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1 Introduction

Accepting the universal validity of quantum mechanics, also the universe has to be treated as
a quantum system that is described by a Wheeler-DeWitt [1, 2] “wave function of the universe”
(WF). An idea that has inspired four decades of quantum cosmology is the no-boundary
proposal of Hartle and Hawking [3], and Linde [4] and Vilenkin [5], where de Sitter space with
Lorentzian signature is analytically continued to a Euclidean geometry without boundary.
The WF is a solution of the Wheeler-DeWitt (WDW) equation of quantum gravity (for a
review and references, see, for example [6]). Although over the years much progress has been
made (for a recent review, see [7]), the precise definition of the WF is still a topic of current
research [8], and one may worry that the no-boundary proposal has finally failed [9, 10].

An interesting toy model for quantum gravity is Jackiw-Teitelboim (JT) gravity in two
dimensions [11, 12]. The model is exactly solvable [13, 14] and, like all 2d dilaton-gravity
theories, its minisuperspace version already contains all physical information [14]. Over the
past years, JT gravity has been studied in detail in anti-de Sitter (AdS2) space, shedding
new light on the structure of Euclidean quantum gravity (for a recent review, see [15]).

An important new development is the computation of the no-boundary wave function
in de Sitter (dS) JT gravity at large field values [16, 17]. This is achieved by reducing the
path integral for the wave function to a path integral over the Schwarzian degrees of freedom
of a boundary curve, as in AdS2 gravity [18]. Summing up an infinite series of extrinsic
curvature terms of the boundary curve, the asymptotic form of the wave function has been
extended to the entire field space [19]. However, as noted in [19], the obtained wave function
is singular at the de Sitter radius. This has been criticized in [20] as unphysical since it points
toward a source not contained in the no-boundary proposal. Further developments on dS
JT gravity include the connection to tunneling processes [21], semiclassical thermodynamics
in an extension with conformal matter [22], the emergence of time [23] and the proposal
of isometric time evolution [24, 25].

The goal of this paper is to clarify the status of the no-boundary wave function in dS JT
gravity. We consider this model as an effective low-energy description of a higher-dimensional
theory with compact spatial slices. For example, one may think of it as a toy model for
Kantowski-Sachs cosmology [26], where the universe has the topology of S1 × S2 and the
dilaton ϕ parametrizes the size of the S2 [20, 22, 27]. Hence, we consider only positive
values of ϕ. In addition, one has the usual compact slices of dS2, the size of which we will
parameterize by h. Clearly, the scale factor h also takes only positive values. We then
analyze the boundary problem for the WDW equation, focusing on the ‘right-upper quadrant’
{h > 0, ϕ > 0}. We find exact solutions of the WDW equation which vanish on the entire
boundary. The latter consists of the two rays {h = 0, ϕ > 0} and {ϕ = 0, h > 0}. These
rays represent characteristic curves of the WDW equation viewed as a hyperbolic partial
differential equation. One may think of such characteristics as ‘lightlike’ since they constrain
the way in which perturbations of solutions propagate. Our solutions have Stokes lines
separating a region with large scale factor and oscillatory behaviour from a region with
small scale factor and exponential behaviour. The general ‘quantum no-boundary wave
function’ is a superposition of such solutions. For sufficiently large scale factors one obtains
the familiar semiclassical behaviour. For small scale factors there is no interpretation in
terms of a semiclassical geometry.
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As explained, our wave function is defined in the quadrant {h > 0, ϕ > 0}. One of the
two boundary lines is characterized by the universe having zero spatial extension. The other
may be viewed as the locus of a spacelike end-of-world brane, defined by ϕ = 0, similarly
to the ‘boundary proposal’ of [28]. Interpreting Ψ(h, ϕ) as the probability amplitude for
finding a universe with size h and dilaton value ϕ, it then appears reasonable that Ψ should
vanish at the two boundary lines just described. One may take this as one of the defining
features of our proposed wave function. Given the emphasis DeWitt placed on the vanishing
of the wave function on singular geometries [1], we hence call our solutions ‘DeWitt wave
functions of the universe’. The term DeWitt wave function has recently also been used in the
context of Horava-Lifshitz gravity in [29, 30], and DeWitt boundary conditions in quantum
cosmology have been discussed in [31, 32].

The paper is organized as follows. In section 2 we recall the computation of the
asymptotic wave function in terms of the Schwarzian degrees of freedom of the boundary
curve. For comparison, the semiclassical Hartle-Hawking wave function is briefly reviewed in
appendix A.1, with emphasis on the asymptotic behaviour at large and small scale factors
and its singularities, and in appendix A.2 the semiclassical wave function for JT gravity is
computed. Section 3 deals with the representation of the JT wave function in terms of the
standard JT bulk amplitude. The result is compared with the asymptotic wave function
discussed in section 2. The characteristic initial value problem posed by the JT WDW
equation is systematically analyzed in section 4, and it is shown how to obtain a wave function
free of singularities by analytic continuation in field space across a Stokes line. We discuss
probabilistic constraints on our proposed WF in section 5 before concluding in section 6. Four
appendices are devoted to technical aspects. Appendix B deals with canonical quantization
of JT gravity and with the connection between the path integral measure and factor ordering
of the WDW equation. In appendix C boundary wave functions with compact support are
considered, and exact solutions of the WDW equation in terms of Airy functions are given
in appendix D. Initial-value problems in two dimensions and the relevant Green functions
are discussed in appendix E.

2 Nearly-de Sitter gravity and boundary modes

We will be dealing with quantum gravity on de Sitter space in two space-time dimensions.
A minimal model for a theory of quantum gravity in dS2 is JT gravity, defined by the
Lorentzian action

S[g, ϕ] = 1
2

∫
M
d2x

√
gϕ(R− 2λ2) +

∫
∂M

dθ
√
hϕK . (2.1)

Here g, R, λ2, h and K denote metric tensor, Ricci scalar and cosmological constant, and
induced metric and extrinsic curvature on the boundary ∂M, respectively.

Since the action (2.1) is linear in the dilaton, it can be integrated out in a Lorentzian
path integral. This fixes the bulk metric to the hyperboloid of global de Sitter [17],

gµνdx
µdxν = −dt2 + α2λ−2 cosh2(λt)(dθ + γδ(t)dt)2 , (2.2)
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where 2π|α|/λ is the length of the circle at t = 0, and γ is an additional twist parameter.1
The regions t ≥ 0 and t ≤ 0 describe future and past “trumpets”, respectively. For α = 1,
a trumpet can be matched to a Euclidean half-sphere. This complex Lorentzian/Euclidean
geometry is the basis of the semi-classical Hartle-Hawking wave function.

In [16, 17] a no-boundary wave function for JT gravity has been computed starting
from the Lorentzian path integral

Ψ(h, ϕ) =
∫ (h,ϕ)

[Dg][Dϕ′] exp (iS[g, ϕ′]) . (2.3)

In general, a Lorentzian path integral requires an initial condition. In the spirit of Hartle and
Hawking, this can be avoided in the following way [16, 17]: one first performs the ϕ′ integration.
This enforces an on-shell metric. More precisely, integrating over purely imaginary ϕ′ forces
the Euclidean metric of the round sphere with radius hc = λ−2. Additionally, performing
the ϕ′ integration for real-valued ϕ′ forces the metric of the Lorentzian de Sitter hyperboloid.
By continuity it has critical waist size hc = λ−2. In total, this amounts to integrating out
ϕ′ on a complex path to get the glued complex Hartle-Hawking geometry. In this way, the
condition α = 1 is enforced on the Lorentzian part.

All that is left is the integration over different boundary curves in the Lorentzian region
with h > λ−2 ≡ hc. Following [17], this integration is conveniently performed using conformal
coordinates, dt =

√
h(τ)dτ = 1/(λ cosλτ)dτ , such that the metric of dS2 with α = 1 becomes

(0 ≤ θ ≤ 2π, 0 ≤ τ < π
2 )

gµνdx
µdxν = 1

λ2 cos2 (λτ)(−dτ
2 + dθ2) . (2.4)

The boundary of de Sitter space is specified by two functions τ(u) and θ(u) = f(u) where u
is a periodic variable, f(u+ 2π) = f(u) + 2π. Demanding that the induced metric on the
boundary is constant implies a relation between the functions τ(u) and f(u),

guu = −τ ′(u)2 + f ′(u)2

λ2 cos2 (λτ(u)) ≡ h , (2.5)

where the prime denotes differentiation with respect to u. For nearly-de Sitter space, i.e.,
asymptotically large values λ

√
h, one has

λτ(u) = π

2 − 1
λ
√
h
f ′(u) +O

(
1

(λ
√
h)3

)
, (2.6)

and the extrinsic curvature is given by

λ−1K = f ′(f ′2 − λ2τ ′2) sin λτ + λ(f ′τ ′′ − f ′′τ ′) cosλτ
(f ′2 − λ2τ ′2)3/2 . (2.7)

The sign of K corresponds to the choice of an outward pointing normal vector, N τ > 0. K
transforms as a scalar and it is convenient to choose coordinates such that the dilaton is
constant on the boundary. A reparametrization u(ũ) corresponds to a coordinate change

1We work in minisuperspace, which in 2d is possible without loss of generality [14].
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from f(u) and τ(u) to f̃(ũ) = f(u(ũ)) and τ̃(ũ) = τ(u(ũ)), and, without loss of generality,
one can demand that in the new coordinates duϕ′(u) = dũϕ, where

ϕ = 1
2π

∫ 2π

0
duϕ′(u) (2.8)

is the constant boundary value. For nearly-de Sitter space the extrinsic curvature becomes

λ−1K = 1− 1
λ2h

(
{f(u), u}+ f ′(u)2

2

)
+O

( 1
λ4h2

)
, (2.9)

where
{f(u), u} = f ′′′(u)

f ′(u) − 3
2
f ′′(u)2

f ′(u)2 (2.10)

is the Schwarzian derivative of f(u) with respect to u.
The path integral now reduces to an integral over the boundary modes with a measure

[Df ] appropriate for a half-hyperboloid,

ZJT

(
λ
√
h

ϕ

)
=
∫ (h,ϕ)

[Dg][Dϕ′] exp
{(

i

2

∫
M
d2x

√
gϕ′(R− 2λ)

−i
∫

∂M
dθ

√
hϕ′(K − 1)

)}
= NE

∫
[Df ] exp

(
−i
∫ 2π

0
du

√
hϕ′(K − 1)

)
Θ(h− λ−2) .

(2.11)

The integral is given by fluctuations around a circle on the dS2 hyperboloid whose size
has to be larger than the de Sitter radius λ−1. This leads to the theta function. The
normalization factor includes a contribution of the Euclidean section to the path integral,
which is independent of the boundary curve. Analogously to AdS2 JT gravity [18], one
finds for large h and ϕ [16, 17],

ZJT

(
λ
√
h

ϕ

)
= NE

(
ϕ

λ
√
h

)3/2
exp

(
iπ

ϕ

λ
√
h

)
. (2.12)

This result can be expressed as trace of a Hamiltonian with an appropriately chosen density
of states,

ZJT

(
λ
√
h

ϕ

)
= i3/2

∫ ∞

0
dEρ(E)e(2πiλ

√
hE), ρ(E) = 2ϕNE sinh(23/2π

√
ϕE), (2.13)

which supports the idea of dS2/CFT1 correspondence.
ZJT is the analytic continuation of the disk partition function, but it is not a solution of

a WDW equation and therefore not a wave function, as suggested in [17]. A wave function
for large field values can be obtained from eq. (2.12) by multiplying with the phase factor
that accounts for the leading term of the extrinsic curvature (2.9). Choosing the sign of K
corresponding to an ‘expanding universe’, one obtains the wave function

ΨCJM(h, ϕ) ∼
(

ϕ

λ
√
h

)3/2
exp

(
−2πiλϕ

√
h

(
1− 1

λ2h

))
. (2.14)

– 5 –



J
H
E
P
0
6
(
2
0
2
5
)
0
4
9

<latexit sha1_base64="lt/rAsmxeVYBaKeFLtbqv9zXtMY=">AAAB9nicbZDLSsNAFIZPvNZ6q7p0M1gEF1ISKeqy6MZlBXuBNpTJZNIOnUzCzKS0hL6CW125E7e+jgvfxUmahbYeGPj4/3M4Z34v5kxp2/6y1tY3Nre2Szvl3b39g8PK0XFbRYkktEUiHsmuhxXlTNCWZprTbiwpDj1OO974PvM7EyoVi8STnsXUDfFQsIARrDOpH4/YoFK1a3ZeaBWcAqpQVHNQ+e77EUlCKjThWKmeY8faTbHUjHA6L/cTRWNMxnhIewYFDqm69CcsVjm66TS/e47OjeujIJLmCY1y9fd0ikOlZqFnOkOsR2rZy8T/vF6ig1s3ZSJONBVksShIONIRykJAPpOUaD4zgIlk5m5ERlhiok1UJg9n+fer0L6qOde1+mO92rgrkinBKZzBBThwAw14gCa0gMAInuEFXq2p9Wa9Wx+L1jWrmDmBP2V9/gA2IpNe</latexit>

�

<latexit sha1_base64="Zb+z5vXaPpfaQ3otzrTBaxF61+M=">AAAB83icbZC7SgNBFIbPeo3xFrW0GQyChYRdCWoZtLFMwFwgWcLs7EkyZPbCzGwwLHkCW63sxNYHsvBdnGy20MQDAx//fw7nzO/Fgitt21/W2vrG5tZ2Yae4u7d/cFg6Om6pKJEMmywSkex4VKHgITY11wI7sUQaeALb3vh+7rcnKBWPwkc9jdEN6DDkA86oNlJj1C+V7YqdFVkFJ4cy5FXvl757fsSSAEPNBFWq69ixdlMqNWcCZ8VeojCmbEyH2DUY0gDVpT/hscrQTZ+yo2fk3Lg+GUTSvFCTTP09ndJAqWngmc6A6pFa9ubif1430YNbN+VhnGgM2WLRIBFER2SeAPG5RKbF1ABlkpu7CRtRSZk2OZk8nOXfr0LrquJcV6qNarl2lydTgFM4gwtw4AZq8AB1aAIDhGd4gVcrsd6sd+tj0bpm5TMn8Keszx/jK5IL</latexit>

h<latexit sha1_base64="JDdHqEg98t1H05HrZnwGvpT4QSU=">AAAB9XicbZC7TsMwFIZPyq2UW4GRxaJCYkBVgipgrGBhLIJepDaqHMdprTpOZDuFKuojsMLEhlh5HgbeBTfNAC1HsvTp/8/ROf69mDOlbfvLKqysrq1vFDdLW9s7u3vl/YOWihJJaJNEPJIdDyvKmaBNzTSnnVhSHHqctr3Rzcxvj6lULBIPehJTN8QDwQJGsDbS/bBP+uWKXbWzQsvg5FCBvBr98nfPj0gSUqEJx0p1HTvWboqlZoTTaamXKBpjMsID2jUocEjVmT9mscrQTZ+ys6foxLg+CiJpntAoU39PpzhUahJ6pjPEeqgWvZn4n9dNdHDlpkzEiaaCzBcFCUc6QrMMkM8kJZpPDGAimbkbkSGWmGiTlMnDWfz9MrTOq85FtXZXq9Sv82SKcATHcAoOXEIdbqEBTSAwgGd4gVfr0Xqz3q2PeWvBymcO4U9Znz9ctpLh</latexit>

hc

<latexit sha1_base64="niS/5Z43dbtxM4dRMvS/07mCJMU=">AAAB9nicbZDLSsNAFIZPvNZ6q7p0M1gEF1ISKeqy6MZlBXuBNpTJZNIOnUzCzKS0hL6CW125E7e+jgvfxUmahbYeGPj4/3M4Z34v5kxp2/6y1tY3Nre2Szvl3b39g8PK0XFbRYkktEUiHsmuhxXlTNCWZprTbiwpDj1OO974PvM7EyoVi8STnsXUDfFQsIARrDOp31RsUKnaNTsvtApOAVUoqjmofPf9iCQhFZpwrFTPsWPtplhqRjidl/uJojEmYzykPYMCh1Rd+hMWqxzddJrfPUfnxvVREEnzhEa5+ns6xaFSs9AznSHWI7XsZeJ/Xi/Rwa2bMhEnmgqyWBQkHOkIZSEgn0lKNJ8ZwEQyczciIywx0SYqk4ez/PtVaF/VnOta/bFebdwVyZTgFM7gAhy4gQY8QBNaQGAEz/ACr9bUerPerY9F65pVzJzAn7I+fwAVMpNJ</latexit>

 

<latexit sha1_base64="Ck8snmvguPjNEe60FiH+Uqasm+Q=">AAAB83icbZC7SgNBFIbPeo3xFrW0GQyChYRdCWoZtLFMwFwgWcLs7NlkyOyFmdlgCHkCW63sxNYHsvBdnGy20MQDAx//fw7nzO8lgitt21/W2vrG5tZ2Yae4u7d/cFg6Om6pOJUMmywWsex4VKHgETY11wI7iUQaegLb3uh+7rfHKBWPo0c9SdAN6SDiAWdUG6lh90tlu2JnRVbByaEMedX7pe+eH7M0xEgzQZXqOnai3SmVmjOBs2IvVZhQNqID7BqMaIjq0h/zRGXoTp+yo2fk3Lg+CWJpXqRJpv6entJQqUnomc6Q6qFa9ubif1431cGtO+VRkmqM2GJRkAqiYzJPgPhcItNiYoAyyc3dhA2ppEybnEwezvLvV6F1VXGuK9VGtVy7y5MpwCmcwQU4cAM1eIA6NIEBwjO8wKuVWm/Wu/WxaF2z8pkT+FPW5w+L45HT</latexit>

0

<latexit sha1_base64="Ck8snmvguPjNEe60FiH+Uqasm+Q=">AAAB83icbZC7SgNBFIbPeo3xFrW0GQyChYRdCWoZtLFMwFwgWcLs7NlkyOyFmdlgCHkCW63sxNYHsvBdnGy20MQDAx//fw7nzO8lgitt21/W2vrG5tZ2Yae4u7d/cFg6Om6pOJUMmywWsex4VKHgETY11wI7iUQaegLb3uh+7rfHKBWPo0c9SdAN6SDiAWdUG6lh90tlu2JnRVbByaEMedX7pe+eH7M0xEgzQZXqOnai3SmVmjOBs2IvVZhQNqID7BqMaIjq0h/zRGXoTp+yo2fk3Lg+CWJpXqRJpv6entJQqUnomc6Q6qFa9ubif1431cGtO+VRkmqM2GJRkAqiYzJPgPhcItNiYoAyyc3dhA2ppEybnEwezvLvV6F1VXGuK9VGtVy7y5MpwCmcwQU4cAM1eIA6NIEBwjO8wKuVWm/Wu/WxaF2z8pkT+FPW5w+L45HT</latexit>

0

Figure 1. Left: complex Lorentzian/Euclidean geometry underlying no-boundary wave function.
Right: asymptotic wave function at large field values.

Alternatively, it has been argued that the connection between ZJT and wave function involves
an additional factor ϕ [16],

ΨMTY(h, ϕ) ∼
1
ϕ

(
ϕ

λ
√
h

)3/2
exp

(
−2πiλϕ

√
h

(
1− 1

λ2h

))
. (2.15)

The two wave functions satisfy at large field values (see figure 1) two different WDW
equations. For ΨMTY one has

(∂h∂ϕ + 2π2λ2ϕ)ΨMTY(h, ϕ) = 0 (2.16)

up to terms O(1/χ3), with χ =
√
h, ϕ. This corresponds to ‘canonical factor ordering’ in

canonical quantization. On the contrary, ΨCJM satisfies the equation(√
h∂h

1√
h
∂ϕ + 2π2λ2ϕ

)
ΨCJM(h, ϕ) = 0 (2.17)

up to terms O(1/χ3), with χ =
√
h, ϕ. As shown in [19], this ‘Henneaux factor ordering’

arises if one solves the functional WDW equation for JT gravity by solving the two functional
momentum constraints individually [13, 14]. Factor orderings of this type have been studied
in the past (see, for example [3, 6, 7]). They correspond to different options to quantize
JT gravity, which are related to different definitions of the path integral measure [33], see
appendix B for more details.

In the following section we shall proceed to derive a general class of exact bulk dS JT
wave functions valid for a corresponding class of factor orderings. We will do so by using
the bulk path integral á la Halliwell-Louko [34], as well as by directly determining the bulk
WDW propagator for a characteristic initial value problem.

As we shall see, the resulting bulk wave function has a precise asymptotic duality to
the Schwarzian path integral on the boundary curve of dS2, which holds for all choices of
factor ordering. En passant, this explains how different results (2.14), (2.15) for the wave
function discussed above are related via a choice of factor ordering.
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3 JT wave functions from the JT bulk amplitude

If one is interested in the exact wave function, the situation just described is not fully satisfac-
tory for several reasons: on the one hand, while we tried to give a path-integral justification of
the gluing between Euclidean half-sphere and Lorentzian half-hyperboloid, it remains conceptu-
ally unclear whether this logic can lead to exact results (see however [19] as well as the concerns
raised in [35]). On the other hand, the alternative possibility of analytically continuing the
Euclidean wave function faces the problem of obtaining an exact result for the latter [35, 36].

Thus, we return to the defining expression (2.3) and propose taking the unavoidable
presence of a second boundary more seriously. In other words, we start with the amplitude

⟨h, ϕ|h′, ϕ′⟩ =
(h,ϕ)∫

(h′,ϕ′)

[Dg][Dϕ′′] exp (iS[g, ϕ′′]) , (3.1)

assuming that it can eventually be turned into the desired wave function by convolving it
with an appropriate distribution of h′, ϕ′.

Let us first evaluate this amplitude following [34]. We write the metric as

ds2 = −N
2

h
dt2 + hdθ2 (3.2)

and fix the gauge such that both h and the bulk field ϕ are spatially constant. We denote
these variables by h̄(t) and ϕ̄(t). Removing the GHY boundary term in the JT action (2.1)
using Gauss’ theorem, the action in our path integral takes the form

S = S[h̄, ϕ̄;N ] = 2π
∫ 1

0
dt

(
− 1
2N ∂tϕ̄∂th̄−Nλ2ϕ̄

)
. (3.3)

The transition amplitude now reads

⟨h, ϕ|h′, ϕ′⟩ =
∫
dN [Dh̄][Dϕ̄] exp (iS[h̄, ϕ̄;N ]) , (3.4)

where one has to integrate over the real variable N and two functions with boundary conditions
h̄ = h′ and ϕ̄ = ϕ′ at t = 0 as well as h̄ = h and ϕ̄ = ϕ at t = 1.

The integral is easily evaluated by expanding around a saddle point satisfying the
equations of motion

∂2
t h̄− 2λ2N2 = 0 , ∂2

t ϕ̄ = 0 . (3.5)

The solutions read

h̃ = h′ + (h− h′ − λ2N2)t+ λ2N2t2 , ϕ̃ = ϕ′ + (ϕ− ϕ′)t . (3.6)

The total action may be written as a sum, S = S0 + S2, of the saddle point action

S0(α, β;N) = S[h̃, ϕ̃;N ] = 1
2

(
αN − β

N

)
, (3.7)

with
α = −2πλ2(ϕ+ ϕ′) , β = 2π(ϕ− ϕ′)(h− h′) , (3.8)
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and a term quadratic in the fluctuations,

S2[δh, δϕ;N ] = 2π
∫ 1

0
dt

(
− 1
2N δḣδϕ̇

)
. (3.9)

Path integrals of this type have been studied in detail in [34]. The action (3.3) is very similar
to the Kantowski-Sachs model considered in [20, 34].

The path integral over the fluctuations is Gaussian and yields a result proportional to
N−1 so that the transition amplitude (3.4) becomes2

⟨h, ϕ|h′, ϕ′⟩ =
∫
dN

N
exp (iS0[α, β;N ]) . (3.10)

To respect diffeomorphism invariance, including time reversal, we integrate over N ∈ (−∞, 0)
and N ∈ (0,∞). Adding these integrals leads to a purely imaginary result.3 The oscillatory
behaviour of the exponential at N → 0 and N → ±∞ ensures that the integral is a priori
well defined. We are interested in the regime h > h′, ϕ > ϕ′, such that α < 0 < β. The
explicit evaluation using the steepest descent method then gives [34]4

⟨h, ϕ|h′, ϕ′⟩ = −2πiJ0((−αβ)1/2) . (3.11)

It can be shown on general grounds that amplitudes defined by integrating N over half-axes
are related to Green functions G of the corresponding WDW equations [33]. In our case,
the defining equation reads

(∂h∂ϕ + 2π2λ2ϕ)G(h, ϕ;h′, ϕ′) = δ(ϕ− ϕ′)δ(h− h′) . (3.12)

Exchanging the variable ϕ for σ = ϕ2 one sees that this is nothing but a Klein-Gordon
equation in light-cone coordinates. The relation of the retarded Green function to the
amplitude calculated above is then fixed explicitly by

G(h, ϕ;h′, ϕ′) = J0((−αβ)1/2)Θ(ϕ− ϕ′)Θ(h− h′) , (3.13)

cf. appendix E for more details. Here by ‘retarded’ we mean retarded w.r.t. the ‘time’
variable h + σ.

Now we return to our main conceptual point: we want to define the wave function of
the universe using the amplitude or, equivalently, the Green function, as just derived. The
standard approach for this would be to convolve the Green function with an appropriate
source. However, instead of prescribing the source we may also prescribe the ‘initial’ or
boundary values of the wave function we are after. Choosing the boundary to be the line
ϕ = ϕ′, with ϕ′ fixed, the full wave function then reads

Ψ(h, ϕ) = 1
2

∫
dh′

(
G(h, ϕ;h′, ϕ′)∂h′Ψ(h′, ϕ′)− ∂h′G(h, ϕ;h′, ϕ′)Ψ(h′, ϕ′)

)
= Θ(ϕ− ϕ′)

(
Ψ(h, ϕ′)−

∫ h

0
dh′Ψ(h′, ϕ′)∂h′J0((−αβ)1/2)

)
,

(3.14)

2Note that this result depends on the measure chosen in the path integral (3.4), which is related to the
factor ordering in the WDW equation [33]. As we shall see, the choice made here corresponds to ‘canonical’
factor ordering.

3In principle, a relative phase could be introduced in this sum, but this would not change our qualitative
conclusions.

4See specifically table I in section III of [34]. Note that our N corresponds to their iN .

– 8 –



J
H
E
P
0
6
(
2
0
2
5
)
0
4
9

<latexit sha1_base64="lt/rAsmxeVYBaKeFLtbqv9zXtMY=">AAAB9nicbZDLSsNAFIZPvNZ6q7p0M1gEF1ISKeqy6MZlBXuBNpTJZNIOnUzCzKS0hL6CW125E7e+jgvfxUmahbYeGPj4/3M4Z34v5kxp2/6y1tY3Nre2Szvl3b39g8PK0XFbRYkktEUiHsmuhxXlTNCWZprTbiwpDj1OO974PvM7EyoVi8STnsXUDfFQsIARrDOpH4/YoFK1a3ZeaBWcAqpQVHNQ+e77EUlCKjThWKmeY8faTbHUjHA6L/cTRWNMxnhIewYFDqm69CcsVjm66TS/e47OjeujIJLmCY1y9fd0ikOlZqFnOkOsR2rZy8T/vF6ig1s3ZSJONBVksShIONIRykJAPpOUaD4zgIlk5m5ERlhiok1UJg9n+fer0L6qOde1+mO92rgrkinBKZzBBThwAw14gCa0gMAInuEFXq2p9Wa9Wx+L1jWrmDmBP2V9/gA2IpNe</latexit>

�

<latexit sha1_base64="Zb+z5vXaPpfaQ3otzrTBaxF61+M=">AAAB83icbZC7SgNBFIbPeo3xFrW0GQyChYRdCWoZtLFMwFwgWcLs7EkyZPbCzGwwLHkCW63sxNYHsvBdnGy20MQDAx//fw7nzO/Fgitt21/W2vrG5tZ2Yae4u7d/cFg6Om6pKJEMmywSkex4VKHgITY11wI7sUQaeALb3vh+7rcnKBWPwkc9jdEN6DDkA86oNlJj1C+V7YqdFVkFJ4cy5FXvl757fsSSAEPNBFWq69ixdlMqNWcCZ8VeojCmbEyH2DUY0gDVpT/hscrQTZ+yo2fk3Lg+GUTSvFCTTP09ndJAqWngmc6A6pFa9ubif1430YNbN+VhnGgM2WLRIBFER2SeAPG5RKbF1ABlkpu7CRtRSZk2OZk8nOXfr0LrquJcV6qNarl2lydTgFM4gwtw4AZq8AB1aAIDhGd4gVcrsd6sd+tj0bpm5TMn8Keszx/jK5IL</latexit>

h<latexit sha1_base64="Ck8snmvguPjNEe60FiH+Uqasm+Q=">AAAB83icbZC7SgNBFIbPeo3xFrW0GQyChYRdCWoZtLFMwFwgWcLs7NlkyOyFmdlgCHkCW63sxNYHsvBdnGy20MQDAx//fw7nzO8lgitt21/W2vrG5tZ2Yae4u7d/cFg6Om6pOJUMmywWsex4VKHgETY11wI7iUQaegLb3uh+7rfHKBWPo0c9SdAN6SDiAWdUG6lh90tlu2JnRVbByaEMedX7pe+eH7M0xEgzQZXqOnai3SmVmjOBs2IvVZhQNqID7BqMaIjq0h/zRGXoTp+yo2fk3Lg+CWJpXqRJpv6entJQqUnomc6Q6qFa9ubif1431cGtO+VRkmqM2GJRkAqiYzJPgPhcItNiYoAyyc3dhA2ppEybnEwezvLvV6F1VXGuK9VGtVy7y5MpwCmcwQU4cAM1eIA6NIEBwjO8wKuVWm/Wu/WxaF2z8pkT+FPW5w+L45HT</latexit>

0

<latexit sha1_base64="Ck8snmvguPjNEe60FiH+Uqasm+Q=">AAAB83icbZC7SgNBFIbPeo3xFrW0GQyChYRdCWoZtLFMwFwgWcLs7NlkyOyFmdlgCHkCW63sxNYHsvBdnGy20MQDAx//fw7nzO8lgitt21/W2vrG5tZ2Yae4u7d/cFg6Om6pOJUMmywWsex4VKHgETY11wI7iUQaegLb3uh+7rfHKBWPo0c9SdAN6SDiAWdUG6lh90tlu2JnRVbByaEMedX7pe+eH7M0xEgzQZXqOnai3SmVmjOBs2IvVZhQNqID7BqMaIjq0h/zRGXoTp+yo2fk3Lg+CWJpXqRJpv6entJQqUnomc6Q6qFa9ubif1431cGtO+VRkmqM2GJRkAqiYzJPgPhcItNiYoAyyc3dhA2ppEybnEwezvLvV6F1VXGuK9VGtVy7y5MpwCmcwQU4cAM1eIA6NIEBwjO8wKuVWm/Wu/WxaF2z8pkT+FPW5w+L45HT</latexit>

0

<latexit sha1_base64="niS/5Z43dbtxM4dRMvS/07mCJMU=">AAAB9nicbZDLSsNAFIZPvNZ6q7p0M1gEF1ISKeqy6MZlBXuBNpTJZNIOnUzCzKS0hL6CW125E7e+jgvfxUmahbYeGPj4/3M4Z34v5kxp2/6y1tY3Nre2Szvl3b39g8PK0XFbRYkktEUiHsmuhxXlTNCWZprTbiwpDj1OO974PvM7EyoVi8STnsXUDfFQsIARrDOp31RsUKnaNTsvtApOAVUoqjmofPf9iCQhFZpwrFTPsWPtplhqRjidl/uJojEmYzykPYMCh1Rd+hMWqxzddJrfPUfnxvVREEnzhEa5+ns6xaFSs9AznSHWI7XsZeJ/Xi/Rwa2bMhEnmgqyWBQkHOkIZSEgn0lKNJ8ZwEQyczciIywx0SYqk4ez/PtVaF/VnOta/bFebdwVyZTgFM7gAhy4gQY8QBNaQGAEz/ACr9bUerPerY9F65pVzJzAn7I+fwAVMpNJ</latexit>

 

<latexit sha1_base64="HCmVCohp6SYe7vHKS5Gd5mYH5qg=">AAAB9XicbZC7TsMwFIZPyq2UW4GRxaJCYkBVglBhrGBhLIJepDaqHMdprTpOZDuFKuojsMLEhlh5HgbeBTfNAC1HsvTp/8/ROf69mDOlbfvLKqysrq1vFDdLW9s7u3vl/YOWihJJaJNEPJIdDyvKmaBNzTSnnVhSHHqctr3Rzcxvj6lULBIPehJTN8QDwQJGsDbS/bBv98sVu2pnhZbByaECeTX65e+eH5EkpEITjpXqOnas3RRLzQin01IvUTTGZIQHtGtQ4JCqM3/MYpWhmz5lZ0/RiXF9FETSPKFRpv6eTnGo1CT0TGeI9VAtejPxP6+b6ODKTZmIE00FmS8KEo50hGYZIJ9JSjSfGMBEMnM3IkMsMdEmKZOHs/j7ZWidV51atXZ3Ualf58kU4QiO4RQcuIQ63EIDmkBgAM/wAq/Wo/VmvVsf89aClc8cwp+yPn8ADd2SsA==</latexit>

h0

Figure 2. Wave function with non-zero values at h > h0, ϕ > 0.

see appendix E for calculational details. Note that the last term vanishes as ϕ approaches
ϕ′ so that the initial condition is satisfied.

Some comments are in order: first, our choice of a constant-ϕ boundary is justified by
our desire to restrict the model to positive dilaton values by choosing ϕ′ = 0. This is in line
with interpreting JT gravity as an effective theory for a compactification, with the dilaton
corresponding to a volume. It is also in line with the perturbatively controlled regime being
at large ϕ. Second, having made the choice ϕ′ = 0, our boundary data is determined by
a function χ(h′) ≡ Ψ(h′, 0). The simple choice

χ(h′) ≡ χh0(h′) ≡ δ(h′ − h0) , h0 > 0 (3.15)

then ensures that the wave function vanishes on the axis h = 0. This is expected since, at this
locus, the spatial slice becomes singular in the sense that its volume vanishes. We consider
this relevant independently of the fact that the 2d geometry can of course remain smooth.
The technical reason for the vanishing of the wave function at this locus is that our Green
function or propagator ‘transports’ information only upward and to the right in the h-ϕ-plane,
cf. figure 2. Thus, as advertised in the Introduction, we have obtained (a first version of) a
wave function in the upper-right quadrant based on physically motivated boundary data.

We may use (3.14) and (3.15) as well as the relations ∂h′J0(
√
−αβ) = −∂hJ0(

√
−αβ)

and J ′
0 = −J1 to write the wave function explicitly as

Ψ(h, ϕ;h0) = δ(h− h0)− 2π2λ2ϕ2x−1J1(x)Θ(h− h0) , x = 2πλϕ
√
h− h0 . (3.16)

Here we have given Ψ an extra argument h0 to emphasize the key role of the δ-function
choice for the boundary value on the h-axis. We note that this singular choice leads to a
persistent singularity of Ψ at h = h0 and positive ϕ.5

A logical choice for the location of our δ-function is the critical value h0 = hc ≡ 1/λ2.
This corresponds to taking the semi-classical Hartle-Hawking picture of gluing the de Sitter
hyperboloid to a half-sphere completely seriously. (In the notation of [17] this means
enforcing the choice α = 1 for the bulk metric.)

5The singular boundary condition (3.15) can also be interpreted as a singular source on the boundary [37].
The wave function Ψ̂(h, ϕ; h0)) = Ψ(h, ϕ; h0)Θ(ϕ) satisfies a WDW equation with singular source: (∂h∂ϕ +
2π2λ2ϕ)Ψ̂ = −∂h0 δ(h − h0)δ(ϕ).
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However, given that the Euclidean half-sphere is only one of the many (quantum)
geometries that may connect an h0-sized circle to the singular boundary value h = 0, it is
very reasonable to consider more general wave functions. Indeed, by linearity of the problem
we may replace the singular choice χh0 in eq. (3.15) by a smooth distribution ρ(h0). This
leads to the more general wave function

Ψ(h, ϕ) =
∫
dh0 Ψ(h, ϕ;h0) ρ(h0) . (3.17)

Before closing this section, let us place our findings into the context of other results.
First, return to the fixed-h0 wave function of (3.16) and apply the decomposition 2J1(x) =
H

(1)
1 (x)+H(2)

1 (x). The ‘positive frequency part’ H(2)
1 (x) of this wave function agrees with the

outgoing WDW solution obtained by [16] for the canonically factor-ordered WDW equation
(cf. footnote 5 of [16] and recall that H(2)

1 (x) = −(2/π)K1(ix).)
This, of course, also holds at the asymptotic level: using the asymptotic form of the

Bessel function J1 one obtains from (3.16) for values h ≫ h0:

Ψ(h, ϕ) ∼ 1
ϕ

(
ϕ

λ
√
h

)3/2
cos

(
2πϕλ

√
h

(
1− h0

2h

))
. (3.18)

The positive-frequency part of this,

Ψ+(h, ϕ) ∼
1
ϕ

(
ϕ

λ
√
h

)3/2
exp

(
−i 2πϕλ

√
h

(
1− h0

2h

))
, (3.19)

agrees with the result of [16] (cf. our eq. (2.15)) to leading order in prefactor and phase.
Further agreement in the first subleading piece requires the particular choice h0 = hc = 1/λ2.
We recall that, by contrast, our proposal for a general wave function is a linear superposition
of many such solutions, specified by the distribution ρ(h0).

The perfect agreement for ρ(h0) = δ(h0 − hc) is a remarkable result as in [16] the
semiclassical limit of the positive frequency part of the wave function was determined by
integrating out fluctuations of the boundary curve for fixed bulk geometry. On the contrary,
we derived the wave function by integrating over bulk fluctuations of both dilaton and metric,
as prescribed by the bulk path integral. In this sense, the agreement is an example of
holography, as illustrated in figure 3.

Finally, we note that our wave function (3.18) differs from the semiclassical result
discussed in appendix A.2 (cf. (A.35)) by a factor (ϕ/

√
h)1/2. This difference is an effect of

quantum fluctuations that are not included in the semiclassical approximation.

4 JT wave functions from the WDW equation

In the previous section we have discussed a path integral representation of the amplitude or
propagator to derive a real stationary Hartle-Hawking-type wave function and its complex-
valued expanding branch. Our analysis focused on a particular (canonical) choice of factor
ordering and on δ-function-type boundary conditions. We now wish to consider more
general sources and factor orderings. For the latter, the path integral measure is modified
(cf. appendix B) and we do not know how to explicitly evaluate the amplitude and hence
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boundary 
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bulk 
description

Figure 3. Bulk-boundary duality and wave function for h > h0, ϕ > 0 from bulk fluctuations.

the wave function. However, we may take advantage of the fact that all wave functions can
be equivalently expressed as solutions of a WDW equation, supplemented by appropriate
boundary conditions. The choice of factor ordering can then be introduced directly in the
WDW equation. In this section we therefore initially solve the WDW equation with two
choices of factor ordering known from the literature and implement boundary conditions
consistent with the expected asymptotic behaviour. We will then proceed to discuss more
general factor orderings and, correspondingly, more general boundary conditions.

4.1 Riemann representation of solutions

Consider the WDW equation (2.16). Changing variables from ϕ to σ = ϕ2, one obtains

(∂h∂σ + π2λ2)Ψ(h, ϕ) = 0 , (4.1)

which is the Klein-Gordon equation in light-cone coordinates. As argued before, our physical
field space is a quarter-plane with lightlike boundaries: the h-axis (σ = 0, h ≥ 0) and the
σ-axis (h = 0, σ ≥ 0) (see figure 2), which represent characteristics of the wave equation.
Hence, we are dealing with a characteristic initial value problem.

The general solution of this problem has been given in [38] in terms of a “Riemann
function” R>(h, ϕ;h′, ϕ′),6 that satisfies the WDW equation (4.1) with h′ and ϕ′ as parameters.
Moreover, R> is subject to a reciprocity condition,

R>(h, ϕ;h′, ϕ′) = R>(h′, ϕ′;h, ϕ) , R>(h, ϕ;h, ϕ) = 1 , (4.2)

and, since the lightlike boundaries are characteristics, conditions on the derivatives,

∂h′R>(h, ϕ;h′, ϕ) = ∂ϕ′2R>(h, ϕ;h, ϕ′) = 0 . (4.3)

For h, h′, ϕ, ϕ′ ≥ 0 and (ϕ2 − ϕ
′2)(h − h′) ≥ 0, these requirements determine the Riemann

function to be given by a regular Bessel function,

R>(h, ϕ;h′, ϕ′) = J0(2πλ
√
(ϕ2 − ϕ′2)(h− h′)) . (4.4)

6In [38] the solution is described in Ch. V section 5, “Hyperbolic differential equations in two independent
variables”, for the example of the telegraph equation.
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One easily verifies that (4.2) and (4.3) are satisfied. Note the invariance w.r.t. shifts in ϕ2

and h. Up to theta-functions, the Riemann function agrees with the retarded and advanced
Green functions of the Klein-Gordon equation (see appendix E).

A solution of the homogeneous wave equation is uniquely determined by specifying on
a spacelike surface the wave function and its normal derivative. By contrast, on a lightlike
boundary surface only the wave function itself can be freely chosen. In our case the unique
solution can be written in terms of the boundary values along the h-axis and the ϕ-axis [38],

Ψ>(h, ϕ) =
1
2 (R>(h, ϕ; 0, ϕ)Ψ(0, ϕ) +R>(h, ϕ;h, 0)Ψ(h, 0))

+ 1
2

∫ h

0
dh′

(
R>(h, ϕ;h′, 0)∂h′Ψ(h′, 0)− ∂h′R>(h, ϕ;h′, 0)Ψ(h′, 0)

)
+ 1

2

∫ ϕ2

0
dϕ

′2
(
R>(h, ϕ; 0, ϕ′)∂ϕ′2Ψ(0, ϕ′)− ∂ϕ′2R>(h, ϕ; 0, ϕ′)Ψ(0, ϕ′)

)
.

(4.5)

For wave functions that vanish at h = 0, only the non-zero boundary conditions along the
h-axis are relevant. In terms of

R̄>(h, ϕ;h′, ϕ′) ≡ R>(h, ϕ;h′, ϕ′)Θ(h− h′) (4.6)

the solution (4.5) can then be expressed as

Ψ>(h, ϕ) =
1
2

∫ ∞

0
dh′

(
R̄>(h, ϕ;h′, 0)∂h′Ψ(h′, 0)− ∂h′R̄>(h, ϕ;h′, 0)Ψ(h′, 0)

)
. (4.7)

We now see clearly that, modulo a factor θ(ϕ− ϕ′), the function R̄> is the Green function
appearing in eqs. (3.13), (3.14).

So far, we have only rephrased what we already knew. In particular, we prescribed the
functional form δ(h− h0) on the h-axis and propagated this information to larger ϕ, h using
the Riemann function method. Of course, we can alternatively propagate the information to
larger ϕ, as before, but now to smaller h. We may again use the Riemann function method,
adapted for propagation into the upper-left rather than the upper-right quadrant. The two
resulting solutions, the first a repetition of (3.16), read

Ψ>(h, ϕ;h0) = δ(h− h0)− 2π2λ2ϕ2x−1J1(x)Θ(h− h0) , (4.8)
Ψ<(h, ϕ;h0) = δ(h− h0) + 2π2λ2ϕ2x−1J1(x)Θ(h0 − h) (4.9)

= δ(h− h0) + 2π2λ2ϕ2(−ix)−1I1(−ix)Θ(h0 − h) . (4.10)

See figure 4 for an illustration. In fact, it is straightforward to obtain (4.9) directly from (4.8),
without repeating the analysis: propagating to smaller rather than to larger h amounts, at
the technical level, to exchanging h − h0 for h0 − h. Under such a reflection, our WDW
equation (4.1) remains invariant if we also exchange λ2 for −λ2. Thus, a solution with
propagation to larger h (‘>’) turns into a solution with propagation to smaller h (‘<’) if we
perform a reflection in both the parameter λ2 and the variable h−h0. Noticing that x−1J1(x)
is an analytic function of x2 = (2πλϕ)2(h− h0) and hence invariant, we see that (4.8) turns
into (4.9). Naturally, if one prefers to think in terms of the variable x, then this variable
is real in (4.8) and imaginary in (4.9), (4.10).
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h0

Figure 4. Solution of the WDW equation for h > h0 and h < h0.

In the region h < h0, relevant for Ψ<, the variable x is imaginary. It may hence be
useful to also present the result in terms of a modified Bessel function with real argument,
cf. (4.10). Comparing (4.10) with (4.8) and recalling the asymptotic behaviour of Bessel
functions, one observes that the line h = h0 plays the role of a Stokes line, separating regions
with oscillatory and exponential behaviour. This is similar to the corresponding behaviour of
the minisuperspace Hartle-Hawking wave function in the on-shell and off-shell regimes.

For later use, we record the following concise presentation of our two solutions:

Ψ>(h, ϕ;h0) = ∂h [ J0(x)Θ(h− h0) ] , Ψ<(h, ϕ;h0) = −∂h [ J0(x)Θ(h0 − h) ] . (4.11)

As an intriguing observation, we now note that the two solutions above may be combined as

Ψ0(h, ϕ;h0) ≡
1
2 [Ψ>(h, ϕ;h0)−Ψ<(h, ϕ;h0)] = −2π2λ2ϕ2x−1J1(x) (4.12)

or, even more concisely,

Ψ0(h, ϕ;h0) = ∂hJ0(2πλϕ
√
h− h0) . (4.13)

This wave function is particularly interesting as, by its very construction, it is identically zero
on the h-axis. It is also an analytic function of h and ϕ within the upper-right quadrant. In
fact, using this feature, one could have obtained (4.12) from (4.8) even more straightforwardly:
one starts by observing that Ψ> is analytic in the region ϕ > 0, h > h0. Then one analytically
continues this solution to the whole upper-right quadrant, calling the result Ψ0. Now, since
Ψ> = 0 on the h-axis for h > h0, analyticity in h implies that Ψ0 is identically zero on the
entire h axis. We note that, as before, more general solutions are obtained by convolving
Ψ0(h, ϕ;h0) with some density function ρ(h0), cf. (3.17).

Of course, our smooth solution Ψ0 has an important shortcoming: it does not vanish on
the ϕ-axis, a condition for which we argued above on physical grounds. This, however, is
overcome automatically when we turn to alternative factor orderings below.

4.2 Henneaux factor ordering

Let us now consider the WDW equation with Henneaux factor ordering,(√
h∂h

1√
h
∂σ + π2λ2

)
Ψ̃(h, ϕ) = 0 . (4.14)
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Any solution Ψ of the WDW equation (4.1) with canonical factor ordering gives rise to
a solution Ψ̃(h, ϕ) =

√
hΨ(h, ϕ) of (4.14). This applies, in particular, to our original

solution (3.16) with δ-function boundary conditions. It also applies to the induced analytic
solution (4.13), which hence gives rise to the solution

Ψ̃0(h, ϕ;h0) =
√
h ∂hJ0(2πλϕ

√
h− h0) (4.15)

of (4.14). This is a remarkable result since the above solution is analytic in the upper-right
quadrant and, thanks to the prefactor

√
h, vanishes not only on the h- but also on the ϕ-axis.

A possible shortcoming is the loss of the ‘Schwarzian’ h−3/4 behaviour at asymptotically
large-h. We emphasised this behaviour in our discussion following (3.18), (3.19) above. Now it
is lost due to the extra prefactor

√
h. It is, however, easily regained by replacing our δ-function

boundary condition, on which our whole construction was based, by a more singular choice:

χ
(1)
h0

(h) ≡ χh0(h) = δ(h− h0) → χ
(2)
h0

(h) = ∂hδ(h− h0) . (4.16)

By linearity and using the presentation of our canonical solutions in (4.11), the corresponding
more singular wave function with Henneaux factor ordering reads

Ψ̃>(h, ϕ;h0) =
√
h ∂2

h [ J0(x)Θ(h− h0) ] (4.17)

=
√
h
[
∂hδ(h− h0) + 2∂hJ0(x)δ(h− h0) + (2π2λ2ϕ2)2x−2J2(x)Θ(h− h0)

]
.

It does, by construction, satisfy the boundary conditions Ψ̃>(0, ϕ;h0) = 0 and Ψ̃>(h, 0;h0) =√
hχ

(2)
h0

(h). Moreover, it vanishes for h−h0 < 0 and is singular along the characteristic h = h0.
For large h and ϕ the asymptotic form of the CJM wave function [17] is now reproduced,

Ψ̃>(h, ϕ;h0) ∼
(
ϕ√
h

)3/2
cos (2πλϕ

√
h) . (4.18)

Note that, while this has the same ‘Schwarzian’ h-dependence as in (3.18), (3.19), the
ϕ-dependence has now changed from the one of MTY [16] to that of CJM [17].

As in the previous section, a solution that vanishes for h− h0 > 0 and is non-zero for
h − h0 < 0 can also be constructed:

Ψ̃<(h, ϕ;h0) = −
√
h ∂2

h [ J0(x)Θ(h0 − h) ] . (4.19)

In the sum of Ψ̃> and Ψ̃< the singular terms cancel and one obtains

Ψ̃(h, ϕ;h0) =
1
2
[
Ψ̃>(h, ϕ;h0)− Ψ̃<(h, ϕ;h0)

]
=

√
h ∂2

hJ0(x) . (4.20)

The wave function Ψ̃(h, ϕ;h0 = 1) is shown in figure 5 as function of ϕ and h for h0 = 1. Note
that Ψ̃ vanishes along the entire boundary, h = 0 and σ = 0. One clearly sees the increase in
ϕ-direction, the strong rise from zero to h0 in h-direction, and the oscillations for h > h0.

For the special choice h0 = hc = 1/λ2, the result above agrees with that of [19]. There,
it was derived using a perturbative expansion of the extrinsic curvature, going beyond the
Schwarzian limit. More precisely, this expansion was summed up in Euclidean AdS and then
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Figure 5. Real solution Ψ̃ of the WDW equation with Henneaux factor ordering and h0 = 1. The
red curve represents Ψ̃|ϕ=0.45.

analytically continued to Lorentzian dS. Alternatively, this result was also obtained in [19]
by starting from the general “HLGK wave function” [13, 14] (cf. our appendix B.2) and
fixing the functional freedom of that solution by demanding that the asymptotic behaviour
is Schwarzian. It is remarkable that these findings agree with what we obtain on the basis
of a characteristic initial value problem with a ∂hδ(h− hc) boundary behaviour, where hc

singles out the classical Euclidean/Lorentzian background geometry.

4.3 Factor ordering and higher singular sources

We can now generalize the results of the previous section to a whole class of factor orderings
defined by (recall σ = ϕ2)

(hp/2∂hh
−p/2∂σ + π2λ2)Ψ(p)(h, ϕ) = 0 , p ∈ N . (4.21)

First, one easily verifies that the Green function G(p)(h, ϕ;h′, ϕ′) is given by

G(p)(h, ϕ;h′, ϕ′) =
(
h

h′

)p/2
G(h, ϕ;h′, ϕ′) , (4.22)

where G(h, ϕ;h′, ϕ′) denotes the Green function of the WDW equation in canonical factor
ordering, p = 0. Correspondingly, given a solution Ψ for canonical factor ordering, the
wave function

Ψ(p)(h, ϕ) = hp/2Ψ(h, ϕ) (4.23)

Moreover, we may allow for more general sources, defined by higher derivatives of a δ-function:

χ
(q)
h0

(h) = ∂q−1
h δ(h− h0) , q ≥ 1 ∈ N . (4.24)
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Now, using linearity and the form of our canonical solutions in (4.11), one can immediately
write down the corresponding solutions with more general factor ordering and boundary
conditions:

Ψ(p,q)
> (h,ϕ;h0)=hp/2∂q

h [J0(x)Θ(h−h0) ] (4.25)

=hp/2

∂q−1
h δ(h−h0)+

q−1∑
k=1

(
q

k

)
∂q−1−k

h δ(h−h0)∂k
hJ0(x)+∂q

hJ0(x)Θ(h−h0)


and

Ψ(p,q)
< (h,ϕ;h0)=−hp/2∂q

h [J0(x)Θ(h0−h) ] (4.26)

=hp/2

∂q−1
h δ(h−h0)+

q−1∑
k=1

(
q

k

)
∂q−1−k

h δ(h−h0)∂k
hI0(x̃)−∂q

hI0(x̃)Θ(h0−h)

 .
In the last line, we used J0(iz) = I0(z) and defined x̃ = 2πλϕ

√
h0 − h (recall that x =

2πλϕ
√
h− h0). As before, we can combine the two solutions into a single wave function

which is analytic in the upper-right quadrant and vanishes on its boundaries for p > 0:

Ψ(p,q)(h, ϕ;h0) = hp/2
(
Ψ(p,q)

> (h, ϕ;h0)−Ψ(p,q)
< (h, ϕ;h0)

)
= hp/2 ∂q

hJ0(2πλϕ
√
h− h0) .

(4.27)

Using the relation ∂x(x−νJν(x)) = −x−νJν+1(x), one straightforwardly obtains

Ψ(p,q)(h, ϕ;h0) = hp/2(−2π2λ2ϕ2)qx−qJq(2πλϕ
√
h− h0)

= (−πλ)qϕp

( √
h√

h− h0

)p (
ϕ√

h− h0

)q−p

Jq(2πλϕ
√
h− h0) .

(4.28)

Note that, contrary to appearances, there is no cut in this expression since only even powers
of

√
h− h0 occur after Taylor expanding the Bessel function. Using the asymptotic behaviour

Jq(x) ∼
√

2
πx

cos
(
x− qπ

2 − π

4

)
, (4.29)

the full wave function takes the asymptotic form

Ψ(p,q)(h, ϕ;h0) ∼ λq−1/2ϕp−1
(
ϕ√
h

)q−p+1/2
cos

(
2πλϕ

√
h
)
. (4.30)

In the Riemann representation solutions of the WDW equation are determined by initial
values on the lightlike boundary and by the Riemann function J0. One may then wonder how
one can obtain non-zero solutions which vanish on the entire boundary. This can be understood
by viewing the Stokes line h = h0 as boundary instead of the axis h = 0. The solutions Ψ(p,q)

vanish along ϕ = 0 but are non-zero along h = h0: Ψ(p,q)|h=h0 = hp/2∂q
hJ0|h=h0 ∝ h

p/2
0 ϕ2q.

For h > h0 the solution is then given in terms of Jq, and for h < h0 in terms of the analytic
continuation Iq. For canonical factor ordering, p = 0, the wave function is non-zero also at
h = 0, whereas for nontrivial factor ordering, p > 0, it vanishes along h = 0.
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4.4 Projection to expanding or contracting universes

Like the semiclassical JT wave function, the exact wave function (4.28) can be decomposed
into wave functions for expanding and contracting branches in the standard manner. For this
purpose, we write Jq as linear combination of the Hankel functions H(2)

q and H
(1)
q ,

Jq(x) =
1
2
(
H(2)

q (x) +H(1)
q (x)

)
, h > h0 , (4.31)

which at large h become waves with positive and negative frequencies, respectively. De-
composing our wave function from (4.31) as suggested by (4.28), we may then write
Ψ(p,q) = Ψ(p,q)

+ + Ψ(p,q)
− . For h > h0, one finds

Ψ(p,q)
+ (h, ϕ;h0) =

1
2h

p/2∂q
hH

(2)
0 (2πλϕ

√
h− h0)

= 1
2(−πλ)

qϕp

( √
h√

h− h0

)p (
ϕ√

h− h0

)q−p

×H(2)
q (2πλϕ

√
h− h0) ,

∼ λqϕp−1
(
ϕ√
h

)q−p+1/2
exp

(
−2πiλϕ

√
h
)

Ψ(p,q)
− (h, ϕ;h0) =

(
Ψ(p,q)

+ (h, ϕ;h0)
)∗

.

(4.32)

This clearly shows that, asymptotically, Ψ(p,q)
+ (h, ϕ) and Ψ(p,q)

− (h, ϕ) describe an outgoing
and incoming wave with fast-changing phase. These are the asymptotic wave functions for a
semiclassical expanding and contracting universe, respectively.

The Hankel functions H(2)
q have a singularity at h = h0. This may be regularized by

means of a Feynman iϵ-prescription, see eqs. (E.18) and (E.19). In the limit ϵ → 0 one
then obtains contributions to the wave function for h < h0 and h > h0 (cf. appendix E,
eqs. (E.27) and (E.29)),

Ψ(p,q)
+ (h, ϕ;h0) =

1
2h

p/2∂q
h

(
H

(2)
0 (2πλϕ

√
h− h0)Θ(h− h0)

+2i
π
K0(2πλϕ

√
h0 − h) ·Θ(h0 − h)

)
.

(4.33)

Note that the wave function is purely imaginary on the left of the singularity, which leads
to a vanishing Klein-Gordon current for h < h0.

However, the definition of Ψ(p,q)
+ is not unique. Choosing the opposite sign in the iϵ

prescription, one finds (cf. eqs. (E.30) and (E.31))

Ψ(p,q)
+ (h, ϕ;h0) =

1
2h

p/2∂q
h

[
H

(2)
0 (2πλϕ

√
h− h0)Θ(h− h0)

+2
(
I0(πλϕ

√
h0 − h) + i

π
K0(2πλϕ

√
h0 − h)

)
Θ(h0 − h)

]
.

(4.34)

In this case the wave function on the left of the singularity is complex and the Klein-Gordon
current there does not vanish.
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Figure 6. Imaginary part of the complex wave function Ψ(1,2)
+ = Ψ̃+ (we recall that Ψ̃ denotes the

full real wave function in Henneaux factor ordering in the notation of section 4.2), representing the
outgoing branch for Henneaux factor ordering and h0 = 1. The red curve represents ImΨ(1,2)

+ |ϕ=0.45.

We can now study the behaviour of the real wave function Ψ(p,q)(h, ϕ;h0) as well as the
expanding and contracting branches Ψ(p,q)

± (h, ϕ;h0) near h = h0, using the relations (F.16)
and (F.17). As already discussed in section 4.3, the real wave function Ψ(p,q)(h, ϕ;h0) is finite
and continuous across h = h0. On the contrary, when restricting to either the expanding or
contracting branch of the wave function, we find near h = h0 a very different behaviour, i.e.

Ψ(p,q)
± (h, ϕ;h0)

∣∣∣
h>h0

∼ ∓ i

2πh
p/2
0 ∂

(q−1)
h

1
h− h0

(4.35)

Ψ(p,q)
± (h, ϕ;h0)

∣∣∣
h<h0

∼ ± i

2πh
p/2
0 ∂

(q−1)
h

1
h0 − h

. (4.36)

Contrary to the full real wave function, its expanding and contracting branch both have
a singularity, a pole of order q at h = h0. We note that the approach toward the pole is
independent of ϕ. See figure 6 for an illustration.

In the construction of a Hartle-Hawking wave function for h > hc in [16, 17], where the
contributions from the Euclidean and the Lorentzian sections of the geometry are assumed to
factorize, it is tempting to speculate that the singularity arising from the Lorentzian section
corresponds to a divergence of the sphere partition function [23]. The appearance of this
singularity has cast same doubts on the existence of a physically meaningful Hartle-Hawking
wave function in JT gravity [19, 20, 23]. On the other hand, in our approach the singularity
arises as consequence of projecting a real non-singular wave function onto outgoing and
incoming branches, so that a singularity may be expected, see also section 5.2.

In JT gravity the position of Stokes lines and singularities for real wave functions and
individual branches, respectively, are not determined by a parameter of the theory, like hc in
the case of 4d de Sitter, but they are parameters of solutions of the WDW equation. The
dependence of the singularities of complex wave functions on h0 is illustrated in figure 7.
For Ψ(1,2)

+ , the divergent imaginary part has the same sign on both sides of the singularity
at h = h0.
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Figure 7. Imaginary part of the complex wave function Ψ(1,2)
+ (h, ϕ;h0)|ϕ=0.5 with h0 = 1 (red solid),

h0 = 2 (green dash) and h0 = 5 (blue dash-dot), respectively.

0 10 20 30 40 50

-2

0

2

4

6

Figure 8. Superposition of three real wave functions Ψ(1,2)(h, ϕ;h0) at ϕ = 0.5 and h0 = 1, h0 = 2
and h0 = 5, respectively (blue solid); for comparison the wave function of figure (5) is shown at
ϕ = 0.5 (red dash).

The general solution is then a superposition of terms with different values of h0. Beyond
the largest value hmax

0 one approaches a semiclassical regime where the wave functions
coherently oscillate. At values below hmax

0 one enters a quantum regime where no semiclassical
approximation is possible.

This is illustrated in figure 8. At small h, the behaviour of superposition and the wave
function with h0 = 1 is very different whereas at large h, in the semiclassical regime, the
two wave functions approach each other.
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4.5 Comparison with semiclassical wave functions

In this section we have constructed real and complex solutions to the WDW equation, and it
is instructive to compare the results with semiclassical wave functions that are still frequently
used (for recent examples, see [7, 39]).

The Hartle-Hawking wave function is real. In the unphysical regime it either increases
or decreases exponentially toward the critical scale factor

√
hc = 1/λ, depending on the

chosen analytic continuation to imaginary time. The Hartle-Hawking choice corresponds to
exponential increase, the Linde-Vilenkin choice to exponential decrease (cf. appendix A.1).
In JT gravity the situation is the same (cf. appendix A.2). For the exact real solutions
presented in section 4.3 there is no ambiguity. With increasing h, the wave functions decrease
exponentially down to the oscillatory region, as illustrated by figure 5.

Semiclassical wave functions that connect the unphysical region with expanding or
contracting universes in the physical region can be nicely constructed by means of a complex
time path in the complex Lorentzian/Euclidean geometry [7]. This works in the same way
for JT gravity (cf. appendix A.2). Note, however, that such wave functions cannot be the
semiclassical limit of exact solutions of the WDW equation, which is a direct consequence
of the conservation of the Klein-Gordon current. Semiclassical wave functions also have
a different asymptotic behaviour for large field values compared to exact solutions of the
WDW equation. In particular, they are incompatible with the Schwarzian behaviour obtained
from the functional integral.

Branches of expanding or contracting universes can emerge from a real wave function
by decoherence (see, for example, [6, 7, 40]). In JT gravity this would require to introduce
additional matter degrees of freedom. As shown in the previous paragraph 4.4, enforcing a
projection by hand leads to singularities for the projected wave functions. We expect this to
be the case also in other models of quantum gravity, and not a special property of JT gravity.

5 Probabilistic constraints on JT wave functions

Returning to our set of smooth solutions in (4.28), we note that the most general wave
function for given factor ordering p is constructed as a linear combination of solutions with
varying degree of singularity q:

Ψ(p)(h, ϕ;h0) =
∑
q≥1

ψ(q) Ψ(p,q)(h, ϕ;h0) . (5.1)

Explicitly, we have

Ψ(p)(h, ϕ;h0) = hp/2 ∑
q≥1

ψ(q)
( −πλϕ√

h− h0

)q

Jq(2πλϕ
√
h− h0) (5.2)

with large-h asymptotics

Ψ(p)(h, ϕ;h0) ∼ ϕp−1 ∑
q≥1

(−λ)qψ(q)
(
ϕ√
h

)q−p+1/2
cos (2πλϕ

√
h− h0) . (5.3)

This asymptotic form shows an encouraging pattern: solutions constructed on the basis
of increasingly singular sources, as quantified by q, display an increasingly fast fall-off ∼ h−q/2
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at large h. Thus, the large-h-behaviour of the full wave function Ψ(p) will be dominated
by the smallest contributing q as long as the coefficients ψ(q) stay bounded at q → ∞.
From here we see a promise: if there were a way to restrict the singularity strength q to
q ≥ p + 1 instead of just q ≥ 1, then the full wave function would enjoy the Schwarzian
limiting behaviour ∼ (ϕ/

√
h)3/2 at large h.

5.1 Factor ordering and normalizability

In order to obtain a restriction on the range of the singularity strength q we will need to
argue from the asymptotic normalizability of the wave function toward large h. We will
do so using two different proposals for a scalar product on the space of wave functions and
hence for a probability measure.

As a first option, we employ the invariant ‘volume element in field space’ times |Ψ|2

to define the probability density. This is motivated by the standard Born rule of quantum
mechanics. We will refer to this as the ‘Hartle-Hawking measure’ since it was used in the
seminal paper [3].7

To make this explicit, we recall that for canonical factor ordering our wave function satisfies

(∂h∂ϕ + 2π2λ2ϕ)Ψ(h, ϕ) = 0 . (5.4)

To allow for different factor orderings, we generalize this using the notion of a Laplacian
in field space

2∂h∂ϕ → ∆ ≡ 1√
f
∂α

(√
ffαβ∂β

)
, (5.5)

where α, β = h, ϕ. In the canonical case, the inverse of the field space metric reads

fαβ
c =

(
0 1
1 0

)
. (5.6)

As discussed in appendix B.3, the WDW equations with different factor ordering are obtained
by rescaling the field space metric according to f c

αβ → fαβ ≡ Ω−1f c
αβ with an arbitrary

function Ω(h) and then enforcing invariance of the path integral via a counter-rescaling of
the lapse function. This in turn rescales the wave function, taking us from the canonical
wave function Ψc to Ψ = ΩΨc. Choosing Ω(h) = hp/2 then corresponds to the class of
factor orderings described in section 4.3.

In full generality, the Hartle-Hawking measure then reads

dPHH(h, ϕ) = |Ψ|2
√
fdhdϕ ∼ h

p−2q−1
2 dhdϕ . (5.7)

To obtain the h-dependence in the last expression, we used |Ψ|2 ∼ hp−q−1/2 (see for ex-
ample (4.30)) and

√
f ∼ h−p/2.

Before attempting an interpretation, we want to derive an analogous expression using
a second proposal, which we will refer to as the ‘Klein-Gordon measure’. For this purpose,
we recall that solutions of (5.4) allow for the definition of a current

j = (jh, jϕ) , jh = i

2(Ψ
∗∂hΨ−Ψ∂hΨ∗) , jϕ = i

2(Ψ
∗∂ϕΨ−Ψ∂ϕΨ∗) , (5.8)

7In ref. [41] the terms Hartle-Hawking inner product or Hartle-Hawking norm are used.
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which is conserved: ∂ϕjh + ∂hjϕ = 0. For general metrics fαβ the analogous definition and
the statement of current conservation read

jα = i

2f
αβ (Ψ∗∂βΨ−Ψ∂βΨ∗) and ∇αj

α = 0 . (5.9)

Here ∇αj
α = ∂αj

α + Γα
αγj

γ = f−1/2∂α(f1/2jα) is the divergence of the current and the
underlying wave function Ψ solves the WDW equation with the Laplacian from (5.5).

Of course, for a real wave function Ψ the Klein-Gordon current just introduced vanishes.
Hence, we can define the Klein-Gordon current only separately for the outgoing and incoming
branch of the wave function, Ψ±, as discussed in section 4.4. The overlap between these two
branches will become small (a necessary condition for the two branches to decohere [42])
when the phase becomes fast-changing, that is, at large h. The conserved ‘Klein-Gordon’
probability measure [1, 43]8 then reads

dP±(h, ϕ) = jα
±(h, ϕ)

√
f ϵαβ dX

β
± , (5.10)

with

jα
±(h, ϕ) = fαβj±β (h, ϕ) and j±β (h, ϕ) = i

2
(
Ψ∗

±∂βΨ± −Ψ±∂βΨ∗
±
)
. (5.11)

This definition depends on the choice of a codimension-one surface Σ over which we integrate
the Hodge-dual of the current, P ∼

∫
Σ ∗j. In our case Σ is a line and dX is its line element.

We choose the orientation opposite for incoming and outgoing wave function, dX− = −dX+,
such that dP− = dP+.

Since we are interested in large-h normalizability, we conveniently choose the integration
surface by defining dXα = (dh, 0). This yields

dP±(h, ϕ) = j±h fhϕ
√
f ϵϕh dh = j±h hp/2 h−p/2 dh = j±h dh. (5.12)

We now recall that the asymptotic outgoing and incoming branches of our wave function
with general factor ordering and singularity strength are given in eq. (4.32),

Ψ(p,q)
± (h, ϕ) ∼ λqϕp−1

(
ϕ√
h

)q−p+1/2
e∓i2πλϕ

√
h . (5.13)

This implies

|Ψ(p,q)
± |2 ∼ 1

hq−p+1/2 , (j±h , j
±
ϕ ) ∼ 1

hq−p+1/2 (1/
√
h,

√
h) ∼

( 1
hq−p+1 ,

1
hq−p

)
. (5.14)

Hence, we get

dP±(h, ϕ) = j±h dh ∼ hp−q−1dh . (5.15)

Thus, our results so far are the two probability distributions (5.7) for the Hartle-Hawking
measure together with (5.15) for the Klein-Gordon measure.

8The term ‘DeWitt scalar product’ is also widespread.
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We may now impose the two physical conditions of

i) Finiteness of the integral over h at h→ ∞

ii) Schwarzian behaviour in h of the large-h wave function: Ψ ∼ 1/
√
h

3/2.

We see that

• Condition i) implies q > (p+1)/2 for the Hartle-Hawking and q > p for the Klein-Gordon
measure.

• Condition ii) tells us: q ≥ p+ 1.

Given integrality of p and q, Conditions i) and ii) are hence equivalent in the Klein-Gordon
case. By contrast, in the Hartle-Hawking case the two conditions are only equivalent for
p = 0 and p = 1. For larger p, Condition ii) constrains more strongly which of the solutions
Ψ(p,q) are allowed to contribute to the wave function Ψ(p).

As a result, we find an intriguing correlation between the requirements of normalizability
and Schwarzian behaviour. Moreover, if we exclude the case p = 0 because the physical
requirement Ψ(0,q)(0, ϕ) = 0 is violated, then p = 1 is singled out as the potentially unique
factor ordering prescription: only in this case is Hartle-Hawking normalizability at large h
equivalent to asymptotic Schwarzian behaviour.

5.2 Klein-Gordon current near the singularity

It is instructive to consider the Klein-Gordon current jϕ = fϕhjh for all values of h, in
particular near the singularity at h0. The current of the outgoing branch reads

(
j

(p,q)
+

)
h
= i

2
(
Ψ(p,q)∗

+ ∂hΨ(p,q)
+ −Ψ(p,q)

+ ∂hΨ(p,q)∗
+

)
= (πλ)2q

4
hpϕ2q

(h− h0)q

(
Jq∂hYq − Yq∂hJq

)
Θ(h− h0)

= (πλ)2q

4π
hpϕ2q

(h− h0)q+1Θ(h− h0) . (5.16)

It vanishes for h < h0 due to the choice ϵ > 0 in taking the limit iϵ → 0 (cf. (4.33)). By
contrast, for Ψ(p,q)

− this current component is non-zero also for h < h0 and is proportional to

Im
(
Ψ(p,q)∗

− ∂hΨ(p,q)
−

)
= −(πλ)2q

π

hpϕ2q

(h0 − h)q

(
Iq∂hKq −Kq∂hIq

)
= −(πλ)2q

2π
hpϕ2q

(h0 − h)q+1 . (5.17)

The complete current for Ψ(p,q)
− then reads

(
j

(p,q)
−

)
h
= i

2
(
Ψ(p,q)∗

− ∂hΨ(p,q)
− −Ψ(p,q)

− ∂hΨ(p,q)∗
−

)
= (πλ)2q

4π

(
− hpϕ2q

(h− h0)q+1Θ(h− h0) +
2hpϕ2q

(h0 − h)q+1Θ(h0 − h)
)
. (5.18)
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The corresponding currents
(
j

(p,q)
±

)
ϕ

are given by

(
j

(p,q)
+

)
ϕ
= (πλ)2q

2π
hpϕ2q−1

(h− h0)q
Θ(h− h0) , (5.19)

(
j

(p,q)
−

)
ϕ
= (πλ)2q

2π

(
− hpϕ2q−1

(h− h0)q
Θ(h− h0)−

2hpϕ2q−1

(h0 − h)q
Θ(h0 − h)

)
. (5.20)

Using the metric fϕh = fhϕ = hp/2 one finally obtains for the vector currents j(p,q)
± :

(
j

(p,q)
+

)ϕ = (πλ)2q

4π
h3p/2ϕ2q

(h− h0)q+1Θ(h− h0) , (5.21)

(
j

(p,q)
−

)ϕ = (πλ)2q

4π

(
− h3p/2ϕ2q

(h− h0)q+1Θ(h− h0) +
2h3p/2ϕ2q

(h0 − h)q+1Θ(h0 − h)
)
, (5.22)

(
j

(p,q)
+

)h = (πλ)2q

2π
h3p/2ϕ2q−1

(h− h0)q
Θ(h− h0) , (5.23)

(
j

(p,q)
−

)h = (πλ)2q

2π

(
−h

3p/2ϕ2q−1

(h− h0)q
Θ(h− h0)−

2h3p/2ϕ2q−1

(h0 − h)q
Θ(h0 − h)

)
. (5.24)

The Klein-Gordon currents for the wave function branches Ψ+, Ψ− = Ψ−Ψ+ defined
with the continuation to h < h0 given by the iϵ-convention of eqs. (E.27) and (E.29) have a
pole along the line h = h0 whose strength depends on ϕ. The current in h-direction is given
by jh

± = 2jϕ
±(h − h0)/ϕ. For h < h0 the current j+ vanishes since there the wave function

branch Ψ+ is purely imaginary. This is illustrated in figure 9.
The very existence of the non-vanishing currents at h > h0 is an artefact of splitting the

real and thus current-free wave function Ψ = Ψ+ +Ψ− into complex branches. Moreover, it is
this split due to which the outgoing and incoming branches are each built from derivatives of
Bessel functions which at the line h = h0 show a logarithmic singularity vis a vis its derivatives,
and which are in turn responsible for possibility of the branch KG current to develop a pole
there, despite the associated real DeWitt wave function being completely smooth everywhere.

However, the logarithmic singularity of the relevant Bessel functions will show up in the
resulting outgoing and incoming branch wave functions only if the source χ(q)

h0
is completely

localized at one particular value of h0 and thus the source is itself singular. Upon smearing
out the source into a smooth function with sufficiently fast fall-off towards large h, both
the real DeWitt wave function and its outgoing and incoming branch components will be
completely smooth. Hence, the projection onto a branch is a necessary condition for an
outgoing and incoming branch complex WDW wave function to show a pole at h = h0. The
pole will appear in the branches if the source is chosen to be singular.

The interpretation of the wave functions for individual branches as solutions of a WDW
equation with a singular source has already been conjectured in [20]. In the construction of a
Hartle-Hawking wave function in [16] this source could not be seen since the wave function
was not constructed in the range 0 < h < hc but instead solely asymptotically at large-h.

We note further the behavior of the KG current for the incoming branch Ψ−. As the
outgoing branch Ψ+ defined in eqs. (E.27) and (E.29) is purely imaginary for h < h0, we get
Ψ− to be complex there. Hence, the current j− does not vanish for h < h0, and instead seems
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Figure 9. Vector field plot of the KG current j+ = (jh
+, j

ϕ
+) of the outgoing branch Ψ(1,2)

+ with the
continuation to h < h0 given in eqs. (5.21), (5.23). The arrows represent the vector field.

to ‘bounce off’ from j− at h > h0 in the point (h = h0, ϕ = 0) to stream into the h < h0
region, see figure 10. The KG currents of both Ψ± vanish on the boundary ϕ = 0 and the
KG current of Ψ− vanish on the boundary h = 0 as well. This is consistent with the notion
of both branches being complex projections of a real DeWitt wave function.

To see this, we recall that DeWitt wave functions are defined as wave functions which
solve the source-free WDW equation and satisfy a quantum-mechanical boundary condition
Ψ({sing. loci}) = 0. Here, the set {sing. loci} of singular loci is to be understood as the
joint union of all loci in field space where field energy densities and/or curvature invariants
diverge (called the ‘barrier’ by DeWitt). In our case, this clearly includes h = 0 where the
2d JT geometry becomes singular, while the locus σ = ϕ2 = 0 can be argued to be singular
upon embedding 2d JT gravity via compactification of 4d Einstein gravity on a 2-sphere
with volume ϕ2. Given this embedding, ϕ2 = 0 represents a curvature singularity of the
compactification 2-sphere. With this motivation we take {h = 0} ∪ {ϕ = 0} as the singular
locus of JT gravity. Our construction of real-valued DeWitt wave functions for JT gravity
satisfies the condition of barrier avoidance for all factor ordering choices p ≥ 1, except for
canonical factor ordering. Hence, the DeWitt wave functions here vanish on the boundaries
{h = 0} ∪ {ϕ = 0} and thus their outgoing and incoming branch components as well as their
respective KG currents should vanish on the boundaries as well.
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Figure 10. Vector field plot of the KG current j− = (jh
−, j

ϕ
−) of the incoming branch Ψ(1,2)

− with the
continuation to h < h0 given in eqs. (5.22), (5.24). The arrows represent the vector field.

6 Summary and conclusions

In this work we have constructed Wheeler-DeWitt (WDW) wave functions for JT quantum
gravity in 1+1 dimensional de Sitter (dS) space-time, with configuration space restricted to
the domain 0 ≤ h = a2 < ∞ and 0 ≤ ϕ < ∞. Here a is the scale factor of the spatial S1

and ϕ is the dilaton. Our wave functions are exact, real analytic solutions to the JT WDW
equation in this full region. We focused on the subset of solutions which, in the semiclassical
limit at large scale factor, reproduce the behaviour derived from the path integral of the
Schwarzian boundary mode of 2d dS space.

Our solutions follow from the bulk path integral or, equivalently, the Riemann method for
solving the initial value problem of the WDW equation. Either way, boundary data at the two
axes (ϕ = 0, h > 0) and (ϕ > 0, h = 0) is required. We found simple solutions by requiring the
wave function to vanish everywhere on the boundary except for one point, (ϕ = 0, h = h0), at
which a singular source is introduced. Remarkably, by analytic continuation each such solution
can be turned into a real analytic solution vanishing on all boundaries that is characterized
by a transition region containing a Stokes line separating regions with exponential and
oscillatory behavior, respectively.

The additional choice h0 = hc = 1/λ2 then leads to what, in our approach, is the closest
analogue of the semiclassical Hartle-Hawking (HH) proposal whose complex lapse function
contour turns from real to imaginary lapse precisely at h = hc = 1/λ2.
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Matching the boundary mode Schwarzian behaviour asymptotically corresponds to choos-
ing a particular minimal singularity strength for the source. Meanwhile, adding successively
stronger singularities to the source corresponds to adding further solutions which display
a faster fall-off at large scale factor.

Hence, the general WDW wave function is sourced by boundary data consisting of a
sum of increasingly singular contributions at in general different loci h0. As a consequence,
we find this general WDW wave function to consist of a superposition of real ‘modes’, with
the asymptotically dominant mode matching the Schwarzian scaling behaviour. It is in
this sense that we found a duality between the full WDW wave function based on the
bulk path-integral amplitude and the asymptotic description of the wave function using
Schwarzian boundary dynamics.

Furthermore, we were able to find such a set of WDW solutions parametrized by singular
boundary data and reproducing the Schwarzian limit asymptotically for any choice within a
certain class of factor orderings. Hence, it is possible to quantize JT gravity in 2d dS space for
different choice of factor ordering while the resulting WDW wave functions show consistent
semiclassical behavior independent of the factor ordering choice. We find no preference for
particular factor orderings. This includes the ‘Henneaux factor ordering’ which just has the
feature of providing an explicit functional integral form of the wave function. For all choices of
factor ordering other than the ‘canonical’ one, we found the real WDW solutions to actually
vanish on both axes ϕ = 0 and h = 0, thus satisfying a physical requirement for WDW wave
functions at the boundary of their configuration space discussed first by DeWitt [1]. It is
for this reason that we called these solutions DeWitt wave functions.

Real WDW wave functions have vanishing Klein-Gordon (KG) current. However, each
such real solution can be decomposed into a linear superposition of an ‘outgoing’ and
‘incoming’ branch. These branches can be defined in the semiclassical limit due to inter-
branch decoherence. The outgoing and incoming branches have an outward and inward
directed KG current, corresponding to an ensemble of semiclassical growing and shrinking
universes, respectively.

Crucially, we noted that once supplying a singular source, the outgoing and incoming
branches of the associated real and smooth WDW solution possess a power-law pole in h

at h = h0. As the outgoing and incoming branches are obtained as projections of the real
DeWitt wave functions, we thus found the pole behavior of each of the two branches, which
was observed before in literature, to be a projection effect given presence of a singular source.9
Smearing out the source smooths out the pole behaviour for the branches as well.

Finally, there is the question of the measure, that is, how to calculate probabilities from
the wave function of the universe. We tentatively applied the two main measures discussed
in the literature — the KG measure based on the KG current and the HH measure. The KG
measure can only be defined on either an outgoing or incoming branch of a real WDW wave
function in the semiclassical limit. Interestingly, imposing the condition of normalizability at
large-h on candidate wave functions turned out to be equivalent to demanding asymptotically
Schwarzian scaling behavior, irrespective of the choice of factor ordering. In contrast, the HH

9We leave a potential interpretation of the source in terms of a spacelike End-of-The-World brane, as
suggested by the ‘Boundary proposal’ [28], as a suggestive hint for future work.
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measure gives non-zero probabilities also to the real wave function. Furthermore, the HH
measure is less restrictive than KG measure upon imposing the Schwarzian limit.

We may now discuss the implications of these results. The outcome, that the power-law
singularities observed at small h for candidate outgoing wave functions obtained from the
Schwarzian boundary theory turn out to be projection effects, may suggest ‘real analyticity’
to be a feature of an exact WDW wave function. Real analyticity implies vanishing KG
current, and therefore the absence of current sources at small scale factor. We may view this
condition as a quantum mechanical ‘left-over’ of the semiclassical no-boundary proposal.

Furthermore, we saw that real analyticity leaves the freedom of a whole class of increasingly
singular boundary data. Hence, in contrast to the original no-boundary proposal, our class of
DeWitt wave functions, being superpositions of many modes, does not select a unique ground
state wave function. Choosing a unique ground state among them amounts to choosing
a particular compact distribution of boundary data at small h for which the input of a
UV-complete theory of quantum gravity seems necessary.

In closing we now wish to make some further comments on the relation between our
DeWitt wave functions for JT gravity and the long-standing notion of the semiclassical
Hartle-Hawking no-boundary wave function, as well as on the limits of the semiclassical
regime. The no-boundary proposal is based on a semiclassical picture: starting from a classical
complex Euclidean/Lorentzian geometry, a Wheeler-DeWitt wave function is constructed
which changes across a region containing a Stokes point from an exponential behaviour to
an oscillatory behaviour that approaches a semiclassical regime at large scale factors. The
corresponding Hartle-Hawking wave function is real and interpreted as a superposition of
expanding and contracting universes. The real DeWitt wave functions constructed in this
paper are of this type. They are exact solutions of the WDW equation. They do not have just
a single Stokes point but are rather superpositions of wave functions with many Stokes lines.
For large field values they show the asymptotic behaviour determined by the Schwarzian
degrees of freedom of a boundary curve. However, in order to describe an expanding or
contracting universe, one has to project on the corresponding branch of the real wave function.
Within JT gravity this leads to a singular behaviour on the boundary and the various wave
functions with the same asymptotic behaviour can be described by different singular boundary
conditions. As illustrated by figures 9 and 10, singular source choices are correlated with
pole-like features in the flux of expanding or contracting branches. In a higher-dimensional
theory, for which JT gravity is supposed to be an effective low-energy description, the role of
a singular source will be replaced by the dynamics of additional degrees of freedom. This
could be branes as in the Boundary Proposal [28] or decoherence induced by an environment
of additional degrees of freedom [40].

Finally, we observe that while our DeWitt wave functions are real like the semiclassical
Hartle-Hawking wave function, the latter is known to display an exponentially growing
behavior away from the singular locus at h = 0 towards the semiclassical gluing point h = hc.
The DeWitt wave functions we obtained in this work (up to a monomial factor from factor
ordering) in contrast show exponentially decaying behavior from h = 0 towards h = h0. It
is interesting to note that unlike the sign choice discriminating the semiclassical notions of
the Hartle-Hawking no-boundary and the Linde-Vilenkin tunneling wave function, we had
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no such freedom. The decaying behavior of the DeWitt wave functions for h < h0 is an
outcome of our solutions. We leave it as a problem for future work what this may imply for
the long-standing competition between the HH and LV wave function and their respective
scaling with the dS cosmological constant.

Acknowledgments

We thank Klaus Fredenhagen, Björn Friedrich, and Jean-Luc Lehners for valuable discussions,
and Marc Henneaux for clarifying correspondence. AW is partially supported by the Deutsche
Forschungsgemeinschaft under Germany’s Excellence Strategy — EXC 2121 “Quantum Uni-
verse” - 390833306, by the Deutsche Forschungsgemeinschaft through a German-Israeli Project
Cooperation (DIP) grant “Holography and the Swampland”, and by the Deutsche Forschungs-
gemeinschaft through the Collaborative Research Center SFB1624 “Higher Structures, Moduli
Spaces, and Integrability”. AH is partially supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2181/1 -
390900948 (the Heidelberg STRUCTURES Excellence Cluster).

A Semiclassical wave functions

A.1 Semiclassical Hartle-Hawking wave function

Let us briefly recall how the semiclassical Hartle-Hawking wave function [3] is constructed.
For recent reviews, see [6, 7]. In the simplest version, one considers 4d de Sitter space
with cosmological constant λ. The Lorentzian action including the Gibbons-Hawking-York
(GHY) boundary term reads

S[g] = 1
2

∫
M
d4x

√
g(R− 2λ) +

∫
∂M

d3y
√
hK , (A.1)

where g, R, λ, h and K denote metric tensor, Ricci scalar, cosmological constant, induced
metric on ∂M and extrinsic curvature, respectively. In the minisuperspace approximation,
the metric depends on the lapse function N(t) and the scale factor a =

√
h,

ds2 = −N2(t)dt2 + a2(t)dΩ2
3 , (A.2)

for which the Lorentzian action becomes

IL[a] = 2π2
∫
dtN

(
− 3
N2aȧ

2 + 3a− λa3
)
. (A.3)

With πa = −12π2aȧ/N , this leads to the Hamiltonian constraint

1
144π4a

π2
a + a− λ

3a
3 = 0 . (A.4)

For the simplest, ‘canonical’ factor ordering, one obtains the WDW equation [3](
ℏ2

144π4
∂2

∂a2 − a2 + λ

3a
4
)
Ψ(a) = 0 . (A.5)
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The classical equation of motion for a(t) has the solution ā(t) = H−1 cosh (Ht), with
λ = 3H2, which describes the de Sitter half-hyperboloid connecting a circle of minimal radius
H−1 at t = 0 with a circle of radius a > H−1 at ta = H−1 arcosh (Ha). Using eqs. (A.3)
and (A.4), one obtains for the on-shell action corresponding to the saddle point ā(t)

Ios
L (a) = 12π2

∫ ta

0
dt
(
ā(t)−H2ā3(t)

)
= −4π2i

H2

(
H2a2 − 1

)3/2
.

(A.6)

The semiclassical wave function

ΨL(a) ≃ exp
(
i

ℏ
Ios

L (a)
)
= exp

(
− 4π2

ℏH2

(
H2a2 − 1

)3/2
)
, Ha > 1 , (A.7)

is a solution of the WDW equation (A.5) to leading order in ℏ.
The Hartle-Hawking geometry matches the Lorentzian de Sitter hyperboloid at minimal

size H−1 to a Euclidean half-sphere at the equator of size H−1, which is described by the
Euclidean metric

ds2 = N2(τ)dτ2 + a2(τ)dΩ2
3 , (A.8)

where τ = it is Euclidean time. The Lorentzian action iIL becomes −IE , with

−IE = 2π2
∫
dτN

( 3
N2aȧ

2 + 3a− λa3
)
, (A.9)

where the dot now denotes differentiation with respect to τ . The action has a saddle point
ā(τ) = H−1 cos(Hτ) = H−1 cosh(−iHτ) that interpolates between the “South Pole” of the
half-sphere at τ = π/(2H) and a circle of radius a < H−1 at τa = H−1 arccos (Ha). At
t = τ = 0, the Lorentzian and Euclidean saddle points match, as well as their first derivatives.
Analogous to the Lorentzian section one finds for the on-shell action

−Ios
E (a) = −12π2

∫ τa

π/(2H)
dτ
(
ā(t)−H2ā3(t)

)
= −4π2

H2

((
1−H2a2

)3/2
− 1

)
.

(A.10)

One can again define a semiclassical wave function

ΨE(a) ≃ exp
(
−1
ℏ
Ios

E (a)
)
= exp

(
4π2

ℏH2

(
1−

(
1−H2a2

)3/2
))

, Ha < 1 , (A.11)

which is also a solution of the WDW equation (A.5) to leading order in ℏ.
The Hartle-Hawking geometry corresponds to the Euclidean/Lorentzian metric

ds2 = dτ2 +H−2 cos2(Ht)dΩ2
3 ,

π

2H ≥ τ ≥ 0 ,

ds2 = −dt2 +H−2 cosh2(Ht)dΩ2
3 , 0 ≤ t ,

(A.12)

– 30 –



J
H
E
P
0
6
(
2
0
2
5
)
0
4
9

<latexit sha1_base64="eT82f6XQTZMc8weHWjrKt5l6OtQ=">AAAB9nicbZDLSsNAFIZPvNZ6q7p0M1gEF1ISkeqy6MZlBXuBNpTJZNIOnUzCzKS0hL6CW125E7e+jgvfxUmahbYeGPj4/3M4Z34v5kxp2/6y1tY3Nre2Szvl3b39g8PK0XFbRYkktEUiHsmuhxXlTNCWZprTbiwpDj1OO974PvM7EyoVi8STnsXUDfFQsIARrDOpr3EyqFTtmp0XWgWngCoU1RxUvvt+RJKQCk04Vqrn2LF2Uyw1I5zOy/1E0RiTMR7SnkGBQ6ou/QmLVY5uOs3vnqNz4/ooiKR5QqNc/T2d4lCpWeiZzhDrkVr2MvE/r5fo4NZNmYgTTQVZLAoSjnSEshCQzyQlms8MYCKZuRuREZaYaBOVycNZ/v0qtK9qTr1Wf7yuNu6KZEpwCmdwAQ7cQAMeoAktIDCCZ3iBV2tqvVnv1seidc0qZk7gT1mfP0TOk2k=</latexit>⌧

<latexit sha1_base64="e57pazrvPv5RU5P4Z0Uw+9ptfyk=">AAACAHicbZC7TsMwFIadcivlVmBksaiQGFCVVKgwVrB0LBK9SG2oHMdprTqOZTsVVZSFp2CFiQ2x8iYMvAtumgFafsnSp/Ofo+Pze4JRpW37yyqsrW9sbhW3Szu7e/sH5cOjjopiiUkbRyySPQ8pwignbU01Iz0hCQo9Rrre5Hbud6dEKhrxez0TxA3RiNOAYqRN6WEQSISTgaBpUmumw3LFrtqZ4Co4OVRArtaw/D3wIxyHhGvMkFJ9xxbaTZDUFDOSlgaxIgLhCRqRvkGOQqIu/CkVKkM3ecwuSOGZcX0YRNI8rmFW/T2doFCpWeiZzhDpsVr25sX/vH6sg2s3oVzEmnC8WBTEDOoIzuOAPpUEazYzgLCk5t8Qj5EJRZvQTB7O8vWr0KlVnXq1fndZadzkyRTBCTgF58ABV6ABmqAF2gADCZ7BC3i1nqw36936WLQWrHzmGPyR9fkD/h6Xvg==</latexit> ⇡

2H

<latexit sha1_base64="niS/5Z43dbtxM4dRMvS/07mCJMU=">AAAB9nicbZDLSsNAFIZPvNZ6q7p0M1gEF1ISKeqy6MZlBXuBNpTJZNIOnUzCzKS0hL6CW125E7e+jgvfxUmahbYeGPj4/3M4Z34v5kxp2/6y1tY3Nre2Szvl3b39g8PK0XFbRYkktEUiHsmuhxXlTNCWZprTbiwpDj1OO974PvM7EyoVi8STnsXUDfFQsIARrDOp31RsUKnaNTsvtApOAVUoqjmofPf9iCQhFZpwrFTPsWPtplhqRjidl/uJojEmYzykPYMCh1Rd+hMWqxzddJrfPUfnxvVREEnzhEa5+ns6xaFSs9AznSHWI7XsZeJ/Xi/Rwa2bMhEnmgqyWBQkHOkIZSEgn0lKNJ8ZwEQyczciIywx0SYqk4ez/PtVaF/VnOta/bFebdwVyZTgFM7gAhy4gQY8QBNaQGAEz/ACr9bUerPerY9F65pVzJzAn7I+fwAVMpNJ</latexit>

 

<latexit sha1_base64="NFKwyMfdfgNS0YsXIFgLho8pMDU=">AAAB+HicbZC7TsMwFIZPuJZyKzCyWFRIDFAlCBXGCpaORaIXqQ2V4zqtqeNEtlNRor4DK0xsiJW3YeBdcNMM0HIkS5/+/xyd49+LOFPatr+speWV1bX13EZ+c2t7Z7ewt99QYSwJrZOQh7LlYUU5E7Sumea0FUmKA4/Tpje8mfrNEZWKheJOjyPqBrgvmM8I1kZqVO+TM2fSLRTtkp0WWgQngyJkVesWvju9kMQBFZpwrFTbsSPtJlhqRjid5DuxohEmQ9ynbYMCB1Sd9kYsUim6yWN6+QQdG7eH/FCaJzRK1d/TCQ6UGgee6QywHqh5byr+57Vj7V+5CRNRrKkgs0V+zJEO0TQG1GOSEs3HBjCRzNyNyABLTLQJy+ThzP9+ERrnJadcKt9eFCvXWTI5OIQjOAEHLqECVahBHQg8wDO8wKv1ZL1Z79bHrHXJymYO4E9Znz8XUpPT</latexit>

H�1

<latexit sha1_base64="OpIIu7KrMh4GkzFv94jFhrf66zc=">AAAB83icbZC7SgNBFIbPeo3xFrW0GQyChYRdkWgZtLFMwFwgWcLs7NlkyOyFmdlgCHkCW63sxNYHsvBdnGy20MQDAx//fw7nzO8lgitt21/W2vrG5tZ2Yae4u7d/cFg6Om6pOJUMmywWsex4VKHgETY11wI7iUQaegLb3uh+7rfHKBWPo0c9SdAN6SDiAWdUG6lB+6WyXbGzIqvg5FCGvOr90nfPj1kaYqSZoEp1HTvR7pRKzZnAWbGXKkwoG9EBdg1GNER16Y95ojJ0p0/Z0TNyblyfBLE0L9IkU39PT2mo1CT0TGdI9VAte3PxP6+b6uDWnfIoSTVGbLEoSAXRMZknQHwukWkxMUCZ5OZuwoZUUqZNTiYPZ/n3q9C6qjjVSrVxXa7d5ckU4BTO4AIcuIEaPEAdmsAA4Rle4NVKrTfr3fpYtK5Z+cwJ/Cnr8wfY5pIG</latexit>a

Figure 11. Semiclassical dS4 wave function. Left: complex time-path corresponding to the complex
Lorentzian/Euclidean geometry [7]. Right: wave function as function of the scale parameter a. In
general, the wave function does not vanish at a = 0.

and the complete on-shell action for Ha > 1 is given by iIos
E/L(a) = −Ios

E (H−1) + iIos
L (a)

(see figure 11). This yields the wave function [7]

ΨE/L(a) ≃ exp
(1
ℏ

(
−Ios

E (H−1) + iIos
L (a)

))
≃ exp

(
4π2

ℏH2

(
1− i

(
H2a2 − 1

)3/2
))

, Ha > 1 .
(A.13)

Including the standard corrections to order ℏ one obtains for the semiclassical wave functions
of the Euclidean and Lorentzian sections

Ψ̂E(a) ∼
C

√
a (1−H2a2)1/4 exp

(
− 4π2

ℏH2

(
1−H2a2

)3/2
)
, (A.14)

Ψ̂E/L(a) ∼
C

√
a (H2a2 − 1)1/4 exp

(
−i 4π

2

ℏH2

(
H2a2 − 1

)3/2
)
, (A.15)

where C = exp
( 4π2

ℏH2
)
. The wave function is singular at a = 0 and at a = H−1.

The constant C depends on the cosmological constant as

C = exp
(
12π2

ℏλ

)
, (A.16)

which has been used to argue that a small value of λ is preferred for the vacuum of a
quantum theory of gravity [44]. Note, that the sign of the exponent depends on the analytic
continuation. Changing t→ −iτ to t→ iτ reverses the sign in the exponent of eq. (A.16) [4].
Now large values of λ appear to be preferred, as for the ‘tunneling wave function’ [4, 5].

The wave function Ψ̂E/L(a) of the Lorentzian section is the analytic continuation of the
Euclidean wave function (A.11) from Ha < 1 to Ha > 1 with (1−H2a2)3/2 → i(H2a2−1)3/2.
It describes an ‘expanding’ universe. The wave function Ψ̂∗

E/L(a) describes a ‘contracting’
universe. The sum of expanding and contracting branch of the Lorentzian wave function
gives the well-known result of Hartle and Hawking [3],

ΨHH(a) = Ψ̂E/L(a) + Ψ̂∗
E/L(a) ≃

2C
√
a (H2a2 − 1)1/4 cos

(
4π2

ℏH2

(
H2a2 − 1

)3/2
)
. (A.17)
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Note that this wave function is not connected to the wave function Ψ̂E(a) of the Euclidean
section by analytic continuation. This may not be surprising due to the singularity at
H2a2 = 1 (see figure 11). Exact real solutions of the WDW equation are regular at this
point, as discussed in sections 4.1 and D.1.

Let us finally emphasize key features of the semiclassical complex wave functions that
describe expanding and contracting branches, respectively. The matching of the classical
Euclidean and Lorentzian geometries is possible at a critical scale factor ac = H−1 where
time of the Lorentzian section is analytically continued to imaginary values. The semiclassical
wave functions in the two domains a > ac and a < ac satisfy the same WDW equation
and are related by analytic continuation.

The singularity at a = ac in eq. (A.17) is an artifact of the expansion in powers of
ℏ and not present in the exact real solution of the WDW equation. However, similar to
eq. (A.15), the projections of the exact solution to expanding and contracting branches do
have a singularity at a = ac, as discussed in section 4.4.

A.2 Semiclassical dS JT wave function

Jackiw-Teitelboim gravity [11, 12] in de Sitter space is defined by the action (2.1),

S[g, ϕ] = 1
2

∫
M
d2x

√
gϕ(R− 2λ2) +

∫
∂M

dθ
√
hϕK .

Compared to eq. (A.1), the case of pure gravity with cosmological constant, the action
depends linearly on a dilaton field ϕ. In minisuperspace, which in 2d is just a gauge
choice [14], the metric

ds2 = −N2(t)dt2 + a2(t)dθ2 (A.18)

yields the action (h = a2)

IL[h, ϕ] = 2π
∫
dtN

(
− 1
N2 ȧϕ̇− λ2aϕ

)
. (A.19)

This implies the Hamiltonian constraint

ȧϕ̇− λ2aϕ = 0 , (A.20)

which leads to the WDW equation10 (N = 1)(
1

4π2
∂2

∂a∂ϕ
+ λ2aϕ

)
Ψ(a, ϕ) = 0 . (A.21)

As in 4d de Sitter, the solution of the equations of motion is ā(t) = H−1 cosh (Ht), with
H = λ, which interpolates between a circle of minimal radius H−1 at t = 0 and a circle of
radius a > H−1 at ta = H−1 arcosh (Ha) of the de Sitter hyperboloid. The corresponding
solution for the dilaton field, satisfying the constraint (A.20) and the boundary condition
ϕ̄(ta) = ϕ, reads

ϕ̄(t) = ϕ0 sinh(Ht) , ϕ0 = ϕ

sinh(Hta)
. (A.22)

10From now on we set ℏ = 1.
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ϕ̄(t) vanishes at t = 0. From eqs. (A.19) and (A.20) one obtains the on-shell action (hc = λ−2)

Ios
L (h, ϕ) = −2πλϕ

√
h− hc , (A.23)

which can also be directly read off from eq. (2.1) by using R = 2λ2 and inserting the extrinsic
curvature K = −λh−1/2(h − hc)1/2. The semiclassical wave function

ΨL(h, ϕ) ≃ exp (iIos
L (h, ϕ)) = exp

(
−2πiλϕ

√
h− hc

)
, h > hc , (A.24)

is a solution of the WDW equation to leading order in ℏ.
Continuing analytically to the Euclidean half-sphere with t = −iτ and metric

ds2 = N2(τ)dτ2 + a2(τ)dθ2 , (A.25)

the Lorentzian action iIL becomes

−IE [h, ϕ] = 2π
∫
dτN

( 1
N2 ȧϕ̇− λ2aϕ

)
. (A.26)

The saddle point of IE that matches the Lorentzian saddle point at t = τ = 0 reads

ā(τ) = H−1 cos(Hτ), ϕ̄(τ) = ϕ0 sin(Hτ) . (A.27)

Also the first derivatives of ā(τ) and ϕ̄(τ) agree with the first derivatives of the Lorentzian
saddle point ā(t) and ϕ̄(t) at t = τ = 0. ϕ0 is the value of the dilaton field at the “South
Pole” τ = π/(2H). It is a function of a and ϕ, given in eq. (A.22).11 From eq. (A.26) one
obtains the on-shell action

−Ios
E (h, ϕ) = 2π

(
ϕ0 − λϕ

√
hc − h

)
, (A.28)

which corresponds to the imaginary Euclidean extrinsic curvature K = iλh−1/2√hc − h, with
ā(τa) = a and ϕ̄(τa) = ϕ0 sin(Hτa) = ϕ. The semiclassical wave function

ΨE(h, ϕ) ≃ exp (−IE(h, ϕ)) = exp
(
2π
(
ϕ0 − λϕ

√
hc − h

))
, h < hc , (A.29)

is again a solution of the WDW equation (A.21).
For the Euclidean/Lorentzian metrics (A.18) and (A.25) the complete on-shell action for

h > hc is given by iIos
E/L(h, ϕ) = −Ios

E (λ−1, 0) + iIos
L (h, ϕ). This yields the wave function

ΨE/L(h, ϕ) ≃ exp
(
−Ios

E (λ−1, 0) + iIos
L (h, ϕ)

)
≃ exp

(
2π
(
ϕ0 − iλϕ

√
h− hc

))
, h > hc .

(A.30)

The complete real wave function is given by

Ψsc(h, ϕ) = ΨE(h, ϕ)Θ(hc − h) + 1
2
(
ΨE/L(h, ϕ) + ΨE/L(h, ϕ)∗

)
Θ(h− hc)

= C
(
exp (−λϕ

√
hc − h)Θ(hc − h) + cos (2πλϕ

√
h− hc)Θ(h− hc)

)
,

(A.31)

11This is analogous to the saddle point discussed in [16] where the dilaton is continued to imaginary values
in the Euclidean region.
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Figure 12. Hartle-Hawking-type semiclassical wave function C−1Ψsc in the h−ϕ-plane; analytic
continuation τ = it at h0 = hc = 1.

with the normalization constant

C = exp (2πϕ0) . (A.32)

Note that, contrary to the Hartle-Hawking wave function, C does not depend on the cosmo-
logical constant but instead on the value of the dilaton at the South Pole.

Including the standard corrections O(ℏ) one obtains for the semi-classical wave functions
of the Euclidean and Lorentzian sections

Ψ̂E(h, ϕ) ∼
C

λ
√
hc − h

exp
(
−2λπϕ

√
hc − h

)
, (A.33)

Ψ̂E/L(h, ϕ) ∼
C

λ
√
h− hc

exp
(
−i2πλϕ

√
h− hc

)
. (A.34)

Contrary to the Hartle-Hawking wave function, C does not depend on the cosmological
constant but instead on the value of the dilaton at the South Pole. Ψ̂E/L(a, ϕ) is the analytic
continuation of the Euclidean wave function (A.29) from h < hc to h > hc with

√
hc − h) →

i
√
h− hc. Ψ̂E/L(h, ϕ) describes an expanding universe and the complex conjugate Ψ̂∗

E/L(h, ϕ)
a contracting universe. The sum of expanding and contracting branch of the Lorentzian
wave function yields

Ψ̂E/L(h, ϕ) + Ψ̂∗
E/L(h, ϕ) ∼

C

λ
√
h− hc

cos
(
2πλϕ

√
h− hc

)
, (A.35)

which is the analogue to the Hartle-Hawking wave function (A.17).
The semiclassical wave function Ψsc, eq. (A.31), with τ = it, is shown in figure 12. With

increasing h, Ψsc increases exponentially, until at h = hc it starts to oscillate. On the contrary,
with τ = −it, the wave function decreases exponentially toward the oscillatory regime, see
figure 13. For both signs, Ψsc does not vanish at h = 0.
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Figure 13. Linde-Vilenkin-type semiclassical wave function C−1Ψsc in the h−ϕ-plane; analytic
continuation τ = −it at h0 = hc = 1.

B Canonical quantization and factor ordering

For completeness, we briefly review canonical quantization of JT gravity in this section.
Subsequently, we discuss the connection between path integral and factor ordering. For an
interesting recent discussion of the Hilbert space of dS JT gravity, see [45].

B.1 Classical theory

Canonical quantization of JT gravity was first studied by Henneaux [13], and it has been
shown that in this model the momentum constraints can be solved such that a wave functional
can be explicitly constructed that solves the functional WDW equation [13, 14].

Starting point is the Lorentzian action (2.1) of the JT model including the GHY bound-
ary term,

S[g, ϕ] = 1
2

∫
M
d2x

√
gϕ(R− 2λ2) +

∫
∂M

dθ
√
hϕK .

Following [46], we use the ADM decomposition of the metric [47]

ds2 = −N
2

h
dt2 + h(dθ + Ñdt)2 , (B.1)

where N and Ñ are lapse function and shift vector, respectively. The normal vector on slices
Σt of constant t is nα = (

√
h/N)(∂t − Ñ∂θ)xα, α = 0, 1, with nαnα = −1. One can now

express the action in terms of the scalar field ϕ and the metric components introduced in
the decomposition (B.1). Removing the GHY boundary term by means of Gauss’s theorem,
one obtains after a straightforward calculation,12

S[g, ϕ] =
∫
d2x

(
− 1
2N (∂th− 2hDθÑ)(∂t − Ñ∂θ)ϕ−N

(
λ2ϕ+Dθ∂

θϕ
))

. (B.2)

12The extrensic curvature is given by K = ∇αnα = (∂t

√
h−

√
hDθÑ)/N , where Dθ is the covariant derivative

w.r.t. the induced metric h and ∂θϕ = h−1∂θϕ. The normal derivative of ϕ reads ∂nϕ = (
√

h/N)(∂t − Ñ∂θ)ϕ.
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The classical phase space consists of the fields h and ϕ, and their conjugate momenta

Πϕ = − 1
2N (∂th− 2hDθÑ) = −

√
hK ,

Πh = − 1
2N (∂t − Ñ∂θ)ϕ = − 1

2
√
h
∂nϕ .

(B.3)

The Hamiltonian is given by

H =
∫
dθ(NH+ ÑH̃) , (B.4)

with the Hamiltonian and momentum densities

H = −2ΠhΠϕ + λ2ϕ+Dθ∂
θϕ , H̃ = −

√
h∂θ(

√
hΠh) + ∂θϕΠϕ . (B.5)

Variation with respect to the Lagrange multiplier fields N and Ñ yields the first-class
constraints (for a review, see, for example [6]),

H = 0 , H̃ = 0 , (B.6)

which are satisfied on a constrained phase space. Given two first-class constraints, there are
no propagating modes. An important role is played by the functional [14]

C[h,Πh, ϕ,Πϕ] = 4hΠ2
h − h−1(∂xϕ)2 − λ2ϕ2, (B.7)

whose Poisson brackets with the generators of time and space translations vanish,

{H, C} = 0 , {H̃, C} = 0 . (B.8)

Hence, C is constant on the constrained phase space, i.e., a global variable. This is also
the case for

PC = −
∫ 2π

0
dθ

hΠh

4hΠ2
h − h−1(∂xϕ)2 , (B.9)

which is the momentum conjugate to C,

{C,PC} = 1 . (B.10)

The invariance with respect to spatial diffeomorphisms can be used to transform on a
slice Σt the field h(θ) to a constant value h. Moreover, a time slicing can be chosen such
that on Σt also the function ϕ(θ) becomes a constant value ϕ [14]. After this reduction of
an infinite number of degrees of freedom to two, the JT model becomes a system with just
two variables, h and ϕ. Hence, in JT gravity, minisuperspace is not an approximation but
just a particular choice of spacetime coordinates. Note that different pairs (h, ϕ) correspond
to different spatial slices of the manifold.

The Hamiltonian density H in eq. (B.5) is bilinear in the momenta. As a consequence,
the constraints (B.6) are equivalent to the two linear constraints [13]

Πh = Q

2
√
h
, Q(h, ϕ;C) = (λ2ϕ2 +R2 + C))1/2, R =

√
h−1(∂θϕ)2 ,

Πϕ =
√
hg

Q
, g(h, ϕ) = λ2ϕ+Dθ∂

θϕ ,

(B.11)

where C is a constant.
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B.2 Quantum theory

Quantization of the theory amounts to solving the constraints HΨ = 0 and H̃Ψ = 0 as
functional differential equations, where the classical momenta Πh and Πϕ are replaced by
Π̂h = −iδ/δh and Π̂ϕ = −iδ/δϕ (see, for example, [6]). In general, only approximate solutions
to these equation can be found. In JT gravity, however, it is sufficient to solve the linear
differential equations

Π̂hΨ = Q

2
√
h
Ψ , Π̂ϕΨ =

√
hg

Q
Ψ . (B.12)

An exact solution is given by the ‘HLGK wave function’ [13, 14]

Ψρ[h, ϕ] =
∫
dCρ(C)Ψ[h, ϕ;C]) , (B.13)

where
Ψ[h, ϕ;C] = exp

(
−i
∫ 2π

0
dθ

√
h

(
Q+ 1

2R ln
∣∣∣∣Q−R

Q+R

∣∣∣∣)) , (B.14)

and ρ(C) is an arbitrary function. Note that Ψ[h, ϕ;C] is manifestly invariant under spatial
diffeomorphisms. By construction, the wave function Ψ satisfies the WDW equation with
a particular factor ordering(

2Q̂ δ

δϕ
Q̂−1 δ

δh
+ g

)
Ψ(h, ϕ;C) = 0 , (B.15)

where we have defined Q̂ = Q(Ĉ;h, ϕ) with ĈΨ[h, ϕ;C] = CΨ[h, ϕ;C]. The canonically
conjugate momentum acts on the wave function as

−i ∂
∂C

Ψ[h, ϕ;C] = −
(1
2

∫ 2π

0
dθ

√
h

Q

Q2 −R2

)
Ψ[h, ϕ;C]

= PC [h, ϕ;C]Ψ[h, ϕ;C] ,
(B.16)

where the function PC is given by eqs. (B.9), (B.11). In [19] this construction of a wave
function has been applied to Euclidean AdS JT gravity.

Going to minisuperspace, the momentum constraint is automatically fulfilled, and the
functional WDW equation (B.15) becomes an ordinary partial differential equation with
a particular factor ordering,

(Q∂ϕQ
−1∂h + 2π2λ2ϕ)Ψ = 0 . (B.17)

As observed in [19], the solutions are simply related to solutions of the WDW equation with
canonical factor ordering. Using Q−1∂hΨ = iπ/

√
hΨ, one obtains from eq. (B.17) a WDW

equation with ‘Henneaux factor ordering’,(√
h∂h

1√
h
∂ϕ + 2π2λ2ϕ

)
Ψ = 0 . (B.18)

One concludes that Ψ =
√
hΨ̃ is a solution ot this equation if Ψ̃ is a solution of the WDW

equation with canonical factor ordering.
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B.3 Path integral and factor ordering

The appearance of WDW equations with different factor orderings is related to the ambiguity
in the measure of the path integral, which has been discussed by Halliwell in the case of 4d
de Sitter gravity [33]. The procedure can be directly applied to JT gravity. We write the
action (B.2) for minisuperspace in terms of an off-diagonal metric fαβ in field space,

S =
∫
dt
(
phḣ+ pϕϕ̇−NH

)
, (B.19)

with
H = − 1

2πf
αβpαpβ + V (q) , fhϕ = fϕh = 1 , V (q) = 2πλ2ϕ . (B.20)

Demanding invariance w.r.t. field redefinitions, one defines the Hamilton operator in terms
of the Laplacian,

H = −1
2∆ + V , ∆ = 1√

f
∂α

(√
ffαβ∂β

)
. (B.21)

The quantum constraint HΨc = 0 then yields the WDW equation with canonical factor
ordering, (1

2f
αβ∂α∂β + 2π2λ2ϕ

)
Ψc = 0 . (B.22)

This WDW equation is not unique because of the ambiguity of the lapse function in the
ADM construction. Define a new lapse function by N = ÑΩ(h). The action now becomes

S =
∫
dt
(
phḣ+ pϕϕ̇− ÑH̃

)
, (B.23)

with
H̃ = −1

2∆̃ + Ṽ = ΩH , ∆̃ = Ω∆ , Ṽ = ΩV . (B.24)

Now Ñ is the integration variable in the path integral, corresponding to a different choice of
integration measure. The canonical wave function also satisfies the new quantum constraint,
H̃Ψc = 0, with the rescaled Laplacian and the rescaled potential. Alternatively, one may
use a rescaled wave function, Ψ(Ω) = ΩΨc, which satisfies a WDW equation with the same
potential as in eq. (B.22) but with different factor ordering,(

Ω∂hΩ−1∂ϕ + 2π2λ2ϕ
)
Ψ(Ω) = 0 . (B.25)

The special choice Ω =
√
h corresponds to Henneaux factor ordering. Clearly, quantization of

JT gravity does not single out a particular factor ordering. Henneaux factor ordering simply
allows for an explicit representation of the wave functional.

There is an analogous relation between the Green functions for different factor orderings.
Defining σ = ϕ2, one easily verifies that the solution of(

Ω(h)∂hΩ(h)−1∂σ + π2λ2
)
G(Ω)(h, σ;h′, σ′) = δ(h− h′)δ(σ − σ′) (B.26)

is given by

G(Ω)(h, σ;h′, σ′) = Ω(h)
Ω(h′)G(h, σ;h

′, σ′) , (B.27)

where G(h, σ;h′, σ′) is the Green function for canonical factor ordering.
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Rescaling the lapse function by Ω(h) affects probability measures whose definition and
interpretation remains an important topic of current research (for a discussion and references,
see, for example [40]). The Hartle-Hawking measure [48]

dPHH(h, ϕ) = |Ψ|2
√
fdhdϕ (B.28)

scales as

dP
(Ω)
HH (h, ϕ) = Ω(h)−1dPHH(h, ϕ) . (B.29)

In the semiclassical regime one can also use the measure provided by the conserved Klein-
Gordon current [1, 43]. Choosing the component of the current in ϕ-direction one has for
expanding and contracting branches

dP±(h, ϕ) = jϕ
±(h, ϕ)

√
fϵϕhdh , jϕ

± = i

2f
ϕh (Ψ∗∂hΨ−Ψ∂hΨ∗) . (B.30)

In two dimensions the rescaling of the metric drops out and the measure is completely
determined by the wave function.

C Boundary wave function with compact support

We obtained many results in the main text for reasons of simplicity by specifying the
boundary wave function to be of the simple form χ(h′, 0) = δ(h′ − h0). However, this
restrictive assumption is not necessary to obtain the asymptotic Schwarzian behaviour. To
show this, consider a boundary wave function that is non-zero in the finite interval [0, h0].
As a convenient simplification approximate this more general boundary wave function as a
rectangular box function Ψ(h′, 0) = Θ(h′) − Θ(h′ − h0).

We can now directly use eq. (3.14), exploit there again that

∂h′J0(
√
−αβ) = −∂hJ0(

√
−αβ) ,

and then expand this in h0 ≪ h. This leaves us with

Ψ(h, ϕ)|h>h0
=
∫ h

0
dh′Ψ(h′, ϕ′)∂hJ0((−αβ)1/2)

=
∫ h0

0
dh′∂h

[
J0((−αβ)1/2)

∣∣∣
h′=0

+ ∂h′J0((−αβ)1/2)
∣∣∣
h′=0

h′ + . . .
]

which at large h ≫ h0 becomes

Ψ(h, ϕ) = ∂hJ0(2πλϕ
√
h︸ ︷︷ ︸

x

) h0 + ∂2
hJ0(2πλϕ

√
h) h2

0 + . . . = −πλϕ√
h
J1(x) h0 + . . . . (C.1)

This is the result obtained before, which tells us that all we require is the boundary wave
function to be normalizable and with compact support on h ∈ [0, h0]. For our analysis
this is beneficial because we can keep using a simplifying choice of class of boundary wave
functions given by delta functions and their derivatives with the background knowledge
that the results obtained this way will carry over when generalizing the boundary wave
function choice to a general normalizable function with compact support. In a sense, this is
reminiscent of the electric field of a compact charge distribution having a dominant monopole
contribution at large distances.
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D Exact solutions with Airy functions

D.1 Hartle-Hawking wave function

The semiclassical wave functions (A.14) and (A.15) diverge at a = 0 and at the Stokes point
a = H−1 where, after an exponential increase in a, the wave function starts to oscillate.
To understand this behaviour better it is useful to rescale the lapse function and to use
instead of the metric (A.2) the metric [33]

ds2 = −N
2(t)
h(t) dt

2 + h(t)dΩ2
3 . (D.1)

The Lorentzian action now reads

IL = 6π2
∫
dtN

(
− 1
4N2 ḣ

2 + 1− λ

3h
)

(D.2)

and the WDW equation becomes(
ℏ2

36π4
∂2

∂h2 − 1 + λ

3h
)
Ψ(h) = 0 , (D.3)

which corresponds to a stationary Schroedinger equation with linear potential. The general
solution is a linear combination of Airy functions [33, 49]

ψ(h) = αAi(x) + βBi(x) , (D.4)

where x(h) = (6π2/ℏH2)2/3(1 − H2h), with H2 = λ/3. At small h, i.e. large x, the Airy
functions behave as

Ai(x(h)) ∼ C ′

(1−H2h)1/4 exp
(
− 4π2

ℏH2 (1−H2h)3/2
)
(1 +O(x−1)) , (D.5)

Bi(x(h)) ∼ C ′

(1−H2h)1/4 exp
(

4π2

ℏH2 (1−H2h)3/2
)
(1 +O(x−1)) , (D.6)

with C ′ =
(ℏH2

π2
)1/6, whereas at large h, i.e. large −x, one has

Ai(x(h)) ∼ C ′

(H2h− 1)1/4 cos
((

4π2

ℏH2

)
(H2h− 1)3/2

)
(1 +O(x−3/2)) , (D.7)

Bi(x(h)) ∼ C ′

(H2h− 1)1/4 sin
((

4π2

ℏH2

)
(H2h− 1)3/2

)
(1 +O(x−3/2)) . (D.8)

At x = 0, i.e. h = H−2, both Airy functions are finite, Ai(0) = 1/
(
32/3Γ

(2
3
))

and Bi(0) =
1/
(
31/6Γ

(2
3
))

. Hence, contrary to the semiclassical wave functions, the wave functions ψ(h)
are finite at the Stokes point h = H−2. Both Airy functions are non-zero at h = 0. A wave
function that vanishes at h = 0 can be obtained as linear combination. Note that a wave
function is real or complex for all values of h. In particular, a real wave function at small h
can not turn smoothly near h = H−1 into a complex wave function at large h, in agreement
with the conservation of the Klein-Gordon current.

– 40 –



J
H
E
P
0
6
(
2
0
2
5
)
0
4
9

It is instructive to compare the asymptotic behaviour of the exact solutions with the
semiclassical approximation. Starting from the action (D.2), and using the same procedure
as in section A.1, one finds

ψE(h) ∼
C

(1−H2h)1/4 exp
(
− 4π2

ℏH2 (1−H2h)3/2
)
, h < H−2 , (D.9)

ψL(h) ∼
C

(H2h− 1)1/4 exp
(
−i 4π

2

ℏH2 (H
2h− 1)3/2

)
, h > H−2 , (D.10)

where C = exp
(

4π2

ℏH2

)
. Matching (D.9) to an Airy-function solution implies β = 0 in (D.4).

But then the oscillating part of the exact Airy-function solution can not be given by a complex
wave function. Hence, the semiclassical complex wave function discussed in section A.1 is
inconsistent with an exact Airy-function solution.

The Airy wave functions differ from the semiclassical wave functions in section A.1 by a
factor

√
a and hence there is no singularity at h = 0. This is a consequence of the rescaled

lapse function in the metric (D.1), which affects the factor ordering. In terms of the variable
a the WDW equation (D.3) reads(

ℏ2

144π4a
∂

∂a

1
a

∂

∂a
− a2 + λ

3a
4
)
Ψ(a) = 0 , (D.11)

which differs from the WDW equation (A.5) by a specific factor ordering.

D.2 JT wave equation

In the case of JT gravity we start from the WDW equation (A.21),

HΨ =
(

1
2π2

∂2

∂h∂ϕ
+ λ2ϕ

)
Ψ(h, ϕ) = 0 . (D.12)

Changing variables to h± = λ2h± ϕ, the Hamiltonian becomes a sum, and the wave function
Ψ factorizes,

H = H+ −H− , Ψ = Ψ+Ψ− , H±Ψ± =
(

1
π2

∂2

∂h2
±
+ h± − c

)
Ψ± = 0 , (D.13)

where c is an arbitrary constant. As in section D.1, the solutions Ψ± are linear combinations
of Airy functions,

ψ±(h±) = α±Ai(x±) + β±Bi(x±) , (D.14)

with x± =
(

π
λ

)2/3 (c− h±). The Airy functions have two Stokes lines, at h± = c, which start
at the Stokes point h0 = c/λ2 on the boundary ϕ = 0.

Consider first large field values with h± ≫ λ2h0, i.e. −x± ≫ λ2h0. The asymptotic
behaviour of the Airy functions can be read off from eqs. (D.7) and (D.8),

Ai(x±) ∼
C ′

(h± − 1)1/4 cos
((2π

3λ

)
(h± − 1)3/2

)
, (D.15)

Bi(x±) ∼
C ′

(h± − 1)1/4 sin
((2π

3λ

)
(h± − 1)3/2

)
, (D.16)
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with C ′ = (λ
π )1/3. A particular solution of the WDW equation is given by

Ψ(h, ϕ;h0) = Ai(x+)Ai(x−)− Bi(x+)Bi(x−) . (D.17)

Note that in addition to the field variables h and ϕ the wave function depends on the Stokes
point h0 where an exponential behaviour at small h changes to an oscillatory behaviour at
large h. The general solution of the WDW equation is a superposition of wave functions
with different Stokes points,

Ψρ(h, ϕ) =
∫
dh0ρ(h0)Ψ(h, ϕ;h0) , (D.18)

where the function ρ(h0) is assumed to vanish beyond some maximum value hmax. For large
field values h± ≫ λ2hmax one finds

Ψρ(h, ϕ) ∼
Cρ

h
1/4
+ h

1/4
−

cos
(2π
3λ
(
h

3/2
+ − h

3/2
−

))
, (D.19)

where Cρ = C
′2 ∫ dh0ρ(h0). Expanding in powers of ϕ yields the final result

Ψρ(h, ϕ) ∼
Cρ

λ
√
h

(
cos

(
2πλϕ

√
h
)
+O

(
ϕ

λ
√
h

)2)
. (D.20)

This wave function agrees to leading order with the semiclassical wave function (A.35)
obtained in section A.2. On the contrary, it differs from the asymptotic behaviour of the
exact solutions discussed in sections 3 and 4. At h = 0, Ψρ is some function of ϕ. To realize
Ψ(0, ϕ) = 0, one has to consider linear combinations of products of Airy functions.

E Initial-value problems in 2d

Solutions of the inhomogeneous wave equation are conveniently expressed in terms of Green
functions

(□−m2)G(x− x′) = −δ2(x′ − x) , (E.1)

satisfying retarded (GR), advanced (GA) or Feynman (GF ) boundary conditions and ap-
propriate boundary terms [37]. In Cauchy’s problem initial values of a wave function ψ(x)
and its time derivative ∂tψ(x), with xµ = (t, x̄), are specified at an initial time t′. At some
later time t the wave function can be expressed in terms of these initial values and the
retarded Green function,

ψ(x) =
∫
dx̄′
(
GR(x− x′)∂t′ψ(t′, x̄′)− ∂t′GR(x− x′)

)
ψ(t, x̄′)), (x− x′)2 < 0 . (E.2)

The Green functions are conveniently expressed in terms of odd and even solutions of
the homogeneous wave equation (see, for example, [50, 51]),

∆(x) = i

2π

∫
dk̄

2ω
(
e−i(ωt−k̄x̄) − ei(ωt−k̄x̄)

)
= i(∆+(x)−∆−(x)) , (E.3)

∆1(x) =
1
2π

∫
dk̄

2ω
(
e−i(ωt−k̄x̄) + ei(ωt−k̄x̄)

)
= ∆+(x) + ∆−(x) , (E.4)
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where ω =
√
k̄2 +m2. From the integral representations

∆(x) = 1
2π

∫ ∞

−∞

dk̄

ω
sin (ωt− k̄x̄) , ∆1(x) =

1
2π

∫ ∞

−∞

dk̄

ω
cos (ωt− k̄x̄) (E.5)

one easily obtains explicit expressions for timelike, lightlike and spacelike distances in two
dimensions,

∆(x) = 1
2ϵ(t)J0(m

√
−x2)Θ(−x2) , (E.6)

∆1(x) = −1
2Y0(m

√
−x2)θ(−x2) + 1

π
K0(m

√
x2)Θ(x2) , (E.7)

with
∂t∆(x)|t=0 = δ(x̄) , ∆(x)|t=0 = 0 , ∂t∆1(x)|t=0 = 0 . (E.8)

Contrary to 4d, ∆(x) has no singularity on the light cone, whereas ∆1(x) has a logarithmic
singularity. The contributions of waves with positive and negative frequencies are

∆+(x) =
1
2(∆1(x)− i∆(x)) = ∆∗

−(x) , (E.9)

which reads in terms of Bessel functions

∆+ = − i

4

((
Θ(t)H(2)

0 (m
√
−x2)−Θ(−t)H(1)

0 (m
√
−x2)

)
Θ(−x2)

+2i
π
K0

(
m
√
x2Θ(x2)

))
.

(E.10)

Note that ∆±Θ(±t) satisfy the inhomogeneous equations

(□−m2)(∆±(x)Θ(±t)) = i

2δ
2(x) . (E.11)

The propagators GR, GA and GF can also be expressed in terms of ∆ and ∆1 [50, 51],
which yields the explicit expressions

GR(x) = Θ(t)∆(x) = 1
2Θ(t)J0(m

√
−x2)Θ(−x2) , (E.12)

GA(x) = −Θ(−t)∆(x) = 1
2Θ(−t)J0(m

√
−x2)Θ(−x2) , (E.13)

GF (x) =
1
2(ϵ(t)∆(x) + i∆1(x))

= i(Θ(t)∆+(x) + Θ(−t)∆−(x))

= 1
4H

(2)
0 (m

√
−x2)Θ(−x2) + i

2πK0(m
√
x2)Θ(x2)

= 1
4H

(2)
0 (m

√
−x2 − iϵ) . (E.14)

Contrary to GR and GA, the Feynman propagator GF does not vanish for spacelike distances
and has a logarithmic singularity on the light cone.

A detailed discussion of massive Green functions in curved space-time can be found
in chapters 8 and 9 of [52].
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For the problems discussed in this paper it is convenient to express the Green functions
in terms of light-cone coordinates x± = 1

2(t ± x̄). Using the relations

Θ(t)Θ(−x2) = Θ(x+)Θ(x−) , Θ(−t)Θ(−x2) = Θ(−x+)Θ(−x−) (E.15)

one finds

∆(x) = 1
2 (Θ(x+)Θ(x−)−Θ(−x+)Θ(−x−)) J0(m

√
−x2)

≡ D+(x)Θ(x−) +D−(x)Θ(−x−) , (E.16)

which has the analytic continuation

∆̄(x) = 1
2 (Θ(−x+)Θ(x−)−Θ(x+)Θ(−x−)) I0(m

√
x2)

≡ D̄+(x)Θ(x−) + D̄−(x)Θ(−x−) . (E.17)

For the retarded Green function one has GR(x) = D+(x)Θ(x−), and the Feynman
propagator can be decomposed as

GF (x) ≡ G+(x)Θ(x−) +G−(x)Θ(−x−) , (E.18)

with

G+(x) =
1
4H

(2)
0 (2m√

x+x−)Θ(x+) +
i

2πK0(m
√
−x+x−)Θ(−x+)

= 1
4H

(2)
0

(
2m
√
x−(x+ − iϵ)

)
, (E.19)

G−(x) =
1
4H

(2)
0 (2m√

x+x−)Θ(−x+) +
i

2πK0(m
√
−x+x−)Θ(x+)

= 1
4H

(2)
0

(
2m
√
−x−(−x+ − iϵ)

)
. (E.20)

From eqs. (E.8) and (E.12) one obtains for the wave function (E.2) propagated with
the retarded Green function

ψ(x) = Θ(t− t′)
∫
dx̄′

(
−∂t′∆(x− x′)Θ(−(x− x′)2)ψ(x′)

+∆(x− x′)Θ(−(x− x′)2)∂t′ψ(x′)
)
.

(E.21)

Using eq. (E.8) one recovers the initial conditions ψ(t, x̄) and ∂tψ(t, x̄) in the limit t→ t′.
Consider now a wave function that at time t′ is localized at x̄′ = t′ = c, i.e., at x′+ = c,

x′− = 0,

ψ(x′+, 0) = δ(x′+ − c) , (E.22)

with time derivative

∂t′ψ(x′+, 0) =
1
2∂x′

+
ψ(x′+, 0) . (E.23)
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Using GR(x) = D+(x)Θ(x−), one obtains from eqs. (E.2), with ψ(x) ≡ ψ(x+, x−)Θ(x−),

ψ(x+, x−) =
∫
dx′+

(
D+(x+ − x′+, x−)∂x′

+
ψ(x′+, 0)

− ∂x′
+
D+(x+ − x′+, x−)ψ(x′+, 0)

)
,

(E.24)

where we have used that at fixed t′ one has dx̄′ = dx′+. Equation (E.24) also holds if one adds
sources along the line x− = 0. The corresponding waves are then generated at different times
t′ and propagated into the forward light cone by the retarded Green function. Summation
over all waves corresponds to integration over dx′+. Note that now integration and derivative
both correspond to the lightlike variable x′+, contrary to eq. (189) where the integration is
carried out in a spacelike direction while the derivative acts in a timelike direction. After
partial integration and inserting (E.22) one finds the final result

ψ>(x+, x−) = ∂x+D+(x+ − c, x−)

= 1
2

(
δ(x+ − c) + ∂x+J0

(
2m
√
x−(x+ − c)

))
.

(E.25)

This wave function is a singular solution of the homogeneous wave equation. Adding the
analytic continuation ψ<(x+, x−) = ∂x+D̄+(x+ − c, x−), one obtains an analytic solution
of the homogeneous wave equation,

ψ(x+, x−) = ψ>(x+, x−) + ψ<(x+, x−)
= ∂x+(D+(x+ − c, x−) + D̄+(x+ − c, x−))

= 1
2∂x+J0

(
2m
√
x−(x+ − c− iϵ)

)
. (E.26)

A complex solution of the homogeneous wave equation in the half-plane x− > 0 is
obtained by replacing in eq. (E.26) D+ + D̄+ by G+,

ψ+(x+, x−) = ∂x+G+(x+ − c, x−)

= 1
4∂x+H

(2)
0 (2m

√
x−(x+ − c− iϵ) . (E.27)

The complex wave function is singular at x+ = c and has to be interpreted as distribution,
similar to the Feynman propagator. Unlike ∆±Θ(t±), the projections of GF to positive and
negative x− are not Green functions. They satisfy the inhomogeneous equations

(□−m2)(G±Θ(±x−)) = ± i

4π

( 1
x+ ∓ iϵ

)
δ(x−) . (E.28)

Hence, the complex wave function ψ+(x+, x−)Θ(x−) has a singular source along the entire axis
x− = 0. However, since the singularity of H(2)

0 is only logarithmic, non-singular solutions of
the inhomogeneous wave equation can be found by convolution with a smooth source function.

We note that the limit ϵ → 0 in (E.27) can be taken explicitly, giving the complex
wave function

ψ+(x+, x−) =
1
2∂x+

(
H

(2)
0 (2m

√
x−(x+ − c))Θ(x+ − c)

+2i
π
K0(2m

√
x−(c− x+))Θ(c− x+)

)
.

(E.29)
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An alternative form of the complex wave function is obtained by using a different
iϵ-prescription,

ψ̃+(x+, x−) =
1
4∂x+H

(2)
0

(
2m
√
x−(x+ − c+ iϵ)

)
, (E.30)

which yields

ψ̃+(x+, x−) =
1
2∂x+

(
H

(2)
0

(
2m
√
x−(x+ − c)

)
Θ(x+ − c)

+ 2
(
I0

(
2m
√
x−(c− x+)

)
+ i

π
K0(m

√
x−(c− x+))

)
Θ(c− x+)

)
. (E.31)

F Properties of Bessel functions

In this section we list, for convenience, some properties of Bessel functions13 that are used
in this paper.

Hankel functions as linear combinations of Bessel functions of first and second kind,
Jα and Yα, respectively (α > 0):

H(1)
α (z) = Jα(z) + iYα(z) , H(2)

α (z) = Jα(z)− iYα(z) (F.1)

Analytic continuation (m ∈ Z):

Jα(zemπi) = emαπiJα(z) (F.2)

Derivatives and Wronskians of Bessel functions (Cα = Jα, Yα; C̄α = Iα,Kα;m ∈ N):(1
z

d

dz

)m (Cα(z)
zα

)
= (−)mCα+m(z)

zα+m
(F.3)(1

z

d

dz

)m
(
C̄α(z)
zα

)
= C̄α+m(z)

zα+m
(F.4)

Jα(z)
d

dz
Yα(z)− Yα(z)

d

dz
Jα(z) =

2
πz

(F.5)

Iα(z)
d

dz
Kα(z)−Kα(z)

d

dz
Iα(z) = −1

z
(F.6)

Relation to modified Bessel functions:

Jα(±iz) = (±i)αIα(z) (F.7)

πiJα(z) = (−i)αKα(−iz)− iαKα(iz) , |argz| ≤ π

2 (F.8)

Yα(z) = (±i)(α+1)Iα(∓iz)−
2
π
(∓i)αKα(∓iz) , −π2 ≤ argz ≤ π (F.9)

2(±i)αIα(z) = H(2)
α (±iz) +H(1)

α (±iz) , |argz| ≤ π

2 (F.10)

2
π
Kα(z) =

iα+1H
(1)
α (iz) , −π ≤ argz ≤ π

2

(−i)α+1H
(2)
α (−iz) , −π

2 ≤ argz ≤ π
(F.11)

13See https://dlmf.nist.gov/10 and ref. [53].
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Asymptotic behaviour for large arguments (|z| ≫ 1):

H(1)
α (z) ∼

√
2
πz

ei(z−απ
2 −π

4 ) , −π < argz < 2π (F.12)

H(2)
α (z) ∼

√
2
πz

e−i(z−απ
2 −π

4 ) , −2π < argz < π (F.13)

Iα(z) ∼
1√
πz

ez , −π2 < argz < π

2 (F.14)

Kα(z) ∼
π√
2z

e−z , −3π
2 < argz < 3π

2 (F.15)

Asymptotic behaviour for small arguments (0 < z <
√
α+ 1):

Jα(z) ∼
1

Γ(α+ 1)

(
z

2

)α

, Yα(z) ∼ −Γ(α)
π

(2
z

)α

(F.16)

Iα(z) ∼
1

Γ(α+ 1)

(
z

2

)α

, Kα(z) ∼
Γ(α)
2

(2
z

)α

(F.17)

Asymptotic behaviour for small arguments and α = 0:

Y0(z) ∼
2
π

(
ln z2 + γ

)
, K0 ∼ − ln z2 − γ (F.18)
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