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Obtaining exact solutions to combinatorial optimization problems using classical computing is computa-

tionally expensive. The current tenet in the field is that quantum computers can address these problems more

efficiently. While promising algorithms require fault-tolerant quantum hardware, variational algorithms have

emerged as viable candidates for near-term devices. The success of these algorithms hinges on multiple factors,

with the design of the Ansatz being of the utmost importance. It is known that popular approaches such

as the quantum approximate optimization algorithm (QAOA) and quantum annealing suffer from adiabatic

bottlenecks, which lead to either larger circuit depth or evolution time. On the other hand, the evolution time

of imaginary-time evolution is bounded by the inverse energy gap of the Hamiltonian, which is constant for

most noncritical physical systems. In this work we propose an imaginary Hamiltonian variational Ansatz (iHVA)

inspired by quantum imaginary-time evolution to solve the MaxCut problem. We introduce a tree arrangement

of the parametrized quantum gates, enabling the exact solution of arbitrary tree graphs using the one-round

iHVA. For randomly generated D-regular graphs, we numerically demonstrate that the iHVA solves the MaxCut

problem with a small constant number of rounds and sublinear depth, outperforming the QAOA, which requires

rounds increasing with the graph size. Furthermore, our Ansatz solves the MaxCut problem exactly for graphs

with up to 24 nodes and D � 5, whereas only approximate solutions can be derived by the classical near-optimal

Goemans-Williamson algorithm. We validate our simulated results with hardware demonstrations on a graph

with 67 nodes.

DOI: 10.1103/PhysRevA.111.032612

I. INTRODUCTION

Many applications of quantum computers involve the

preparation of the ground state of a Hamiltonian system in

fields such as chemistry [1], drug design [2,3], particle physics

[4,5], combinatorial optimization [6,7], and quantum machine

learning [8]. The variational quantum eigensolver (VQE)

[9,10] is an algorithm designed for ground-state preparation

on quantum computers. It combines classical optimization

techniques with expectation values evaluated on quantum

computers. Although the VQE has been explored for use on

noisy intermediate-scale quantum (NISQ) [11] devices due to

its relatively shallow circuit depth compared to other quantum

algorithms, its practical suitability and effectiveness on these

devices remain open questions.

The success of the VQE highly relies on the efficient

parametrization of the quantum circuits. The parametrized

quantum circuit is a variational Ansatz determining what

quantum states can be prepared. There have been many ef-

forts to construct the variational Ansatz to guarantee that the

ground state of a quantum system can be prepared with high

accuracy [1,10,12,13]. Among them, the quantum approxi-

mate optimization algorithm (QAOA) Ansatz is designed to

solve combinatorial optimization problems, inspired by the

adiabatic evolution [14]. Its performance has been extensively

studied both analytically and numerically [12,15–21]. For

many-body quantum systems, a widely used Ansatz following

the same spirit of the QAOA is the Hamiltonian variational

Ansatz [13].

Many challenges exist for the QAOA Ansatz. It has been

shown that the number of QAOA Ansatz rounds should grow

linearly with the system size even in some classically solvable

tasks to find the solution with high accuracy [22] and there

exists a fundamental limitation if the rounds do not increase

faster than a logarithmic function of the system size [17]. This

requirement leads to other caveats related to the variational

optimization of the QAOA Ansatz. For example, the Ansatz

with many rounds is susceptible to noise in NISQ devices

[23,24] and its energy landscape has many local minima [25].

More importantly, generic variational Ansätze with linearly

increasing rounds suffer from the barren plateau (BP) phe-

nomenon [26–28], as demonstrated in Ref. [29], so that the

gradient of the QAOA Ansatz cannot be measured efficiently

if its number of rounds grows linearly with the system size.

The linear behavior originates from the real-time adiabatic

evolution that inspires the QAOA Ansatz. The adiabatic evo-

lution should be slow enough to avoid diabatic excitation [30],

leading to the requirement of many rounds of the QAOA
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Ansatz [14]. There are many efforts to enhance the QAOA

Ansatz using ideas of, e.g., shortcuts to adiabaticity [31]. How-

ever, the variational Ansatz with high-order counterdiabatic

terms contains many unitary gates and is difficult to imple-

ment on NISQ devices [32–35].

The imaginary Hamiltonian variational Ansatz (iHVA), in-

spired by works of quantum imaginary-time evolution (QITE)

[36–38], is distinguished from the QAOA Ansatz. Imaginary-

time evolution has no problem of diabatic excitation and is

widely used in state preparation algorithms such as tensor

networks [39,40] and Monte Carlo methods [41]. The iHVA

has been applied to the Gibbs state preparation in previous

studies [42]. In this work we propose to tackle the ground-

state problems using the iHVA. The Ansatz uses unitary gates

constrained by system symmetries as building blocks, which

can be realized on gate-based quantum devices. In this work

we apply the iHVA to the combinatorial optimization MaxCut

problem.

For the MaxCut problem, the arrangement of the

parametrized quantum gates in the iHVA impacts the solution

accuracy. We propose a tree arrangement of gates in the iHVA

for arbitrary graphs, and the corresponding Ansatz is called the

iHVA tree. We provide a theorem which states that arbitrary

tree graphs can be maximally cut exactly using the iHVA tree

with one round and sublinear depth, which cannot be achieved

using the constant-round QAOA Ansatz [22]. For more com-

plicated random D-regular graphs, we perform numerical

simulations using noiseless quantum simulators. The results

show that the iHVA tree can solve the MaxCut problem of

3-regular graphs exactly up to 14 graph nodes using constant

rounds and sublinear depth, while the QAOA Ansatz requires

rounds growing with the graph nodes. For D-regular graphs

with the number of nodes up to 24 and D � 5, the two-round

iHVA tree can exactly solve the MaxCut problem, whereas

only an approximate solution can be derived by the classi-

cal polynomial-time Goemans-Williamson (GW) algorithm

[15,43]. Furthermore, we validate our results on a real quan-

tum device by running an instance of a graph with 67 nodes.

We show that the constant-round iHVA on D-regular

graphs does not exhibit BPs. It is known that circuits of con-

stant depth are free from BPs and can be trained efficiently for

local Hamiltonians [29]. For D-regular graphs, the constant-

round iHVA has linear or sublinear depth, where the previous

results cannot be applied directly. By exploring the feature that

the number of noncommuting gates acting on each qubit has

no dependence on the system size, we prove that the variance

of the constant-round iHVA does not decay exponentially with

the graph nodes. Therefore, we prove that the constant-round

iHVA of D-regular graphs is free from BPs.

The remainder of this paper is structured as follows. In

Sec. II we present how to choose parametrized quantum gates

in the iHVA by leveraging system symmetries and an in-

troduction to the MaxCut problem. In Sec. III we explicitly

construct the iHVA for the MaxCut problem following the tree

arrangement. In Sec. IV numerical simulations are performed

to compare the performance of the QAOA, the iHVA, and the

GW algorithm. In Sec. V we demonstrate that the constant-

round iHVA is free from BPs. In Sec. VI we summarize our

results and propose some open questions to be explored in

future works.

II. FRAMEWORK

In this section we review the construction of the iHVA

proposed in Ref. [42]. Then we introduce the combinatorial

optimization MaxCut problem and basic concepts of graphs

that are used in the following sections.

A. Imaginary Hamiltonian variational Ansatz

The imaginary Hamiltonian variational Ansatz is inspired

by the QITE algorithm [36–38]. The QITE algorithm per-

forms imaginary-time evolution on quantum computers with

no need for ancillary qubits. Consider a k-local Hamiltonian

H =
∑

µ

Hµ, (1)

where Hµ is a local interaction term acting on at most k qubits.

The imaginary-time propagator of H can be decomposed by a

Trotterized-type formula

e−τH |ψ〉 = (e−�τH )L|ψ〉

=





∏

µ

e−�τHµ





L

|ψ〉 + O

(

τ 2

L

)

, (2)

where �τ = τ/L is the Trotter step. The resulting state ap-

proaches the ground state of H when τ is larger than the

inverse energy gap of H [41]. The inverse of the energy gap

typically remains constant with system size for many noncrit-

ical physical systems, such as the classical Ising chain [14].

Combinatorial optimization problems, including the MaxCut

problem, are often modeled using the classical Ising model.

Thus one can expect that the imaginary-time evolution con-

verges fast to the ground state in these cases.

For each local interaction term Hµ supported on a set

of qubits Sµ, the QITE algorithm [37] shows that the

imaginary-time propagator of each local interaction term can

be approximated by unitary gates

e−�τHµ |ψ〉 ∝
∏

m∈PSi

e−iθ (m)
µ σ (m)

µ /2|ψ〉, (3)

where PSµ
includes linear combinations of Pauli strings on the

support Sµ except for identity. For example, if Sµ includes

two qubits, then

σ (m)
µ ∈ span({IX, IY, IZ, . . . , ZY, ZZ}), (4)

with real spanning coefficients. We call σ (m)
µ a Pauli series on

Sµ. Equation (3) is approximately valid in the case that the

correlation length of the initial state |ψ〉 and the imaginary

time �τ are finite and not very large [37].

Since the imaginary-time propagator preserves symmetries

of the Hamiltonian system, Pauli series σ (m)
µ should also pre-

serve symmetries and thus can be determined. Specifically,

assuming G is a unitary symmetry group, Hµ and |ψ〉 are

invariant under transformations of the symmetry group, i.e.,

[Ug, Hµ] = 0, Ug|ψ〉 = ei f (g)|ψ〉∀ g ∈ G, (5)

where Ug is a unitary representation of the symmetry group

element g ∈ G and f (g) is a real scalar function. Then σ (m)
µ
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should be invariant by the conjugation of Ug [42,44–48],

Ugσ
(m)
µ U †

g = σ (m)
µ ∀ g ∈ G. (6)

This equation can be solved either by constructing linear sys-

tems of equations [42] or by implementing twirling operations

on σ (m)
µ [48]. Then the iHVA is constructed by applying uni-

tary gates in Eq. (3) for each local interaction term

∣

∣φ
(L)
I (θ)

〉

=
L

∏

l=1

∏

m

∏

µ

e−iθ
(m)
l,µ

σ (m)
µ /2, (7)

where L is the number of Ansatz layers and µ and m index

local interaction terms and symmetry preserving Pauli series,

respectively.

In this work we compare the iHVA and the QAOA Ansatz

[12,13]. The QAOA Ansatz encodes the real-time evolution

e−itH of the Hamiltonian H . Since the real-time propagator

also preserves unitary symmetries of the Hamiltonian system,

the Pauli series utilized in the QAOA Ansatz also satisfy

Eq. (6). Thus, the Pauli series obtained by Eq. (6) include

the ones in the QAOA if only unitary symmetry groups are

considered. These two kinds of Ansätze are distinguished if

the Hamiltonian system possesses antiunitary time-reversal

symmetry, which means that the Hamiltonian and the initial

state have only purely real entries. Time-reversal symmetry is

preserved by many chemical, quantum field, and combinato-

rial optimization Hamiltonians, such as the MaxCut problem

studied in this work. For these Hamiltonian systems, the Pauli

series used in the iHVA and the QAOA Ansatz are distin-

guished as follows:

σ (m)
µ :

{

contains odd Y letters for the iHVA

contains even Y letters for the QAOA.
(8)

For example, in the two-qubit case, σ (m)
µ of the iHVA is

spanned by

σ (m)
µ ∈ span({IY, XY,Y I,Y X,Y Z, ZY }) (9)

and of the QAOA Ansatz by

σ (m)
µ ∈ span({IX, IZ, XI, XX, XZ,YY, ZI, ZX, ZZ}).

The discriminative criterion (8) follows intuition. For the

iHVA, σ (m)
µ with odd Y letters is purely imaginary. Since

Hµ is purely real, e−iθσ (m)
µ /2 can be regarded as performing

the real-time dynamics of the imaginary Hamiltonian −iHµ,

which corresponds to the imaginary-time propagator e−�τHi .

This is the reason we refer to this Ansatz as the imaginary

Hamiltonian variational Ansatz. For the QAOA, on the other

hand, σ (m)
µ with even Y letters is purely real, which is consis-

tent with the realness of Hi. We refer to the Pauli series used

in the iHVA as the relevant series.

To highlight the difference between the iHVA and the

QAOA Ansatz, we present two toy examples. The variational

Ansatz state of the iHVA and QAOA are denoted by |φI〉
and |φR〉, respectively. Consider a one-qubit and a two-qubit

Hamiltonian

H1 = −Z, H2 = ZZ, (10)

whose iHVA and QAOA Ansatz are

H1 :

{

|φI (θ )〉 = RY (θ )|+〉
|φR(θ )〉 = RX (θ )RZ (θ )|+〉,

H2 :

{

|φI (θ1, θ2)〉 = RY Z (θ2)RZY (θ1)|++〉
|φR(θ1, θ2)〉 = RXI (θ2)RIX (θ2)RZZ (θ1)|++〉, (11)

where Rσ (θ ) = e−iσθ/2 is the Pauli exponential of Pauli string

σ . The Pauli strings in the iHVA and QAOA Ansatz contain

odd and even Y letters, respectively, and all satisfy the sym-

metry constraint in Eq. (6) (Ug = XX for the two-qubit case).

The iHVAs for these two toy examples are closely related to

the imaginary-time evolution of H1 and H2, as one can check

that

eτZ |+〉 ∝ e−iθ (τ )Y/2|+〉,

e−τZZ |++〉 ∝ e−iθ1(τ )ZY/2|++〉 = e−iθ2 (τ )Y Z/2|++〉,

where θ (τ ), θ1(τ ), and θ2(τ ) are functions of the imaginary

time τ . In these formulas, all the imaginary-time propagators

and the unitary gates can be represented by real matrices in the

computational basis, as a result of the time-reversal symmetry

kept by H1 and H2.

We study the ground-state preparation trajectories in these

two Ansätze of the one- and two-qubit examples, as presented

in Fig. 1. Figure 1(a) shows two trajectories in the Bloch

sphere as we perform gradient descent using the iHVA and

QAOA of H1 starting at θ = 0. We see that the iHVA trajec-

tory (red) is geodesic between the initial state |+〉 and the

ground state of H1 (|0〉) on the Bloch sphere, while the tra-

jectory of the QAOA (blue) is nongeodesic and would require

more iteration steps during the gradient descent. Figure 1(b)

shows the energy landscapes of the iHVA and QAOA for H2.

We see that a saddle point in the QAOA landscape appears at

(θ1, θ2) = (0, 0), which complicates the optimization process.

In contrast, the iHVA landscape does not have this problem

and is thus more favorable for optimization.

B. Graph and oriented spanning tree

We review the concepts of the tree graph and D-regular

graph, which are the types of graphs mainly studied in this

work. A graph G = (V, E ) consists of a set of N nodes i ∈ V ,

labeled by integers i = 0, . . . , N − 1 and undirected edges

(i, j) ∈ E . A tree graph is defined as a graph without a cycle.

A graph is called as a D-regular graph if each node in the

graph has D edges connected with the other nodes. Figure 2(a)

presents an example of the tree graph with six nodes, five

edges and the 3-regular graph with six nodes and nine edges.

A key concept used in this work is the oriented spanning

tree, as shown in Fig. 2(b). A spanning tree of an undirected

graph G is a tree subgraph that includes all of the vertices of G.

An oriented spanning tree is obtained by choosing a tree node

as the root node such that the tree hierarchy is subsequently

constructed. Each edge of the oriented tree connects a parent

node and a child node. For a tree graph, its oriented spanning

tree is not unique, which is determined by the chosen root.

Oriented spanning trees of a tree graph and a 3-regular graph

are shown in Fig. 2(b), as well as other useful concepts of the

oriented tree.
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|+ RZ(θ) RX(θ) |φR(θ) |+
RZZ(θ1)

RX(θ2)

|+ RX(θ2)

|+
RZY (θ1) RY Z(θ2)

|+|+ RY (θ) |φI(θ)

(a) (b)

FIG. 1. Comparison of the iHVA and the QAOA Ansatz finding the ground state of (a) H1 = −Z and (b) H2 = ZZ . (a) Gradient-descent

trajectories of the iHVA (red) and QAOA (blue) on the Bloch sphere starting at θ = 0. (b) Energy landscape of the QAOA (left) and iHVA

(right). The arrows indicate trajectories of the gradient descent.

C. MaxCut problem

The MaxCut problem is a paradigmatic test for various

Ansätze used in the VQE [12]. Given that a graph consists

of edges and nodes, MaxCut aims to partition the graph’s

nodes into two complementary sets such that the number of

edges between these two sets is as large as possible. This

problem can be formulated as follows. Suppose G = (V, E ) is

a graph with N nodes. Given an N-bit string x = xN−1, . . . , x0,

xi ∈ {0, 1}, assume cut(x) is the set of edges (i, j) such that

xi �= x j . The object of the MaxCut problem is to maximize the

cut size C(x) = |cut(x)|, i.e., the number of edges in cut(x).

For example, Fig. 2(c) gives solutions of the MaxCut problem

of the two graphs in Fig. 2(a), where the black (white) node

denotes xi = 1 (0). The MaxCut solution of the tree graph is

xtree = 101011 with cut size C(xtree) = 5 and that of the 3-

regular graph is xregular = 011001 with cut size C(xregular ) = 7.

The MaxCut solution of a graph is not unique. Specifically, the

bitwise inverse x̄tree = 010100 and x̄regular = 100110 are also

MaxCut solutions of their corresponding graphs.

For arbitrary graphs, the MaxCut solution is equal to the

maximum eigenvalue of an N-qubit Hamiltonian

Ĉ =
1

2

∑

(i, j)∈E

(I − ZiZ j ), (12)

where Zi is the Pauli-Z operator on the ith qubit and I is the

identity operator. Finding the maximum of Ĉ is equivalent

to finding the minimum of −Ĉ. Thus, we aim to find the

minimum eigenvalue of the MaxCut Hamiltonian

HMC =
∑

(i, j)∈E

ZiZ j, (13)

FIG. 2. (a) Examples of a tree graph (top) and a 3-regular graph (bottom). (b) Oriented spanning trees of the tree graph and the 3-regular

graph. Each oriented edge connects a child node at its tip and a parent node at its tail. A root node is the topmost node in an oriented tree that

has no parent node, and the leaf node does not have child nodes. The height of an oriented tree is the length of the longest downward path from

the unique root node to one of the leaf nodes. (c) MaxCut solution of the tree graph and the 3-regular graph.
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where an irrelevant constant is discarded. Thus, the MaxCut

problem is mapped to a ground-state problem and can be

solved using the VQE [12,18].

Finding the MaxCut solution for arbitrary graphs is known

to be NP-complete [49]. For this reason, we intend to find

an approximate solution for the MaxCut problem. The per-

formance of an algorithm approximately solving the MaxCut

problem can be estimated by the approximation ratio, which

is defined as

α ≡
C(x)

Cmax

, (14)

where Cmax is the exact maximum cut size of the graph, C(x)

is the cut size provided by a given algorithm, and α → 1

indicates that the algorithm could solve the MaxCut problem

with high accuracy. The Goemans-Williamson algorithm is

a classical polynomial-time algorithm that guarantees an ap-

proximation ratio of 0.8785 [43], which is optimal under the

unique game conjecture [50]. In the quantum scenario, C(x)

is transformed to a functional of a given quantum state |φ〉,
which is a superposition of bit strings |x〉, and the cut size is

evaluated as

C(x) → C[φ] ≡ 〈φ|Ĉ|φ〉

= 1
2
(|E | − 〈φ|HMC|φ〉), (15)

where Ĉ is defined in Eq. (12), N is the number of nodes,

|E | is the total number of edges of the graph, and |φ〉 is the

variational Ansatz state, which can be either the iHVA state

|φI〉 or the QAOA Ansatz state |φR〉 in this work.

III. iHVA FOR THE MAXCUT PROBLEM

This section explicitly constructs the iHVA for the Max-

Cut problem. Apart from providing relevant series of the

MaxCut Hamiltonian, we focus on choosing an appropriate ar-

rangement of the parametrized quantum gates, where the tree

arrangement and the iHVA tree are introduced for arbitrary

graphs.

A. Relevant series of the MaxCut problem

The relevant series of the MaxCut problem and the gen-

eral structure of its iHVA are given as follows. The MaxCut

Hamiltonian HMC commutes with the symmetry transforma-

tion Ug =
∏

i∈V Xi, which corresponds to the global bit-flip

symmetry [16]. Additionally, HMC is purely real such that

the time-reversal symmetry is preserved. The relevant series

corresponding to the local interaction term ZiZ j are

σ
(1)
(i, j) = ZiYj, σ

(2)
(i, j) = YiZ j . (16)

Then we define parametrized subcircuits of these two relevant

series

U
(l )
ZY ≡

∏

(i, j)∈E

e−iθl,i j ZiYj/2, U
(l )

Y Z ≡
∏

(i, j)∈E

e−iθl,i jYiZ j/2, (17)

where θl,i j are variational parameters. The variational Ansatz

is constructed by alternating these subcircuits in order and

applying to the initial state
∣

∣φ
(p)
I (θ)

〉

≡ U
(p)
ZY (Y Z ) · · ·U

(2)
Y Z U

(1)
ZY |+〉⊗N , (18)

where |+〉⊗N is the tensor product of N single-qubit states

|+〉 = (|0〉 + |1〉)/
√

2 and U
(p)
ZY (Y Z ) denotes that the last round

is U
(p)
ZY (Y Z ) if p is odd (even). Similar to L used in Eq. (7), here

we define p as the number of rounds of the iHVA. In the first

round of the iHVA, we apply one ZY gate on each edge of the

graph. In the second round, we reverse the qubits of Z and Y

such that both e−iθl,i j ZiYj/2 and e−iθl,i jYiZ j/2 are applied on one

edge, as required by the imaginary-time evolution of ZiZ j . In

one round of the iHVA, only one ZY gate is applied for each

edge of the graph. So in this way, the number of two-qubit

gates in one round of the iHVA can be compared with that in

one round of the QAOA Ansatz, as will be detailed later.

The QAOA Ansatz for the MaxCut problem is distin-

guished from the iHVA, which reads

∣

∣φ
(p)
R (β, γ )

〉

=
p

∏

l=1





∏

i∈V

e−iβl,iXi/2
∏

(i, j)∈E

e−iγl,i j ZiZ j/2



|+〉⊗N ,

where βl,i and γl,i j are variational parameters. This Ansatz

is the multiangle QAOA (MQAOA) Ansatz [51], which has

better expressibility than the original QAOA Ansatz [52]. The

number of two-qubit gates in one round of the QAOA Ansatz

is the same as in one round of the iHVA, since the two-qubit

Pauli exponentials in these two Ansätze can be converted by

single-qubit gates

e−iθl,i j ZiYj/2 = ei(π/4)X j e−iθl,i j ZiZ j/2e−i(π/4)X j . (19)

One round of the iHVA has ZY gates e−iθl,i j ZiYj/2 on differ-

ent edges that do not commute with each other. This allows

different arrangements. The arrangement of the ZY gates im-

pacts the solution accuracy. Additionally, depending on the

arrangement of the ZY gates, the circuit depth of U
(l )
ZY could

be a constant or grow logarithmically or even linearly to the

graph nodes N . We discuss the arrangement of the iHVA and

its depth in detail in the following sections.

B. iHVA on trees and tree arrangement

In this section we demonstrate how to choose an appro-

priate arrangement of Pauli exponentials e−iθl,i j ZiYj/2 in one

subcircuit U
(l )
ZY defined in Eq. (17). Our choice of the tree

arrangement is based on an observation that the MaxCut of

tree graphs can be exactly achieved by one round of the iHVA

by choosing the tree arrangement, as demonstrated below.

We use the tree graph in Fig. 2(a) as an example, whose

MaxCut solution is shown in the top panel of Fig. 2(c).

The two solutions xtree = 101011 and x̄tree = 010100 can be

obtained by preparing the ground state of its MaxCut Hamil-

tonian HMC,

|g.s.〉 =
1

√
2

(|010100〉 + |101011〉). (20)

This ground state is locally equivalent to the six-

qubit Greenberger-Horne-Zeilinger (GHZ) state (|0〉⊗6 +
|1〉⊗6)/

√
2. The GHZ state has long-range entanglement and

cannot be prepared by a constant-depth quantum circuit [53].

This provides the intuition to arrange the ZY gates following

an orientation of the tree to increase the circuit depth. Fig-

ure 3(a) shows the oriented tree and the corresponding tree
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FIG. 3. (a) Oriented tree for the tree graph in Fig. 2(a) and the

corresponding tree arrangement of the ZY gates. Each colored rect-

angle is a ZY exponential e−iθl,i j ZiY j/2 with the value of θl,i j shown

at the center of the rectangle. This oriented tree has node 3 as the

root, which is the lowest among all orientations of the tree. (b) The

highest-oriented tree of the tree graph has node 0 as the root node.

Its corresponding tree arrangement of ZY gates is illustrated.

arrangement of ZY gates in U
(l )
ZY . This circuit with variational

parameters θi, i = 1, . . . , 5, is a one-round iHVA. One can

check that the ground state (20) can be prepared by setting

θ1 = θ2 = · · · = θ5 =
π

2
. (21)

Thus, the MaxCut problem of the tree is exactly solved. This

example can be generalized to arbitrary trees, and we have the

following theorem.

Theorem 1. The MaxCut of arbitrary trees can be achieved

by the one-round iHVA following the tree arrangement.

The proof of this theorem is presented in Appendix A.

In the tree arrangement, we construct an oriented tree

whose root can be chosen arbitrarily. We can use this arbitrari-

ness to reduce the depth of the tree arrangement Ansatz. The

reduction in depth reduces the runtime of the algorithm and

improves robustness against noise on real hardware. Roughly

speaking, the tree arrangement circuit is shallower if the corre-

sponding oriented tree is lower in height. For example, the tree

arrangement in Fig. 3(a) has depth 3 in the unit of the depth of

the ZY exponential, and the height of the oriented tree is 2. On

the other hand, if the node 0 is chosen as the root, as shown

in Fig. 3(b), the corresponding tree arrangement has depth 5

and the height of the oriented tree is 4. Thus, to construct

a tree arrangement circuit with relatively small depth, we

choose the root node corresponding to the lowest oriented tree

among all nodes. This can be done on a classical computer

by first enumerating all the N nodes as the root and then

calculating the corresponding height of the oriented tree. As

ALGORITHM I. Arrangement of gates in one round of the

iHVA tree.

Require: A connected graph G = (V, E )

procedure ARRANGE(G)

1. Randomly pick a root of G. Construct a breadth-first

spanning tree T .

2. Find a root r for the tree with minimum height. Arrange

ZY gates following oriented spanning tree T with root r.

3. Define the remaining graph G′ ← G − T .

Delete isolated nodes in G′.

if G′ has no nodes then

return

else

for each connected subgraph g′ of G′ do

ARRANGE(g′).

end for

end if

end procedure

calculating the height of an oriented tree recursively requires

the time complexity of O(N ) [54], the above procedure can be

accomplished with the time complexity of O(N2).

C. iHVA on arbitrary graphs

In the preceding section we saw that the one-round iHVA

following the tree arrangement can achieve the MaxCut of

arbitrary trees. In this section we generalize the tree arrange-

ment of tree graphs to arbitrary connected graphs.

The generalization proceeds by decomposing a connected

graph into several breadth-first spanning (BFS) trees [55]. We

choose the BFS tree because the BFS tree is usually lower

in height than the other spanning trees, so the corresponding

quantum circuit has a smaller depth. One way of decomposing

a connected graph into BFS trees is shown in Fig. 4(a). In

the first step, we randomly pick a root and construct a BFS

tree, which means that a parent node connects all the adjacent

nodes as child nodes if the tree has never visited the nodes.

Constructing a BFS tree with a given root is efficient for all

connected graphs. In the second step, we find a root of the

spanning tree leading to the minimum height and arrange the

ZY gates at the rightmost end of the circuit, as described in

the preceding section. Third, apart from the spanning tree,

the remaining graph is obtained by subtracting edges in the

spanning tree from the original graph and deleting isolated

nodes that possibly appear. We delete the isolated nodes to

provide an explicit judgment on when the procedure should

be stopped, as will be detailed later. The remaining graph can

be connected or disconnected. For every connected part of the

remaining graph, we return to the first step and repeatedly

construct its BFS tree, as shown in the second line of Fig. 4(a).

This repetition is stopped in the third step if no nodes are left

after deleting isolated nodes. These steps are summarized in

the following Algorithm 1.

This algorithm can be performed efficiently on classical

computers. The root-finding procedure in the second step is

the most time-consuming part of the algorithm. Assume that

the number of edges in each spanning tree derived by the

above procedure is MEα
, where E =

⋃

α Eα is the whole edge
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FIG. 4. (a) Construction of the iHVA tree solving the MaxCut problem of arbitrary graphs. These three steps give one round U
(l )
ZY of the

iHVA tree. Each two-qubit gate represents one ZY exponential e−iθl,i j ZiY j/2. (b) The iHVA tree with two rounds. The first round has two parts

that arrange ZY gates by the procedure in (a). The second round is constructed by reversing the orientation of ZY gates to Y Z .

set of G and M =
∑

α MEα
is the total number of edges of G.

The number of nodes in each tree is MEα
+ 1. Thus, using the

time complexity O(N2) of one tree derived in the preceding

section, the total time complexity of the algorithm is upper

bounded by

∑

α

(

MEα
+ 1

)2 ∼ O(M2), (22)

which grows polynomially with the system size.

Using the above procedure, an explicit product order of ZY

gates in the U
(l )
ZY is obtained. The same order can be defined

for another subcircuit U
(l )

Y Z by reversing the orientation of ZY

gates in U
(l )
ZY to Y Z , as shown in Fig. 4(b). We call an iHVA

with each round given by the above procedure an iHVA tree.

In Fig. 4(b) we show an example of an iHVA tree with two

rounds.

For tree graphs, the one-round iHVA tree is reduced to the

tree arrangement introduced in Sec. III B. Thus, the one-round

iHVA tree can exactly cut arbitrary tree graphs, as shown in

Theorem 1. In contrast, the QAOA requires linearly growing

rounds to exactly cut lines [22], and the MQAOA with one

round can exactly cut only star graphs [51]. Both lines and

star graphs are particular tree graphs and can be cut exactly

using the one-round iHVA tree.

The advantage of the iHVA tree over the QAOA on tree

graphs is in exchange for the larger depth of the quantum cir-

cuit. Assuming an all-to-all qubit connectivity of the quantum
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FIG. 5. Simulated results for the approximation ratio α of 3-regular graphs as a function of p circuit rounds. The Ansätze considered

here include the iHVA tree, iHVA stagger, and MQAOA, with results marked by red down triangles, green crosses, and blue up triangles,

respectively. Each plot corresponds to a fixed number of nodes N , with 50 randomly generated 3-regular graphs. The box plot is used to reflect

the statistical properties of the 50 ratios. For N � 14, approximation ratios achieved by the iHVA tree are all close to 1 as p � 2.

chip, the depth of a p-round QAOA for a D-regular graph is

O(p), which has no dependence on the number of nodes N

[16]. In contrast, the depth of the p-round iHVA tree is lower

bounded by

dp = �(p ln N ) (23)

and upper bounded by

dp = O(pN ), (24)

which is distinguished from the QAOA. These bounds are

derived in Appendix B. This depth scaling could bring up

fundamental differences between the accuracy of solving the

MaxCut problem using the iHVA tree and QAOA. Although

deeper quantum circuits suffer more from errors on NISQ de-

vices, there exist error suppression methods such as dynamical

decoupling [56–58] that are suitable for the iHVA-tree-type

circuits.

The arrangement of the ZY gates in the iHVA impacts

its ability to find the MaxCut solution. To manifest this, we

introduce another arrangement of the iHVA in Appendix C,

constructed as shallow as possible among all the arrangements

by a staggered layout of the ZY gates. The iHVA following

this arrangement is called the iHVA stagger. In the following

section we numerically compare the iHVA tree, iHVA stagger,

and QAOA ansatz by testing their performance of finding the

MaxCut solution of random regular graphs.

IV. NUMERICAL RESULTS

We have seen that the iHVA tree performs better than

the QAOA Ansatz in solving the MaxCut problem of tree

graphs. In this section we numerically demonstrate that the

outperformance of the iHVA tree can be observed in solving

the MaxCut problem of more complicated D-regular graphs.

We compare the performance of the iHVA tree with the

MQAOA Ansatz and further with the classical, polynomial-

time Goemans-Williamson (GW) algorithm. The numerical

simulations are performed using the noiseless simulator of

Qiskit [59] and using the ibm_brisbane superconducting

quantum computer.

A. Simulated results

We perform numerical simulations using the Qiskit noise-

less state-vector quantum simulator [59]. In Fig. 5 we plot the

approximation ratio as a function of Ansatz rounds, with the

number of nodes N ∈ {6, 8, 10, 12, 14}. For each plot with a

fixed N , we generate 50 random 3-regular graphs [60] with

the corresponding number of nodes. The ground state of the

Hamiltonian HMC is prepared using the VQE algorithm, with

the classical optimizer SLSQP [61]. To avoid local minima

of the energy landscape as much as possible, for each opti-

mization trajectory, we adopt small constant initialization [62]

for the variational parameter θ, where each variational pa-

rameter θl,i j is chosen independently and uniformly from

[0, 0.001]. The optimization is performed five times with

different initializations for each graph, and the largest ap-

proximation ratio α among the five repetitions is selected and

plotted. The iHVA tree, iHVA stagger, and MQAOA Ansatz

results are marked by red down triangles, green crosses, and

blue up triangles, respectively. The statistical properties of the

results are reflected using the box plot [63], where the middle

line of the box denotes the median of the data. For all the

number of nodes and the circuit rounds, the performance of

the iHVA tree is better than that of the iHVA stagger, and both

are better than the MQAOA. For N � 14, approximation ra-

tios achieved by the iHVA tree are all close to one as p � 2. To

achieve the same accuracy, the MQAOA requires more rounds

as N increases, i.e., p � 2, 3, 4 for N = 6, 8, 10, respectively.

This behavior of the MQAOA is consistent with previous

studies [22].

For larger graph sizes and regular graphs beyond

D = 3, we perform numerical simulations using the iHVA

tree with fixed p = 2. During the optimization, we use a

conditional value at risk (CVaR) with a confidence level 0.1

as the objective function, which has been shown to accelerate

optimization for combinatorial optimization problems [64].

Figure 6 plots the approximation ratios for 50 graphs and their

box plots as a function of graph nodes N , where 50 random D-

regular graphs are generated for each N ∈ {8, 12, . . . , 24} and

D ∈ {3, 4, 5}. The performance of the classical, polynomial-

time GW algorithm on the same test graphs is plotted with

gray circles. For each graph, both the GW algorithm and VQE
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FIG. 6. Approximation ratio α of D-regular graphs as a function of graph nodes N , reached by the two-round iHVA tree and GW algorithm,

where D = 3, 4, 5 for each plot. For each D and N , approximation ratios of 50 random D-regular graphs derived by these two algorithms are

plotted and marked by red down triangles and gray circles, respectively. Compared with the GW results, the iHVA tree can exactly solve the

MaxCut problem for all the randomly generated regular graphs with N up to 24 and D � 5.

with small constant initialization are repeated five times, and

the largest approximation ratio is selected and plotted. We see

that the iHVA tree can exactly solve the MaxCut problem for

all the randomly generated regular graphs with N up to 24 and

D � 5, while the GW algorithm struggles to achieve the exact

solutions for some particular graphs.

The advantage of the iHVA tree compared with the iHVA

stagger and QAOA Ansatz can be partially explained by look-

ing at the backward light cone of an observable ZiZ j in these

Ansätze, as shown in Fig. 7. The light cone of the one-round

iHVA stagger and QAOA covers only a constant number of

qubits, while the light cone of the iHVA tree covers the whole

graph. This means that the one-round iHVA tree is accessible

to the global information of the graph, while the iHVA stagger

and QAOA are not. The global information is important for

the accurate solution of the MaxCut problem [17], and this

is also a part of the reason why the MaxCut problem is hard

to solve using classical computers. Additionally, the global

FIG. 7. Illustration of the backward light cone of the observable

ZiZ j in one round of (a) the iHVA stagger or QAOA and (b) the

iHVA tree on a cycle graph. The two-qubit gate denotes e−iγ ZZ/2 for

the QAOA and e−iθZY/2 for the iHVA. Single-qubit gates e−iβX/2 in

the QAOA have no impact on the backward light cone and are not

explicitly presented.

backward light cone indicates that the expectation of ZiZ j

cannot be calculated directly in the Heisenberg picture. On the

other hand, for the one-round iHVA stagger and QAOA, the

expectation of ZiZ j can be calculated efficiently on classical

computers by involving a constant number of qubits. From

this perspective, the iHVA tree could be harder to simulate

classically and have more quantum effects involved than the

iHVA stagger and QAOA ansatz, thus providing higher accu-

racy than the latter two.

B. Hardware results

We compare the iHVA tree and QAOA ansatz using IBM’s

quantum hardware to solve the maximum eigenvalue problem.

Consider a random weighted Hamiltonian

Hw =
1

2

∑

(i, j)∈E

(I − wi jZiZ j ), (25)

where E is a set of edges of a heavy-hex connectivity graph

G = (V, E ) with the number of nodes N = 67 and wi j are ran-

domly chosen to be ±1. Here G is tailored to the connectivity

of the IBM Eagle-class heavy-hex devices [59,65], as shown

in Appendix D. The performance of the variational Ansatz is

evaluated using an approximation ratio defined by

α(x) =
〈x|Hw|x〉

maxx0
〈x0|Hw|x0〉

, (26)

given a classical bit string x by measuring a quantum state

in the Pauli-Z basis. This definition is analogous to the ap-

proximation ratio of the MaxCut problem in Eq. (14). The

exact maximum eigenvalue maxx0
〈x0|Hw|x0〉 for the 67-node

heavy-hex graph G can be obtained by the greedy algorithm.

The greedy algorithm can provide a good approximation to

maxx0
〈x0|Hw|x0〉 since G has a small number of cycles (see

Appendix D). However, the greedy algorithm does not work

for general graphs.

For the hardware demonstrations, we use the equal-angle

version of the iHVA tree and the QAOA Ansatz with one

032612-9



XIAOYANG WANG et al. PHYSICAL REVIEW A 111, 032612 (2025)

FIG. 8. Hardware results for the probability distributions of α(x)

by 2048 measurements using the iHVA tree (red) and the QAOA

Ansatz (blue). The solid and dotted lines label the positions of the

maximum and mean values of the distributions, respectively. The

green solid line denotes the position of α(x) = 1. The demonstration

is performed using 67 qubits of ibm_brisbane.

round, defined by

|φI (θ )〉 =
∏

(i, j)∈E

e−iθwi j ZiYj/2|+〉⊗N ,

|φR(β, γ )〉 =
∏

i∈V

e−iβXi/2
∏

(i, j)∈E

e−iγwi j ZiZ j/2|+〉⊗N , (27)

which have one and two variational parameters to be op-

timized, respectively. For the iHVA tree, the ZY gates are

arranged according to the steps provided in Fig. 4 and the

QAOA gates are arranged to be as shallow as possible [16].

We perform the VQE using the above two Ansätze on

the quantum hardware ibm_brisbane [59]. The iHVA-tree

circuit performed on the hardware and its layout on the

ibm_brisbane coupling map are shown in Appendix D.

The optimization is performed using the classical optimizer

COBYLA [61] and CVaR as the objective function. Each COBYLA

optimization trajectory starts using small constant initializa-

tion and iterates 20 steps, and 1024 measurement shots are

used to evaluate one CVaR expectation. After the optimization,

we take 2048 measurement shots using the optimized vari-

ational parameters and calculate their α(x). The probability

distributions of α(x) are plotted in Fig. 8(b). We see that

both the maximum and mean α of the iHVA tree are corre-

spondingly larger than the ones of the QAOA Ansatz, and the

maximum α of the iHVA tree reaches an approximation ratio

of 0.963. These results show the benefit of using the iHVA

tree over the QAOA in solving large-scale combinatorial opti-

mization problems.

When the above two Ansätze are executed on the hardware,

dynamic decoupling with a super-Hahn sequence [66] is used

to suppress the decoherence error during the idle periods of

the qubits. This technique significantly improves the behavior

of the iHVA tree since its qubits have long idle periods due to

its treelike structure.

V. ABSENCE OF A BARREN PLATEAU

FOR THE CONSTANT-ROUND iHVA

A variational Ansatz with a constant number of rounds is

efficient in the number of quantum gates and could be more

resilient to decoherence in quantum devices, compared to

the Ansätze with rounds growing with the system size. More

importantly, such Ansätze could be free from barren plateaus

(BPs) [26]. A variational Ansatz with BPs cannot be optimized

efficiently due to the exponentially vanishing gradients of

its energy landscape. Barren plateaus can be diagnosed by

calculating the variance of the energy expectation over the

variational parameters

Var(〈HMC〉) ≡ Varθ

(

〈φ(θ)|
HMC

E0

|φ(θ)〉
)

, (28)

where E0 is the minimum eigenvalue of the Hamiltonian HMC,

as a normalization factor. If Var(〈HMC〉) vanishes exponen-

tially with the number of nodes N , then the energy landscape

of the Ansatz is said to exhibit BPs [67].

For the constant-round iHVA with arbitrary arrangements

of the ZY gates, the following theorem holds.

Theorem 2. For the p-round iHVA in Eq. (18) solving

the MaxCut problem on D-regular graph with N nodes, if

p is even, the variance of the energy expectation is lower

bounded by

Var(〈HMC〉) �
DN

E2
0 2D(p+1)−1

. (29)

This theorem is proved by explicitly calculating

Var(〈HMC〉) in the Heisenberg picture, as shown in

Appendix E.

According to this theorem, if the degree D is a con-

stant and the ground-state energy E0 is of O(poly(N )),

because the exponent in Eq. (29) does not depend on graph

nodes N , the variance decays at most polynomially in N .

Therefore, the constant-round iHVA does not exhibit BPs to

solve the MaxCut problem of D-regular graphs. This theo-

rem guarantees that the gradient calculated in the previous

numerical simulations can be measured efficiently using real

quantum devices.

Figure 9 depicts the variance of the normalized energy

expectation as a function of the graph nodes N , where the two-

round iHVA tree is used. We randomly generate 50 graphs,

uniformly sample variational parameters 1024 times from

[0, 4π ], and calculate the variance of the energy expectations.

Each data point is averaged over the 50 graphs. It is shown that

the variance of D-regular graphs (where D = 3, 4, 5) decays

polynomially with N , which is consistent with the theoretical

lower bound given in Eq. (29).

The above theorem can be applied to graphs with more

edges than regular graphs with a constant D. For example,

the all-to-all connected complete graph is an (N − 1)-regular

graph, and the Erdős-Rényi graph connecting each pair of

nodes with probability q is effectively a q(N − 1)-regular

graph. For these graphs, the lower bound of the variance

decays exponentially with N , so the gradient of their constant-

round iHVA vanishes exponentially with N . As numerically

demonstrated in Fig. 9, for the two-round iHVA tree of the
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FIG. 9. Variance of the normalized energy expectation as a func-

tion of the graph nodes N . The Ansatz used is the two-round iHVA

tree. We test D-regular graphs (where D = 3, 4, 5) and Erdős-Rényi

graphs with q = 0.5, with results marked by blue circles, orange up

triangles, green down triangles, and red crosses, respectively. Within

the plot range, the variance decays polynomially with N for regular

graphs and exponentially for Erdős-Rényi graphs. The y axis is the

logarithmic scale.

Erdős-Rényi graph (q = 0.5), the variance decays exponen-

tially with the graph nodes up to N = 16.

This result shows that the constant round iHVA tree is

no panacea. Therefore, special attention has to be paid when

using the iHVA tree for arbitrary graphs. Although both the

iHVA tree and QAOA suffer from BPs for certain problems,

the iHVA tree would still need fewer rounds compared to the

QAOA.

VI. CONCLUSION AND OUTLOOK

Common quantum computing approaches to solve the

MaxCut problem such as the QAOA or quantum annealing

suffer from an adiabatic bottleneck that leads to either larger

circuit depth or longer evolution time [24,30,68]. On the

other hand, the evolution time of imaginary-time evolution

is bounded by the inverse energy gap of the problem Hamil-

tonian [41]. The inverse of the energy gap typically remains

constant with system size for many noncritical physical sys-

tems, such as the classical Ising chain [14]. Combinatorial

optimization problems, including the MaxCut problem, are

often modeled using the classical Ising model. This consti-

tutes the motivation to build a variational Ansatz based on

imaginary-time evolution.

In this work we introduced a variational Ansatz, the

imaginary Hamiltonian variational Ansatz, to solve the com-

binatorial optimization MaxCut problem. The construction of

the iHVA leverages the bit-flip and time-reversal symmetries

of the MaxCut Hamiltonian and the imaginary-time evolution.

Although the iHVA is built on the principles of imaginary-

time evolution, we do not perform imaginary-time evolution

on quantum circuits, which is distinguished from previous

works of the QITE algorithm [36–38,42].

The iHVA for the MaxCut problem arranges ZY gates

utilizing notions of graph theory. We proposed the tree ar-

rangement of ZY gates based on the graph’s spanning tree

and showed that the MaxCut of arbitrary tree graphs can be

achieved exactly by the tree arrangement. Generalizing the

tree arrangement of tree graphs onto arbitrary graphs leads

to the iHVA tree. We numerically showed the advantage of

the iHVA tree over the QAOA in solving the MaxCut prob-

lem. The performance of the constant-round iHVA tree is

better than the classical Goemans-Williamson algorithm in

solving the MaxCut problem on D-regular graphs with up to

24 nodes. Additionally, we performed demonstrations using

real quantum hardware on a 67-node graph with heavy-hex

connectivity, further demonstrating the advantage of the iHVA

tree over the QAOA on the large-scale problem. These re-

sults validate our ideas of constructing variational Ansätze

according to imaginary-time evolution and the oriented span-

ning tree or, more generally, a directed graph [55]. The idea

of arranging quantum gates using directed graphs can be

adapted to other variational Ansätze such as the Hamilto-

nian variational Ansatz (HVA) and the unitary coupled-cluster

Ansatz [9].

Theoretically, the performance guarantees of the iHVA

can be derived similarly to the ones given in the QAOA

[12,17–19]. The performance guarantees in the QAOA are de-

rived based on the locality of the Ansatz. However, the iHVA

tree proposed in this work is highly nonlocal, so the method

used in the QAOA cannot be adapted to the iHVA tree directly.

There is no performance guarantee proposed in the literature

for nonlocal variational Ansätze. While our numerical results

demonstrate the benefits of the proposed iHVA regarding local

minima, saddle points, and the necessary number of rounds,

we leave the study of theoretical performance guarantees to

future work.

We showed that the constant-round iHVA tree of regular

graphs does not exhibit BPs. This result has many implica-

tions. First, this allows the iHVA tree to outperform the QAOA

on MaxCut problems with regular graphs. Second, this opens

up the question of classical simulability of the constant-round

iHVA tree based on the recent conjecture by Cerezo et al. [69].

Based on this conjecture, it may be possible that the constant-

round iHVA tree is classically simulable. For instance, the

recently introduced g-sim method [70] could be a potential

method to simulate constant-round iHVA-tree circuits. Such

a result would imply the classical easiness of solving the

MaxCut problem on D-regular graphs. Moreover, this would

make the study of the iHVA tree on Erdős-Rényi graphs more

valuable, since we demonstrate that the constant-round iHVA

tree exhibits BPs. In this case, warm start methods such as the

one proposed by Chai et al. [71] could be used to support the

optimization of the iHVA.

Finally, the iHVA can be constructed for a broader range

of quantum systems, such as particle-number-preserving

chemical and condensed-matter models, and lattice gauge

theories preserving local gauge symmetries. These systems

also preserve time-reversal symmetries. Thus, their iHVAs

are distinguished from the commonly employed HVA. One

may observe the advantage of the iHVA over the HVA in

the ground-state preparation of these quantum systems. Sim-

ilarly, Pelofske et al. studied the performance of the QAOA

on higher-order Ising models [24]. In their results, it can

be seen that even short-depth QAOA circuits lead to saddle

points and local minima. Employing the iHVA on higher-

order problems has the potential to simplify the optimization

processes.
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APPENDIX A: PROOF OF THEOREM 1

The MaxCut problem of tree graphs can be exactly solved

by one round of the iHVA tree, as guaranteed by Theorem 1.

Now we present the proof.

Proof. Theorem 1 can be proved by mathematical induc-

tion. Our goal is to prepare the ground state of HMC from the

initial state |+〉⊗N . In the ground state, for each pair of parent

and child nodes of the tree, as defined in Fig. 2(a), their 0 and 1

states are opposite. The first step of preparing this ground state

is choosing an arbitrary node p0 ∈ V as the tree’s root. Then

we choose an arbitrary child node c0 of the root to implement

a ZY exponential with the parameter θ = π/2,

e−i(π/4)Zp0
Yc0 |++〉 =

1
√

2
(|01〉 + |10〉), (A1)

which leads to opposite 0 and 1 states between p0 and c0. For

each pair of a parent node p and a child node c, the induction

hypothesis is that the parent node has been rotated into a

component of the GHZ-type state by the upstream ZY gates

of the parent node p, and the child node remains as the initial

state

|φ〉 ≡
1

√
2

(|s〉|0〉p + |s̄〉|1〉p)|+〉c, (A2)

where s is a 0 or 1 bit string of the upstream qubits of p and

s̄ is its bitwise inverse. The downstream qubits of c are in the

|+〉 state and are omitted. Implementing a ZY exponential on

this state leads to

e−i(π/4)ZpYc |φ〉 =
1

√
2

(|s〉|0〉p|1〉c + |s̄〉|1〉p|0〉c). (A3)

An example of this implementation is illustrated in

Fig. 10, where the ZY exponential e−i(π/4)ZpYc rotates

the state |φ〉 = 1√
2
(|10〉23|1〉p + |01〉23|0〉p)|+〉c|++〉01 to

1√
2
(|10〉23|1〉p|0〉c + |01〉23|0〉p|1〉c)|++〉01. Since the result-

ing state in Eq. (A3) is still a GHZ-type state and the 0 and

1 states between p and c are opposite, by induction, ZY gates

following the tree arrangement can generate the ground state

of HMC of the tree. Thus, we prove that the targeting ground

FIG. 10. Illustration for the proof of Theorem 1. The rightmost

ZY exponential e−i(π/4)ZpYc on the parent node p and the child node

c rotates the state |φ〉 = 1√
2
(|10〉23|1〉p + |01〉23|0〉p)|+〉c|++〉01 to

1√
2
(|10〉23|1〉p|0〉c + |01〉23|0〉p|1〉c )|++〉01. This circuit is a subcir-

cuit of the one shown in Fig. 3(a).

state can be prepared using the one-round iHVA following the

tree arrangement. �

A natural corollary of Theorem 1 is that arbitrary bipartite

graphs can be cut exactly using the one-round iHVA tree. The

MaxCut of any bipartite graphs can be obtained by cutting

its arbitrary spanning trees, as shown in Fig. 11. To cut the

spanning tree, we set the parameters in the one-round iHVA

tree θ1,i j = π/2 for edges (i, j) in the spanning tree (black

line) and θ1,i′ j′ = 0 for edges (i′, j′) in the rest of the graph

(gray line). In this example, we see that setting all parameters

free in the iHVA tree helps to improve the solution accuracy

of the iHVA tree. On the other hand, if we sets all parameters

equal, the bipartite graph cannot be cut exactly using the one-

round iHVA tree. This is one of the reasons we choose all free

parameters in the construction of the iHVA.

APPENDIX B: CIRCUIT DEPTH OF THE iHVA TREE

The arrangement of ZY gates in the iHVA tree leads to the

depth of one round U
(l )
ZY (Y Z ) growing with the number of graph

nodes. In this Appendix we provide bounds on the depth of the

iHVA tree of D-regular graphs.

We first consider 2-regular graphs, which are rings; their

iHVA tree are ladder arranged in one round and the depth

grows linearly with the graph nodes N . For a D-regular graph

G with D > 2, the number of edges is ND/2. The depth of

one round of the iHVA tree cannot be larger than the number

of edges. Thus we derive an upper bound on the depth of the

p-round iHVA tree

dp = O(pN ). (B1)

On the other hand, the depth of the one-round iHVA

tree is lower bounded by the height of the graph’s spanning

tree [see the definition of tree height in Fig. 2(b)]. Because

one descendant edge of a node in the spanning tree increases

the circuit depth by one ZY gate depth, the spanning tree of a

D-regular graph is a (D − 1)-ary tree, which means that each

node has at most D − 1 child nodes. Fixing the tree height h,

a (D − 1)-ary tree has the maximum number of nodes if every

node has D − 1 child nodes. Thus, we have

N �

h
∑

i=0

(D − 1)i =
(D − 1)h+1 − 1

D − 2
. (B2)
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FIG. 11. Illustration showing that the one-round iHVA tree can exactly cut all bipartite graphs. The bipartite graph in the left panel can be

exactly cut by cutting its spanning tree (black lines in the middle panel) and the other edges are cut automatically due to the bipartition of the

graph (see the right panel). The spanning tree can be cut exactly using the one-round iHVA tree, where the tree edges (black lines in the middle

panel) have the parameter θ = π/2 and the rest edges (gray lines in the middle panel) have the parameter θ = 0.

As D > 2, the height of the spanning tree is lower bounded by

h �
ln[N (D − 2) + 1]

ln(D − 1)
− 1. (B3)

Thus the depth of the p-round iHVA tree is lower bounded by

dp = �(p ln N ). (B4)

To verify the derived bounds, we plot the depth of the one-

round iHVA tree as a function of N , shown in Fig. 12. Here

we generate 200 random D-regular graphs and count their

iHVA-tree depth by the depth of the ZY gate. The figure plots

the average depth, and the colored bands denote the maximum

and minimum depths among the 200 graphs. We see that for

D ∈ {3, 4, 5}, the depth grows sublinearly with the number

of nodes for the randomly generated graphs. This behavior is

consistent with the upper and lower bounds given by Eqs. (B1)

and (B4), respectively.

APPENDIX C: iHVA STAGGER ANSATZ

In the main text we introduced the iHVA tree for the Max-

Cut problem, where the arrangement of ZY gates in the iHVA

is provided explicitly. In this Appendix we provide another

arrangement of the iHVA. This arrangement is inspired by

the shallowest arrangement proposed for the QAOA Ansatz

FIG. 12. Depth of one round of the iHVA tree on D-regular

graphs as a function of the graph nodes. Results for D ∈ {3, 4, 5}
are marked by blue circles, orange up triangles, and green down

triangles, respectively. Each data point is the average depth and the

colored band denotes the maximum and minimum depth among 200

randomly generated D-regular graphs.

[16], which makes the iHVA as shallow as possible. The

corresponding iHVA with this arrangement is called the iHVA

stagger.

Consider one round of the iHVA

U
(l )
ZY ≡

∏

(i, j)∈E

e−iθl,i j ZiYj/2, (C1)

defined on a graph G = (V, E ) with N nodes and a maximum

degree D. Its iHVA stagger is constructed as follows. First,

we make an edge coloring of G, which means each edge is

assigned a color so that no two incident edges have the same

color. For example, Fig. 13(a) gives an edge coloring for a

3-regular graph with six nodes. According to Vizing’s theorem

[72], there exists an edge coloring utilizing at most D + 1

colors. Assume E = E1 ∪ · · · ∪ ED+1 is such an edge coloring.

For each color c ∈ {1, . . . , D + 1} we define the unitary gate

U (l )
c =

∏

(i, j)∈Ec

e−iθl,i j ZiYj/2. (C2)

As all the edges in Ec are not adjacent, the order of ZY gates in

this product is well defined, and all ZY gates can be realized

on quantum devices in parallel. Then the one-round iHVA

stagger is arranged by U
(l )
ZY = U

(l )
D+1 · · ·U (l )

2 U
(l )
1 . The U

(l )
ZY of

the 3-regular graph in Fig. 13(a) is shown in Fig. 13(b). This

subcircuit has a depth of at most D + 1. Another subcircuit

U
(l )

Y Z is constructed by reversing the qubits of Z and Y in U
(l )
ZY ,

which also has a depth of at most D + 1. Therefore, the iHVA

stagger with p rounds has a depth of at most p(D + 1), which

has no dependence on the number of nodes.

FIG. 13. (a) Edge coloring of a 3-regular graph. (b) Subcircuit

U
(l )
ZY following the edge coloring of the 3-regular graph. Two-qubit

gates e−iθl,i j ZiY j/2 on edges with the same color can be applied

simultaneously.
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FIG. 14. (a) Heavy-hex connectivity graph with 67 nodes used in the hardware demonstration (left panel) and its layout on

ibm_brisbane’s coupling map (right panel). A solid (dashed) line in the graph denotes a weight wi j = +1 (−1). The coupling map of

ibm_brisbane is colored to represent the readout error for each qubit and the two-qubit echoed cross-resonant (ECR) gate error for each qubit

connection. (b) One-round iHVA-tree circuit executed on 67 qubits of ibm_brisbane. The definition of the quantum gates can be found in the

IBM quantum platform [59].

For an arbitrary graph, to construct the iHVA stagger as

shallow as possible, we need to find an edge coloring using

as few colors as possible. The general problem of finding

an optimal edge coloring is NP-hard. In practice, we use the

greedy coloring algorithm [73] to derive an edge coloring with

a few colors.

APPENDIX D: SETUP OF THE HARDWARE

DEMONSTRATION

In the hardware demonstration shown in Sec. IV B, we

found the maximum eigenvalue of the random weighted

Hamiltonian (25), i.e., Hw = 1
2

∑

(i, j)∈E (I − wi jZiZ j ), where

E is a set of edges of a heavy-hex connectivity graph G =
(V, E ) with 67 nodes and wi j are edge weights randomly

chosen as ±1, as shown by the solid and dashed lines, respec-

tively, in Fig. 14(a). The graph is tailored to the coupling map

of the IBM Eagle-class heavy-hex devices ibm_brisbane

[65] shown in the right panel of Fig. 14(a). The coupling map

is colored to represent the readout error for each qubit and

the two-qubit echoed cross-resonant gate error for each qubit

connection. Other single-qubit properties of ibm_brisbane

are summarized in Table I. All hardware data are obtained

from the IBM cloud quantum platform [59] and more details

are available in [74].

The one-round iHVA-tree circuit of the heavy-hex con-

nectivity graph executed on ibm_brisbane is illustrated in

Fig. 14(b). This figure is generated by the IBM cloud quantum

platform [59].

APPENDIX E: PROOF OF THEOREM 2

In this Appendix we prove that the constant-round iHVA

for the MaxCut problem is free from the barren plateau phe-

nomenon. As explained in the main text, we aim to provide a

lower bound on the variance of the Hamiltonian expectation

Var(〈HMC〉). For convenience, we first consider the 2-round

TABLE I. Summary of single-qubit properties of ibm_brisbane

on the same day the hardware demonstrations were performed.

Parameter Median Mean Min Max

Frequency (GHz) 4.91 4.90 ± 0.11 4.61 5.12

Anharmonicity (MHz) 308.42 308.66 ± 5.38 289.81 359.05

T1 (µs) 222.18 218.62 ± 71.64 43.43 380.24

T2 (µs) 142.66 151.25 ± 87.70 13.17 459.64
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iHVA. Its variance is given by

Var(〈HMC〉) = Varθ

(

〈

φ
(2)
I (θ)

∣

∣

HMC

E0

∣

∣φ
(2)
I (θ)

〉

)

=
1

E2
0

Varθ





∑

(i, j)∈E

〈

φ
(2)
I (θ)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ)

〉



, (E1)

where
∣

∣φ
(2)
I (θ)

〉

= U
(2)

Y Z U
(1)
ZY |+〉⊗N , U

(2)
Y Z =

∏

(i, j)∈E

e−iθ2,i jYiZ j/2, U
(1)
ZY =

∏

(i, j)∈E

e−iθ1,i j ZiYj/2. (E2)

Then we have the following lemma.

Lemma 1. For the 2-round iHVA in Eq. (E2) solving the

MaxCut problem on the D-regular graph with N nodes, the

variance of the energy expectation is lower bounded by

Var(〈HMC〉2) �
DN

E2
0 23D−1

. (E3)

Proof. First, we show that the mean of the Hamiltonian

expectation is zero. The mean of the Hamiltonian expectation

reads

Eθ





∑

(i, j)∈E

〈

φ
(2)
I (θ)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ)

〉





=
∑

(i, j)∈E

∫

Dθ
〈

φ
(2)
I (θ)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ)

〉

, (E4)

where Dθ ≡
∏

(i, j)∈E (
dθ1,i j

2π
)(

dθ2,i j

2π
) is the measure over the cir-

cuit parameters. Viewing from the Heisenberg picture, the

expectation 〈φ(2)
I (θ)|ZiZ j |φ(2)

I (θ)〉 can be derived by sequen-

tially conjugating ZY gates on ZiZ j , for example,

eiθYiZk/2ZiZ je
−iθYiZk/2 = cos θZiZ j − sin θXiZ jZk . (E5)

Thus, new Pauli strings such as XiZ jZk appear in the expres-

sion. After conjugating all the ZY gates, it remains a linear

combination of Pauli strings. The only Pauli strings contribut-

ing to the expectation are those consisting only of Pauli-X

letters because

〈+|⊗Nσ |+〉⊗N

=
{

1 for σ ∈ {I, X0, X1, X0X1, . . . , X0X1 . . . XN−1}
0 otherwise.

(E6)

Meanwhile, as each of the ZY gates in |φ(2)
I (θ)〉 have a free

angle, it can be seen that the coefficient of each Pauli string

in the linear combination must be a product of cos or sin

functions and each cos θ1 (2),i j or sin θ1 (2),i j appears at most

once. After the integration
∫

Dθ, since

∫ 2π

0

dθ

2π
cos θ =

∫ 2π

0

dθ

2π
sin θ = 0, (E7)

each coefficient in the linear combination vanishes. Thus, the

integration
∫

Dθ〈φ(2)
I (θ)|ZiZ j |φ(2)

I (θ)〉 and the mean of the

Hamiltonian expectation in Eq. (E4) vanish consequently.

To simplify the calculation of the variance, we assume that

all the expectations of ZiZ j are mutually independent, i.e.,

Eθ

(〈

φ
(2)
I (θ)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ)

〉〈

φ
(2)
I (θ)

∣

∣ZkZl

∣

∣φ
(2)
I (θ)

〉)

= Eθ

(〈

φ
(2)
I (θ)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ)

〉)

Eθ

(〈

φ
(2)
I (θ)

∣

∣ZkZl

∣

∣φ
(2)
I (θ)

〉)

(E8)

in the case (i, j) �= (k, l ). This assumption is examined nu-

merically as shown in Fig. 15. With this assumption, the

variance and summation in Eq. (E1) can be exchanged, i.e.,

Var(〈HMC〉) =
1

E2
0

∑

(i, j)∈E

Varθ

[〈

φ
(2)
I (θ)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ)

〉]

. (E9)

Next we provide a rigorous lower bound on the vari-

ance Varθ[〈φ(2)
I (θ)|ZiZ j |φ(2)

I (θ)〉]. When we calculate the

expectation 〈φ(2)
I (θ)|ZiZ j |φ(2)

I (θ)〉, a general structure of the

two-round iHVA is shown in Fig. 16(a). In the middle of

the circuit, there exists an e−iθ1YiZ j/2 and an e−iθ2ZiYj/2, shown

as the colored gates in the figure. As our conclusion has no

concern about which qubit is i or j, the order of these two

gates is irrelevant. Other ZY gates do not connect qubit i and

FIG. 15. Numerical verification of the assumption in Eq. (E8)

that the expectations of observables ZiZ j and ZkZl with the iHVA

are mutually independent. Here a D-regular graph with N nodes and

the edges (i, j), (k, l ) ∈ E are randomly chosen and the variational

parameters θ are uniformly sampled 2048 times for each data point.

The covariance Eθ (〈φ (2)
I (θ)|ZiZ j |φ (2)

I (θ)〉〈φ (2)
I (θ)|ZkZl |φ (2)

I (θ)〉) van-

ishes for arbitrary D-regular graphs with N nodes within the error

of statistics. So the left-hand side of Eq. (E8) is zero with high

probability, equal to the theoretical value of the right-hand side of

Eq. (E8).
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FIG. 16. (a) General structure of ZY gates in the two-round iHVA. Here U (α), U (β), and U (γ ) are gate blocks of ZY gates and m
(i)
Y , m

(i)
Z ,

n
(i)
Y , and n

(i)
Z (i ∈ {0, 1, 2}) are the numbers of gates. (b) Concrete example of the gate blocks U (α), U (β), and U (γ ) and the numbers of gates.

j and thus are oriented outside the figure. The expectation of

ZiZ j reads

〈

φ
(2)
I (θ)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ)

〉

= 〈+|⊗NU †(γ )eiθ2ZiYj/2U †(β)eiθ1YiZ j/2U †(α)ZiZ jU (α)

× e−iθ1YiZ j/2U (β)e−iθ2ZiYj/2U (γ )|+〉⊗N , (E10)

where the ZY gate blocks U (α), U (β), and U (γ ) indicating

ZY gates with the parameters {α,β, γ} = {θ}, as shown in

Fig. 16(a). In the figure m
(i)
Y , m

(i)
Z , n

(i)
Y , and n

(i)
Z (i ∈ {0, 1, 2})

denote the number of gates. For example, m
(0)
Z denotes there

are m
(0)
Z gates in U (α) connecting qubit i and other qubits like

e−iθZiYk/2 with k ∈ V/{i, j}. Figure 16(b) provides an explicit

example of the concrete components of U (α), U (β), and

U (γ ). The corresponding values of m
(i)
Y , m

(i)
Z , n

(i)
Y , and n

(i)
Z are

presented explicitly. These 12 integers are not independent.

Since the iHVA is constructed for the D-regular graph, the

total number of gates connecting qubit i and other qubits is

2D (for two rounds), where D gates are like e−iθZiYk/2 and the

other D gates are like e−iθYiZk/2. Thus, the 12 gate numbers

satisfy the relations

2
∑

i=0

m
(i)
Y =

2
∑

i=0

m
(i)
Z =

2
∑

i=0

n
(i)
Y =

2
∑

i=0

n
(i)
Z = D − 1. (E11)

With the above notation, we first calculate how the right-

most gate block U (α) in Fig. 16(a) conjugates on the

observable ZiZ j under Heisenberg picture. An illustration of

two gates conjugating on ZiZ j is shown in Fig. 17, where we

utilize the relation

eiαYiZk/2Zie
−iαYiZk/2 = cos αZi − sin αXiZk . (E12)

It results in a series of Pauli strings with coeffi-

cients cos α1 cos α2, − cos α1 sin α2, − sin α1 cos α2,

and sin α1 sin α2. This result can be generalized for

U †(α)ZiZ jU (α). We define lY = m
(0)
Y + n

(0)
Y , which is the

number of gates e−iαYiZk/2 and e−iαYj Zk/2 not commuted with

ZiZ j in U (α); the corresponding angles on these lY gates

are denoted by α1, . . . , αlY . The observable conjugated by

U (α) is a periodic function of α, which can be expanded

as a high-dimensional Fourier series. The result is a linear
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FIG. 17. Schematic calculation of the observable ZiZ j conjugated by two ZY gates. Each circle denotes a single-qubit Pauli operator and

each rectangle denotes a matrix e−iαZY/2 with the value of α shown at the center of the rectangle.

combination of 3lY subterms [75]

U †(α)ZiZ jU (α) =
∑

ξ∈{0,1,2}lY


ξ (ZiZ j )
∏

l:ξl =0

cos αl

∏

l:ξl =1

sin αl

×
∏

l:ξl =2

1, (E13)

where ξl is the lth component of the vector ξ ∈ {0, 1, 2}lY and


ξ (ZiZ j ) ≡
∑

σi∈PN

d
(ξ)

i σi (E14)

is a linear combination of all possible Pauli strings σi ∈ PN =
{I, X,Y, Z}N on N qubits. Here d

(ξ)

i are some real coefficients

that have no dependence on α1, α2, . . . , αlY . The ξ = 0 term

with coefficients
∏lY

l=1 cos αl is explicitly known, i.e.,


0(ZiZ j ) = ZiZ j, (E15)

This is similar to the results in Fig. 17. Then the whole expec-

tation can be derived due to its linearity

〈φI (θ)|ZiZ j |φI (θ)〉

=
∑

ξ∈{0,1,2}lY

aξ

∏

l:ξl =0

cos αl

∏

l:ξl =1

sin αl

∏

l:ξl =2

1, (E16)

where the real coefficients aξ is given by

aξ ≡〈+|⊗NU †(γ )eiθ2ZiYj/2U †(β)eiθ1YiZ j/2
ξ (ZiZ j )

× e−iθ1YiZ j/2U (β)e−iθ2ZiYj/2U (γ )|+〉⊗N . (E17)

As the mean of the expectation vanishes, as proved previously,

the variance is the integration of the square of the expectation,

which reads

Varθ

[〈

φ
(2)
I (θ)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ)

〉]

=
∫

Dθ
〈

φ
(2)
I (θ)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ)

〉2
.

(E18)

Its integrand given in Eq. (E16) is a Fourier series of α, so

the variance can be evaluated using Parseval’s equation, which

states that if a periodic function can be expanded using the

Fourier series

f (α) =
a0

2
+

∞
∑

n=1

(an cos nα + bn sin nα), (E19)

then the integration of the square of f (α) can be derived by

∫ 2π

0

dα

2π
f (α)2 =

(a0

2

)2

+
1

2

∞
∑

n=1

(

a2
n + b2

n

)

, (E20)

due to the orthogonality of the Fourier basis. Generalizing

this equation to higher dimensions and integrating out α in

Eq. (E18), the variance reads

Varθ[〈φI (θ)|ZiZ j |φI (θ)〉]

=
∫

Dθ/{α}
∑

ξ∈{0,1,2}lY

a2
ξ

2(No. of 0’s and 1’s in ξ)

�
1

2lY

∫

Dθ/{α}a2
0. (E21)

In the first line, the denominator appears because
∫ 2π

0
dθ
2π

cos2 θ =
∫ 2π

0
dθ
2π

sin2 θ = 1
2
. Each 0 and 1 in ξ

corresponds to a cos and a sin function and leads to one
1
2
. The integration measure Dθ/{α} means that the parameters

in U (α) are integrated out. In the second line, we only retain

the term ξ = 0, whose number of 0’s and 1’s is lY . So the

factor 1/2lY appears.

Then we provide a lower bound of
∫

Dθ/{α}a2
0 using Par-

seval’s equation again. The expression of a0 can be calculated

explicitly,

a0 = 〈+|⊗NU †(γ )eiθ2ZiYj/2U †(β)eiθ1YiZ j/2ZiZ j

× e−iθ1YiZ j/2U (β)e−iθ2ZiYj/2U (γ )|+〉⊗N

= cos θ1〈+|⊗NU †(γ )eiθ2ZiYj/2U †(β)ZiZ jU (β)

× e−iθ2ZiYj/2U (γ )|+〉⊗N

− sin θ1〈+|⊗NU †(γ )eiθ2ZiYj/2U †(β)XiU (β)

× e−iθ2ZiYj/2U (γ )|+〉⊗N . (E22)

These two terms have a similar structure, as we have seen in

Eq. (E10), and we can repeat the procedure from Eqs. (E13)–

(E21) for both terms.

Things can be simplified by observing how the factor 1/2lY

appears in Eq. (E21). The exponent lY is the number of ZY

gates not commuted with the observable ZiZ j . In gate block

U (β), the number of gates not commuted with ZiZ j and Xi

is m
(1)
Y + n

(1)
Y and m

(1)
Y + m

(1)
Z , respectively. Thus, we arrive at

the lower bound
∫

Dθ/{α}a2
0 �

1

2m
(1)
Y +n

(1)
Y +1

∫

Dθ/{α,β}b2
0

+
1

2m
(1)
Y +m

(1)
Z +1

∫

Dθ/{α,β}b′2
0 , (E23)

where

b0 = 〈+|⊗NU †(γ )eiθ2ZiYj/2ZiZ je
−iθ2ZiYj/2U (γ )|+〉⊗N ,

b′
0 = 〈+|⊗NU †(γ )eiθ2ZiYj/2Xie

−iθ2ZiYj/2U (γ )|+〉⊗N . (E24)
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Repeating the above procedure and integrating the parameters in U (γ ), we derive the lower bound for each term in Eq. (E23),
∫

Dθ/{α,β}b2
0 �

1

2n
(2)
Y +n

(2)
Z +1

,

∫

Dθ/{α,β}b′2
0 �

1

2m
(2)
Y +m

(2)
Z +1

, (E25)

where we have used the fact that only Pauli-X strings contribute to the expectation [see Eq. (E6)].

Combining Eqs. (E18), (E23), and (E25), the variance of the expectation is lower bounded by

Varθ

[〈

φ
(2)
I (θ)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ)

〉]

�
1

2m
(0)
Y +n

(0)
Y

(

1

2m
(1)
Y +n

(1)
Y +1

1

2n
(2)
Y +n

(2)
Z +1

+
1

2m
(1)
Y +m

(1)
Z +1

1

2m
(2)
Y +m

(2)
Z +1

)

=
1

2D+1+m
(0)
Y +m

(1)
Y +n

(2)
Z

+
1

2D+1+n
(0)
Y +m

(1)
Z +m

(2)
Z

�
1

2D

√

1

2m
(0)
Y +m

(1)
Y +n

(2)
Z +n

(0)
Y +m

(1)
Z +m

(2)
Z

�
1

23D−2
. (E26)

In the second line we used the constraints in Eq. (E11). The third line utilizes the basic inequality a + b � 2
√

ab. The fourth

line is derived by maximizing the exponent m
(0)
Y + m

(1)
Y + n

(2)
Z + n

(0)
Y + m

(1)
Z + m

(2)
Z , i.e., choosing m

(0)
Y + m

(1)
Y = m

(1)
Z + m

(2)
Z =

n
(2)
Z = n

(0)
Y = D − 1. Substituting the last inequality in Eq. (E9), we arrive at the conclusion

Var(〈HMC〉) �
1

E2
0

DN

23D−1
, (E27)

where we have used the fact that the number of edges in the D-regular graph is DN/2. �

Now we prove Theorem 2 from the main text. Lemma 1 can be generalized to the iHVA with even p rounds
∣

∣φ
(p)
I (θp)

〉

≡ U
(p)

Y Z U
(p−1)
ZY · · ·U (4)

Y Z U
(3)
ZY U

(2)
Y Z U

(1)
ZY |+〉⊗N = U

(p−2)
∣

∣φ
(2)
I (θ2)

〉

, (E28)

where {θp} ≡ {θ1,i j, . . . , θp,i j} and {θ2} ≡ {θ1,i j, θ2,i j}, with (i, j) ∈ E , and U (p−2) ≡ U
(p)

Y Z U
(p−1)
ZY · · ·U (4)

Y Z U
(3)
ZY . The variance of the

Hamiltonian expectation reads

Var(〈HMC〉) =
1

E2
0

∑

(i, j)∈E

Varθp

[〈

φ
(p)
I (θp)

∣

∣ZiZ j

∣

∣φ
(p)
I (θp)

〉]

=
1

E2
0

∑

(i, j)∈E

Varθp

[〈

φ
(2)
I (θ2)

∣

∣U
(p−2)†ZiZ jU

(p−2)
∣

∣φ
(2)
I (θ2)

〉]

.

Consider U (p−2)†ZiZ jU
(p−2) with even p. For each two-round structure U

(k+1)
Y Z U

(k)
ZY in U (p−2), as shown in Fig. 16(b), there are

2D ZY gates not commuted with ZiZ j . These 2D ZY gates lead to a production of 2D cosine functions as a precoefficient of

ZiZ j . Since U (p−2) has (p − 2)/2 two-round structures U
(k+1)

Y Z U
(k)
ZY , U (p−2)†ZiZ jU

(p−2) generates (p − 2)D cosine functions as a

precoefficient of ZiZ j . Similar to the procedure we used in the proof of Lemma 1, integrating out the free parameters {θp}/{θ2}
in the variance leads to

Varθp

[〈

φ
(2)
I (θ2)

∣

∣U
(p−2)†ZiZ jU

(p−2)
∣

∣φ
(2)
I (θ2)

〉]

�
1

2(p−2)D
Varθ2

[〈

φ
(2)
I (θ2)

∣

∣ZiZ j

∣

∣φ
(2)
I (θ2)

〉]

. (E29)

Combining the lower bound of Varθ2
[〈φ(2)

I (θ2)|ZiZ j |φ(2)
I (θ2)〉] in Lemma 1, Var(〈HMC〉) is lower bounded by

Var(〈HMC〉) �
1

E2
0

DN

23D−1

1

2(p−2)D
=

1

E2
0

DN

2D(p+1)−1
. (E30)

Therefore, we prove Theorem 2, and the BP is absent for the constant-round iHVA of D-regular graphs.
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