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Obtaining exact solutions to combinatorial optimization problems using classical computing is computa-
tionally expensive. The current tenet in the field is that quantum computers can address these problems more
efficiently. While promising algorithms require fault-tolerant quantum hardware, variational algorithms have
emerged as viable candidates for near-term devices. The success of these algorithms hinges on multiple factors,
with the design of the Ansarz being of the utmost importance. It is known that popular approaches such
as the quantum approximate optimization algorithm (QAOA) and quantum annealing suffer from adiabatic
bottlenecks, which lead to either larger circuit depth or evolution time. On the other hand, the evolution time
of imaginary-time evolution is bounded by the inverse energy gap of the Hamiltonian, which is constant for
most noncritical physical systems. In this work we propose an imaginary Hamiltonian variational Ansatz (iHVA)
inspired by quantum imaginary-time evolution to solve the MaxCut problem. We introduce a tree arrangement
of the parametrized quantum gates, enabling the exact solution of arbitrary tree graphs using the one-round
iHVA. For randomly generated D-regular graphs, we numerically demonstrate that the iHVA solves the MaxCut
problem with a small constant number of rounds and sublinear depth, outperforming the QAOA, which requires
rounds increasing with the graph size. Furthermore, our Ansatz solves the MaxCut problem exactly for graphs
with up to 24 nodes and D < 5, whereas only approximate solutions can be derived by the classical near-optimal
Goemans-Williamson algorithm. We validate our simulated results with hardware demonstrations on a graph

with 67 nodes.

DOLI: 10.1103/PhysRevA.111.032612

I. INTRODUCTION

Many applications of quantum computers involve the
preparation of the ground state of a Hamiltonian system in
fields such as chemistry [1], drug design [2,3], particle physics
[4,5], combinatorial optimization [6,7], and quantum machine
learning [8]. The variational quantum eigensolver (VQE)
[9,10] is an algorithm designed for ground-state preparation
on quantum computers. It combines classical optimization
techniques with expectation values evaluated on quantum
computers. Although the VQE has been explored for use on
noisy intermediate-scale quantum (NISQ) [11] devices due to
its relatively shallow circuit depth compared to other quantum
algorithms, its practical suitability and effectiveness on these
devices remain open questions.

The success of the VQE highly relies on the efficient
parametrization of the quantum circuits. The parametrized
quantum circuit is a variational Ansarz determining what
quantum states can be prepared. There have been many ef-
forts to construct the variational Ansatz to guarantee that the
ground state of a quantum system can be prepared with high
accuracy [1,10,12,13]. Among them, the quantum approxi-
mate optimization algorithm (QAOA) Ansatz is designed to
solve combinatorial optimization problems, inspired by the
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adiabatic evolution [14]. Its performance has been extensively
studied both analytically and numerically [12,15-21]. For
many-body quantum systems, a widely used Ansatz following
the same spirit of the QAOA is the Hamiltonian variational
Ansatz [13].

Many challenges exist for the QAOA Ansatz. It has been
shown that the number of QAOA Ansatz rounds should grow
linearly with the system size even in some classically solvable
tasks to find the solution with high accuracy [22] and there
exists a fundamental limitation if the rounds do not increase
faster than a logarithmic function of the system size [17]. This
requirement leads to other caveats related to the variational
optimization of the QAOA Ansatz. For example, the Ansatz
with many rounds is susceptible to noise in NISQ devices
[23,24] and its energy landscape has many local minima [25].
More importantly, generic variational Ansdrtze with linearly
increasing rounds suffer from the barren plateau (BP) phe-
nomenon [26-28], as demonstrated in Ref. [29], so that the
gradient of the QAOA Ansatz cannot be measured efficiently
if its number of rounds grows linearly with the system size.

The linear behavior originates from the real-time adiabatic
evolution that inspires the QAOA Ansatz. The adiabatic evo-
lution should be slow enough to avoid diabatic excitation [30],
leading to the requirement of many rounds of the QAOA
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Ansatz [14]. There are many efforts to enhance the QAOA
Ansatz using ideas of, e.g., shortcuts to adiabaticity [31]. How-
ever, the variational Ansatz with high-order counterdiabatic
terms contains many unitary gates and is difficult to imple-
ment on NISQ devices [32-35].

The imaginary Hamiltonian variational Ansatz (iHVA), in-
spired by works of quantum imaginary-time evolution (QITE)
[36-38], is distinguished from the QAOA Ansatz. Imaginary-
time evolution has no problem of diabatic excitation and is
widely used in state preparation algorithms such as tensor
networks [39,40] and Monte Carlo methods [41]. The iHVA
has been applied to the Gibbs state preparation in previous
studies [42]. In this work we propose to tackle the ground-
state problems using the iHVA. The Ansatz uses unitary gates
constrained by system symmetries as building blocks, which
can be realized on gate-based quantum devices. In this work
we apply the iHVA to the combinatorial optimization MaxCut
problem.

For the MaxCut problem, the arrangement of the
parametrized quantum gates in the /HVA impacts the solution
accuracy. We propose a tree arrangement of gates in the iHVA
for arbitrary graphs, and the corresponding Ansatz is called the
iHVA tree. We provide a theorem which states that arbitrary
tree graphs can be maximally cut exactly using the fHVA tree
with one round and sublinear depth, which cannot be achieved
using the constant-round QAOA Ansatz [22]. For more com-
plicated random D-regular graphs, we perform numerical
simulations using noiseless quantum simulators. The results
show that the fHVA tree can solve the MaxCut problem of
3-regular graphs exactly up to 14 graph nodes using constant
rounds and sublinear depth, while the QAOA Ansatz requires
rounds growing with the graph nodes. For D-regular graphs
with the number of nodes up to 24 and D < 35, the two-round
iHVA tree can exactly solve the MaxCut problem, whereas
only an approximate solution can be derived by the classi-
cal polynomial-time Goemans-Williamson (GW) algorithm
[15,43]. Furthermore, we validate our results on a real quan-
tum device by running an instance of a graph with 67 nodes.

We show that the constant-round HVA on D-regular
graphs does not exhibit BPs. It is known that circuits of con-
stant depth are free from BPs and can be trained efficiently for
local Hamiltonians [29]. For D-regular graphs, the constant-
round {HVA has linear or sublinear depth, where the previous
results cannot be applied directly. By exploring the feature that
the number of noncommuting gates acting on each qubit has
no dependence on the system size, we prove that the variance
of the constant-round /HVA does not decay exponentially with
the graph nodes. Therefore, we prove that the constant-round
iHVA of D-regular graphs is free from BPs.

The remainder of this paper is structured as follows. In
Sec. I we present how to choose parametrized quantum gates
in the iHVA by leveraging system symmetries and an in-
troduction to the MaxCut problem. In Sec. III we explicitly
construct the fHVA for the MaxCut problem following the tree
arrangement. In Sec. IV numerical simulations are performed
to compare the performance of the QAOA, the iHVA, and the
GW algorithm. In Sec. V we demonstrate that the constant-
round iHVA is free from BPs. In Sec. VI we summarize our
results and propose some open questions to be explored in
future works.

II. FRAMEWORK

In this section we review the construction of the iHVA
proposed in Ref. [42]. Then we introduce the combinatorial
optimization MaxCut problem and basic concepts of graphs
that are used in the following sections.

A. Imaginary Hamiltonian variational Ansatz

The imaginary Hamiltonian variational Ansatz is inspired
by the QITE algorithm [36-38]. The QITE algorithm per-
forms imaginary-time evolution on quantum computers with
no need for ancillary qubits. Consider a k-local Hamiltonian

H=Y H, (1)
n

where H,, is a local interaction term acting on at most k qubits.
The imaginary-time propagator of H can be decomposed by a
Trotterized-type formula

e M) = (e 2 y)

L

2
= [[Te 2 |w>+0<%>, )

m

where At = t/L is the Trotter step. The resulting state ap-
proaches the ground state of H when 7 is larger than the
inverse energy gap of H [41]. The inverse of the energy gap
typically remains constant with system size for many noncrit-
ical physical systems, such as the classical Ising chain [14].
Combinatorial optimization problems, including the MaxCut
problem, are often modeled using the classical Ising model.
Thus one can expect that the imaginary-time evolution con-
verges fast to the ground state in these cases.

For each local interaction term H, supported on a set
of qubits S,, the QITE algorithm [37] shows that the
imaginary-time propagator of each local interaction term can
be approximated by unitary gates

ey o [T 7Py, 3)

méPg’.

where Pg includes linear combinations of Pauli strings on the
support S,, except for identity. For example, if S, includes
two qubits, then

o™ e span({IX, 1Y, 1Z, ... ,ZY,ZZ}), 4)

with real spanning coefficients. We call algm) a Pauli series on
S,.. Equation (3) is approximately valid in the case that the
correlation length of the initial state |y) and the imaginary
time At are finite and not very large [37].

Since the imaginary-time propagator preserves symmetries
of the Hamiltonian system, Pauli series GI(L’”) should also pre-
serve symmetries and thus can be determined. Specifically,
assuming G is a unitary symmetry group, H, and |y) are
invariant under transformations of the symmetry group, i.e.,

Ugy) = e/ ®|y)V g e G, (5)

where U, is a unitary representation of the symmetry group
element g € G and f(g) is a real scalar function. Then ol([”)

(U, H,1 =0,
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should be invariant by the conjugation of U, [42,44-48],
U VU = 0" Vgeg. (6)

This equation can be solved either by constructing linear sys-
tems of equations [42] or by implementing twirling operations
on o™ [48]. Then the iHVA is constructed by applying uni-
tary gates in Eq. (3) for each local interaction term

L
o @) =TT TITe ™", )

I=1 m pn

where L is the number of Ansatz layers and p and m index
local interaction terms and symmetry preserving Pauli series,
respectively.

In this work we compare the iHVA and the QAOA Ansatz
[12,13]. The QAOA Ansatz encodes the real-time evolution
e " of the Hamiltonian H. Since the real-time propagator
also preserves unitary symmetries of the Hamiltonian system,
the Pauli series utilized in the QAOA Ansatz also satisfy
Eq. (6). Thus, the Pauli series obtained by Eq. (6) include
the ones in the QAOA if only unitary symmetry groups are
considered. These two kinds of Ansdtze are distinguished if
the Hamiltonian system possesses antiunitary time-reversal
symmetry, which means that the Hamiltonian and the initial
state have only purely real entries. Time-reversal symmetry is
preserved by many chemical, quantum field, and combinato-
rial optimization Hamiltonians, such as the MaxCut problem
studied in this work. For these Hamiltonian systems, the Pauli
series used in the iHVA and the QAOA Ansatz are distin-
guished as follows:

for the i(HVA

omy . | contains odd Y letters ®)
’ for the QAOA.

5 contains even Y letters

For example, in the two-qubit case, o*l(Lm) of the iHVA is
spanned by

o™ € span({1Y, XY, YI,YX,YZ,ZY}) )
and of the QAOA Ansatz by
o\" e span({IX,1Z,X1,XX,XZ,YY,ZI, ZX, ZZ}).

The discriminative criterion (8) follows intuition. For the
iHVA, o™ with odd Y letters is purely imaginary. Since

. —ifom .
H, is purely real, e °"/? can be regarded as performing

the real-time dynamics of the imaginary Hamiltonian —iH,,,
which corresponds to the imaginary-time propagator e~ 274,
This is the reason we refer to this Ansatz as the imaginary
Hamiltonian variational Ansatz. For the QAOA, on the other
hand, o (" with even Y letters is purely real, which is consis-
tent with the realness of H;. We refer to the Pauli series used
in the fHVA as the relevant series.

To highlight the difference between the iHVA and the
QAOA Ansatz, we present two toy examples. The variational
Ansatz state of the i(HVA and QAOA are denoted by |¢;)
and |¢g), respectively. Consider a one-qubit and a two-qubit
Hamiltonian

H =-Z, H,=727Z, (10)

whose iHVA and QAOA Ansatz are

H .{|¢,<9>> =Ry (O)|+)
"11¢r(0)) = Rx (0)Rz(0)]+),

, { |¢1(61, 62)) = Ryz(62)Rzy (61)|++)

25) 1661, 62)) = Ry (62)Rix (0)Rzz 01 ++), (D

where R, (6) = ¢~"?%/? is the Pauli exponential of Pauli string
o. The Pauli strings in the iHVA and QAOA Ansatz contain
odd and even Y letters, respectively, and all satisfy the sym-
metry constraint in Eq. (6) (U, = XX for the two-qubit case).
The iHVAs for these two toy examples are closely related to
the imaginary-time evolution of H; and H,, as one can check
that

eTZ|+) e e—l'e(t)l//2|_i_>7
e—rZZ|+_,’_> x e—iO](‘[)ZY/2|++> — e—i@z(‘[)YZ/2|++>’

where 6(t), 6,(7), and 6,(t) are functions of the imaginary
time 7. In these formulas, all the imaginary-time propagators
and the unitary gates can be represented by real matrices in the
computational basis, as a result of the time-reversal symmetry
kept by H; and H,.

We study the ground-state preparation trajectories in these
two Ansdtze of the one- and two-qubit examples, as presented
in Fig. 1. Figure 1(a) shows two trajectories in the Bloch
sphere as we perform gradient descent using the fHVA and
QAOA of H; starting at & = 0. We see that the iHVA trajec-
tory (red) is geodesic between the initial state |+) and the
ground state of H; (]0)) on the Bloch sphere, while the tra-
jectory of the QAOA (blue) is nongeodesic and would require
more iteration steps during the gradient descent. Figure 1(b)
shows the energy landscapes of the iHVA and QAOA for H,.
We see that a saddle point in the QAOA landscape appears at
(61, 62) = (0, 0), which complicates the optimization process.
In contrast, the iHVA landscape does not have this problem
and is thus more favorable for optimization.

B. Graph and oriented spanning tree

We review the concepts of the tree graph and D-regular
graph, which are the types of graphs mainly studied in this
work. A graph G = (V, £) consists of a set of N nodes i € V,
labeled by integers i =0,..., N — 1 and undirected edges
(i, j) € €. A tree graph is defined as a graph without a cycle.
A graph is called as a D-regular graph if each node in the
graph has D edges connected with the other nodes. Figure 2(a)
presents an example of the tree graph with six nodes, five
edges and the 3-regular graph with six nodes and nine edges.

A key concept used in this work is the oriented spanning
tree, as shown in Fig. 2(b). A spanning tree of an undirected
graph G is a tree subgraph that includes all of the vertices of G.
An oriented spanning tree is obtained by choosing a tree node
as the root node such that the tree hierarchy is subsequently
constructed. Each edge of the oriented tree connects a parent
node and a child node. For a tree graph, its oriented spanning
tree is not unique, which is determined by the chosen root.
Oriented spanning trees of a tree graph and a 3-regular graph
are shown in Fig. 2(b), as well as other useful concepts of the
oriented tree.
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FIG. 1. Comparison of the iHVA and the QAOA Ansatz finding the ground state of (a) H; = —Z and (b) H, = ZZ. (a) Gradient-descent
trajectories of the fHVA (red) and QAOA (blue) on the Bloch sphere starting at & = 0. (b) Energy landscape of the QAOA (left) and iHVA

(right). The arrows indicate trajectories of the gradient descent.

C. MaxCut problem

The MaxCut problem is a paradigmatic test for various
Ansdtze used in the VQE [12]. Given that a graph consists
of edges and nodes, MaxCut aims to partition the graph’s
nodes into two complementary sets such that the number of
edges between these two sets is as large as possible. This
problem can be formulated as follows. Suppose G = (V, £) is
a graph with N nodes. Given an N-bit string x = xy_1, . . . , X0,
x; € {0, 1}, assume cut(x) is the set of edges (i, j) such that
x; # x;. The object of the MaxCut problem is to maximize the
cut size C(x) = |cut(x)|, i.e., the number of edges in cut(x).
For example, Fig. 2(c) gives solutions of the MaxCut problem
of the two graphs in Fig. 2(a), where the black (white) node
denotes x; = 1 (0). The MaxCut solution of the tree graph is
Xee = 101011 with cut size C(xyee) = 5 and that of the 3-
regular graph is Xegutar = 011001 with cut size C(Xregutar) = 7.

(a) (b)

The MaxCut solution of a graph is not unique. Specifically, the
bitwise inverse Xye. = 010100 and X.eguiar = 100110 are also
MaxCut solutions of their corresponding graphs.

For arbitrary graphs, the MaxCut solution is equal to the
maximum eigenvalue of an N-qubit Hamiltonian

C =2 Y U -ZZp. (12)

(i.j)e€

where Z; is the Pauli-Z operator on the ith qubit and 7 is the
identity operator. Finding the maximum of C is equivalent
to finding the minimum of —C. Thus, we aim to find the
minimum eigenvalue of the MaxCut Hamiltonian

Hyc = Y ZZ; (13)
@i, j)e€

/\T

~ = =

o=~ ¢

root
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i p
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v A4
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FIG. 2. (a) Examples of a tree graph (top) and a 3-regular graph (bottom). (b) Oriented spanning trees of the tree graph and the 3-regular
graph. Each oriented edge connects a child node at its tip and a parent node at its tail. A root node is the topmost node in an oriented tree that
has no parent node, and the leaf node does not have child nodes. The height of an oriented tree is the length of the longest downward path from
the unique root node to one of the leaf nodes. (c) MaxCut solution of the tree graph and the 3-regular graph.
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where an irrelevant constant is discarded. Thus, the MaxCut
problem is mapped to a ground-state problem and can be
solved using the VQE [12,18].

Finding the MaxCut solution for arbitrary graphs is known
to be NP-complete [49]. For this reason, we intend to find
an approximate solution for the MaxCut problem. The per-
formance of an algorithm approximately solving the MaxCut
problem can be estimated by the approximation ratio, which
is defined as

C(x)
Cmax

where Cpox 1S the exact maximum cut size of the graph, C(x)
is the cut size provided by a given algorithm, and o — 1
indicates that the algorithm could solve the MaxCut problem
with high accuracy. The Goemans-Williamson algorithm is
a classical polynomial-time algorithm that guarantees an ap-
proximation ratio of 0.8785 [43], which is optimal under the
unique game conjecture [50]. In the quantum scenario, C(x)
is transformed to a functional of a given quantum state |¢),
which is a superposition of bit strings |x), and the cut size is
evaluated as

C(x) — Clp] = (¢IClo)
= L(E| — (¢|Hucl9)), (15)

where € is defined in Eq. (12), N is the number of nodes,
|€] is the total number of edges of the graph, and |¢) is the
variational Ansatz state, which can be either the iHVA state
|¢;r) or the QAOA Ansatz state |¢pg) in this work.

; (14)

o =

II1. {HVA FOR THE MAXCUT PROBLEM

This section explicitly constructs the iHVA for the Max-
Cut problem. Apart from providing relevant series of the
MaxCut Hamiltonian, we focus on choosing an appropriate ar-
rangement of the parametrized quantum gates, where the tree
arrangement and the iHVA tree are introduced for arbitrary
graphs.

A. Relevant series of the MaxCut problem

The relevant series of the MaxCut problem and the gen-
eral structure of its fHVA are given as follows. The MaxCut
Hamiltonian Hyic commutes with the symmetry transforma-
tion U, = [[,c, Xi, which corresponds to the global bit-flip
symmetry [16]. Additionally, Hyc is purely real such that
the time-reversal symmetry is preserved. The relevant series
corresponding to the local interaction term Z;Z; are

oGy =2Yj o) =Y (16)
Then we define parametrized subcircuits of these two relevant
series

UZ(IY)E l—[ e—ie,,,-,z,x,-/z’ Uy(lz)E l—[ e—i(?l,i,/YiZj/Z’ (17
(.)eE (i,))eE

where 6, ;; are variational parameters. The variational Ansatz
is constructed by alternating these subcircuits in order and
applying to the initial state

(67 O) = Ul vz, G010, (8

where |4+)®" is the tensor product of N single-qubit states
I4) = (10) + [1))/+/2 and UZ(’Y’)(YZ) denotes that the last round

is UZ(’;,)(YZ) if pis odd (even). Similar to L used in Eq. (7), here
we define p as the number of rounds of the iHVA. In the first
round of the iIHVA, we apply one ZY gate on each edge of the
graph. In the second round, we reverse the qubits of Z and Y
such that both e~.i%Yi/2 and e~".:¥%i/2 are applied on one
edge, as required by the imaginary-time evolution of Z;Z;. In
one round of the fHVA, only one ZY gate is applied for each
edge of the graph. So in this way, the number of two-qubit
gates in one round of the /HVA can be compared with that in
one round of the QAOA Ansatz, as will be detailed later.

The QAOA Ansatz for the MaxCut problem is distin-
guished from the iHVA, which reads

14

‘(/J);?P)(B’ )’)) — 1_[ He—iﬂuxfﬂ 1_[ e~ MiiZiZil2 H_)@N’

=1 \ieV (i,j)e€

where B;; and y;;; are variational parameters. This Ansatz
is the multiangle QAOA (MQAOA) Ansatz [51], which has
better expressibility than the original QAOA Ansatz [52]. The
number of two-qubit gates in one round of the QAOA Ansatz
is the same as in one round of the iHVA, since the two-qubit
Pauli exponentials in these two Ansdtze can be converted by
single-qubit gates

e—i01_;jZin/2 — ei(rr/él)Xje—i@,'ijZ,'Zj/Ze—i(nM)Xj‘ (19)

One round of the iHVA has ZY gates e~i%%i/2 on differ-
ent edges that do not commute with each other. This allows
different arrangements. The arrangement of the ZY gates im-
pacts the solution accuracy. Additionally, depending on the
arrangement of the ZY gates, the circuit depth of Uz(ly) could
be a constant or grow logarithmically or even linearly to the
graph nodes N. We discuss the arrangement of the /HVA and
its depth in detail in the following sections.

B. iHVA on trees and tree arrangement

In this section we demonstrate how to choose an appro-
priate arrangement of Pauli exponentials e~4%%i/2 in one
subcircuit UZ(IY) defined in Eq. (17). Our choice of the tree
arrangement is based on an observation that the MaxCut of
tree graphs can be exactly achieved by one round of the iHVA
by choosing the tree arrangement, as demonstrated below.

We use the tree graph in Fig. 2(a) as an example, whose
MaxCut solution is shown in the top panel of Fig. 2(c).
The two solutions xyee = 101011 and Xyee = 010100 can be
obtained by preparing the ground state of its MaxCut Hamil-
tonian Hyc,

1
lg.s.) = E

This ground state is locally equivalent to the six-
qubit Greenberger-Horne-Zeilinger (GHZ) state (]0)%° +
|1)®6)/4/2. The GHZ state has long-range entanglement and
cannot be prepared by a constant-depth quantum circuit [53].
This provides the intuition to arrange the ZY gates following
an orientation of the tree to increase the circuit depth. Fig-
ure 3(a) shows the oriented tree and the corresponding tree

(1010100) + [101011)). (20)
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FIG. 3. (a) Oriented tree for the tree graph in Fig. 2(a) and the
corresponding tree arrangement of the ZY gates. Each colored rect-
angle is a ZY exponential e=*%%/2 with the value of ;,;; shown
at the center of the rectangle. This oriented tree has node 3 as the
root, which is the lowest among all orientations of the tree. (b) The
highest-oriented tree of the tree graph has node 0 as the root node.
Its corresponding tree arrangement of ZY gates is illustrated.

arrangement of ZY gates in UZ(IY) This circuit with variational
parameters 6;, i = 1,...,5, is a one-round tHVA. One can
check that the ground state (20) can be prepared by setting

by =6, = =605="—. Q1)

Thus, the MaxCut problem of the tree is exactly solved. This
example can be generalized to arbitrary trees, and we have the
following theorem.

Theorem 1. The MaxCut of arbitrary trees can be achieved
by the one-round iHVA following the tree arrangement.

The proof of this theorem is presented in Appendix A.

In the tree arrangement, we construct an oriented tree
whose root can be chosen arbitrarily. We can use this arbitrari-
ness to reduce the depth of the tree arrangement Ansatz. The
reduction in depth reduces the runtime of the algorithm and
improves robustness against noise on real hardware. Roughly
speaking, the tree arrangement circuit is shallower if the corre-
sponding oriented tree is lower in height. For example, the tree
arrangement in Fig. 3(a) has depth 3 in the unit of the depth of
the ZY exponential, and the height of the oriented tree is 2. On
the other hand, if the node O is chosen as the root, as shown
in Fig. 3(b), the corresponding tree arrangement has depth 5
and the height of the oriented tree is 4. Thus, to construct
a tree arrangement circuit with relatively small depth, we
choose the root node corresponding to the lowest oriented tree
among all nodes. This can be done on a classical computer
by first enumerating all the N nodes as the root and then
calculating the corresponding height of the oriented tree. As

ALGORITHM 1. Arrangement of gates in one round of the
iHVA tree.

Require: A connected graph G = (V, &)
procedure ARRANGE(G)
1. Randomly pick a root of G. Construct a breadth-first
spanning tree 7.
2. Find a root r for the tree with minimum height. Arrange
ZY gates following oriented spanning tree 7 with root r.
3. Define the remaining graph G’ <~ G —T.
Delete isolated nodes in G'.
if G’ has no nodes then
return
else
for each connected subgraph g’ of G’ do
ARRANGE(g).
end for
end if
end procedure

calculating the height of an oriented tree recursively requires
the time complexity of O(N) [54], the above procedure can be
accomplished with the time complexity of O(N?).

C. iHVA on arbitrary graphs

In the preceding section we saw that the one-round iHVA
following the tree arrangement can achieve the MaxCut of
arbitrary trees. In this section we generalize the tree arrange-
ment of tree graphs to arbitrary connected graphs.

The generalization proceeds by decomposing a connected
graph into several breadth-first spanning (BFS) trees [55]. We
choose the BFS tree because the BFS tree is usually lower
in height than the other spanning trees, so the corresponding
quantum circuit has a smaller depth. One way of decomposing
a connected graph into BFS trees is shown in Fig. 4(a). In
the first step, we randomly pick a root and construct a BFS
tree, which means that a parent node connects all the adjacent
nodes as child nodes if the tree has never visited the nodes.
Constructing a BFS tree with a given root is efficient for all
connected graphs. In the second step, we find a root of the
spanning tree leading to the minimum height and arrange the
ZY gates at the rightmost end of the circuit, as described in
the preceding section. Third, apart from the spanning tree,
the remaining graph is obtained by subtracting edges in the
spanning tree from the original graph and deleting isolated
nodes that possibly appear. We delete the isolated nodes to
provide an explicit judgment on when the procedure should
be stopped, as will be detailed later. The remaining graph can
be connected or disconnected. For every connected part of the
remaining graph, we return to the first step and repeatedly
construct its BFS tree, as shown in the second line of Fig. 4(a).
This repetition is stopped in the third step if no nodes are left
after deleting isolated nodes. These steps are summarized in
the following Algorithm 1.

This algorithm can be performed efficiently on classical
computers. The root-finding procedure in the second step is
the most time-consuming part of the algorithm. Assume that
the number of edges in each spanning tree derived by the
above procedure is Mg, , where £ = | J,, &, is the whole edge
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(a)

1. Randomly pick a
root. Find a breadth-
first spanning tree.

3. Subtract edges
Delete isolated nodes

2. Find a root for the

tree with minimum
height.

Arrange ZY gates.
:

E-| 7

FIG. 4. (a) Construction of the iHVA tree solving the MaxCut problem of arbitrary graphs. These three steps give one round UZ(IY) of the
iHVA tree. Each two-qubit gate represents one ZY exponential e~*.%%/2_ (b) The iHVA tree with two rounds. The first round has two parts
that arrange ZY gates by the procedure in (a). The second round is constructed by reversing the orientation of ZY gates to Y Z.

setof Gand M = ), Mg, is the total number of edges of G.
The number of nodes in each tree is Mg, + 1. Thus, using the
time complexity O(N?) of one tree derived in the preceding
section, the total time complexity of the algorithm is upper
bounded by

3 (Me, +1)° ~ 03, (22)

o

which grows polynomially with the system size.
Using the above procedure, an explicit product order of ZY

gates in the UZ(IY) is obtained. The same order can be defined
for another subcircuit Uélz) by reversing the orientation of ZY
gates in UZ(IY) to YZ, as shown in Fig. 4(b). We call an iHVA

with each round given by the above procedure an iHVA tree.
In Fig. 4(b) we show an example of an iHVA tree with two
rounds.

For tree graphs, the one-round /HVA tree is reduced to the
tree arrangement introduced in Sec. III B. Thus, the one-round
iHVA tree can exactly cut arbitrary tree graphs, as shown in
Theorem 1. In contrast, the QAOA requires linearly growing
rounds to exactly cut lines [22], and the MQAOA with one
round can exactly cut only star graphs [51]. Both lines and
star graphs are particular tree graphs and can be cut exactly
using the one-round /HVA tree.

The advantage of the iHVA tree over the QAOA on tree
graphs is in exchange for the larger depth of the quantum cir-
cuit. Assuming an all-to-all qubit connectivity of the quantum
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FIG. 5. Simulated results for the approximation ratio o of 3-regular graphs as a function of p circuit rounds. The Ansdtze considered
here include the iHVA tree, iHVA stagger, and MQAOA, with results marked by red down triangles, green crosses, and blue up triangles,
respectively. Each plot corresponds to a fixed number of nodes N, with 50 randomly generated 3-regular graphs. The box plot is used to reflect
the statistical properties of the 50 ratios. For N < 14, approximation ratios achieved by the iHVA tree are all close to 1 as p > 2.

chip, the depth of a p-round QAOA for a D-regular graph is
O(p), which has no dependence on the number of nodes N
[16]. In contrast, the depth of the p-round iHVA tree is lower
bounded by

d, = Q(plnN) (23)

and upper bounded by

d, = O(pN), (24)
which is distinguished from the QAOA. These bounds are
derived in Appendix B. This depth scaling could bring up
fundamental differences between the accuracy of solving the
MaxCut problem using the iHVA tree and QAOA. Although
deeper quantum circuits suffer more from errors on NISQ de-
vices, there exist error suppression methods such as dynamical
decoupling [56-58] that are suitable for the iHVA-tree-type
circuits.

The arrangement of the ZY gates in the (HVA impacts
its ability to find the MaxCut solution. To manifest this, we
introduce another arrangement of the /HVA in Appendix C,
constructed as shallow as possible among all the arrangements
by a staggered layout of the ZY gates. The iHVA following
this arrangement is called the /HVA stagger. In the following
section we numerically compare the iHVA tree, iHVA stagger,
and QAOA ansatz by testing their performance of finding the
MaxCut solution of random regular graphs.

IV. NUMERICAL RESULTS

We have seen that the iHVA tree performs better than
the QAOA Ansatz in solving the MaxCut problem of tree
graphs. In this section we numerically demonstrate that the
outperformance of the /HVA tree can be observed in solving
the MaxCut problem of more complicated D-regular graphs.
We compare the performance of the iHVA tree with the
MQAOA Ansatz and further with the classical, polynomial-
time Goemans-Williamson (GW) algorithm. The numerical
simulations are performed using the noiseless simulator of
Qiskit [59] and using the ibm_brisbane superconducting
quantum computer.

A. Simulated results

We perform numerical simulations using the Qiskit noise-
less state-vector quantum simulator [59]. In Fig. 5 we plot the
approximation ratio as a function of Ansatz rounds, with the
number of nodes N € {6, 8, 10, 12, 14}. For each plot with a
fixed N, we generate 50 random 3-regular graphs [60] with
the corresponding number of nodes. The ground state of the
Hamiltonian Hyc is prepared using the VQE algorithm, with
the classical optimizer SLSQP [61]. To avoid local minima
of the energy landscape as much as possible, for each opti-
mization trajectory, we adopt small constant initialization [62]
for the variational parameter #, where each variational pa-
rameter 0;;; is chosen independently and uniformly from
[0, 0.001]. The optimization is performed five times with
different initializations for each graph, and the largest ap-
proximation ratio o« among the five repetitions is selected and
plotted. The iHVA tree, iHVA stagger, and MQAOA Ansatz
results are marked by red down triangles, green crosses, and
blue up triangles, respectively. The statistical properties of the
results are reflected using the box plot [63], where the middle
line of the box denotes the median of the data. For all the
number of nodes and the circuit rounds, the performance of
the iHVA tree is better than that of the iHVA stagger, and both
are better than the MQAOA. For N < 14, approximation ra-
tios achieved by the fHVA tree are all close to one as p > 2. To
achieve the same accuracy, the MQAOA requires more rounds
as N increases, i.e., p > 2, 3,4 for N = 6, 8, 10, respectively.
This behavior of the MQAOA is consistent with previous
studies [22].

For larger graph sizes and regular graphs beyond
D =3, we perform numerical simulations using the iHVA
tree with fixed p = 2. During the optimization, we use a
conditional value at risk (CVaR) with a confidence level 0.1
as the objective function, which has been shown to accelerate
optimization for combinatorial optimization problems [64].
Figure 6 plots the approximation ratios for 50 graphs and their
box plots as a function of graph nodes N, where 50 random D-
regular graphs are generated for each N € {8, 12, ..., 24} and
D € {3,4,5}. The performance of the classical, polynomial-
time GW algorithm on the same test graphs is plotted with
gray circles. For each graph, both the GW algorithm and VQE
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FIG. 6. Approximation ratio « of D-regular graphs as a function of graph nodes N, reached by the two-round iHVA tree and GW algorithm,
where D = 3, 4, 5 for each plot. For each D and N, approximation ratios of 50 random D-regular graphs derived by these two algorithms are
plotted and marked by red down triangles and gray circles, respectively. Compared with the GW results, the iHVA tree can exactly solve the
MaxCut problem for all the randomly generated regular graphs with N up to 24 and D < 5.

with small constant initialization are repeated five times, and
the largest approximation ratio is selected and plotted. We see
that the /HVA tree can exactly solve the MaxCut problem for
all the randomly generated regular graphs with N up to 24 and
D < 5, while the GW algorithm struggles to achieve the exact
solutions for some particular graphs.

The advantage of the iHVA tree compared with the iHVA
stagger and QAOA Ansatz can be partially explained by look-
ing at the backward light cone of an observable Z;Z; in these
Ansdtze, as shown in Fig. 7. The light cone of the one-round
iHVA stagger and QAOA covers only a constant number of
qubits, while the light cone of the iHVA tree covers the whole
graph. This means that the one-round /HVA tree is accessible
to the global information of the graph, while the iHVA stagger
and QAOA are not. The global information is important for
the accurate solution of the MaxCut problem [17], and this
is also a part of the reason why the MaxCut problem is hard
to solve using classical computers. Additionally, the global

(a) (b)
+—+HF |+)
I+ = } |+)
-+ = |+) J—"

J [

-+ } 7z +) _:D:zi
[+ j [+) B Z]-
I+) —_H |+) ’_]—_
I+~ Hr [+)

I+ - I+) - i—L

FIG. 7. Illustration of the backward light cone of the observable
Z;Z; in one round of (a) the iHVA stagger or QAOA and (b) the
iHVA tree on a cycle graph. The two-qubit gate denotes e~7?%/2 for
the QAOA and e~##"/2 for the iHVA. Single-qubit gates e~*#*/2 in
the QAOA have no impact on the backward light cone and are not
explicitly presented.

backward light cone indicates that the expectation of Z;Z;
cannot be calculated directly in the Heisenberg picture. On the
other hand, for the one-round iHVA stagger and QAOA, the
expectation of Z;Z; can be calculated efficiently on classical
computers by involving a constant number of qubits. From
this perspective, the iHVA tree could be harder to simulate
classically and have more quantum effects involved than the
iHVA stagger and QAOA ansatz, thus providing higher accu-
racy than the latter two.

B. Hardware results

We compare the iIHVA tree and QAOA ansatz using IBM’s
quantum hardware to solve the maximum eigenvalue problem.
Consider a random weighted Hamiltonian

1
Hy = 5 Z (I — wi;ZiZ;), (25)
@i,))e€E

where £ is a set of edges of a heavy-hex connectivity graph
G = (V, &) with the number of nodes N = 67 and w;; are ran-
domly chosen to be +1. Here G is tailored to the connectivity
of the IBM Eagle-class heavy-hex devices [59,65], as shown
in Appendix D. The performance of the variational Ansatz is
evaluated using an approximation ratio defined by

maxy, <)C() |Hw |)C()> '

ax) = (26)

given a classical bit string x by measuring a quantum state
in the Pauli-Z basis. This definition is analogous to the ap-
proximation ratio of the MaxCut problem in Eq. (14). The
exact maximum eigenvalue max,, (xo|H, |xo) for the 67-node
heavy-hex graph G can be obtained by the greedy algorithm.
The greedy algorithm can provide a good approximation to
maxy, {xo|Hy|xo) since G has a small number of cycles (see
Appendix D). However, the greedy algorithm does not work
for general graphs.

For the hardware demonstrations, we use the equal-angle
version of the iHVA tree and the QAOA Ansatz with one

032612-9



XIAOYANG WANG et al.

PHYSICAL REVIEW A 111, 032612 (2025)

—— (HVA max: 0.9633
0.1509 .. mean: 0.774 |
—— QAOA max: 0.890 |
0.1259 ... mean: 0.692
. :
E 0.1004
E
e} 0.075 1
-
[a W
0.050 1
0.025 4
0.000 -

047 052 058 0.63 0.68 0.74 0.79 0.84 0.89 095 1.00
a(x)

FIG. 8. Hardware results for the probability distributions of «(x)
by 2048 measurements using the iHVA tree (red) and the QAOA
Ansatz (blue). The solid and dotted lines label the positions of the
maximum and mean values of the distributions, respectively. The
green solid line denotes the position of «(x) = 1. The demonstration
is performed using 67 qubits of ibm_brisbane.

round, defined by

1@ = [T s P214)2N,

@i, j)e€
pr(B, y)) = [e 7 T] e 7v#aH)®Y, @1
9% i, ))e€

which have one and two variational parameters to be op-
timized, respectively. For the iHVA tree, the ZY gates are
arranged according to the steps provided in Fig. 4 and the
QAOA gates are arranged to be as shallow as possible [16].

We perform the VQE using the above two Ansdtze on
the quantum hardware ibm_brisbane [59]. The iHVA-tree
circuit performed on the hardware and its layout on the
ibm_brisbane coupling map are shown in Appendix D.
The optimization is performed using the classical optimizer
COBYLA [61] and CVaR as the objective function. Each COBYLA
optimization trajectory starts using small constant initializa-
tion and iterates 20 steps, and 1024 measurement shots are
used to evaluate one CVaR expectation. After the optimization,
we take 2048 measurement shots using the optimized vari-
ational parameters and calculate their «(x). The probability
distributions of «a(x) are plotted in Fig. 8(b). We see that
both the maximum and mean « of the iHVA tree are corre-
spondingly larger than the ones of the QAOA Ansatz, and the
maximum « of the iHVA tree reaches an approximation ratio
of 0.963. These results show the benefit of using the iHVA
tree over the QAOA in solving large-scale combinatorial opti-
mization problems.

When the above two Ansdtze are executed on the hardware,
dynamic decoupling with a super-Hahn sequence [66] is used
to suppress the decoherence error during the idle periods of
the qubits. This technique significantly improves the behavior
of the fHVA tree since its qubits have long idle periods due to
its treelike structure.

V. ABSENCE OF A BARREN PLATEAU
FOR THE CONSTANT-ROUND iHVA

A variational Ansatz with a constant number of rounds is
efficient in the number of quantum gates and could be more
resilient to decoherence in quantum devices, compared to
the Ansdtze with rounds growing with the system size. More
importantly, such Ansdtze could be free from barren plateaus
(BPs) [26]. A variational Ansatz with BPs cannot be optimized
efficiently due to the exponentially vanishing gradients of
its energy landscape. Barren plateaus can be diagnosed by
calculating the variance of the energy expectation over the
variational parameters

- H,
Var((Hyc)) = Varo(<¢(0)|Ei(f|¢(0)>), (28)

where E is the minimum eigenvalue of the Hamiltonian Hyc,
as a normalization factor. If Var((Hwmc)) vanishes exponen-
tially with the number of nodes N, then the energy landscape
of the Ansatz is said to exhibit BPs [67].

For the constant-round iHVA with arbitrary arrangements
of the ZY gates, the following theorem holds.

Theorem 2. For the p-round iHVA in Eq. (18) solving
the MaxCut problem on D-regular graph with N nodes, if
p is even, the variance of the energy expectation is lower
bounded by

- DN
Var((Hwc)) 2 E220Gi T (29)

This theorem is proved by explicitly calculating
Var((Hyc)) in the Heisenberg picture, as shown in
Appendix E.

According to this theorem, if the degree D is a con-
stant and the ground-state energy Ep is of O(poly(N)),
because the exponent in Eq. (29) does not depend on graph
nodes N, the variance decays at most polynomially in N.
Therefore, the constant-round iHVA does not exhibit BPs to
solve the MaxCut problem of D-regular graphs. This theo-
rem guarantees that the gradient calculated in the previous
numerical simulations can be measured efficiently using real
quantum devices.

Figure 9 depicts the variance of the normalized energy
expectation as a function of the graph nodes N, where the two-
round /HVA tree is used. We randomly generate 50 graphs,
uniformly sample variational parameters 1024 times from
[0, 4], and calculate the variance of the energy expectations.
Each data point is averaged over the 50 graphs. It is shown that
the variance of D-regular graphs (where D = 3,4, 5) decays
polynomially with N, which is consistent with the theoretical
lower bound given in Eq. (29).

The above theorem can be applied to graphs with more
edges than regular graphs with a constant D. For example,
the all-to-all connected complete graph is an (N — 1)-regular
graph, and the Erd6s-Rényi graph connecting each pair of
nodes with probability g is effectively a g(N — 1)-regular
graph. For these graphs, the lower bound of the variance
decays exponentially with N, so the gradient of their constant-
round {HVA vanishes exponentially with N. As numerically
demonstrated in Fig. 9, for the two-round iHVA tree of the
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FIG. 9. Variance of the normalized energy expectation as a func-
tion of the graph nodes N. The Ansatz used is the two-round iHVA
tree. We test D-regular graphs (where D = 3, 4, 5) and Erd&s-Rényi
graphs with g = 0.5, with results marked by blue circles, orange up
triangles, green down triangles, and red crosses, respectively. Within
the plot range, the variance decays polynomially with N for regular
graphs and exponentially for Erd6s-Rényi graphs. The y axis is the
logarithmic scale.

Erd6s-Rényi graph (¢ = 0.5), the variance decays exponen-
tially with the graph nodes up to N = 16.

This result shows that the constant round iHVA tree is
no panacea. Therefore, special attention has to be paid when
using the tHVA tree for arbitrary graphs. Although both the
iHVA tree and QAOA suffer from BPs for certain problems,
the fHVA tree would still need fewer rounds compared to the
QAOA.

VI. CONCLUSION AND OUTLOOK

Common quantum computing approaches to solve the
MaxCut problem such as the QAOA or quantum annealing
suffer from an adiabatic bottleneck that leads to either larger
circuit depth or longer evolution time [24,30,68]. On the
other hand, the evolution time of imaginary-time evolution
is bounded by the inverse energy gap of the problem Hamil-
tonian [41]. The inverse of the energy gap typically remains
constant with system size for many noncritical physical sys-
tems, such as the classical Ising chain [14]. Combinatorial
optimization problems, including the MaxCut problem, are
often modeled using the classical Ising model. This consti-
tutes the motivation to build a variational Ansarz based on
imaginary-time evolution.

In this work we introduced a variational Ansatz, the
imaginary Hamiltonian variational Ansatz, to solve the com-
binatorial optimization MaxCut problem. The construction of
the iHVA leverages the bit-flip and time-reversal symmetries
of the MaxCut Hamiltonian and the imaginary-time evolution.
Although the iHVA is built on the principles of imaginary-
time evolution, we do not perform imaginary-time evolution
on quantum circuits, which is distinguished from previous
works of the QITE algorithm [36-38,42].

The iHVA for the MaxCut problem arranges ZY gates
utilizing notions of graph theory. We proposed the tree ar-
rangement of ZY gates based on the graph’s spanning tree
and showed that the MaxCut of arbitrary tree graphs can be
achieved exactly by the tree arrangement. Generalizing the

tree arrangement of tree graphs onto arbitrary graphs leads
to the iHVA tree. We numerically showed the advantage of
the iHVA tree over the QAOA in solving the MaxCut prob-
lem. The performance of the constant-round /HVA tree is
better than the classical Goemans-Williamson algorithm in
solving the MaxCut problem on D-regular graphs with up to
24 nodes. Additionally, we performed demonstrations using
real quantum hardware on a 67-node graph with heavy-hex
connectivity, further demonstrating the advantage of the iHVA
tree over the QAOA on the large-scale problem. These re-
sults validate our ideas of constructing variational Ansdtze
according to imaginary-time evolution and the oriented span-
ning tree or, more generally, a directed graph [55]. The idea
of arranging quantum gates using directed graphs can be
adapted to other variational Ansdtze such as the Hamilto-
nian variational Ansatz (HVA) and the unitary coupled-cluster
Ansatz [9].

Theoretically, the performance guarantees of the iHVA
can be derived similarly to the ones given in the QAOA
[12,17-19]. The performance guarantees in the QAOA are de-
rived based on the locality of the Ansarz. However, the iHVA
tree proposed in this work is highly nonlocal, so the method
used in the QAOA cannot be adapted to the iHVA tree directly.
There is no performance guarantee proposed in the literature
for nonlocal variational Ansdtze. While our numerical results
demonstrate the benefits of the proposed iHVA regarding local
minima, saddle points, and the necessary number of rounds,
we leave the study of theoretical performance guarantees to
future work.

We showed that the constant-round iHVA tree of regular
graphs does not exhibit BPs. This result has many implica-
tions. First, this allows the iHVA tree to outperform the QAOA
on MaxCut problems with regular graphs. Second, this opens
up the question of classical simulability of the constant-round
iHVA tree based on the recent conjecture by Cerezo et al. [69].
Based on this conjecture, it may be possible that the constant-
round iHVA tree is classically simulable. For instance, the
recently introduced g-sim method [70] could be a potential
method to simulate constant-round /HVA-tree circuits. Such
a result would imply the classical easiness of solving the
MaxCut problem on D-regular graphs. Moreover, this would
make the study of the iHVA tree on Erd6s-Rényi graphs more
valuable, since we demonstrate that the constant-round iHVA
tree exhibits BPs. In this case, warm start methods such as the
one proposed by Chai et al. [71] could be used to support the
optimization of the fHVA.

Finally, the fHVA can be constructed for a broader range
of quantum systems, such as particle-number-preserving
chemical and condensed-matter models, and lattice gauge
theories preserving local gauge symmetries. These systems
also preserve time-reversal symmetries. Thus, their iHVAs
are distinguished from the commonly employed HVA. One
may observe the advantage of the iHVA over the HVA in
the ground-state preparation of these quantum systems. Sim-
ilarly, Pelofske et al. studied the performance of the QAOA
on higher-order Ising models [24]. In their results, it can
be seen that even short-depth QAOA circuits lead to saddle
points and local minima. Employing the iHVA on higher-
order problems has the potential to simplify the optimization
processes.
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APPENDIX A: PROOF OF THEOREM 1

The MaxCut problem of tree graphs can be exactly solved
by one round of the iHVA tree, as guaranteed by Theorem 1.
Now we present the proof.

Proof. Theorem 1 can be proved by mathematical induc-
tion. Our goal is to prepare the ground state of Hyic from the
initial state |+)®". In the ground state, for each pair of parent
and child nodes of the tree, as defined in Fig. 2(a), their O and 1
states are opposite. The first step of preparing this ground state
is choosing an arbitrary node py € V as the tree’s root. Then
we choose an arbitrary child node ¢, of the root to implement
a ZY exponential with the parameter 6 = /2,

L
V2

which leads to opposite 0 and 1 states between pg and c¢y. For
each pair of a parent node p and a child node c, the induction
hypothesis is that the parent node has been rotated into a
component of the GHZ-type state by the upstream ZY gates
of the parent node p, and the child node remains as the initial
state

eI Yoy | L1y =

(101) + [10)), (A)

1
lp) = E(IS)IO),; + 15 1) )
where s is a 0 or 1 bit string of the upstream qubits of p and
5 is its bitwise inverse. The downstream qubits of ¢ are in the
|+) state and are omitted. Implementing a ZY exponential on
this state leads to

(A2)

L
V2

An example of this implementation is illustrated in
Fig. 10, where the ZY exponential e ""/ZY rotates
the state |§) = 7 (110)x1), +101)2310) ) +)c|++)or to

\L@(Ilo)zaIl)pIOh +101)2310),[1) )| ++)o1- Since the result-
ing state in Eq. (A3) is still a GHZ-type state and the 0 and
1 states between p and c are opposite, by induction, ZY gates
following the tree arrangement can generate the ground state
of Hyic of the tree. Thus, we prove that the targeting ground

e~ /ZyYe |p) =

()10), 1) +15)[1),10)).  (A3)

@|+) 1Y

wl+) {2 H 2 —

/2
Gwl+) —— ¥ H Z
/2
C
o o A 4

A

FIG. 10. Illustration for the proof of Theorem 1. The rightmost
ZY exponential e~"/Y%¥c on the parent node p and the child node
c rotates the state |¢) = %(|10)23\1)p +101)5310) )I+) [ ++)0 to
%(|10)23|1)p|0)c +101)5310),|1) )|++)o;- This circuit is a subcir-
cuit of the one shown in Fig. 3(a).

state can be prepared using the one-round iHVA following the
tree arrangement. ]

A natural corollary of Theorem 1 is that arbitrary bipartite
graphs can be cut exactly using the one-round iHVA tree. The
MaxCut of any bipartite graphs can be obtained by cutting
its arbitrary spanning trees, as shown in Fig. 11. To cut the
spanning tree, we set the parameters in the one-round iHVA
tree 0;;; = /2 for edges (i, j) in the spanning tree (black
line) and 6,y = O for edges (i, j') in the rest of the graph
(gray line). In this example, we see that setting all parameters
free in the iHVA tree helps to improve the solution accuracy
of the iHVA tree. On the other hand, if we sets all parameters
equal, the bipartite graph cannot be cut exactly using the one-
round iHVA tree. This is one of the reasons we choose all free
parameters in the construction of the iHVA.

APPENDIX B: CIRCUIT DEPTH OF THE iHVA TREE

The arrangement of ZY gates in the fHVA tree leads to the
depth of one round UZ(]Y) (vz) growing with the number of graph
nodes. In this Appendix we provide bounds on the depth of the
iHVA tree of D-regular graphs.

We first consider 2-regular graphs, which are rings; their
iHVA tree are ladder arranged in one round and the depth
grows linearly with the graph nodes N. For a D-regular graph
G with D > 2, the number of edges is ND/2. The depth of
one round of the iHVA tree cannot be larger than the number
of edges. Thus we derive an upper bound on the depth of the
p-round iHVA tree

d, = O(pN). (B1)

On the other hand, the depth of the one-round iHVA
tree is lower bounded by the height of the graph’s spanning
tree [see the definition of tree height in Fig. 2(b)]. Because
one descendant edge of a node in the spanning tree increases
the circuit depth by one ZY gate depth, the spanning tree of a
D-regular graph is a (D — 1)-ary tree, which means that each
node has at most D — 1 child nodes. Fixing the tree height 4,
a (D — 1)-ary tree has the maximum number of nodes if every
node has D — 1 child nodes. Thus, we have

h
) (D_l)h+l_1
N < O-1=—7"———. (B2)
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SRS A

[
0=-

FIG. 11. Illustration showing that the one-round iHVA tree can exactly cut all bipartite graphs. The bipartite graph in the left panel can be
exactly cut by cutting its spanning tree (black lines in the middle panel) and the other edges are cut automatically due to the bipartition of the
graph (see the right panel). The spanning tree can be cut exactly using the one-round iHVA tree, where the tree edges (black lines in the middle
panel) have the parameter 6 = 7 /2 and the rest edges (gray lines in the middle panel) have the parameter 6 = 0.

As D > 2, the height of the spanning tree is lower bounded by
In[N(D —2)+ 1]

h> —— — 1. B3

~ ID-1) B3

Thus the depth of the p-round iHVA tree is lower bounded by
d, = Q(pInN). (B4)

To verify the derived bounds, we plot the depth of the one-
round {HVA tree as a function of N, shown in Fig. 12. Here
we generate 200 random D-regular graphs and count their
iHVA-tree depth by the depth of the ZY gate. The figure plots
the average depth, and the colored bands denote the maximum
and minimum depths among the 200 graphs. We see that for
D € {3,4,5}, the depth grows sublinearly with the number
of nodes for the randomly generated graphs. This behavior is
consistent with the upper and lower bounds given by Egs. (B1)
and (B4), respectively.

APPENDIX C: iHVA STAGGER ANSATZ

In the main text we introduced the iHVA tree for the Max-
Cut problem, where the arrangement of ZY gates in the fHVA
is provided explicitly. In this Appendix we provide another
arrangement of the /HVA. This arrangement is inspired by
the shallowest arrangement proposed for the QAOA Ansatz

60l . 3
D=4
—+— D=5
= 40/
—
o
Q
o
201
0 100 200 300

N

FIG. 12. Depth of one round of the iHVA tree on D-regular
graphs as a function of the graph nodes. Results for D € {3, 4, 5}
are marked by blue circles, orange up triangles, and green down
triangles, respectively. Each data point is the average depth and the
colored band denotes the maximum and minimum depth among 200
randomly generated D-regular graphs.

[16], which makes the iHVA as shallow as possible. The
corresponding iHVA with this arrangement is called the iIHVA

stagger.
Consider one round of the iHVA
Uy = [ e, (C1)
@i,j)e€

defined on a graph G = (V, £) with N nodes and a maximum
degree D. Its iHVA stagger is constructed as follows. First,
we make an edge coloring of G, which means each edge is
assigned a color so that no two incident edges have the same
color. For example, Fig. 13(a) gives an edge coloring for a
3-regular graph with six nodes. According to Vizing’s theorem
[72], there exists an edge coloring utilizing at most D + 1
colors. Assume & = & U - - - U &Ep, is such an edge coloring.

For each color ¢ € {1, ..., D + 1} we define the unitary gate
UvD = 1_[ e OLiiZiYi/2 (C2)
@, )€,

As all the edges in &, are not adjacent, the order of ZY gates in
this product is well defined, and all ZY gates can be realized
on quantum devices in parallel. Then the one-round HVA
stagger is arranged by UZ(IY) = Ugll e Uz(l)Ul(l). The UZ(IY) of
the 3-regular graph in Fig. 13(a) is shown in Fig. 13(b). This
subcircuit has a depth of at most D + 1. Another subcircuit
UY(IZ) is constructed by reversing the qubits of Z and ¥ in UZ(IY),
which also has a depth of at most D + 1. Therefore, the iIHVA
stagger with p rounds has a depth of at most p(D + 1), which
has no dependence on the number of nodes.

(@ (b)

¢
(

FIG. 13. (a) Edge coloring of a 3-regular graph. (b) Subcircuit
UZ(IY) following the edge coloring of the 3-regular graph. Two-qubit
gates e "ii%%/2 on edges with the same color can be applied
simultaneously.
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FIG. 14. (a) Heavy-hex connectivity graph with 67 nodes used in the hardware demonstration (left panel) and its layout on
ibm_brisbane’s coupling map (right panel). A solid (dashed) line in the graph denotes a weight w;; = +1 (—1). The coupling map of
ibm_brisbane is colored to represent the readout error for each qubit and the two-qubit echoed cross-resonant (ECR) gate error for each qubit
connection. (b) One-round iHVA-tree circuit executed on 67 qubits of ibm_brisbane. The definition of the quantum gates can be found in the

IBM quantum platform [59].

For an arbitrary graph, to construct the iHVA stagger as
shallow as possible, we need to find an edge coloring using
as few colors as possible. The general problem of finding
an optimal edge coloring is NP-hard. In practice, we use the
greedy coloring algorithm [73] to derive an edge coloring with
a few colors.

APPENDIX D: SETUP OF THE HARDWARE
DEMONSTRATION

In the hardware demonstration shown in Sec. IV B, we
found the maximum eigenvalue of the random weighted
Hamiltonian (25), i.e., Hy = 5 Y jyee (I — wi;ZiZ;), where
£ is a set of edges of a heavy-hex connectivity graph G =
(V, &) with 67 nodes and w;; are edge weights randomly
chosen as =£1, as shown by the solid and dashed lines, respec-
tively, in Fig. 14(a). The graph is tailored to the coupling map
of the IBM Eagle-class heavy-hex devices ibm_brisbane
[65] shown in the right panel of Fig. 14(a). The coupling map
is colored to represent the readout error for each qubit and
the two-qubit echoed cross-resonant gate error for each qubit
connection. Other single-qubit properties of ibm_brisbane
are summarized in Table I. All hardware data are obtained
from the IBM cloud quantum platform [59] and more details
are available in [74].

The one-round iHVA-tree circuit of the heavy-hex con-
nectivity graph executed on ibm_brisbane is illustrated in
Fig. 14(b). This figure is generated by the IBM cloud quantum
platform [59].

APPENDIX E: PROOF OF THEOREM 2

In this Appendix we prove that the constant-round (HVA
for the MaxCut problem is free from the barren plateau phe-
nomenon. As explained in the main text, we aim to provide a
lower bound on the variance of the Hamiltonian expectation
Var({Hwmc)). For convenience, we first consider the 2-round

TABLEI. Summary of single-qubit properties of ibm_brisbane
on the same day the hardware demonstrations were performed.

Parameter Median Mean Min Max

Frequency (GHz) 491 4.904+0.11 4.61 5.12
Anharmonicity (MHz) 308.42 308.66+5.38 289.81 359.05
Ti (us) 222.18 218.62+71.64 4343 380.24
1> (us) 142.66 151.254+87.70 13.17 459.64
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iHVA. Its variance is given by

_ H, 1
Var(<HMc>)=Varo((cp}”w)!%\cp}”(m)) = Vane| D7 (4770)]2:Z]4;70)) |. (E1)
0 0 (i.))e€
where
62 ®) = UQUL 1, U2 = [ %2, vy = ] e™s02 (E2)
(i,))e€ (i, )€€

Then we have the following lemma.

Lemma 1. For the 2-round iHVA in Eq. (E2) solving the
MaxCut problem on the D-regular graph with N nodes, the
variance of the energy expectation is lower bounded by

DN

Var((Hwc)2) 2 W.

(E3)

Proof. First, we show that the mean of the Hamiltonian
expectation is zero. The mean of the Hamiltonian expectation
reads

Eo| Y (67®)]2:2|0®)

(i.))e€

- f DOl O)|ZZ;|0>®),  (EH

(i,j)e€

Where Do = ]_[(i’ e g(éz;’j )(%) is the measure over the cir-
cuit parameters. Viewing from the Heisenberg picture, the
expectation ( 1(2)(0)|Z,-Z j|¢1(2)(0)) can be derived by sequen-

tially conjugating ZY gates on Z;Z;, for example,
NiA27,7,e A = c0s0Z,Z; — sin0X:Z;Zy.  (ES)

Thus, new Pauli strings such as X;Z;Z; appear in the expres-
sion. After conjugating all the ZY gates, it remains a linear
combination of Pauli strings. The only Pauli strings contribut-
ing to the expectation are those consisting only of Pauli-X
letters because

(+1%a |+
_ 1 fOI'UE{I,X(),X],X(]X],...,X()X]...XN_l}
~ |0 otherwise.
(E6)

Meanwhile, as each of the ZY gates in |¢;2)(0)) have a free
angle, it can be seen that the coefficient of each Pauli string
in the linear combination must be a product of cos or sin
functions and each cos 0 (3),;; or sinf (2);; appears at most
once. After the integration [ D8, since

2 de 2 de
/ — cos 6 =/ —sinf =0, ET)
0 2 0 2

each coefficient in the linear combination vanishes. Thus, the
integration [ DO(p\”(0)|Z:Z;1$\> (@) and the mean of the
Hamiltonian expectation in Eq. (E4) vanish consequently.

To simplify the calculation of the variance, we assume that
all the expectations of Z;Z; are mutually independent, i.e.,

Eo((0,2(0)|Z:2; |0 0))(0” (0)| 221 |47 (8)))
=Eo((0,”(0)|Z:Z; |0 (0))Eo (0] (0)| 2221 |6, (0)))
(ES)

in the case (i, j) # (k, ). This assumption is examined nu-
merically as shown in Fig. 15. With this assumption, the
variance and summation in Eq. (E1) can be exchanged, i.e.,
— 1
Var((Fve) = — >, Varo[(;”(0)]2:Z,]¢;” )] (E9)
0 @ jee

Next we provide a rigorous lower bound on the vari-
ance Varg[{( 1(2) (0)|ZiZj|¢1(2)(0))]. When we calculate the
expectation (¢1(2)(0)|ZiZ j|¢,(2)(0)), a general structure of the
two-round {HVA is shown in Fig. 16(a). In the middle of
the circuit, there exists an e~1%Zi/2 and an e~%24%i/2 shown
as the colored gates in the figure. As our conclusion has no
concern about which qubit is i or j, the order of these two
gates is irrelevant. Other ZY gates do not connect qubit i and

0.02
—$— 3-regular graph
— 4-regular graph
- 0.011 —— 5-regular graph
N
N
N
=
<
83l
—-0.02— T T - - .
6 8 10 12 14 16
N

FIG. 15. Numerical verification of the assumption in Eq. (E8)
that the expectations of observables Z;Z; and Z;Z; with the iHVA
are mutually independent. Here a D-regular graph with N nodes and
the edges (i, j), (k,[) € € are randomly chosen and the variational
parameters 6 are uniformly sampled 2048 times for each data point.
The covariance Eo((¢;” (0)|Z.Z;|¢;” (0)) (617 (0)|ZcZi | (6))) van-
ishes for arbitrary D-regular graphs with N nodes within the error
of statistics. So the left-hand side of Eq. (E8) is zero with high
probability, equal to the theoretical value of the right-hand side of
Eq. (ES).
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FIG. 16. (a) General structure of ZY gates in the two-round (HVA. Here U (&), U (B), and U (y) are gate blocks of ZY gates and m(yi), m(zi),

(@) (@)

ny’,and ny’ (i € {0, 1, 2}) are the numbers of gates. (b) Concrete example of the gate blocks U (), U (), and U (y) and the numbers of gates.

Jj and thus are oriented outside the figure. The expectation of
Z;Z; reads

CROZAO)
— (HEVU ()Y (B @)Z,2,U (@)
% efi91YiZf/zU(ﬂ)e*l@zZiY,f/zU(y)'.F)@N’ (E10)

where the ZY gate blocks U («), U(B), and U (y) indicating
ZY gates with the parameters {a, B, y} = {6}, as shown in
Fig. 16(a). In the figure m{’, m{, n’, and n (i € {0, 1,2})
denote the number of gates. For example, m(ZO) denotes there

are m(ZO) gates in U (o) connecting qubit i and other qubits like
e~ 21/2 with k € V/{i, j}. Figure 16(b) provides an explicit
example of the concrete components of U(e), U(B), and
U(y). The corresponding values of m(Y’), m(Z'), ng,’), and ng) are
presented explicitly. These 12 integers are not independent.
Since the iHVA is constructed for the D-regular graph, the
total number of gates connecting qubit i and other qubits is
2D (for two rounds), where D gates are like e~%¥/2 and the
other D gates are like e~*¥%/2_ Thus, the 12 gate numbers

satisfy the relations
2 2 2 2
dDom =Y "m)=>"n =Y "n)=D-1. (El)
i=0 i=0 i=0 i=0

With the above notation, we first calculate how the right-
most gate block U(a) in Fig. 16(a) conjugates on the
observable Z;Z; under Heisenberg picture. An illustration of
two gates conjugating on Z;Z; is shown in Fig. 17, where we
utilize the relation

N2 7. o~V — o5 0 Z; — sin aX;Z.

(E12)
It results in a series of Pauli strings with coeffi-
cientS  cosojCos®y, —cCOSaSina,,  — Sino CoSay,
and sincog sinop. This result can be %eneralized for
Ut(@)Z:Z;U (). We define Iy =m” +n\”, which is the
number of gates e~"*¥%/2 and e~¥i%/2 not commuted with
Z;Z; in U(a); the corresponding angles on these Iy gates
are denoted by «;, ..., . The observable conjugated by
U(a) is a periodic function of «, which can be expanded
as a high-dimensional Fourier series. The result is a linear
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FIG. 17. Schematic calculation of the observable Z;Z; conjugated by two ZY gates. Each circle denotes a single-qubit Pauli operator and

each rectangle denotes a matrix e~"*%¥/2

combination of 3% subterms [75]

UT(oc)ZiZjU(ot) = Z De(Z:Z)) H coS o 1_[ sin o
£€{0,1,2})r 1:5=0 I:&=1
< [T 1. (E13)
=2

where & is the /th component of the vector & € {0, 1, 2} and

Qe(ZiZ)= Y d®a;

o;ePV

(E14)

is a linear combination of all possible Pauli strings o; € PV =

{I,X,Y,Z}N onN qubits. Here di(s) are some real coefficients
that have no dependence on o, &2, ..., ®;,. The & = 0 term

with coefficients 1—[5;1 cos ¢ is explicitly known, i.e.,
Dy(ZiZj) = Z;Z (E15)

This is similar to the results in Fig. 17. Then the whole expec-
tation can be derived due to its linearity

(D1(O)ZiZ;|$:1(0))

Z ag 1_[ COS o) 1_[ sin o 1_[ 1,

e{0,1.2)y  Lg= I:g=1 1:6=

(E16)

where the real coefficients ag is given by
ag = (+|*VUT ()™ RUT (B2 e(212))
e ARy (B PANRY () +)PN. (L)

As the mean of the expectation vanishes, as proved previously,
the variance is the integration of the square of the expectation,
which reads

van (g @226 @)] = [ Do @)|z2,(6 @)
(E18)

Its integrand given in Eq. (E16) is a Fourier series of a, so
the variance can be evaluated using Parseval’s equation, which
states that if a periodic function can be expanded using the
Fourier series

o0
fla) = %0 + Z(a,, cos na + by, sin na), (E19)

then the integration of the square of f(«) can be derived by

2 d
/ —“f( )2 =
0

1 o0

(L) 452 (@ +8)),

(E20)

with the value of « shown at the center of the rectangle.

due to the orthogonality of the Fourier basis. Generalizing
this equation to higher dimensions and integrating out « in
Eq. (E18), the variance reads

Varg[(¢1(0)1Z,Z;|$1(0))]
2

a

— 3

_/D0/{oz} Z 2(No. of 0’s and 1’s in &)

£e(0,1,2)
1

> 2—lny0/{oc}a0 (E21)
In the ﬁrst line, the denominator appears because
fozn 9 cos? 0 = 02” %% sin’0 =1. Each 0 and 1 in &

corresponds to a cos and a sin function and leads to one
%. The integration measure D@/{a} means that the parameters
in U (a) are integrated out. In the second line, we only retain
the term & = 0, whose number of 0’s and 1’s is ly. So the
factor 1/2 appears.

Then we provide a lower bound of [ D8/ {oc}af, using Par-
seval’s equation again. The expression of ag can be calculated
explicitly,

ap = <+|®NUT(y)giGZZiY,/2U+(ﬂ)eiGIl/;Zf/ZZiZj
e IONZiI20) (B)e~ A2 ()| 4-) BN
= cos 0, (+|*NUT (p)e™* 1 2UT(B)Z:Z;U (B)
x e PRy (p) )N
— sin 6, (+[BVNU T () AN 20T (B)X,U (B)

e N2 (p)|4) BV (E22)

These two terms have a similar structure, as we have seen in
Eq. (E10), and we can repeat the procedure from Eqgs. (E13)—
(E21) for both terms.

Things can be simplified by observing how the factor 1/2"
appears in Eq. (E21). The exponent Iy is the number of ZY
gates not commuted with the observable Z;Z;. In gate block
U(B), the number of gates not commuted with Z;Z; and X;

is m(yl) + ng,l) and m(l) + m(zl), respectively. Thus, we arrive at
the lower bound

[ poriad; > [ poria piti

m+ D11

+ -
2m(1)+m(1)+1

fpo/ o, BIbE,  (E23)
where
bo = (+|®NU T (p)e™?112Z,Z,e 502U ()| +) =V,

by = (+|EN U (p)e Y2 X, AN 12U (p)|+)BN. (B24)
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Repeating the above procedure and integrating the parameters in U (y), we derive the lower bound for each term in Eq. (E23),

1
[ Porte ity >

1
/2
/'Do/{“, Biby = m, (E25)
where we have used the fact that only Pauli-X strings contribute to the expectation [see Eq. (E6)].
Combining Egs. (E18), (E23), and (E25), the variance of the expectation is lower bounded by
1 1 1 1 1
(2) (2)
Va.I'o [<¢1 (0)|ZIZJ|¢I (0))] 2171(0)+n(0) (2m(1)+n(yl)+l 2n(2)+n(7?)+1 + 2m(y])+m(7})+l 21n(y2)+m(7?>+1)
1 1
- oD+ 14m +mi)+n T D+1+n+my) +m
1 1
2 2_ 2m(0)+m(l)+n(2)+n(0)+m(1)+m(7)
1
Z 5 (E26)

In the second line we used the constraints in Eq. (E11). The thlrd hne utilizes the basic inequality a + b > 2+/ab. The fourth

line is derived by maximizing the exponent m; e m(l) + ”z )4 nY )+ m(l) + m(Z ) ie., choosing m,” + m;) = m(zl) + m(Zz) =

(22) = ;0) = D — 1. Substituting the last inequality in Eq. (E9), we arrive at the conclusion
N 1 DN
Var((Hwc)) > E_§_23D—1 ) (E27)
where we have used the fact that the number of edges in the D-regular graph is DN/2. ]
Now we prove Theorem 2 from the main text. Lemma 1 can be generalized to the iHVA with even p rounds
[6/"6)) = Ui U - UU Uy Uy 1= = U2 |87 62), (E28)

where {8,} = {01/, ..., 0.} and {2} = {61}, 621}, with (i, j) € &, and U P2 = UL UL ... UDUS). The variance of the
Hamiltonian expectation reads

Var((Hyc)) = —2 > Varg, [(¢7(6,)|ZiZ;] 6" 8,))] = —2 > Varg, [ @)U ZZ;U ¢ (6,))].
0 @i,))e€ 0 i,))e€

Consider UP~2Z,Z,UP~? with even p. For each two-round structure Uy "U%) in 4#~?, as shown in Fig. 16(b), there are
2D ZY gates not commuted with Z;Z;. These 2D ZY gates lead to a productlon of 2D cosine functions as a precoefficient of
Z;Z;. Since UP=2 has (p — 2)/2 two-round structures U;"ZH)UZ(];), L{(P’Z)TZ[ZJ'Z/[(P’Z) generates (p — 2)D cosine functions as a
precoefficient of Z;Z;. Similar to the procedure we used in the proof of Lemma 1, integrating out the free parameters {6,}/{6,}
in the variance leads to

1
Vary, [0 @)U " ZZU 2|67 (02)]] > 50555 Vara, (977 02|72 6))]. (E29)
Combining the lower bound of Vary, [(¢§2)(02)|Z,~Z_ i |¢;2)(02))] in Lemma 1, Var({Hyc)) is lower bounded by
1 DN 1 1 DN
Var((Hyc)) > = S poaT - (E30)

E2 23D—1 2(p-2)D E2 2D(p+D-1

Therefore, we prove Theorem 2, and the BP is absent for the constant-round iHVA of D-regular graphs.

[1] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. [3] Y. Cao, J. Romero, and A. Aspuru-Guzik, Potential of quan-
Yuan, Quantum computational chemistry, Rev. Mod. Phys. 92, tum computing for drug discovery, IBM J. Res. Dev. 62, 6:1
015003 (2020). (2018).

[2] J. J. M. Kirsopp, C. Di Paola, D. Z. Manrique, M. Krompiec, [4] N. Klco, E. FE. Dumitrescu, A. J. McCaskey, T. D. Morris,
G. Greene-Diniz, W. Guba, A. Meyder, D. Wolf, M. Strahm, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J.
and D. Mufioz Ramo, Quantum computational quantification of Savage, Quantum-classical computation of Schwinger model
protein—ligand interactions, Int. J. Quantum Chem. 122, 26975 dynamics using quantum computers, Phys. Rev. A 98, 032331
(2022). (2018).

032612-18



IMAGINARY HAMILTONIAN VARIATIONAL ANSATZFOR ...

PHYSICAL REVIEW A 111, 032612 (2025)

[5] N. Klco, M. J. Savage, and J. R. Stryker, SU(2) non-Abelian
gauge field theory in one dimension on digital quantum com-
puters, Phys. Rev. D 101, 074512 (2020).

[6] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and
D. Preda, A quantum adiabatic evolution algorithm applied to
random instances of an NP-complete problem, Science 292, 472
(2001).

[7] F. Gemeinhardt, A. Garmendia, M. Wimmer, B. Weder, and
F. Leymann, Quantum combinatorial optimization in the NISQ
era: A systematic mapping study, ACM Comput. Surv. 56, 1
(2023).

[8] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles,
Challenges and opportunities in quantum machine learning,
Nat. Comput. Sci. 2, 567 (2022).

[9] A. Peruzzo, J. McClean, P. Shadbolt, M. Yung, X. Zhou, P. J.
Love, A. Aspuru-Guzik, and J. L. O’Brien, A variational eigen-
value solver on a photonic quantum processor, Nat. Commun.
5,4213 (2014).

[10] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[11] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[12] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[13] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak,
and M. Troyer, Solving strongly correlated electron models on
a quantum computer, Phys. Rev. A 92, 062318 (2015).

[14] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum
computation by adiabatic evolution, arXiv:quant-ph/0001106.

[15] G. E. Crooks, Performance of the quantum approximate
optimization algorithm on the maximum cut problem,
arXiv:1811.08419.

[16] S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, Obstacles to
variational quantum optimization from symmetry protection,
Phys. Rev. Lett. 125, 260505 (2020).

[17] E. Farhi, E. Gamarnik, and S. Gutmann, The quantum approx-
imate optimization algorithm needs to see the whole graph:
Worst case examples, arXiv:2005.08747.

[18] J. Wurtz and P. Love, Maxcut quantum approximate optimiza-
tion algorithm performance guarantees for p > 1, Phys. Rev. A
103, 042612 (2021).

[19] J. Basso, E. Farhi, K. Marwaha, B. Villalonga, and L. Zhou, in
Proceedings of the 17th Conference on the Theory of Quantum
Computation, Communication and Cryptography, Urbana-
Champaign, edited by F. Le Gall and T. Morimae (Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, Saarbriicken, 2022).

[20] V. Vijendran, A. Das, D. E. Koh, S. M Assad, and P. K. Lam,
An expressive ansatz for low-depth quantum approximate opti-
misation, Quantum Sci. Technol. 9, 025010 (2024).

[21] L. Zhu, H. L. Tang, G. S. Barron, F. A. Calderon-Vargas, N. J.
Mayhall, E. Barnes, and S. E. Economou, Adaptive quantum
approximate optimization algorithm for solving combinatorial
problems on a quantum computer, Phys. Rev. Res. 4, 033029
(2022).

[22] G. B. Mbeng, R. Fazio, and G. Santoro, Quantum annealing:
A journey through digitalization, control, and hybrid quantum
variational schemes, arXiv:1906.08948.

[23] S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D.
Bluvstein, G. Semeghini, A. Omran, J.-G. Liu, R. Samajdar,
X.-Z. Luo, B. Nash, X. Gao, B. Barak, E. Farhi, S. Sachdev,
N. Gemelke, L. Zhou, S. Choi, H. Pichler et al., Quantum
optimization of maximum independent set using Rydberg atom
arrays, Science 376, 1209 (2022).

[24] E. Pelofske, A. Bértschi, and S. Eidenbenz, Short-depth QAOA
circuits and quantum annealing on higher-order ising models,
npj Quantum Inf. 10, 30 (2024).

[25] Z. Wang, P. L. Zheng, B. Wu, and Y. Zhang, Quantum dropout:
On and over the hardness of quantum approximate optimization
algorithm, Phys. Rev. Res. 5, 023171 (2023).

[26] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nat. Commun. 9, 4812 (2018).

[27] M. Ragone, B. N. Bakalov, F. Sauvage, A. F. Kemper, C. O.
Marrero, M. Larocca, and M. Cerezo, A Lie algebraic theory
of barren plateaus for deep parametrized quantum circuits, Nat.
Commun. 15, 7172 (2024).

[28] E. Fontana, D. Herman, S. Chakrabarti, N. Kumar, R.
Yalovetzky, J. Heredge, S. H. Sureshbabu, and M. Pistoia, Char-
acterizing barren plateaus in quantum ansitze with the adjoint
representation, Nat. Commun. 15, 7171 (2024).

[29] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Cost
function dependent barren plateaus in shallow parametrized
quantum circuits, Nat. Commun. 12, 1791 (2021).

[30] T. Bode and F. K. Wilhelm, Adiabatic bottlenecks in quantum
annealing and nonequilibrium dynamics of paramagnons, Phys.
Rev. A 110, 012611 (2024).

[31] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui,
S. Martinez-Garaot, and J. G. Muga, Shortcuts to adiabatic-
ity: Concepts, methods, and applications, Rev. Mod. Phys. 91,
045001 (2019).

[32] J. Wurtz and P. J. Love, Counterdiabaticity and the quantum
approximate optimization algorithm, Quantum 6, 635 (2022).

[33] Y. Chai, Y. J. Han, Y. C. Wu, Y. Li, M. Dou, and G. P. Guo,
Shortcuts to the quantum approximate optimization algorithm,
Phys. Rev. A 105, 042415 (2022).

[34] H. Guan, F. Zhou, F. Albarrdn-Arriagada, X. Chen, E.
Solano, N. N. Hegade, and H. Huang, Single-layer digitized-
counterdiabatic quantum optimization for p-spin models,
arXiv:2311.06682.

[35] T. E. Morris, A. Kaushik, M. Roetteler, and E. C. Lotshaw,
Performant near-term quantum combinatorial optimization,
arXiv:2404.16135.

[36] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin, and X.
Yuan, Variational ansatz-based quantum simulation of imagi-
nary time evolution, npj Quantum Inf. 5, 75 (2019).

[37] M. Motta, C. Sun, A. T. K. Tan, M. J. O’Rourke, E. Ye, A. J.
Minnich, F. G. S. L. Branddo, and G. K.-L. Chan, Determining
eigenstates and thermal states on a quantum computer using
quantum imaginary time evolution, Nat. Phys. 16, 205 (2020).

[38] S. N. Sun, M. Motta, R. N. Tazhigulov, A. T. K. Tan, G. K.-L.
Chan, and A. J. Minnich, Quantum computation of finite-
temperature static and dynamical properties of spin systems
using quantum imaginary time evolution, PRX Quantum 2,
010317 (2021).

[39] G. Vidal, Efficient classical simulation of slightly entangled
quantum computations, Phys. Rev. Lett. 91, 147902 (2003).

032612-19



XIAOYANG WANG et al.

PHYSICAL REVIEW A 111, 032612 (2025)

[40] G. Vidal, Efficient simulation of one-dimensional quantum
many-body systems, Phys. Rev. Lett. 93, 040502 (2004).

[41] C. Gattringer and C. Lang, Quantum Chromodynamics on the
Lattice: An Introductory Presentation (Springer, Berlin, 2009).

[42] X. Wang, Y. Chai, M. Demidik, X. Feng, K. Jansen, and C.
Tiiystiz, Symmetry enhanced variational quantum imaginary
time evolution, arXiv:2307.13598.

[43] M. X. Goemans and D. P. Williamson, Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming, J. ACM 42, 1115 (1995).

[44] M. Larocca, F. Sauvage, F. M. Sbahi, G. Verdon, P. J. Coles, and
M. Cerezo, Group-invariant quantum machine learning, PRX
Quantum 3, 030341 (2022).

[45] J. J. Meyer, M. Mularski, E. Gil-Fuster, A. A. Mele, F. Arzani,
A. Wilms, and J. Eisert, Exploiting symmetry in variational
quantum machine learning, PRX Quantum 4, 010328 (2023).

[46] E. Sauvage, M. Larocca, P. J. Coles, and M. Cerezo, Build-
ing spatial symmetries into parameterized quantum circuits for
faster training, Quantum Sci. Technol. 9, 015029 (2024).

[47] Q. T. Nguyen, L. Schatzki, P. Braccia, M. Ragone, P. J. Coles,
F. Sauvage, M. Larocca, and M. Cerezo, Theory for equivariant
quantum neural networks, PRX Quantum 5§, 020328 (2024).

[48] M. Ragone, P. Braccia, Q. T. Nguyen, L. Schatzki, P. J. Coles,
F. Sauvage, M. Larocca, and M. Cerezo, Representation theory
for geometric quantum machine learning, arXiv:2210.07980.

[49] R. M. Karp, Complexity of Computer Computations, edited
by R. E. Miller and J. W. Thatcher (Springer, Boston, 1972),
pp- 85-103.

[50] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell, Optimal
inapproximability results for MAX-CUT and other 2-variable
CSPs? SIAM J. Comput. 37, 319 (2007).

[51] R. Herrman, P. C. Lotshaw, J. Ostrowski, T. S. Humble, and G.
Siopsis, Multi-angle quantum approximate optimization algo-
rithm, Sci. Rep. 12, 6781 (2022).

[52] K. Blekos, D. Brand, A. Ceschini, C.-H. Chou, R.-H. Li, K.
Pandya, and A. Summer, A review on quantum approximate
optimization algorithm and its variants, Phys. Rep. 1068, 1
(2024).

[53] S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-Robinson
bounds and the generation of correlations and topological quan-
tum order, Phys. Rev. Lett. 97, 050401 (2006).

[54] S. Gaurav, Height of binary tree, https://www.scaler.com/
topics/height-of-binary-tree/ (Scaler, Bangalore, 2023).

[55] J. Kleinberg and E. Tardos, Algorithm Design (Addison Wesley
Longman, Boston, 2005).

[56] L. Viola and S. Lloyd, Dynamical suppression of decoherence
in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).

[57] L. Duan and G. Guo, Suppressing environmental noise in quan-
tum computation through pulse control, Phys. Lett. A 261, 139
(1999).

[58] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open
quantum systems, Phys. Rev. Lett. 82, 2417 (1999).

[59] H. Abraham et al., Qiskit: An Open-Source Framework for
Quantum Computing (Zenodo, Geneva, 2019).

[60] A. Steger and N. C. Wormald, Generating random regular
graphs quickly, Comb. Probab. Comput. 8, 377 (1999).

[61] P. Virtanen et al., SciPy 1.0: Fundamental algorithms for scien-
tific computing in Python, Nat. Methods 17, 261 (2020).

[62] J. Rivera-Dean, P. Huembeli, A. Acin, and J. Bowles, Avoiding
local minima in variational quantum algorithms with neural
networks, arXiv:2104.02955.

[63] Wikipedia, Box plot, https://en.wikipedia.org/wiki/Box_plot
(Wikipedia, San Francisco, 2024).

[64] P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli, and
S. Woerner, Improving variational quantum optimization using
CVaR, Quantum 4, 256 (2020).

[65] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den Berg, S.
Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, and A.
Kandala, Evidence for the utility of quantum computing before
fault tolerance, Nature (London) 618, 500 (2023).

[66] N. Ezzell, B. Pokharel, L. Tewala, G. Quiroz, and D. A. Lidar,
Dynamical decoupling for superconducting qubits: A perfor-
mance survey, Phys. Rev. Appl. 20, 064027 (2023).

[67] A. Arrasmith, Z. Holmes, M. Cerezo, and P. J. Coles, Equiv-
alence of quantum barren plateaus to cost concentration and
narrow gorges, Quantum Sci. Technol. 7, 045015 (2022).

[68] E. Pelofske, A. Birtschi, and S. Eidenbenz, in High Perfor-
mance Computing, edited by A. Bhatele, J. Hammond, M.
Baboulin, and C. Kruse, Lecture Notes in Computer Science
Vol. 13948 (Springer, Cham, 2023), pp. 240-258.

[69] M. Cerezo, M. Larocca, D. Garcia-Martin, N. L. Diaz, P.
Braccia, E. Fontana, M. S. Rudolph, P. Bermejo, A. Ijaz,
S. Thanasilp, E. R. Anschuetz, and Z. Holmes, Does prov-
able absence of barren plateaus imply classical simulability?
Or, why we need to rethink variational quantum computing,
arXiv:2312.09121.

[70] M. L. Goh, M. Larocca, L. Cincio, M. Cerezo, and F. Sauvage,
Lie-algebraic classical simulations for variational quantum
computing, arXiv:2308.01432.

[71] Y. Chai, K. Jansen, S. Kiihn, T. Schwigerl, and T. Stollenwerk,
Structure-inspired ansatz and warm start of variational quan-
tum algorithms for quadratic unconstrained binary optimization
problems, arXiv:2407.02569.

[72] M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt, Graph
Edge Coloring: Vizing’s Theorem and Goldberg’s Conjecture
(Wiley, New York, 2012).

[73] A. Kosowski and K. Manuszewski, in Graph Colorings, edited
by M. Kubale, Contemporary Mathematics Vol. 352 (American
Mathematical Society, Providence, 2004), Chap. 1, pp. 1-19.

[74] X. Wang, Demonstration Data and Properties of the Quantum
Device ibm_Brisbane (Figshare, London, 2024).

[75] X. You and X. Wu, in Proceedings of the 38th International
Conference on Machine Learning, edited by M. Meila and T.
Zhang (PMLR, Cambridge, 2021), Vol. 139.

032612-20



