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When designing lattice actions, gauge field smearing is often used in the definition of the lattice

Dirac operator. Too much smearing can result in uncontrolled continuum extrapolations as the

short distance behaviour of the theory is mutilated, which is a situation to be avoided. As a

smearing prescription we focus on the gradient flow formalism as it allows to study both smearing

and physical flow simultaneously. We investigate the effect of smearing and physical flow on the

scaling towards the continuum limit in pure gauge theory. We focus on the example of Creutz

ratios, which provide a measure of the physical forces felt by the fermions. For suitable smearing

strengths we further investigate the impact of replacing the Wilson gradient flow by stout smearing.
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1. Introduction

A reduction of lattice artefacts is beneficial for more reliable continuum extrapolations, in

particular of short distance observables. A popular methods to alter discretisation effects is UV

filtering, which is based on the application of four-dimensional gauge field smearing. The Dirac

operator is evaluated on smeared gauge fields such that the action is altered into

([*] = (g [*] + Ψ � [S[*]] Ψ, (1)

where S : * ↦→ S[*] is a smearing transformation. Several smearing algorithms have been

developed, e.g. HYP [1], Stout [2], HEX [3] and gradient flow [4, 5] smearing. Evaluating the

Dirac operator on smeared gauge fields yields several advantages: The likelihood of finding small

eigenvalues of � is reduced, i.e. exceptional configurations can be avoided. In [6] even at very

coarse lattice spacings the Wilson Dirac operator defined with nHYP gauge links could be shown

to exhibit a spectrum with a well-defined spectral gap. The same was shown for stout smearing

in [7]. This is particularly helpful for the simulation of mass non-degenerate quarks as the fermion

determinant is not necessarily positive in such a scenario [8]. Gauge field smearing also has an

impact on improvement coefficients and renormalisation constants. In [6] it was observed that the

improvement coefficient 2SW approaches its tree-level value when gauge field smearing is applied.

The amount of renormalisation in /V is also reduced. However, the application of too much

smearing may significantly alter the UV structure of the lattice theory and therefore continuum

extrapolations based on data from insufficiently small lattice spacings may become unreliable. It is

therefore relevant to study the range of smearing strengths that still allow for controlled continuum

extrapolations. As a first step towards a smeared action setup with fermions we study smeared

observables

〈$S [*]〉 = 〈$ [S[*]]〉 (2)

in pure gauge theory. We investigate the influence of smearing on continuum extrapolations of

Creutz ratios [9], which provide a measure of the physical forces felt by the fermions caused by the

gauge field. For a previous account of this effort we refer the reader to [10, 11].

2. The gradient flow formalism, gradient flow smearing and physical gradient flow

In this work we focus on the gradient flow formalism [5] as a smearing procedure. We start

from the continuum four-dimensional Yang-Mills action (YM = − 1

262
0

∫

d4G tr(�`a (G)�`a (G)).
�`a = m`�a − ma�` + [�`, �a] denotes the field strength tensor and �` (G) the corresponding

gauge field. In the gradient flow formalism a gauge field �` (G, Cfl) is introduced, where Cfl ≥ 0

is the so called gradient flow time. At Cfl = 0 the standard gauge field �` (G) is used as an initial

condition for the flow time evolution, i.e. �` (G, 0) = �` (G). The evolution is then governed by the

gauge-covariant flow equation

m

mCfl
�` (G, Cfl) = − X(YM [�]

X�` (G, Cfl)
= �a�a` (G, Cfl), (3)
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where �`a = m`�a − ma�` + [�`, �a] denotes the generalised field strength tensor and �` =

m` + [�`, ·] the generalised covariant derivative. Performing a leading-order perturbative expansion

it was shown that the gauge field �` (G, Cfl) is a spherically smoothed version of �` (G) with mean-

square radius Asm =
√

8Cfl [5], i.e. in the direction of positive flow time the gradient flow possesses

a smoothing property. In [12] it was shown perturbatively to all loop orders that any functional

of the flowed fields �` (G, Cfl) at strictly positive Cfl is finite, assuming that the four-dimensional

theory has been renormalised. Consequently, no additional renormalisation has to be applied. The

Wilson gradient flow [5] is used as a lattice discretisation of the Yang-Mills gradient flow. The

flow equation is then integrated numerically using an explicit 3rd-order Runge-Kutta integration

scheme [5] with a step size
ΔCfl
02 never exceeding 0.01.

The gradient flow will be applied to the gauge field in two scenarios: In the first scenario,

which we refer to as gradient flow smearing, the gradient flow time and consequently the smearing

radius vanishes in the continuum limit. Hence the continuum theory is unaltered. This can be

achieved by fixing the gradient flow time in lattice units, i.e.
8Cfl
02 = const. The second scenario, in

which the flow time is fixed in physical units, i.e. Cfl/C0 = const, we refer to as a physical gradient

flow. In principle, C0 may be any physical scale of the theory. We make use of the reference flow

time introduced in [5], which we will define in section 4. In this scenario the continuum theory

is altered. This type of alteration of an observable’s continuum limit can also be understood as

a modification of the definition of the observable itself, i.e. the physical gradient flow allows to

construct new observables.

3. Combined continuum extrapolation and small flow time expansion

In the following we consider a dimensionless observable $̂, which does not require a renormal-

isation and hence is finite in the continuum limit. We will understand this observable as a function

of the dimensionless lattice spacing parameter 0̂ ≡ 0√
8C0

and the flow time parameter Y =
Cfl
C0

. Due to

the finiteness of the observable the continuum limit and the zero flow time limit can be interchanged,

i.e. lim0̂→0 limY→0 $̂ = limY→0 lim0̂→0 $̂. In this case the two scenarios discussed in section 2

have a common limit where both 0 = 0 and Cfl = 0. Therefore, a combined Symanzik and small

flow time expansion is possible and well-defined. The double expansion of the observable reads

$̂ =

∑

8, 9≥0

28 9 0̂
8Y 9 . (4)

We neglect logarithmic effects both in the lattice spacing [13] and in the flow time [5] as this

investigation has only intermediate precision. Evaluating this expression in the continuum 0̂ = 0, it

becomes obvious that the observable’s continuum limit $̂ = 200 +
∑=

9>0 20 9Y
9 can be altered by a

physical gradient flow. 200 denotes the continuum limit at vanishing flow time. In this work, we are

primarily interested in the effect of smearing on the continuum extrapolation. To demonstrate that

eq. (4) also describes the observable’s lattice spacing dependence at fixed smearing strength
8Cfl
02 , we

observe that the latter is parametrised by Y
0̂2 =

8Cfl
02 . The expansion can therefore we rewritten as a

function of the lattice spacing and the smearing strength:

$̂ =

∑

8, 9≥0

28 9 0̂
8+2 9

( Y

0̂2

) 9

=

∑

8, 9≥0

28 9 0̂
8+2 9

(8Cfl

02

) 9

. (5)
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Evaluating the smearing expansion in the continuum limit 0̂ = 0 yields $̂ = 200, i.e. the continuum

limit is independent of the smearing strength by construction. The main advantage of this combined

Symanzik and small flow time expansion is that data measured at various small 0̂ ≡ 0√
8C0

and Y =
Cfl
C0

can be combined to determine the coefficients 28 9 , from which the lattice spacing dependence can

be reconstructed for any sufficiently small smearing strength or flow time parameter.

4. Lattice setup

ensemble V )/0 !/0 0 [fm] ! [fm] C0/02

sft1 6.0662 80 24 0.0820(5) 1.968(12) 3.990(9)

sft2 6.2556 96 32 0.0616(4) 1.971(12) 7.070(17)

sft3 6.5619 96 48 0.04031(26) 1.935(12) 16.52(6)

sft4 6.7859 192 64 0.03010(19) 1.927(12) 29.60(10)

sft5 7.1146 320 96 0.01987(13) 1.908(12) 67.94(23)

Table 1: Parameters of the SU(3) gauge ensembles [14] and computed reference flow time C0/02 in lattice

units.

This study is based on SU(3) Yang Mills theory gauge ensembles [14] using the Wilson

plaquette action, where temporal open boundary conditions [15] are imposed to alleviate topology

freezing. An overview of the gauge ensembles is given in table 1. The reference flow time C0 [5] is

used as a scale to construct dimensionless quantities. To define C0 we make use of the action density

� (G, Cfl) = −1

2

∑

`,a

tr
(

�clv
`a (G, Cfl)�clv

`a (G, Cfl)
)

, (6)

where �clv denotes the field strength tensor in the clover discretisation [16]. The reference flow

time C0 is then implicitly defined by [5]

C20 〈� (G, C0)〉 = 0.3. (7)

Numerical values are listed in table 1. The physical value of C0 = 0.0268(3) fm2 is obtained from

the force parameter A0 [17], where for illustration a value of A0 = 0.5 fm is used. The lattice spacing

varies between 0.08 fm and 0.02 fm and the spatial extent between 1.9 fm and 2 fm.

5. Creutz ratios and gradient flow

Creutz ratios [9] are suitable observables for a study in pure gauge theory as they possess a

finite continuum limit. The latter are constructed from planar rectangular Wilson loops , (A, C) ≡
〈tr(% exp(

∮

W (A ,C ) dG`�` (G)))〉, which are obtained from the gauge field by a path-ordered integral

along a rectangular closed path W(A, C). In lattice gauge theory these objects are discretised as

, (A, C) =
〈

tr
(

∏

(G,`) ∈W (A ,C )
*` (G)

)〉

. (8)
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Figure 1: Dimensionless Creutz ratio ĵ and relative variance
√
Eĵ

ĵ
as functions of the flow time

8Cfl
02 and the

distance Â on the ensemble sft4.

Creutz ratios are obtained from Wilson loops by j(A, C) ≡ − m
mC

m
mA

ln(, (A, C)). To obtain $ (02)
lattice artefacts the latter definition is discretised making use of central differences [18]:

j
(

C + 0

2
, A + 0

2

)

≡ 1

02
ln

(, (C + 0, A) ·, (C, A + 0)
, (C, A) ·, (C + 0, A + 0)

)

. (9)

The static quark anti-quark force can be extracted in the limit of an infinite time extent, j(A, C) →
�qq(A) for C → ∞ [18].

In the following discussion we will only focus on diagonal Creutz ratios j(A, C) with A = C,

which we abbreviate as j(A) ≡ j(A, A). We compute the latter in lattice units (j ·02) ( A
0
) for various

half integer distances A
0
= 1.5, 2.5, . . . based on gauge configurations which gradient flow smearing

was applied to. We use C0 to define dimensionless Creutz ratios, i.e. we analyse ĵ ≡ j · 8C0 as a

function of Â ≡ A√
8C0

. In our measurements we implement the two scenarios for scaling the flow

time via

8Cfl

02
=

{

0, 0.25, 0.5, . . . , 2, 2.5, . . . , 3.5, 4, 5, 6, 7, 8 smearing

8C0
02 × 0.0146 × 9 , 9 ∈ {0, 1, . . . , 4} physical flow.

(10)

The computation is based on the openQCD [19] package and utilises B. Leder’s program for

measuring Wilson loops [20, 21]. For the data analysis the python3 package pyobs [22] is used,

which implements the Γ-method [23] for Monte Carlo error estimation.

As discussed in the introduction smearing is commonly used to reduce UV fluctuations in

gauge fields, which also has an impact on the variance of observables. In fig. 1 the dimensionless

diagonal Creutz ratio ĵ and its relative variance
√
Eĵ

ĵ
are displayed as functions of the distance Â and

the smearing strengths
8Cfl
02 for the ensemble sft4. We observe that the ∼ 1

A2 short distance behaviour

is smoothed by the gradient flow at distances A /
√

8Cfl. Consequently, the path to the continuum

and hence lattice artefacts are altered in the smearing scenario. This effect becomes smaller at larger

distances where the smearing has less impact. We observe that the relative variance of the Creutz

ratio
√
Eĵ

ĵ
grows with growing distances. Applying gradient flow smearing the relative variance

shrinks with growing flow time at all distances [18]. However, smearing the gauge fields does not
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