field theories may

require a thorough analysis of the theories towards the bulk of the moduli space.

– 9 –
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Why inflation cannot happen in strict asymptotic regimes. Firstly, we provide

some very general arguments about why inflation is not expected to be realized in strict

asymptotic regimes, where some scalar fields acquire too large values. Recently, it has been

postulated that all the couplings that appear in a consistent effective theory ought to be tame

functions of the fields and the parameters [62] — see [62, 63] for a mathematical definition of

tameness, and for concrete applications to stringy effective field theory. In particular, the

scalar potential V (ϕ) that appears in a string theory-originated effective theory has to be a

tame function of the scalar fields ϕA, regarded as geometric moduli of the compactification

manifold leading to the given effective theory. Indeed, the scalar fields ϕA may be understood

as local coordinates of a patch U of the moduli space Mmod. Whenever U describes an

asymptotic, or near-boundary regime, it is convenient to split the N moduli ϕA that enter

the effective field theory into the following two sets:

Saxions si (i = 1, . . . , n) which describe non-compact domains, which we assume to be of

the form si > 1;

Axions aα (α = 1, . . . , N − n), which span compact domains that we conventionally assume

to be [0, 1[.

The near-boundary local patch U can then be described as

U = {|aα| < 1, s1, s2, . . . , sn > 1} . (2.21)

Roughly speaking, the saxions si tell ‘how close’ to the field space boundaries the associated

field space point is, with a boundary reached as any of the saxions si → ∞, whereas the

axions aα parametrize the orthogonal field directions.

The tameness of V (a, s) implies that its tails, in the saxion directions, have to be solely

of three kinds: V (a, s) is either constant, or monotonically decreasing, or monotonically

increasing for large enough values of the saxions. Such a property excludes, for instance,

that the scalar potential V (a, s) can be a periodic function of the saxions. However, these

asymptotic behaviors cannot accommodate for an inflationary scenario. Indeed, assume

that the inflationary path (2.8) drives the saxions within any of these asymptotic regions

towards value of larger saxions. In the case in which the scalar potential V (a, s) is constant

asymptotically, it means that some saxions are strictly flat directions for the scalar potential;

thus, in this region, there is no vacuum towards which the saxions can roll, ending the

inflationary phase. In the case where the scalar potential is monotonically decreasing, a

vacuum could at most be an ‘asymptotic’ vacuum, formally located at the boundary of

the field space, where the effective theory is expected to break down. The last case, where

the scalar potential is monotonically increasing is the least interesting one for the inflation

towards larger values of the saxions: indeed, the scalar potential should push the scalar fields

towards smaller values of the saxions, not larger ones.

In sum, given an enough large positive constant C, whenever si > C for some i, then

there is no nearby vacuum to fall into, and the associated field space region is disfavored

for accommodating inflation.
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String theory lamppost evidence of no-strict asymptotic inflation. The above

general argument is consistent with what we expect from string theory-originated scalar

potentials. Indeed, let us consider the four-dimensional effective field theories that originate

from the compactification of F-theory over a Calabi-Yau four-fold Y . Such effective theories

are endowed with a closed string-sector complex moduli space, spanned by the complex fields

zi, which we split in axion and saxion components as zi = ai + isi, with i = 1, . . . , h3,1(Y ).

The presence of internal G4-fluxes induces a scalar potential for the fields zi that, in the

near-boundary regime, for large si, acquires the following form [52]1

VF(a, s) =
∑

ℓ∈E
ρℓ(a, f)2

n∏

j=1

(sj)∆ℓj . (2.22)

Here we have denoted ℓ = (ℓ1, . . . , ℓn), and E is the set of allowed vectors ℓ; moreover,

ρℓ(a, f) are analytic, bounded functions of the axions ai, and of the internal fluxes, generically

collected in the vector f . Both the explicit form of the functions ρℓ(a, f) and the set E depend

on the specific boundary around which the effective field theory is defined.

In the very strict asymptotic regime, for si ≫ 1, the scalar field metric over the field

space typically acquires the diagonal form

Gstrict
AB =

(

Gstrict
ij 0

0 Gstrict
ij

)

, with Gstrict
ij =

di

(si)2
δij , (2.23)

with the fields ordered as ϕA = (ai, si), and for some positive constants di. On the other hand,

after choosing a growth hierarchy among the saxion fields si, such as s1 > s2 > . . . > sn > 1,

or permutations thereof, and using the boundedness of the functions ρℓ(a, f), one can show

that, within the scalar potential (2.22), one can single out a leading term as

V strict
F (s) = C

n∏

j=1

(sj)∆ℓlead
j , (2.24)

for some leading ∆ℓlead
j and a positive constant C.

In other words, for large values of the saxions, the scalar potential is well-approximated

by a monomial that has definite growth, and exhibits one of the three behaviors that tame

functions are expected to be endowed with in the strict asymptotic regime [63]. Additionally,

it is then clear that, exploiting the strict asymptotic relations (2.23) and (2.24), the de Sitter

coefficient (2.2) trivially obeys the de Sitter conjecture (2.18), hindering the possibility to

realize inflation asymptotically, for large values of the saxions si.

Similar arguments can be reproduced for the complex structure sector scalar potential of

four-dimensional theories stemming from type IIB string theory, or for the Kähler sector scalar

potential of four-dimensional theories originating from Type IIA string theory compactified

over Calabi-Yau three-folds [52]. These observations lead to the suggestion that, if string

theory effective field theories ought to support inflationary paths, then these need to lie

towards the bulk of the moduli space, away from strict asymptotic regimes.

1Note, that flux-induced power-law scalar potentials for several moduli of this type were also obtained in

Riemann surface compactifications of type IIB string theory in [29].
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3 The scalar potential of type IIB effective theories

In this section we introduce the main objects of our investigations, namely the effective field

theories obtained from the compactification of type IIB string theory over an orientifolded

Calabi-Yau three-fold. Our focus will be on effective theories defined towards regions of the

complex structure moduli space close enough to a boundary located at infinite-field distance.

While we defer the technical details to the appendices A and B, here we outline the general

features that such near-boundaries effective field theory share, highlighting, in particular, the

structure of the scalar potential towards such infinite-field distance boundaries. For simplicity,

we restrict our attention to effective field theories characterized by a single complex structure

modulus, for which the general structure of the scalar potentials can be generically computed.

3.1 The asymptotic structure of the scalar potential

The compactification of type IIB string theory over a Calabi-Yau three-fold Y equipped

with O3, O7-orientifolds yields four-dimensional effective theories endowed with N = 1

supersymmetry. As reviewed in appendix A, restricting to the closed string sector, the

four-dimensional effective theories so obtained are characterized by three sectors of moduli,

residing within N = 1 chiral superfields: the axio-dilaton sector, the Kähler moduli sector,

and the complex structure sector. In this section, we disregard the Kähler moduli sector

and the axio-dilaton, and focus solely on the complex structure sector.

The complex structure moduli sector is described by a special Kähler geometry. As

such, parametrizing the complex structure moduli with the complex coordinates zi, with

i = 1, . . . , h2,1
− (Y ), all the interactions involving the complex structure moduli can be fully

expressed in terms of holomorphic periods which, in a symplectic basis, can be recast as

Π(z) =

(

XI(z)

−FI(z)

)

, (3.1)

where XI(z), FI(z), with I = 1, . . . , h2,1
− (Y ) + 1, are holomorphic functions of the complex

structure moduli zi.

The Kähler potential determining the kinetic terms for the complex structure moduli is

Kcs = − log i(X̄IFI − XIF̄I) , (3.2)

with the Kähler metric defined as Kcs
i̄ := ∂2Kcs

∂zi∂z̄̄ . Further interactions among the complex

structure moduli stem from their scalar potential. Here we assume that the scalar potential

is generated by internal Ramond-Ramond fluxes, and it can be written in the following form:

Vflux =: M4
PeK̂ V cs =

1

2
M4

PeK̂
f

T T (z, z̄) f , with f =

(

mI

−eI

)

, (3.3)

where eI , mI ∈ Z denote the Ramond-Ramond flux quanta, and T (z, z̄) is a real, positive semi-

definite matrix that can be expressed in terms of the periods (3.1) as in (A.10). Furthermore,

in (3.3), we have generically denoted with K̂ the Kähler potential involving the Kähler

moduli and the axio-dilaton.
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In a complete candidate four-dimensional vacuum of type IIB string theory compactified

on a CY orientifold, the full scalar potential including a mechanism of Kähler moduli

stabilization like KKLT or LVS would read

V = V
K̂

+ Vflux . (3.4)

Valid setups of Kähler moduli stabilization would generically stabilize the Kähler moduli in

and AdS minimum such that we get 〈V
K̂

〉 < 0 and |〈V
K̂

〉| ≪ 1. In addition, Kähler moduli

stabilization mechanisms like KKLT or LVS involve non-perturbative effects which suppresses

the Kähler moduli masses compared the flux-induced masses of the complex structure moduli

and the axo-dilaton. Hence, for KKLT and LVS Kähler moduli stabilization approximately

decouples from complex structure stabilization by flux, and will only produce suppressed shifts

of the complex structure moduli vevs compared to the vevs that acquire from Vflux alone.

As we shall see in the upcoming sections, the scalar potential (3.3) admits non-trivial

minima in the complex structure moduli space, along which the scalar potential acquires

a positive value V cs
min.

Hence, since eK̂ ∼ 1/V2 (where V is the CY volume) for such complex structure minima

with V cs
min > 0 the complex structure moduli potential

〈Vflux〉 = M4
P〈eK̂〉 〈V cs〉 ∼ 1

V2
V cs

min
︸ ︷︷ ︸

>0

(3.5)

acts as an anti-D3-brane like uplift to potentially four-dimensional de Sitter. It is for this

reason that we call the pure complex structure contribution V cs a ‘de Sitter uplift’ and label

quantities depending solely on V cs with the subscript ‘de Sitter uplift’.

For the following discussion, it is convenient to define as one such quantity the ‘de Sitter

uplift coefficient’ (2.2) restricted to the complex structure sector only as

γcs
uplift =

√

2Kzz̄
cs ∂zV flux∂z̄V flux

V flux
=

√

2Kzz̄
cs ∂zV cs∂z̄V cs

V cs
, (3.6)

to which we will refer as uplift de Sitter coefficient, due to the positive semi-definiteness

of the scalar potential.

Furthermore, in the following, we would like to study the viability of scalar potentials of

the form (3.3) for inflation. For this purpose, we need to impose the combined vacuum of

Kähler and complex structure moduli after inflation to have nearly-zero vacuum energy.

To mimic this without inserting manifest Kähler moduli stabilization, we subtract the

minimum value V cs
min that the scalar potential displays from (3.3) from Vcs, effectively assuming

that Kähler moduli stabilization produces 〈V
K̂

〉 ≃ −V flux
min .

Consequently, for such a normalized scalar potential, we introduce the quantity

γ̃cs
late-dS =

√

2Kzz̄
cs ∂zV cs∂z̄V cs

V cs − V cs
min

, (3.7)

to which we will refer as late de Sitter coefficient, where ‘late’ refers to the late-time near-zero

vacuum energy.
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The periods of a Calabi-Yau three-fold are notoriously hard to compute in general,

rendering difficult to grasp the generic structure of both the complex structure Kähler

potential (3.2) and the scalar potential (3.3) across the entirety of the complex structure

moduli space. Therefore, the investigation carried out in this work will focus on regions of

the complex structure moduli space moderately close to a given complex structure boundary.

In such regions, it is possible to infer the general structures that the periods (3.1) may

acquire by employing the powerful techniques developed in Hodge theory [64, 65]. While we

refer to appendix B for a brief overview of Hodge theory, or [66] for a more detailed review

thereof, here we limit ourselves to highlighting the salient implications of Hodge theory for

the asymptotic structure of the scalar potential (3.3).

For simplicity, we will focus on the case where the four-dimensional effective field theory

contains only a single complex structure modulus z, which we decompose as z = a + is,

with a denoting the axion and s the saxion field. Indeed, as in section 2.3, we assume that

the axion a spans the bounded interval

0 ≤ a < 1 , (3.8)

playing the role of a fundamental domain for the axion a, whereas the saxion s spans the

non-compact domain s > 1. In such conventions, we further assume that the boundary of

the complex structure moduli space is reached as s → ∞.

A key feature that characterizes a boundary is the associated monodromy. The monodromy

matrix T around a given boundary is defined by how the periods (3.1) transform under a

unit shift of the axion a as follows2

Π(a, s)
a→a+1−−−−→ Π

′(a, s) =: TΠ(a, s) . (3.9)

It is worth stressing that the monodromy matrix T is symplectic, and belongs to the larger

duality group Sp(4,Z) of the four-dimensional effective action [67–69]. In turn, the monodromy

matrix define the log-monodromy matrix N as follows

N = log T . (3.10)

Furthermore, the matrix N obeys NT η = −ηN , as a consequence of the fact that T is

symplectic, and nilpotent, namely Nn 6= 0, Nn+1 = 0 for some n ∈ N.

The log-monodromy matrix play a pivotal role in finding an asymptotic expression for

the periods (3.1). In fact, towards a moduli space boundary, for s > 1, the periods can (3.1)

enjoy the following expansions [42, 64, 65]

Π = ezN
(

a0 + e2πiz
a1 + e4πiz

a2 + . . .
)

, (3.11)

where a0, a1, a2, . . . are four-dimensional vectors.

For large enough values of the saxion s, the leading contribution in the expansion (3.11)

constitutes the nilpotent orbit approximation of the periods (3.1):

Πnil := ezN
a0 . (3.12)

2In this work, we shall focus on the unipotent part of monodromy matrices. Namely, the matrix T is such

that (T − 1)n 6= 0, (T − 1)n+1 = 0 for some n. Instead, we disregard the semi-simple part [42].
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In particular, it is worth remarking that the nilpotency of the matrix N implies that, at

leading order, the components of the periods are polynomials in the complex structure z, of

at most of degree n. Furthermore, the sole ingredients entering the leading behavior (3.12)

are the nilpotent matrix N and the vector a0, and their specific forms are tied to the type

of boundaries towards which the expansion (3.11) is performed.

Clearly, in order for the nilpotent orbit approximation (3.12) to serve as a good enough

approximation for the general expansion (3.11), we need that the exponential corrections

in the are negligible with respect to (3.12), namely |e2πiz| = e−2πs ≪ 1. Such a condition

can be achieved for moderately large values of the saxion s.

Equipped with the nilpotent orbit approximation (3.12), it is possible to extract the form

that the scalar potential (3.3) towards a moduli space boundary by simply employing the

leading contribution (3.12) for computing the matrix T (z, z̄) entering (3.3). In particular, due

to the structure of (3.12), the general form of a nilpotent orbit-approximated scalar potential is

V nil =
1

2
M4

PeK̂ ρT (a) Z(s) ρ(a) , with ρ(a) = e−aN
f , (3.13)

where Z(s) is a saxion-only dependent matrix.

While the scalar potential (3.13) could be most readily obtained out of the nilpotent-

orbit-approximated periods (3.11), in this work we will follow another route to determine

the scalar potential. Indeed, we will employ the sl(2)-approximation [52, 64–66]. This

approximation scheme generically differs from the nilpotent orbit approximation (3.12);

however, for values of the saxion s large enough, it offers a good approximation of the

nilpotent-orbit estimation (3.12). However, working with the sl(2)-approximation has several

advantages: firstly, the procedure to infer the sl(2)-approximation for the periods (3.1) is

algorithmic [66]; secondly, within such an approximation, we may ensure that the fluxes are

integer, namely f ∈ Z
2h2,1+2; moreover, it allows for immediate estimations of the growths,

or fall-offs of key physical quantities [52].

Prominently, the sl(2)-approximation offers a clear approximation for the matrix Z(s)

appearing in (3.13), for integral choices of fluxes entering the vector f . In fact, as illustrated

in [24, 52, 63], the scalar potential (3.13) may be interpreted as an Hodge norm for the flux

vector f . As such, assuming that axion a resides in the bounded domain (3.8), the scalar

potential (3.13) can be estimated as

V nil =
1

2
M4

PeK̂‖f‖2 ∼ sℓ , for some ℓ ∈ Z , (3.14)

where we have introduced the Hodge norm ‖ · ‖. Thus, in order to estimate the saxion-

dependent behavior of the scalar potential (3.3) it is just enough to know the geometric data

of the boundary near which the effective theory is defined, necessary to determine the explicit

expression of the norm (3.14), and the flux vector f that determines the scalar potential.

3.2 The scalar potential towards infinite-distance boundaries

In this work, we will be interested in effective field theories defined close to field space

boundaries located at infinite-field distance. In the case of a single, dynamical complex

structure modulus z, only two kinds of such boundaries can be constructed [24, 42, 43, 69]:

– 15 –



J
H
E
P
0
5
(
2
0
2
5
)
0
7
1

the Type IV boundaries, or large complex structure (LCS) boundaries, and the Type II

boundaries, or Tyurin degenerations. These can be most readily computed out of the

boundary data listed in [70], by using the techniques outlined in appendix B. Below, we

summarize the relevant quantities that are necessary to estimate the scalar potential (3.3) in

the sl(2)-approximation. We will follow closely the notation of [69, 70].

3.2.1 The scalar potential towards a large complex structure boundary

Firstly, let us consider the Type IV boundaries, or large complex structure boundaries. The

nilpotent matrix N that enters the determination of the nilpotent orbit approximation of

the periods (3.12) is [70]:

N =









0 0 0 0

m 0 0 0

c b 0 −m

b n 0 0









, with







m, n ∈ Z ,

b + mn
2 ∈ Z ,

c − m2n
6 ∈ Z ,

m 6= 0, n > 0 ,

(3.15)

with the vector a0 being

a0 =

(

1, 0, ξ,
c

2m

)T

. (3.16)

At the nilpotent order approximation, the periods (3.1) can be computed out of the holo-

morphic prepotential

Fnil
LCS = − n

6m

(X1)3

X0
− b

2m
(X1)2 − c

2m
X1X0 − 1

2
ξ(X0)2 (3.17)

whence we obtain the periods

Π
nil
LCS = ezN

a0 =









1

mz

−1
6m2nz3 + 1

2cz + ξ
1
2mnz2 + bz + c

2m









, (3.18)

once we gauge-fix X0 = 1, X1 = mz.

The Kähler potential (3.2) is then given by

Kcs
LCS ≃ − log

(
4

3
m2ns3 + 2 Imξ

)

, (3.19)

and the scalar potential, in the sl(2)-approximation, is as in (3.13), with

ZLCS(s) ≃














3c2s2+m4n2s6+36(Re ξ)2

6m2ns3
c

m3ns3 (bms2 + Reξ) − 6Reξ
m2ns3 − c

mns

c
m3ns3 (bms2 + Reξ) 3c2+4b2m2s2+m4n2s4

2m4ns3 − 3c
m3ns3 − 2b

mns

− 6Reξ
m2ns3 − 3c

m3ns3
6

m2ns3 0

− c
mns

− 2b
mns

0 2
ns














. (3.20)

For the following sections, it will be convenient to further introduce the integral parameters

β = b +
mn

2
∈ Z , χ = c − m2n

6
∈ Z . (3.21)
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3.2.2 The scalar potential towards a Tyurin boundary

The second kind of complex structure boundary located at infinite field distance is the Tyurin

boundary[71, 72]. Such a boundary is specified by the log-monodromy matrix [69, 70]

N =









0 0 0 0

0 0 0 0

m 0 0 0

0 n 0 0









, with m, n ∈ N , (3.22)

and the vector

a0 = (1, 0, i α, i αc + d)T , with α =

√
m

n
and c, d ∈ R. (3.23)

Thus, the nilpotent-orbit approximated period vector (3.12) is

Π
nil
Tyurin = ezN

a0 =









1

i α

mz

d + i cα + i nαz









. (3.24)

In [69] it has been shown that the periods (3.24) can be equivalently obtained from the

prepotential

FTyurin = iX0X1 + i
αd

2
(X0)2 , (3.25)

upon performing a symplectic transformation of the periods (3.24) and for a suitable gauge-

fixing.

Inserting the nilpotent orbit-approximated periods in the general expression of the

complex structure Kähler potential (3.2), we obtain

Kcs
Tyurin ≃ − log

(

4ms − 2

√
m

n
d

)

. (3.26)

In particular, we notice that, with respect to the large complex structure Kähler poten-

tial (3.19), it grows slower, as Kcs
Tyurin ∼ − log s for large saxion s. Additionally, in order to

ensure that (3.19) is well-defined within our approximation, we need that s > d
2
√

mn
.

In the sl(2)-approximation, the scalar potential acquires the form (3.13), with the

saxion-dependent matrix

ZTyurin(s) ≃














ms + d2

4ns
cd

2ns
0 − d

2ns

cd
2ns

ns + c2

ns
+ d2

4ms
− d

2ms
− c

ns

0 − d2

2ms
1

ms
0

− d
2ns

− c
ns

0 1
ns














. (3.27)
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4 de Sitter uplifts from the penumbra

A crucial ingredient for the realization of inflation is the presence of a meta-stable de Sitter

vacuum, towards which the inflationary paths (2.8) ends, thus leading to the reheating phase of

the universe. But where, in the field space, can such a de Sitter vacuum be located, if it exists?

Momentarily, let us focus only on the complex structure sector. The scalar potential (3.3)

of the type IIB effective field theories that we are considering is positive semi-definite. Hence,

if it admits a vacuum, then it must be a Minkowski, or a de Sitter vacuum. However,

for a given choice of RR fluxes f and within the axion fundamental domain (3.8), such a

vacuum cannot be located too close to a field space boundary, where the saxion s acquires

very large vevs, namely s ≫ 1. In fact, in such a strict asymptotic approximation, the

scalar potential (3.3) is well approximated by a monomial, as in (3.14), and cannot display

non-trivial critical points. As observed in [52], such a feature is shared by large classes of

scalar potentials stemming from the compactification of string theory over a Calabi-Yau

three-fold, and is a reflection of the famous Dine-Seiberg problem [73].

Thus, on the one hand, in the hope to find critical points for the scalar potential (3.3) we

must move away from the strict asymptotic region, and consider regions of the field space where

the saxion vevs are not necessarily very large. On the other hand, small values of the saxion

invalidate the approximation (3.12) for the periods, and consequently the approximation (3.13)

for the scalar potential, for the exponential corrections of order O(e−2nπs) appearing in (3.11)

become important. Hence, we ought to focus on regions of the moduli space where the saxion

vev is just moderately large in such a way that, in this regime, the scalar potential (3.3) is not

well-approximated by a monomial, and several competing terms may deliver critical point,

while keeping the exponential corrections of (3.11) suppressed. Thus, we define:

Strict asymptotic region. A field space region where the fields acquire very large

vevs, such that, within the scalar potential, it is always possible to single out a

leading term, with definite asymptotic behavior,

which is distinguished from

Penumbra (or penumbral region). A field space region where the fields acquire

moderately large vevs, so that the scalar potential is given by several, competing

terms which now include the first subleading terms that have been dropped in

the strict asymptotic region.

In general, it may still be hard to obtain critical points for the scalar potential V cs within

the penumbra region, since it may be nontrivial to have several competing contributions to

the scalar potential that could consistently deliver a critical point. However, the effective field

theories defined towards infinite-distance boundaries are not unique, and they come in large

families: indeed, both the effective theories defined towards the LCS and the Tyurin boundaries

introduced in section 3.2.1 and 3.2.2 depend on several geometric parameters, namely those

entering the periods (3.18), (3.24), or the scalar potential-defining matrices (3.20), (3.27). As

will become clear in the explicit examples below, assuming that these geometric parameters

can acquire large, or just moderately large values may offset the strength of the different

contributions to the scalar potential (3.3), consequently leading to nontrivial critical points.
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Finally, it is worth remarking that the complex structure modulus is not the sole modulus

entering the scalar potential (3.3). In fact, the scalar potential also depends on the Kähler

moduli and the axio-dilaton, and, in the framework that we are considering, their dependence

in only encoded in the prefactor eK̂ . As such, the Kähler moduli and the axio-dilaton cannot

be stabilized with the scalar potential (3.3). Consequently, even though the contribution

V cs
f

entering the scalar potential (3.3) has a critical point located at (a∗, s∗) with respect

to the complex structure, such that V cs(a∗, s∗) > 0, the field space point (a∗, s∗) is not a

fully-fledged vacuum, for the Kähler moduli and the axio-dilaton are runaway directions.

Still, this indicates that the complex structure modulus z offers a de Sitter uplift for the full

scalar potential (3.3). Whether such an uplift is enough to guarantee that a fully-fledged

vacuum is still characterized by a positive value of the scalar potential is an open question.

Hence, to summarize, the working hypotheses that we will employ in the forthcoming

discussion can be summarized as follows:

Only a single, dynamical complex structure modulus: we restrict our attention solely

to a single, dynamical complex structure modulus, and we will disregard the remaining

axio-dilaton and Kähler moduli. Concretely, we will be treating the prefactor eK̂ that

appears in (3.13) as a constant;

Monodromy-parameters hierarchy: we shall assume that the parameters that enter the

log-monodromy matrices (3.12) — such as those appearing in (3.15) or (3.22) — can be

hierachically separated. Namely, one, or some parameters entering the log-monodromy

matrices (3.12) can be larger than the remaining by some order of magnitudes;

Explorable ‘penumbra’ region: we depart from the strict asymptotic regime, by con-

sidering moderately large values of the saxion s, for which the approximation (3.12)

still holds.

Below, we shall see that, under these assumptions, the four-dimensional type IIB effective field

theories defined towards LCS and Tyurin boundaries introduced in section 3.2.1 and 3.2.2

offer large families of possible de Sitter uplifts.

4.1 de Sitter uplifts towards LCS boundaries

As a first, concrete example of a de Sitter uplift, let us consider an effective field theory defined

towards a large complex structure boundary, within the family of theories introduced in

section 3.2.1. Such an effective theory is endowed with the scalar potential of the form (3.13),

with the log-monodromy matrix (3.15) and saxion-dependent matrix (3.20). To further

specify the model, we choose the following fluxes and monodromy parameters:

e0 = e1 = m0 = m1 = 1 , m = 1 , n = 6 , β = χ = −100 , ξ = 0 . (4.1)

The scalar potential obtained this way and the associated de Sitter coefficient (3.6)

are plotted in figure 1.

Interestingly, at such a level of approximation, the scalar potential so constructed exhibits

a de Sitter critical point located at amin ≃ 0.3517, smin ≃ 7.183, at which Vflux(amin, smin) ≃
724.1eK̂M4

P. It is worth noticing that by appropriately stabilizing the Kähler moduli, the scalar
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Figure 3. The scalar potential (left) (3.13) and the uplift de Sitter coefficient (right) (3.6) towards the

Tyurin boundary obtained employing the log-monodromy matrix (3.22) and the sl(2)-approximated

matrix (3.27), particularized to the choice of geometric parameters (4.2). The orange dot denotes the

location of the minimum of the scalar potential.

set at e0 = e1 = m0 = m1 = 1, and choosing the remaining geometric parameters as m = 1,

n = 6, ξ = 0. In particular, in figure 2, each dot denotes the point in the parameter space

(β, χ) analyzed, and the size of the dot indicates the vev that the axion and the saxion take

at the de Sitter minimum on the left and the right plot, respectively. Furthermore, the color

of each point indicates the value of the scalar potential V cs at the given de Sitter minimum.

4.2 de Sitter uplifts towards Tyurin boundaries

The effective field theories defined towards the Tyurin boundaries introduced in section 3.2.2

may also deliver de Sitter uplifts. For example, let us choose the following fluxes and

geometric parameters:

e0 = e1 = m0 = m1 = 1 , m = n = 1 , d = −1 , c = −200 . (4.2)

The scalar potential, obtained using the log-monodromy matrix (3.22) and the saxion-

dependent matrix (3.27), and the corresponding de Sitter coefficient (3.6) are plotted in

figure 3.

Indeed, within the approximation that we are considering, with respect to the complex

structure moduli only, the scalar potential (3.13) displays a de Sitter critical point located

at amin ≃ smin ≃ 100, at which V cs(amin, smin) ≃ 200 eK̂M4
P. Hence, such an effective theory

offers a potential de Sitter uplift for the full scalar potential (3.13). Again, from reliable regimes

of Kähler moduli stabilization we expect eK̂ ∼ 1
V2 . 10−6 and thus Vflux(amin, smin) . 10−2

for our example here.

As noticed for the families of effective theories defined towards an LCS boundary, the

existence of such a de Sitter uplift is not uncommon. Rather, they come in large families,

since a large number of possible geometric parameter choices may lead to a de Sitter

uplift. Indeed, in figure 4 is a scan of complex structure minima, performed with python.

The scan is performed over the (c, d) parameter space, and we have fixed the fluxes as

e0 = e1 = m0 = m1 = 1, and the additional geometric parameters are set to m = n = 1.

Each dot corresponds to a point in such a parameter space that is tested. The size of each

dot on the left and on the right plot denotes the vev that the axion and the saxion acquire at
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Figure 5. The complex structure scalar potential (left) defined (3.13) and the associated uplift de

Sitter coefficient (right) (3.6) towards a large complex structure boundary, obtained employing the

log-monodromy matrix (3.15) and the sl(2)-approximated matrix (3.20), particularized to the choice

of geometric parameters (4.1). The orange, thick line denotes the backreaction of the axion vev onto

the saxion minimum.

consistently deliver scalar potentials whose valleys, if any, cannot lie in the axion directions

only, for they have to involve saxion directions as well. Concretely, (5.1) cannot be generically

solved for a constant sv(a) = smin. In particular, asymptotically in the field space, certain

classes of stringy examples exhibit linear backreactions, with the saxion minima scaling

linearly with some linear combination of the axions, for large enough axion vevs.

We note that in four-dimensional EFTs from string theory which can accommodate

inflationary paths, these may not need to reside asymptotically in field space, and may well

extend towards the bulk of the moduli space, entering the penumbral region. Indeed, the

penumbral region of the moduli space seems to be rather attractive for searching possible

candidate valleys that may realize axion monodromy inflation. On the one hand, as we already

observed in the previous section, it is within the penumbral regions of the type IIB effective

theories that de Sitter uplifts can be found; furthermore, the penumbra hosts subregions of

the moduli space where the uplift de Sitter coefficient (2.2) may be arbitrarily small, possibly

leading to a small enough first slow-roll parameter (2.9) via (2.17). On the other hand, as we

shall see in this section, while backreaction effects of the axion vev onto the saxion minimum

are still present in the penumbral region, these are milder than those that characterize the

asymptotic regions of the moduli space. Indeed, by examining three examples of type IIB

effective field theories — two defined towards an LCS boundary, and one defined towards a

Tyurin boundary — we shall explicitly see how the backreaction effects are ameliorated when

moving from the asymptotic region towards the penumbra region of the moduli space.

5.1 Examples of axion valleys towards LCS boundaries

As a first example of candidate axion valley lying in the penumbra region, let us consider the

same effective field theory, defined towards an LCS boundary, as the one that we introduced

in section 4.1. In figure 5 we have plotted the backreaction of the axion vev onto the saxion
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Figure 6. On the left, the plot of the backreaction of the axion vev onto the saxion minimum dictated

by (5.1), for the effective theory defined towards a large complex structure boundary, specified by the

parameters (4.1); on the right, the log-log plot of the associated complex structure scalar potential,

to which we have subtracted its value at the minimum V cs

min
. For very large values of the axion a,

V cs(a, sv(a)) ∼ a3, while for smaller values of a V cs(a, sv(a)) ∼ a2.

minimum, as governed by (5.1), along the surfaces of the scalar potential and the uplift

de Sitter coefficient.

For the sake of clarity, in figure 6 are the plots of the backreacted saxion minimum sv(a)

along the valley, defined via (5.1), and the scalar potential along the valley as a function of the

axion. The plot of the saxion backreaction on the left of figure 6 shows that, for large axion

vevs, the backreaction behaves linearly with the axion, as expected. However, for smaller

values of the axion, within the penumbra region, the backreaction is milder, with smaller

local slopes. This behavior is indeed reflected on the plot of the scalar potential defined onto

the valley on the right of figure 6: while the scalar potential behaves as V cs(a, sv(a)) ∼ a3 for

large axion vevs, it displays the milder scaling V cs(a, sv(a)) ∼ a2 in the penumbra region.

Consequently, both the uplift de Sitter coefficient and late de Sitter coefficients (3.6), (3.7)

vary when moving from the asymptotic region towards the penumbra region. Indeed, on the

left of figure 7 is plotted the uplift de Sitter coefficient (3.6): asymptotically, for large axion

vevs, γcs
uplift →

√
6, as expected, whereas it becomes smaller towards the penumbra region.

In particular, the uplift de Sitter coefficient becomes arbitrarily small as the minimum is

approached, escaping the strong de Sitter bound (2.19).

However, the late de Sitter coefficient (3.7), depicted on the right of figure 7, unlike its

uplift de Sitter coefficient counterpart, does not become arbitrarily small along the axion

valley, and stays well above the strong de Sitter bound (2.19). As such, such valleys cannot

be regarded as fully-fledged candidates of inflationary paths.

It is worth remarking that, while the scalar potential and saxion backreaction share

universal features in the asymptotic region of the moduli space [24], these quantities do not

seem to exhibit general behaviors in the penumbra region. Indeed, let us consider a second

example of a type IIB effective field theory defined towards an LCS boundary, specified

by the following geometric data:

e0 = e1 = m0 = m1 = 1 , m = 1 , n = 6 , β = χ = 103 , ξ = 0 . (5.2)

As for the model introduced in section 4.1, the complex structure sector of this effective
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Figure 7. On the left, the log-log plot of the uplift de Sitter coefficient (3.6) and, on the right, the

log-log plot of the late de Sitter coefficient (3.7) along the scalar potential valley plotted in figure 5.

Figure 8. The complex structure scalar potential (left) defined (3.13) and the associated uplift de

Sitter coefficient (right) (3.6) towards a large complex structure boundary, obtained employing the

log-monodromy matrix (3.15) and the sl(2)-approximated matrix (3.20), particularized to the choice

of geometric parameters (5.2). The orange, thick line denotes the backreaction of the axion vev onto

the saxion minimum.

theory also leads to a de Sitter uplift. Indeed, the complex structure scalar potential,

defined in (3.13), and computed with the log-monodromy matrix (3.15) and saxion-dependent

matrix (3.20), with the parameters as in (5.2), is equipped with a minimum located at

amin ≃ −1.000, smin ≃ 22.28, where Vflux(amin, smin) ≃ 2.230 · 104eK̂M4
P. Here as well, as

reliable regimes of Kähler moduli stabilization typically imply eK̂ ∼ 1
V2 . 10−6 we expect

Vflux(amin, smin) . 10−2 for our example here.

Figure 8 depicts for the axion valley, defined via (5.1), on the left the scalar potential

and on the right the uplift de Sitter coefficient. To further exhibit the behavior of the axion

valley, in figure 9 we have further plotted the backreacted saxion minimum along the valley

as a function of the axion, as well as the scalar potential along the valley where we adjusted

to zero the scalar potential at the minimum ending the valley.

As with the previous example, the backreaction effects become milder towards the

penumbra region of the moduli space. However, unlike the previous example, the saxion

backreaction, depicted on the left of figure 9, is not monotonic in the axion within the
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Figure 9. On the left, the plot of the backreaction of the axion vev onto the saxion minimum dictated

by (5.1), for the effective theory defined towards a large complex structure boundary, specified by the

parameters (5.2); on the right, the log-log plot of the associated complex structure scalar potential,

to which we have subtracted its value at the minimum V cs

min
. For very large values of the axion a,

V cs(a, sv(a)) ∼ a3, while for smaller values of a V cs(a, sv(a)) ∼ a
3

2 .

penumbra region. Still, for values of the axion a & 100, the backreaction is linear in the

axion. In turn, while the complex structure scalar potential grows as V cs(a, sv(a)) ∼ a3

asymptotically, as depicted on the right of figure 9, it behaves only as V cs(a, sv(a)) ∼ a
3
2

towards the penumbra, with the axion vevs a . 100.

The uplift de Sitter coefficient and the late de Sitter coefficient along the axion valley

are depicted in figure 10. Towards the penumbra, the uplift de Sitter coefficient (3.7) may be

well below the bounds set by the strong de Sitter conjecture (2.19), but the late de Sitter

coefficient (3.7), although getting closer to the strong de Sitter bound in the penumbra

region, it still stays above these bounds.

However, different choices of parameters may lead to a late de Sitter coefficient that,

along the scalar potential valley, may avoid the strong de Sitter conjecture (2.19).

For instance, the effective theory specified by the parameters

e0 = e1 = m0 = 1 , m1 = 10 , m = 1 , n = 6 , β = 102 , χ = 103 , ξ = 0 , (5.3)

leads to a scalar potential valley along which the uplift de Sitter coefficient, and late de

Sitter coefficient are as depicted in figure 11. Indeed, similar effective field theories are

attractive from the inflationary perspective: the penumbral regions where the late de Sitter

coefficient (3.7) is small enough may lead to viable axion monodromy slow-roll inflation.

5.2 An example of an axion valley towards a Tyurin boundary

The type IIB effective field theories defined towards a Tyurin boundary introduced in

section 3.2.2 may also host scalar potential valleys extending from the asymptotic regions

of the moduli space towards the penumbra. Indeed, let us consider the same model as in

section 4.2, specified by the geometric data (4.2). The scalar potential valley, as defined

in (5.1), is plotted in figure 12, stretching on the scalar potential and uplift de Sitter

coefficient surfaces.

On the left of figure 13 is depicted the saxion backreaction as a function of the axion:

while it exhibits the expected linear behavior asymptotically, it displays a milder behavior
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Figure 10. On the left, the log-log plot of the uplift de Sitter coefficient (3.6) and, on the right, the

log-log plot of the late de Sitter coefficient (3.7) along the scalar potential valley, specified by the

parameters (5.2) and plotted in figure 8.

as the axion minimum, located at amin ≃ 100, is approached. Indeed, the scalar potential

grows linearly with the axion in the asymptotic region, while the penumbra hosts region

where the scalar potential grows slower, being almost constant for small values of the axion,

as depicted on the right of figure 13.

In figure 14 we have plotted the uplift de Sitter coefficient and late de Sitter coeffi-

cient (3.6), (3.7) along the axion valley for the model. While the uplift de Sitter coefficient,

plotted on the left of figure 14, can be very small in the penumbra region, in the vicinity

of the axion minimum, the late de Sitter coefficient, depicted on the right, remains above

the strong de Sitter bound (2.19).

5.3 Candidate valleys from a family of toy models

Although the penumbra region of the moduli space may host possible valleys exhibiting mild

backreactions, these valleys may not correspond to viable paths realizing axion monodromy

inflation, while consistently satisfying the slow-roll conditions. In fact, as observed in the

examples portrayed in sections 5.1 and 5.2, the late de Sitter coefficient (3.7) is not necessarily

small. In this section we will be taking a different approach: we inquire which families of

effective theories may deliver valleys exhibiting small de Sitter coefficient, by considering

simplified toy models. In particular, we require that the late de Sitter coefficient (3.7) becomes

smaller towards asymptotic regions of the moduli space, allowing inflationary paths to start

well before the penumbra region is reached.

As with the type IIB effective theories examined in the previous sections, the family

of effective theories that we consider here hosts models that are characterized by a single

dynamical complex field z = a + is. Collecting the real fields as ϕA = (a, s), we shall assume

the field space metric to be GAB = 1
2s2 δAB . Furthermore, we assume the axion a and saxion

s to be subjected to the following scalar potential

V (a, s) =
(e − am)2

2sp
+

1

2
m2sq + V0 , (5.4)

with the integral parameters e, m ∈ Z, and p, q ∈ Z>0, and V0 ∈ R being an arbitrary offset.

Indeed, the field space metric that we have just introduced mimics the one that emerges in

string theory effective theories defined towards infinite-field distance boundaries, such as those
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Figure 11. On the left, the log-log plot of the uplift de Sitter coefficient (3.6) and, on the right, the

log-log plot of the late de Sitter coefficient (3.7) along the associated scalar potential valley, specified

by the parameters (5.3).

Figure 12. The complex structure scalar potential (left) defined (3.13) and the associated uplift de

Sitter coefficient (right) (3.6) towards a large complex structure boundary, obtained employing the

log-monodromy matrix (3.22) and the sl(2)-approximated matrix (3.27), particularized to the choice

of geometric parameters (4.2). The orange, thick line denotes the backreaction of the axion vev onto

the saxion minimum.

of the models studied in sections 5.1 and 5.2. Moreover, for some appropriate choices of powers

p, q, the scalar potential (5.4) is a subcase of the more general scalar potentials emerging

towards such boundaries, where the parameters e and m are identified as background fluxes.

The scalar potentials defined in (5.4) are endowed with a shift symmetry: in fact, the

scalar potentials (5.4) are invariant under axion shifts a → a + n, for some n ∈ Z, provided

that the parameter e is shifted as e → e + nm. Such a symmetry is spontaneously broken

when the parameter e is frozen; indeed, for fixed parameter e, the scalar potentials (5.4)

exhibit a single, axion minimum located at amin = e
m

.

We would like to investigate whether any of the theories in the family so constructed

may accommodate regions where slow-roll inflation is not strictly forbidden. Hence, as a first,

exploratory analysis, we may check whether there are some regions of the two-dimensional

field space (a, s) where the first slow-roll parameter (2.9) is not large. For simplicity, we

may assume that any given point in the field space is threaded by a geodesic inflationary

path, so that (2.17) leads to the simpler identification ε = γ2

2 .
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Figure 13. On the left, the plot of the backreaction of the axion vev onto the saxion minimum dictated

by (5.1), for the effective theory defined towards a Tyurin boundary, specified by the parameters (4.2);

on the right, the log-log plot of the associated complex structure scalar potential, to which we have

subtracted its value at the minimum V cs

min
. For very large values of the axion a, V cs(a, sv(a)) ∼ a; for

smaller values of the axion, below the minimum amin, V cs(a, sv(a)) is approximately constant.

Figure 14. On the left, the log-log plot of the uplift de Sitter coefficient (3.6) and, on the right, the

log-log plot of the late de Sitter coefficient (3.7) along the scalar potential valley plotted in figure 12.

Figure 15 shows a scan of the values of the first slow-roll parameter ε = γ2

2 across the

field space, choosing e = m = 1 and V0 = 0, for some values of p, q. Remarkably, for some

appropriate vevs of the axion and the saxion, the first slow-roll parameter can be quite small;

indeed, in figure 15, the green dots correspond to field space points at which ε < 1
2 .

But how can eventual inflationary paths look like? Ideally, we would like to treat one of

the two fields as the inflaton. Since all the scalar potentials in the family (5.4) are endowed

with a quadratic axion coupling, the axion a may play the role of the inflaton. To this end, it is

crucial that the partner field, the saxion s, can be consistently fixed at its minimum. However,

backreaction effects may prevent this from happening. In fact, solving (5.1) leads to the valley

sv(a) =

[
p

qm2
(e − am)2

] 1
p+q

, (5.5)

which exhibits how the saxion minimum is displaced due to a change of the axion vev. In

particular, for large values of the axion, the backreaction onto the saxion vev (5.5) behaves

as sv(a) ∼ a
2

p+q . However, it is worth remarking that, although (5.5) indicates that one

cannot vary the axion while keeping the saxion fixed, the backreaction (5.5) flattens for large

values of p, q, thus becoming less, and less relevant.
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that parameter space point is associated with the label ‘0’, or ‘False’. Conventionally, we

shall set the constant c equal to 1.

Machine learning the effective theories hosting valleys. The set of databases created

as described above can then be fed to a machine learning algorithm to learn which parameters

can lead to valleys distinguished by an uplift de Sitter coefficient that is small enough.

Or, more appropriately, such a machine learning algorithm would allow us to exclude the

parameter regions where an eventual valley passing through the given field space point

(a(I), s(I)) cannot be small enough. Concretely, the regions can be learned by feeding the

databases constructed as above to a simple k-nearest neighbors algorithm — see [74, 75]

for a physics-oriented explanation of this algorithm. Such an algorithm allows one to learn

what are the parameter regions whose points are more likely to be associated with the label

‘1’, or ‘0’, namely which parameter regions are characterized, or not by small enough uplift

de Sitter coefficient for at the field space point (a(I), s(I)). Clearly, such a procedure can be

repeated for any of the field space points (a(I), s(I)) originally chosen.

Below we shall apply this analysis in order to learn which effective theories defined

either towards an LCS, or a Tyurin boundary may host candidate axion valleys with small

enough uplift de Sitter coefficient.

6.1 Axion valley regions towards LCS boundaries

The type IIB effective field theories defined towards an LCS boundary introduced in sec-

tion 3.2.1 are characterized by a ten-dimensional parameter space, given by the four fluxes

eI , mI , the real geometric parameters m, n, β, χ and the complex parameter ξ. For simplicity,

we shall focus only on the two-dimensional subspace spanned by the geometric parameters

β and χ. We will fix the fluxes as e0 = e1 = m0 = m1 = 1, and the remaining geometric

parameters as m = 1, n = 6, ξ = 0.

We can construct a database of effective field theories by following the procedure above.

Firstly, we pick nine pairs of axion and saxion vevs (a(I), s(I)), where a(I) = {1, 5, 10},

s(I) = {35, 50, 65}. For each of these nine pairs, we create a grid composed by 15 possible

values of the parameter β, and an equal number of possible values of the paratemer χ, both

chosen in the interval [1, 2000]. For each point in the grid, we compute the scalar potential,

and then the uplift de Sitter coefficient, evaluated at the space point (a(I), s(I)). The result

is plotted in figure 17: each of the plots is associated to a specific pair of field space points

(a(I), s(I)). The green dots are associated to parameter space points where γcs
uplift(a(I), s(I)) < 1,

while the blue dots are associated to parameter space points for which γcs
uplift(a(I), s(I)) ≥ 1,

with the size being an indication of the specific value.

Then, feeding the databases so created to a standard k-nearest neighbors machine learning

algorithm the parameter space regions where either γcs
uplift(a(I), s(I)) < 1, or γcs

uplift(a(I), s(I)) ≥ 1

can be learned. It is worth mentioning that we have constructed a database with a grid since

the algorithm leading to its creation is quite efficient — the creation of the aforementioned

database requires roughly 0.1s; alternatively, we could have also chosen random parameters

space points. Moreover, the regions learned, and plotted in figure 17 indicate that larger

axion and saxion vevs require larger, more extreme values of the geometric parameter to
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(barring unexpectedly huge coefficients), as these will be suppressed by additional inverse

powers of the moderately large saxion vev. By the same logic, instanton corrections scaling

as exp(−2πs) are completely negligible in this regime.

The de Sitter uplifts found this way are also associated to axion valleys, along which

the saxion field attains its local minimum, and characterized by small a uplift de Sitter

coefficient and modest backreaction. These axion valleys are long-range in that they extend

over multiple axion periods. In this sense, they show axion monodromy. Whether these

valleys may be viable paths for realizing axion monodromy inflation is still an open question:

a preliminary feature that these valley ought to exhibit is a small enough late de Sitter

coefficient. While we do find examples sharing such a feature, a more detailed analysis has

to be performed in order to check how small the late de Sitter coefficient can become along

these candidate valleys. We leave this including the necessary accompanying analysis of other

slow-roll inflationary constraints along the valley for future work.

While we have illustrated how machine learning can help make the search for effective

field theories hosting candidate axion valleys in the penumbral region systematic, a thorough

machine learning analysis, encompassing all the necessary constraints for these valley candi-

dates to be consistent axion valleys, is postponed to future work. Indeed, a machine learning

driven analysis may be necessary in order to further extend the reach of our investigations.

Analogous models with multiple dynamical complex structure moduli in the penumbral region

require additional geometrical parameters that make a systematic scan too involved for the

limited numerical methods employed in this work.

It would be also intriguing to check for different sectors of the moduli space as a well

as for different families of effective field theories whether they could exhibit analogous

uplifts, and associated candidate axion valleys. For instance, it is tantalizing to examine

whether the de Sitter uplifts studied in this work survive after assuming that the Kähler

moduli sector is dynamical; or whether more general F-theory four-dimensional effective

field theories, equipped with a dynamical axio-dilaton, and with fluxes constrained by the

tadpole cancellation condition, can also host these uplifts.
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A An overview of the type IIB N = 1 four-dimensional effective theories

In order to keep this work self-contained, and to clarify the notation employed in section 3

of the main text, in this appendix we briefly review some of the most important features of

the four-dimensional theories that are obtained after the compactification of type IIB string

theory over an orientifolded Calabi-Yau three-fold.

The compactification of type IIB string theory over an Calabi-Yau three-fold, equipped

with O3, O7-orientifolds, leads to four-dimensional theories equipped with N = 1 local

supersymmetry [76]. In this work, we consider only the closed string sector, further restricting

our focus to the following, bosonic fields: the graviton gµν , being part of the gravitational

tensor multiplet, and a set of complex scalar fields ϕα, with α = 1, . . . , N , supersymmetrically

embedded within chiral multiplets. The scalar fields ϕα are identified with the moduli of

the Calabi-Yau manifold upon which type IIB string theory is compactified, and may be

split into three-families, according to their geometric origin.

Firstly, the effective theory is endowed with the axio-dilaton τ = C0 + ie−φ, where φ is the

ten-dimensional dilaton, related to the string coupling as gs = eφ, and C0 is the RR zero-form.

Secondly, the effective theory is populated by the real scalar fields vλ, with λ = 1, . . . , h1,1
+ ,

which are identified as the Kähler moduli of the Calabi-Yau manifold; indeed, these can be

most readily obtained by expanding the Kähler two-form in a basis of h1,1
+ divisors Dλ as

J = vλ[Dλ], with [Dλ] being the Poincaré dual of the divisor Dλ. The real scalar fields vλ

pair with those descending from the dimensional reduction of the RR four-form over the

basis of divisors Dλ as aλ =
∫

Dλ C4. Together, the real scalar fields vλ and aλ form the

complex scalar fields uλ = aλ + isλ where we have introduced sλ = 1
2

∫

Dλ J ∧ J = 1
2κλρσvλvσ,

with κλρσ the Calabi-Yau intersection numbers.

Finally, the four-dimensional effective theory contains the complex scalar fields zi, with

i = 1, . . . , h2,1
− , parametrizing the variations of the Calabi-Yau complex structure. These can

be obtained by expanding the Calabi-Yau holomorphic three-form Ω in a basis of 2(h2,1
− + 1)

three-forms γI , with I = 1, . . . , 2(h2,1
− +1) as Ω = ΠI(z)γI , with ΠI(z) being the holomorphic

periods entailing the complex structure deformations.

It is convenient to consider a symplectic basis of three-forms γI = (αI , βJ), with I, J =

0, 1, . . . , h2,1
− . The associated symplectic pairings are defined by the following matrix

η =

(∫
αI ∧ αJ

∫
αI ∧ βJ

∫
βI ∧ αJ

∫
βI ∧ βJ

)

=

(

0 1

−1 0

)

(A.1)

expressed in (h2,1 + 1) × (h2,1 + 1) blocks. Accordingly, over such a symplectic basis, the

periods ΠI(z) split as

Π(z) =

(

XI(z)

−FI(z)

)

, (A.2)

and the three-form Ω can be expanded as Ω = XIαI − FIβI .

We further recall that the periods (A.2) ought to holomorphically depend only on the

complex structure scalar fields zi. Hence, to remove the redundancies, firstly, we will regard

the quantities FI as holomorphic functions of the coordinates XI ; in some cases, the functions
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FI can be additionally thought of as being derivatives of a single quantity, the prepotential

F . In such cases, the prepotential is a homogeneous function of degree two in the XI , and

the quantities FI are obtained via FI = ∂F
∂XI . Secondly, we shall perform a gauge-fixing of

the coordinates XI by setting one coordinate — X0, for instance — to a constant.

The effective field theory capturing the interactions among the moduli sectors introduced

above is

S =

∫ (
1

2
M2

PR ∗ 1 − M2
PKαβ̄ dϕα ∧ ∗dϕ̄β̄ − V ∗ 1

)

. (A.3)

Here, MP is the four-dimensional Planck mass, and R is the Ricci scalar. Furthermore,

we have collected the moduli as ϕα = (zi, uλ, τ), and introduced Kαβ̄ = ∂2K

∂ϕα∂ϕ̄β̄
, with K

the Kähler potential. Additionally, the scalar potential V generically depends on all the

moduli populating the effective theory.

In this work, we assume that the Kähler potential is given by distinct contributions

from the three moduli sectors, as

K = Kcs + Kks − log [−i(τ − τ̄)] . (A.4)

Here, Kks solely depends on the complex structure moduli, and can be fully expressed in

terms of period components as follows

Kcs = − log

(

i

∫

Ŷ
Ω ∧ Ω̄

)

= − log i Π
T ηΠ̄ = − log i(X̄IFI − XIF̄I) , (A.5)

whereas the Kähler moduli are separately encoded within the Kähler potential contribution

Kks = −2 log

∫

Ŷ
J ∧ J ∧ J = −2 log κλρσvλvρvσ , (A.6)

and it satisfies the no-scale condition Kλρ̄
ks Kks

λ Kks
ρ̄ = 3 [76].

Moreover, the scalar potential involving the scalar fields ϕα stems from a holomorphic

superpotential W (ϕ) via the formula [77]

V =
1

M2
P

eK(Kαβ̄DαWD̄β̄W̄ − 3WW̄ ) , (A.7)

where we have introduced the Kähler covariant derivative Dα = ∂
∂ϕα + ∂K

∂ϕα . In this work,

we further consider effective theories for which the superpotential only depends on the

complex structure moduli zi and the dilaton τ , and can be obtained from a background

RR three-form flux F3 as follows [78]

W (z) = M3
P

∫

Ŷ
Ω ∧ F3 = M3

P f
T η Π(z) , F3 = f γ . (A.8)

Employing the superpotential (A.8), the scalar potential (A.7) can be also written as

Vf =: M4
PeK̂ V cs

f =
1

2
M4

PeK̂
f

T T (a, s) f , with f =

(

mI

−eI

)

. (A.9)

Here, we have singled out the contribution V cs
f

that solely depends on the complex structure

moduli; indeed, the remaining moduli, the axio-dilaton and the Kähler moduli, only enter
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the scalar potential (A.9) via the prefactor eK̂ . Remarkably, (A.9) displays the quadratic

dependence on the background fluxes f , with the positive semi-definite matrix3

T (a, s) = −η T η , where T
IJ := 2 eKcs

Re
(

Ki̄
csDiΠ

ID̄̄Π̄
J + ΠIΠ̄J

)

. (A.10)

B The Hodge-theoretical origin of the type IIB scalar potential

In this appendix we overview the main aspects of Hodge Theory that have been employed

in the main text. In particular, we highlight how the asymptotic Hodge Theory can be

exploited to compute the scalar potential towards specific field space boundaries, such

as those listed in section 3.2. For more detailed reviews on the subject, we refer to the

works [24, 42, 43, 52, 63, 66]; here, we will be mostly following [70], and the notations and

conventions of [69].

B.1 An overview of Hodge theory

Within the four-dimensional type IIB effective field theories under investigation in this work,

the asymptotic Hodge theory offers powerful tools to estimate the behavior of physical

quantities towards singularities, or boundaries of the complex structure moduli space Mcs.

In analogy with the analysis of section 3.1, we will focus on the case where dimCMcs = 1,

and we denote with z the complex coordinate spanning the complex structure moduli space.

We shall assume that the boundary of interest is the locus ζ = 0 and, as in the main text,

it is convenient to further introduce the coordinate

z := a + is =
1

2πi
log ζ , (B.1)

where the real coordinates a and s denote, respectively, the axion and the saxion field.

Additionally, we assume that the axion spans the domain 0 ≤ a < 1, with the identification

a ∼ a + 1, with the axion acquiring values s > 0. Then, in these new coordinates, the

aforementioned boundary is reached as z → i∞, namely as s → ∞ irrespective of the

axion value.

Each boundary is distinguished by a characteristic monodromy matrix T which, in the

one-dimensional case under examination, is a 4 × 4 matrix. The monodromy matrix T can

be decomposed into a semi-simple part T (s) of finite order and a unipotent part of infinite

order T (u) as T = T (s)T (u), with T (s) and T (u) such that

(T (s))m−1 6= 1 , (T (s))m = 1 ,

(T (u) − 1)n 6= 0 , (T (u) − 1)n = 0 ,
(B.2)

for some m, n ∈ N. In turn, the semi-simple part defines the log-monodromy matrix is follows

N :=
1

m
log T m = log T (u) . (B.3)

3Notice that the matrix T defined in (A.10) differs by a sign in comparison with the matrix defined in

(3.17) of [69], namely T (here) = −T (there).
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As an immediate consequence of its definition (B.3), the log-monodromy matrix N is nilpotent,

obeying Nn 6= 0, Nn+1 = 0 for some n ∈ N; for the boundaries examined in this work,

0 ≤ n ≤ 3.

In addition to the ingredients just introduced, in [64, 65] finer Hodge-theoretical structures

were introduced to better capture the behavior of key quantities towards the moduli space

boundaries. Consider the middle cohomology H3(Y,C) of the Calabi-Yau three-fold Y , within

which the periods (A.2) reside. This can be decomposed into Dolbeault cohomology groups as

H3(Y,C) =
3⊕

p=0

H3−p,p = H3,0 ⊕ H2,1 ⊕ H1,2 ⊕ H0,3 , (B.4)

with Hp,q = Hq,p. The decomposition (B.4) constitutes a pure Hodge structure, that is

however not enough to describe how the periods change across the moduli space. Indeed,

in [64, 65] it has been proposed to rather consider mixed Hodge structures. These rely on

the following filtration, defined out of the Dolbeault cohomology groups (B.4):

F 3 = H3,0 , F 2 = H3,0 ⊕ H2,1 ,

F 1 = H3,0 ⊕ H2,1 ⊕ H1,2 , F 0 = H3,0 ⊕ H2,1 ⊕ H1,2 ⊕ H0,3 ,
(B.5)

Such a filtration can then be decomposed according to the Deligne splitting as

F p =
⊕

r≥p

⊕

s

Ir,s , (B.6)

with Ir,s introducing a finer splitting with respect to the decomposition (B.4). In this work

we will not enter the details about how to explicitly compute the splitting (B.6).

In general, the periods (A.2) can acquire complicated expressions in terms of the moduli

across Mcs. However, close to a moduli space boundary, Schmid’s nilpotent orbit theorem

holds [64]. This pivotal theorem states that, close enough to a moduli space boundary,

reached as z → i∞, the filtration (B.5) can be decomposed as

F p = ezN eΓ(ζ)F p
0 . (B.7)

Here, Γ(ζ) is the instanton map, such that Γ(0) = 0, and F p
0 is the limiting Hodge filtration.

The relation (B.7) involves vector spaces, and focusing on the case p = 3 tells how the

periods (A.2) rearrange towards a moduli space boundary. Indeed, defining a0 ∈ F p
0 , the

periods (A.2) can be expanded

Π = ezN eΓ(ζ)
a0 = ezN

(

a0 + ζa1 + ζ2
a2 + . . .

)

≃ ezN
a0 ≡ Πnil , (B.8)

where the leading part constitutes the nilpotent orbit-approximated periods Πnil; with respect

to Πnil, other terms are exponentially suppressed in the saxion. Moreover, we notice that

the computation of Πnil only requires the log-monodromy matrix N and the vector a0 enter,

being the only boundary data needed.
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B.2 The near-boundary form of the N = 1 type IIB scalar potential

Schmid’s nilpotent orbit theorem (B.7) does not solely help in the estimation of periods (A.2)

in the near-boundary regime. Indeed, the theorem (B.7) is useful for the estimation of the

asymptotic behavior of Hodge norms as well. Given ω ∈ H3(Y,C), its Hodge norm is defined as

‖ω‖2 :=

∫

Y
ω ∧ ⋆ ω̄ . (B.9)

In order to arrive at estimations for the norms (B.9), we need to introduce additional

structures. Firstly, it is crucial to notice that the nilpotent matrix (B.3) may be regarded

as a part of an sl(2)-triple

{N := N−, N+, N0} ∈ sp(2h2,1 + 2,R) , (B.10)

for which the log-monodromy matrix (B.3) plays the role of lowering operator. Accordingly,

one can ‘rotate’ the Deligne splitting (B.6) in such a way that the rotated groups Ĩp,q are

eigenspaces for the N0-operator:4

N0Ĩp,q = (p + q − 3)Ĩp,q. (B.11)

Now, consider the region Σ = {|a| < δ, s > 1}, encompassing the moduli space boundary.

It can be shown that, in this region, the Hodge norm (B.9) behaves as [65]

‖ω‖2 ∼ sℓ , (B.12)

for large saxion s, and where ℓ = p + q − 3 is the sl(2)-weight of the form ω.

The bilinear leading to the norm (B.9) can be concretely constructed as follows. Firstly,

let us rewrite the norm (B.9) as follows

‖ω‖2 =: ωT T ω , (B.13)

for some operator T , and ω denoting the vector components of the form ω. Furthermore, it

can be shown that the operator T can be written as T = ηC, where C is the Weil operator

C. The latter acts on the symplectic basis {αI , βI} introduced in section A as

⋆

(

αI

βI

)

= C

(

αI

βI

)

. (B.14)

Importantly, for large enough saxion s, the Weil operator can be efficiently approximated by

employing the sl(2)-orbit approximation. This approximation scheme generically holds for

larger values of the saxion with respect to the nilpotent orbit approximation, and it differs

from the latter by subleading, polynomial terms [66]. Within such an approximation scheme,

the sl(2)-orbit approximated Weil operator is given by

Csl(2) = eaN−

e(s)−1C∞e(s)e−aN−

, with e(s) := exp

(
1

2
log s N0

)

, (B.15)

4This procedure is shown in [69, 70] for the boundaries examined in section 3.2. In particular, there it

has been illustrated how to perform such a rotation while maintaining the integrality of the elements of the

log-monodromy matrix.
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with the operator C∞ acting on the Dolbeaut cohomology as C∞ωp,q = i
p−qωp,q. Hence,

the computation of the approximated operator (B.15) solely relies on the boundary data.

Then, consequently, the matrix T introduced in (A.10) and defining the Hodge norm (B.9)

gets approximated as Tsl(2) = ηCsl(2).

As has been observed in several works, such as [24, 42, 43, 52, 63, 66, 69], many key

physical quantities appearing in string theory-originated effective theories can be understood

as Hodge norms. In particular, within the four-dimensional type IIB effective theories

described in section A, the scalar potential (A.7) offers a natural interpretation as a Hodge

norm. In fact, recalling its microscopic origin in terms of a RR three-form F3 defined in (A.8),

the scalar potential can be written as a Hodge norm for the generating flux vector f :

Vf =
1

2
M4

PeK̂

∫

Y
F3 ∧ ⋆F3 =

1

2
M4

PeK̂‖f‖2 . (B.16)

As such, for large saxion s and finite value of the axion a, its behavior can be estimated

via (B.12), with ℓ being the sl(2)-weight of the flux vector f .
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