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1 Introduction

Charged-particle reconstruction [1] is a core component of event reconstruction at the ATLAS experiment [2]
and is closely linked to the experiment’s overall physics reach. A characteristic feature of the energy-frontier
programme is the presence of high-transverse-momentum (high-pr) jets reaching up to several TeV. In dense
environments, such as the cores of high-pr jets, the close proximity of multiple charged particles leads to
cluster merging and ambiguities in the assignment of clusters to tracks in the Inner Detector (ID) [3]. These
effects reduce tracking efficiency, with losses increasing with jet energy. Although successive improvements
to the seeding configuration [4], ambiguity solver, and dedicated pixel-classification networks [3, 5-7]
have mitigated some of these challenges, performance recovery remains limited in dense environments.

In the current charged-particle reconstruction pipeline, a combinatorial Kalman filter (CKF) algorithm [8]
builds candidate track hypotheses from any reasonable combination of clusters. These hypotheses are
subsequently evaluated by an ambiguity solver, which removes redundant or inconsistent candidates to
select the most likely set of tracks that correspond to the set of charged-particles in the event. Due to the
sparsity (low occupancy) of the ID, the correct set of hypotheses can typically be identified by limiting
how often each cluster is incorporated into a track. However, in dense environments, merged clusters may
be correctly shared by several tracks, invalidating this assumption. The considerable set of conditional
selection requirements used in the ambiguity solver are not sufficiently precise to resolve tracks for highly
shared clusters. Therefore, within regions of interest (Rols), defined as small angular regions around the
momentum vector of hadronic calorimeter clusters [9], track hypotheses satisfying looser requirements can
be accepted as reconstructed tracks but inefficiencies remain. One source derives from the limitation of the
pixel-classification network which can determine if a shared cluster is compatible with being a merged
cluster from one, two, or three or more particles. While that covers the majority of cases, in practice
and especially at the highest energies reached by the Large Hardon Collider (LHC), up to 15 simulated
particles can contribute to the same cluster. The reconstruction inefficiencies are exacerbated in the decay
of high-energy b-hadrons as the decay vertex can occur at a non-negligible distance from the collision
point leading to less separation between charged particles within the sensors.

While loosening ambiguity selections significantly improves efficiency, particularly within hadronic Rols,
there is a corresponding large increase in the fake rate and inefficiencies within the seeding stage remain [10].
This motivates the exploration of alternative methods, such as the machine-learning-based (ML-based)
approach presented in this work that can reconstruct multiple tracks simultaneously.

ML-based reconstruction has been shown to provide substantial gains in similarly complex environments.
For example, the CMS Deeplet architecture [11] employs deep learning to exploit high-dimensional
correlations between tracks and clusters for jet flavour tagging, delivering significant improvements in
dense jet cores. Adapting such approaches to ATLAS track reconstruction is non-trivial, as jets are not yet
available during the tracking stage. Consequently, developing models that can operate on detector-level
inputs directly, without reliance on reconstructed jets, offers a more practical path for ML-based tracking
within the ATLAS reconstruction chain.

For the High Luminosity-LHC [12], the computational scaling of charged-particle reconstruction with
the increase in the number of proton—proton (p p) collisions per bunch crossing motivates the exploration
of new approaches. Graph neural networks (GNNs) have been studied in ATLAS [13, 14] and achieve
high efficiency with low fake rates on large-scale datasets. However, these methods typically target
scalability in high-multiplicity events and have not yet been optimised for local hit-level complexity in
dense jet cores. They also rely on externally defined graph-construction procedures, such as module-map



or metric-learning approaches, and on separate graph-segmentation stages after inference to assemble
tracks. These components are not optimised jointly with the network, limiting the degree of end-to-end
reconstruction achievable.

Recent developments in ML, particularly in computer vision, have introduced architectures capable of
jointly identifying and segmenting multiple overlapping objects within an image. The MaskFormer
architecture [15, 16] is one such model, combining a Transformer-based encoder—decoder network [17]
with object-level queries (learnable vectors that each represent a potential object) that learn to represent
distinct physical instances. Reinterpreting the image-segmentation problem in terms of particle-track
reconstruction, hits can be treated as unordered inputs and tracks as individual objects to be predicted. This
concept was first demonstrated using the open-source TrackML dataset [18], achieving a good efficiency of
approximately 97% with sub-percent fake rates and sub-100 ms inference times on a single GPU [19]. The
model eliminates the need for explicit graph construction and naturally supports shared-hit assignment
through its attention mechanism, offering a unified and scalable approach to charged-particle reconstruction.
Furthermore, the architecture has wide utility having been adopted for vertex reconstruction within flavour
tagging and particle-flow reconstruction [20, 21].

Building upon this foundation, the present study adapts the Transformer-based reconstruction model to
the dense environments characteristic of high-pt jets in ATLAS. The model is trained and evaluated on
simulated Run 2 conditions, using hits associated with all track hypotheses within a hadronic Rol. Using
only these hits as inputs, it jointly performs hit-to-track assignment, regression of track parameters, and
estimation of local track-hit properties such as incidence angles and cluster positions. This study focuses
on the cluster-to-track assignment within track-hypothesis generation, as high-precision track parameters
will ultimately be obtained from the existing ATLAS global y? fit.

This proof-of-concept represents an initial step toward specialised ML-based tracking within the ATLAS
reconstruction software framework. The approach complements the existing reconstruction by providing an
alternative solution optimised for dense topologies, potentially reducing reliance on separate pixel-splitting
or ambiguity-resolution stages. Future work will focus on further optimisation, validation with variable
detector conditions, and application to collision data.

The model is described in Section 2 and the datasets are detailed in Section 3. Results are presented in
Section 4.

2 Model Overview

The model presented in this study adapts a Transformer-based architecture originally developed for
charged-particle reconstruction on the TrackML dataset [19]. That model demonstrated that modern
attention mechanisms can perform track finding and fitting simultaneously, achieving high efficiency and
low fake rates while avoiding the need for graph construction or combinatorial seeding. The central idea is
to treat track reconstruction as an instance segmentation task. Each track is represented as an independent
object predicted by the network, and each hit is assigned a probability of belonging to one or more such
objects. This formulation naturally accommodates shared clusters and overlapping trajectories. In this
adaptation, the model is trained to reconstruct all charged particles within a hadronic Rol, defined by the
presence of a topological calorimeter cluster [9] with total transverse energy exceeding 150 GeV. A single



jet may contain multiple such Rols. Only charged particles within |[A¢| < 0.05 and |An| < 0.05 of an Rol
are considered'.

Two components of the model from Ref. [19] which targets reconstructing all O(10*) charged particles in
an HL-LHC-like environment are not utilised in this work, where the model targets only charged particles
in hadronic ROIs. Typical Rols contain on average O(10) particles and O(100) clusters. Therefore, the
dedicated hit-filtering stage meant to reduce the number of clusters considered for tracking is unnecessary
here. In addition, while the regression output for track parameters is retained for completeness, these
parameters are not required for the intended integration within the ATLAS reconstruction, where the
global y? fit will provide high-precision track parameters once the model is implemented in the ambiguity
solver.

Moreover, the input representation is extended to include the pixel charge matrix (described below) in place
of the cluster-level summary statistics, such as cluster length, used previously. Such detailed pixel-level
information is available only in high-fidelity detector simulations. The TrackML dataset provides an
approximate description of a high-energy physics detector and does not include the full charge-sharing
structure of individual clusters.

2.1 Input Representation

For each Rol, all clusters from the high-granularity silicon pixel detector [22] and the silicon microstrip
SemiConductor Tracker (SCT) [23] associated with reconstructed track hypotheses that enter the ambiguity
solver are used as inputs to the model. These tracks are known as Silicon Space-point Seeded (SiSp) tracks.
Each cluster is represented by a set of geometric and detector-level quantities:

* the global cylindrical coordinates (r, ¢, z) and the local position on the module surface;
* the global cylindrical coordinates and orientation of the module;

* the angular separation in 7 and ¢ relative to the Rol axis, defined by a line from the median z position
of the SiSp tracks within the Rol to the centre of the calorimeter topocluster;

* the detector layer, and whether it is in the barrel or endcap region;

« for pixel clusters, the charge collected on 7 X 7 matrix of pixels centered on the cluster barycentre
and the corresponding pitch size in the longitudinal direction.

The charge matrix is the same format as used in the current pixel-classification network and density
networks that predict up to three charged particle-sensor crossing points per cluster [3, 7]. Units for all
input quantities are chosen such that their numerical values are of order one.

I ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal angle around the z-axis. The

pseudorapidity is defined in terms of the polar angle 6 as n = —Intan(6/2) and approximates the rapidity y = % In (?j—’;ﬁ) in

the relativistic limit. Angular distance is measured in units of AR = v/(Ay)? + (A¢)2.

2 In the some regions of the pixel modules, neighbouring pixels are connected through a shared readout channel, forming
elongated “ganged" pixels. These pixels are typically 500 pm long in z (compared with 300 pm elsewhere), introducing a small
ambiguity in the hit position and modifying the observed charge pattern [24].



2.2 Architecture

The model consists of two components: a hit encoder and a track decoder. The encoder processes a set
of hits within a Rol, converting their spatial and detector-level features into learned feature embeddings.
Positional features are encoded using Fourier features [25] to handle high-frequency spatial information. It
employs a self-attention mechanism to allow each hit to aggregate information from all other hits, enabling
the model to learn complex spatial correlations and relationships between hits.

The decoder follows the MaskFormer design [15, 16], consisting of a stack of Transformer layers operating
on a fixed number of learnable object queries. Each query corresponds to a potential reconstructed track.
The number of queries sets an upper limit on the number of tracks that can be reconstructed in a given Rol.
We use 64 queries per Rol, which is sufficient for the vast majority of cases. Through cross-attention, the
queries aggregate information from relevant hits in the encoded representation, while self-attention between
queries allows global coordination between overlapping tracks. The decoder outputs three quantities per

query:
1. a continuous mask over the input hits, representing per-hit probabilities for track membership;
2. acategorical score indicating whether the query corresponds to a valid track or to the NULL class; and

3. aregression vector containing the estimated track parameters.

During inference, the predicted masks over the input hits are thresholded at 0.5 to obtain binary hit
assignments, and reconstructed tracks are accepted if their probability of belonging to the physical
(non-NuLL) class is greater than 0.75. The explicit representation of tracks, rather than pairwise hit
relationships, naturally handles shared clusters. Unlike traditional algorithms, this procedure unifies track
finding and fitting into a single optimisation step.

2.3 Training Objective

The target outputs for each Rol are sets of clusters corresponding to the same particle, identified using
Monte Carlo truth information. Targets are restricted to charged truth particles originating from the pp
collision with transverse momentum pt > 1 GeV and at least eight silicon clusters.

The model is trained in a supervised fashion using simulated truth-labelled hits within each hadronic Rol.
A multi-task loss function combines three terms: binary cross-entropy (BCE) [26] losses for the mask
prediction and track classification, and a smooth-L1 [27] loss for the regression of track parameters. The
total loss is defined using an optimal bipartite matching [28] between predicted and target tracks to ensure
permutation invariance in the ordering of object queries. In practice, this matching assigns each predicted
track to the most compatible truth particle by minimising a measure of their difference based on mask
similarity. This formulation allows the network to learn both the number and properties of tracks present in
each Rol without any explicit seeding, edge construction, or post-processing.



2.4 Training Configuration

For this proof-of-concept study, the model is implemented in PyTorcH and trained on simulated Run 2
ATLAS events as described in Section 3. Training and inference are performed on a single NVIDIA A100
GPU. The dataset consists of approximately 10 million ROIs, and is divided into 80% for training, 10% for
validation, and 10% for testing. Although the model operates on individual Rols, the dataset is split at
the event level to prevent any information leakage between training and evaluation samples. Training is
performed for 10 epochs using the AdamW [29] optimiser with a learning rate scheduler, using a maximum
learning rate of 10~* and a batch size of 100 Rols. Loss terms for the mask, classification, and regression
outputs are monitored separately to verify convergence. Model checkpoints are selected according to the
minimum validation loss.

3 Dataset

The model is trained and evaluated on simulated pp collision events at v/s = 13 TeV, corresponding to
Run 2 detector and beam conditions. Events are produced using the full ATLAS detector simulation [2,
30] based on GEaNT4 [31].

The dataset is enriched with high-pr jets from a Z’ boson with a mass of 4 TeV, decaying with roughly
equal probabilities into b-, c-, and light-quark jets generated using PyTHia 8.243 [32] with the A14 [33]
tune for the underlying event and the leading-order NNPDF2.31L0 [34] parton distribution function set.
A broad jet-pt spectrum, approximately flat between 250 GeV and 1.5 TeV and extending to 3 TeV, is
achieved by applying a weighting factor that broadens the natural Z’ resonance width. The decays to bb,
c¢, and light-flavour quark pairs are set to equal branching fractions. Bottom- and charm-hadron decays
are modelled using EvTGen 1.7.0 [35]. Additional pp interactions taking place simultaneously in the
proton bunch crossing (pile-up) are not included in the simulated sample. Within dense environments,
their contribution to merged clusters is minor [36].

Hadronic Rols are defined by the presence of topological calorimeter clusters with a total transverse energy
exceeding 150 GeV. On average, each event contains five Rols. Typically, each jet contains a single Rol at
its core if any, however, multiple Rols can also originate from the same jet.

4 Results

4.1 Tracking Efficiency and Purity

The performance of the Transformer-based model is evaluated by comparing its reconstructed tracks,
labelled as MaskFormer tracks, to those produced by the standard ATLAS reconstruction [1, 3], hereafter
referred to as Baseline tracks. For reference, the set of track hypotheses that serve as input to the ambiguity
solver, SiSp tracks, are also included. The reference for efficiency calculations are all primary truth particles
that have contributed to at least eight ID clusters and satisfy pt > 500 MeV.

To provide a one-to-one correspondence between tracks and truth particles, a unique pairing is established
within each Rol by maximising the intersection-over-union (IoU) of their associated clusters. IoU is defined
as the ratio of the number of clusters common to both to the total number of unique clusters associated with



either. Track-to-particle reconstruction criteria follow the standard ATLAS procedure [37], which is based
on the truth-match score (TMS). The TMS quantifies the weighted® fraction of clusters on a reconstructed
track that originate from a given truth particle. A reconstructed track and truth particle are considered a
match if they have a TMS > 0.75. Based on this, a particle is considered as efficient if it is paired to a track
that is also a match. A track is labelled as:

* fake if it is not matched to any truth particle,
* duplicate if it is matched to a truth particle but not selected in the one-to-one pairing, and
* pure if it is both matched and paired with the same truth particle.

Because the TMS threshold is intentionally strict, many tracks labelled as fake correspond to real charged
particles that have been misreconstructed.

Figure 1 shows the model achieves comparable overall efficiency to the standard reconstruction and a large
improvement, up to 30%, for high-pr tracks in dense jet cores. The model outperforms the SiSp collection
at high pt, overcoming limitations in the track-seeding stage. At low pr, performance is reduced due to
the limited training statistics in that regime. The model is primarily designed to recover tracks with a large
number of shared clusters, while the standard reconstruction remains optimal for isolated or low-p tracks.
The reduced performance at low pr is therefore expected and reflects the complementary role of the two
reconstruction approaches.

Since the pr of a fake track is not well-defined, the purity is shown as a function of the energy of the
Rol, which is strongly correlated with the particle multiplicity and density. The purity of the learned
reconstruction is slightly better than the standard reconstruction across the full energy range, indicating
that the combined rate of fake and duplicate tracks is lower.
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Figure 1: (a) Reconstruction efficiency of charged particles in a hadronic Rol as a function of the transverse momentum
of the corresponding truth particle. (b) Reconstructed track purity as a function of the hadronic Rol energy. The
Transformer-based model (purple) is compared with the standard ATLAS reconstruction (blue) and the set of tracks
entering the ambiguity solver (red). The reference for efficiency calculation is all primary truth particles that have
contributed to at least eight ID clusters and satisfy pt > 500 MeV.

3 Pixel to SCT cluster weights are 2 to 1.



Figure 2 shows efficiency versus the azimuthal and polar angular separation to the Rol axis. In the ID
barrel, pixels have a smaller pitch in the ¢ direction (50 pm) compared to the n direction (250 pm or
400 pm depending on the layer). Along Ag, a clear decrease can be seen in the the Baseline and SiSp track
efficiency where the merging rate increases sharply. In contrast, the model’s efficiency is approximately
flat. The model’s performance is below the Baseline at larger angular separations from the Rol, where
the average track pt drops below 10 GeV. Along An, the larger pitch size and the narrow Rol definition
(JA¢| < 0.05 and |An| < 0.05) result in less of a change in merging rate over the span of the ROI. Again,
the model’s efficiency is roughly flat and achieves efficiencies comparable to the SiSp track collection.
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Figure 2: Reconstruction efficiency of charged particles as a function of (a) A¢ and (b) An between the corresponding
truth particle and the Rol axis. The Transformer-based model (purple) is compared with the standard ATLAS
reconstruction (blue) and the set of tracks entering the ambiguity solver (red). The reference for efficiency calculation
is all primary truth particles that have contributed to at least eight ID clusters and satisfy pt > 500 MeV.

4.2 Duplicate and Fake Tracks

The rate of fake tracks and duplicate tracks is shown in Figure 3. The fake rate remains below 20%, an
improvement relative to the standard reconstruction. Note, the Baseline fake rate rises to about 5% when
using a looser TMS > 0.5 criterion with the purity of the learned reconstruction being slightly better. The
tighter threshold ensures that only tracks with a high fraction of correctly assigned clusters are counted as
genuine, providing a more stringent assessment of reconstruction quality in dense environments where
cluster sharing is frequent.

The Transformer-based model exhibits a duplicate rate of 3—5% in dense regions arising from multiple
reconstructed tracks being assigned to the same truth particle. Ongoing work focuses on refining the training
loss and implementing query-suppression mechanisms to reduce the duplicate rate without degrading
efficiency.
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Figure 3: (a) Fake-track rate and (b) duplicate-track rate as a function of hadronic Rol energy. The Transformer-based
model (purple) is compared with the standard ATLAS reconstruction (blue) and the set of tracks entering the
ambiguity solver (red).

4.3 Cluster Sharing

A key advantage of the approach presented in this note is its ability to robustly handle shared clusters amongst
multiple track hypotheses, thereby removing the need for the current networks that identify merged clusters.
Figure 4 shows the model successfully assigns shared clusters to multiple tracks, preserving efficiency
where the standard reconstruction would discard them. The confusion matrix for the Transformer-based
model shows a narrower spread around the diagonal compared to the SiSP candidates, indicating a higher
fraction of correctly assigned clusters. In the current reconstruction, the pixel-classification network can
label a cluster as compatible with up to three or more charged particles. Such clusters, corresponding to the
highest multiplicity category, are permitted to be used by no more than four reconstructed tracks. Although
a few special cases allow limited exceptions, this hard limit within the ambiguity solver is a primary
constraint in dense environments. In contrast, the learned model integrates this contextual information
across layers, enabling it to perform well in such highly populated regions, overcoming the limitations of
the baseline reconstruction.
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from the standard ATLAS reconstruction, and the Transformer-based model. The values are normalised by column
to the number of true particles. The learned reconstruction is able to have a good rate of correct matches for clusters

created by a large number of particles.

5 Conclusion

The Transformer-based model demonstrates that an end-to-end, attention-based reconstruction can perform
effective track finding in dense environments typical of high-pt jets. It complements the standard
reconstruction, by significantly improving track reconstruction efficiency up to 30% in dense environments
where hit sharing is frequent. Although duplicate rates remain higher than the baseline reconstruction,
simple reduction techniques such as removing tracks that have a majority of clusters in common with one
other track and tuning of the probability cuts applied to the model have yet to be explored. Therefore, the
Transformer-based method provides a robust proof of concept for specialised tracking in dense environments.
Future studies will focus on reducing duplicate tracks and integrating the model as a specialised module
within the ATLAS ambiguity-solver framework. This will enable large-scale validation, including studies
of track-parameter resolution, using both simulated and collision data.
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