RESEARCH ARTICLE | AUGUST 19 2025
Taylor-mode automatic differentiation for constructing
molecular rovibrational Hamiltonian operators

Andrey Yachmenev & @ ; Emil Vogt @ ; Alvaro Fernandez Corral © ; Yahya Saleh

’ '.) Check for updates ‘

J. Chem. Phys. 163, 072501 (2025)
https://doi.org/10.1063/5.0287347

@ B

View Export
Online  Citation

Chemical Physics

T
o
4]
c
-
=)
O

ﬁ
Q

L

-

Webinar From Noise to Knowledge

= i N Wl 1
CRrTY
AL YAl N

IR

N\ A/ Zurich Universitat
AIP N\ Instruments  Konstanz

é/:. Publishing

01:0€'60 5202 189010 /2


https://pubs.aip.org/aip/jcp/article/163/7/072501/3359497/Taylor-mode-automatic-differentiation-for
https://pubs.aip.org/aip/jcp/article/163/7/072501/3359497/Taylor-mode-automatic-differentiation-for?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0001-8770-6919
javascript:;
https://orcid.org/0000-0003-3335-9813
javascript:;
https://orcid.org/0009-0009-5727-5578
javascript:;
https://orcid.org/0000-0002-3235-217X
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0287347&domain=pdf&date_stamp=2025-08-19
https://doi.org/10.1063/5.0287347
https://e-11492.adzerk.net/r?e=&s=8xgGsivKAetR2B5aROU5CM5EOOI

The Journal
of Chemical Physics

SOFTWARE pubs.aip.org/aipl/jcp

Taylor-mode automatic differentiation
for constructing molecular rovibrational

Hamiltonian operators

Cite as: J. Chem. Phys. 163, 072501 (2025); doi: 10.1063/5.0287347 @ iy @

Submitted: 24 June 2025 + Accepted: 24 July 2025 -
Published Online: 19 August 2025

Andrey Yachmenev,” ' Emil Vogt,

Alvaro Fernandez Corral,

and Yahya Saleh

AFFILIATIONS

Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany

2 Author to whom correspondence should be addressed: andrey.yachmenev@robochimps.com

URL: https://github.com/robochimps

ABSTRACT

We present an automated framework for constructing Taylor series expansions of rovibrational kinetic and potential energy operators for
arbitrary molecules, internal coordinate systems, and molecular frame embedding conditions. Expressing operators in a sum-of-products
form allows for computationally efficient evaluations of matrix elements in product basis sets. Our approach uses automatic differentiation
tools from the Python machine learning ecosystem, particularly the JAX library, to efficiently and accurately generate high-order Taylor
expansions of rovibrational operators. The implementation is available at https://github.com/robochimps/vibrojet.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0287347

I. INTRODUCTION

Accurate calculations of molecular rovibrational spectra, espe-
cially for floppy molecules, weakly bound complexes, and highly
excited states in general, are often computationally demanding.
These calculations benefit significantly from the use of tailored coor-
dinates that effectively capture the essential rovibrational motions
specific to each molecule.'* While several advanced generalized
methodologies exist to perform such calculations,”” applying them
to a new molecule typically requires more than simply providing a
potential energy surface (PES). It also involves defining an appro-
priate kinetic energy operator (KEO) based on the chosen inter-
nal coordinates and molecular frame embedding conditions. This
setup process demands considerable expertise in both the theoretical
foundations and practical aspects of implementation.

The challenge of choosing optimal internal coordinates and
frame embeddings has been the subject of ongoing research, with
most recent advances focused on variational optimization of coor-
dinate systems.”"" However, even after suitable coordinates are
defined, constructing the PES and KEO in those coordinates and effi-
ciently evaluating their matrix elements in a chosen basis set remains
nontrivial. The matrix elements are typically computed using

multidimensional numerical integration methods, such as Gaussian
quadrature, often combined with Smolyak sparse grids to mitigate
the curse of dimensionality.” Related discrete variable representa-
tion (DVR) methods also build on Gaussian quadrature to define an
orthonormal basis that simplifies the numerical integration.””'""!
An alternative approach, which is the focus of this study, involves
expressing the rovibrational operators as sums of products of uni-
variate functions, which significantly reduces the complexity of
multidimensional integration. For example, when a direct prod-
uct basis of univariate functions is used, multidimensional integrals
reduce to a sum of products of one-dimensional integrals. How-
ever, in DVR methods, a sum-of-products form of the KEO is not
required.

Molecular PESs and dipole moment surfaces are commonly
represented in a sum-of-products form by fitting analytic func-
tions to electronic structure data computed on a grid of molecular
geometries. For the KEO, one established approach involves using
symbolic algebra to derive an analytical expression, followed by
manual restructuring into a sum-of-products form and hand-coded
implementation.'” This process is tedious and highly system spe-
cific; it must be repeated for every new molecule type, coordinate
system, and frame embedding condition. Moreover, the embedding
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must be analytically expressible, which often excludes commonly
used schemes such as the Eckart frame due to their algebraic com-
plexity. The choice of embedding is particularly important when
rotational motion is considered, as it affects the separability of vibra-
tional and rotational degrees of freedom. It influences not only the
basis set convergence of rovibrational energies but also the accuracy
of vibrational transition intensities, even when rotational degrees of
freedom are not explicitly included in the model.

Certain choices of vibrational coordinates and embedding
conditions, such as polyspherical coordinates, enable the deriva-
tion of the rovibrational KEO directly in the sum-of-products
form."” ' This avoids complex symbolic algebra and facilitates the
construction of the KEO from molecular fragments.

A more general and flexible alternative is to construct the rovi-
brational operators in a sum-of-products form via Taylor series
expansions”'” or least-squares fitting techniques.''” In the Tay-
lor expansion approach, derivatives can be computed using finite-
difference methods® or automatic differentiation (AD), particularly
via forward-mode propagation of Taylor series.” These methods
are well-suited for handling complex coordinate transformations
and frame embeddings, including those defined implicitly by non-
linear equations (e.g., Eckart conditions), enabling fully automated
construction of KEOs without manual symbolic manipulation.

In this work, we introduce Vibrojet, a general Python-based
framework for constructing Taylor series expansions of molecular
rovibrational operators using modern AD tools. In particular, we
employ the JAX library and its jet module, which supports effi-
cient Taylor-mode differentiation. We further employ an efficient
approach for computing high-order partial derivatives by propagat-
ing families of univariate Taylor series.”"”” Compared to our pre-
vious Fortran-based implementation,'” the new Python framework
offers several advantages, including easier coding for setting up new
molecules and coordinate systems, integration with a broader sci-
entific computing ecosystem, and more accessible platform-specific
optimization and parallelization.

This article is organized as follows: In Sec. I1, we present a gen-
eral numerical approach for constructing the KEOs of molecules.
The Taylor-mode AD approach is described in Sec. III and details
of its implementation in Sec. I'V. Finally, Sec. V provides illustrative
examples of Taylor series expansion for the PES and KEO of selected
molecules and demonstrates their use in variational calculations of
vibrational energy levels.

Il. NUMERICAL PROCEDURE FOR KEO
The general form of the rovibrational KEO is given by

M+6

=3 plG(E)pu + U(E),

Ap=1

where pr_iarse = {~ih0)0E1, ..., —ihD[OEy, T, Ty Jon —iHD)OXcm,
—ih0/0Y cm, and — ihQ/OZcm } are the generalized momentum oper-
ators conjugate to the M vibrational coordinates & = &,,&,,...,&,,
three Cartesian components of the rotational angular momentum
operator J, and three Cartesian momentum operators of the overall
translation. The mass-weighted contravariant metric tensor Gy, and

6,23

pseudopotential U can be computed as
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where g = det (g,). The ti) vectors are defined in terms of the
Cartesian coordinates riq (& = x,,z) of the i = 1... N atoms in the
molecule, as

19} Tia

tig) = A=1.M),
i\ a f)t ( )
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for vibrational, rotational, and translational coordinates, respec-
tively, where e, is the three-dimensional Levi-Civita symbol
(e = +1 for even permutations of &, 3, and y, and € = —1 for odd per-
mutations). The pseudopotential U is a scalar operator that can be
combined with the PES to avoid the need for evaluating and storing
additional integrals.

From the above equations, it follows that the KEO can be
constructed automatically, provided a coordinate transformation
function is defined that maps the internal vibrational coordinates &,
(A =1...M) to the Cartesian coordinates i, of the atoms,

ri = (xi,y0zi) = fi(E, &, .. ). (1)

Defining such a transformation establishes, either implicitly or
explicitly, an orientation of the Cartesian x,y,z axes relative to
the molecule. This orientation may itself vary with changes of the
internal coordinates.

High-order Taylor expansions of the coordinate mappings in
(1), computed using AD tools, have been successfully employed
in computational chemistry to accelerate geometry optimization,
reaction path search, and classical trajectory integration.”

Popular choices for the orientation of the molecular frame
X, ¥,z axes include the principal axes system (PAS) and the Eckart
frame. The PAS choice minimizes the off-diagonal elements in the
pure rotational block of the G-matrix, whereas the Eckart frame is
designed to minimize the off-diagonal elements in the rovibrational
(Coriolis) part of the G-matrix. The orientation of the molecular
frame can be conveniently expressed using a rotation matrix d(&),
which maps reference Cartesian coordinates of atoms (user-defined
or derived from a Z-matrix) into the Eckart or PAS frame,

The conditions defining the Eckart or PAS frames can be formulated
in terms of the rotation matrix d as follows:

ri=d-ri=d-fi(&,..

ud” —du’ =0 (Eckart), (3)

[dad"];=0, a#pB (PAS). (4)

Here, the matrices u and u are defined as

J. Chem. Phys. 163, 072501 (2025); doi: 10.1063/5.0287347
© Author(s) 2025

163, 072501-2

01:0€:60 G20T 489010 L2


https://pubs.aip.org/aip/jcp

The Journal

of Chemical Physics

N
=S D
o = D MiTiy Ty
i=1

N
i‘aﬁ = Z m,-i',-,x?,-ﬁ.
i=1

The Eckart conditions are defined with respect to a reference geom-
etry, typically chosen as the equilibrium geometry rl.(a"f) = rl(; )
around which the rovibrational coupling elements of the G-matrix
are minimized.

The frame embedding conditions can be incorporated directly
into the coordinate transformation function f; in (2) or han-
dled externally through generalized routines. We briefly outline a
numerical solution of the Eckart equations, originally presented in
Ref. 17. Several alternative approaches have been proposed based
on eigenvalue problems,””” similar to the diagonalization of the
moment of inertia tensor used in constructing the PAS frame.
However, we found that methods based on eigenvalue decomposi-
tion can encounter difficulties when computing derivatives required
for constructing the Taylor series expansions of the KEO (see
Sec. III). These issues are particularly pronounced in highly sym-
metric molecules such as methane, where degenerate eigenvalues
arise”’ —not to be confused with eigenvalues of the Hamiltonian. In
such cases, the derivatives of eigenvectors are not well defined, mak-
ing differentiation of the eigenvalue-based solutions fundamentally
problematic.

The present solution is based on the parameterization of the
rotation matrix d in (2) using a 3 x 3 skew-symmetric matrix x, such
that

>

., )

The exponential parameterization ensures that the orthogonality of
d is preserved for all values of the three independent elements xyy,
Kxz> and ky.. These elements are determined by solving the Eckart
equations in (3) rewritten in terms of x. Substituting (5) into the
Eckart conditions and rearranging terms, we obtain the following
linear system for :

Uxx + Uyy Uyz —Uxz Kxy
Uzy Uxx + Uzz Uy | Kxz
—Uzx Uyx Uyy + Uzz Kyz

Axauya - /\yauxoc
= Z Axallza = Azatixa |> (6)

a=xy,z
7 /lyzx Uza = Aza Uya

where
A=e"+x

This system is solved iteratively, starting with the initial guess A = 1.
At each iteration, the elements of x are updated, and the exponential
matrix e”* is computed using a Taylor series expansion, Rodrigues’
formula, or the Padé approximation.”®

SOFTWARE pubs.aip.org/aipl/jcp

I1l. TAYLOR POLYNOMIALS

Standard AD relies on the fact that a function to be differ-
entiated can be expressed as a composition of smooth elementary
functions. For example, if a function is defined as f(x) = g o h(x),
then by the chain rule, its derivative is f'(x) = g’ o h(x)h'(x). For
higher-order derivatives of such compositions, the Faa di Bruno for-
mula generalizes the chain rule and enables recursive computation
of higher-order derivatives from lower-order ones. If the functions
involved in the composition admit converging Taylor series expan-
sions, a convenient method for computing higher-order derivatives
is to use truncated Taylor polynomials. Let the function h(x) be
represented by the Taylor expansion in x around x = 0,

1 1 1
h(x) = ho + hyx + Ehzxz + §h3x3 +oe Ehnx".

Assuming both h and g admit converging Taylor expansions, the
composite function f(x) = g o h(x) can also be expressed as a Taylor
series around xg = 0,

1 1 1
f(x) = fo+ fix+ Efzx2 + ;fsx3 ot
with coefficients given by

fo=g(ho),
fi=¢ (ho)h,
f2 :g'(ho)hz +g"(h0)h1h1,
fs= g (ho)hs +3g" (ho)hihy + g (o) hhi .

Each coefficient f; corresponds to the k-th derivative of the compo-
sition g o h(x) with respect to x, as described by the Faa di Bruno
formula. The terms g (ho) represent the coefficients of the Taylor
series expansion of g around hy.

To extend AD to higher-order derivatives, it is necessary to
reformulate elementary arithmetic operations, intrinsic functions
(e.g., exp, sin), and linear algebra routines (e.g., det, eigh) to operate
on truncated Taylor polynomials. This can be accomplished by sys-
tematically applying the Faa di Bruno rule for function composition
and the Leibniz rule for product differentiation.

Several prior works have implemented efficient polynomial
arithmetic for truncated Taylor expansions. Notable contributions
include the foundational work of Griewank and Walther’***” and
their C/C++ implementation,’ the Julia implementation by Benet
and Sanders,”’ and the Python-based approach by Bettencourt,
Johnson, and Duvenaud®” implemented in the JAX library.” In our
own earlier work, Taylor polynomial arithmetic in Fortran 90 was
implemented as part of the rovibrational code TROVE."”

In this work, we use the jax.experimental. jet module of
the JAX library.” Although jet provides high-order derivative rules
for many functions and linear algebra operations, at the time of writ-
ing, it lacks support for several essential primitives. These include
eigenvalue and LU decompositions, matrix determinant, matrix
inverse, and matrix exponential. Furthermore, certain arithmetic
operations specific to the KEO construction, such as solutions of the
molecular frame embedding equations in (3) and (4), can be more
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efficiently implemented by expressing them directly within the Tay-
lor polynomial algebra framework. To that end, our code Vibrojet
extends JAX’s Taylor polynomial functionality by adding support for
missing linear algebra primitives required for the KEO construc-
tion. It also introduces new operations tailored to the Eckart and
PAS frame embedding equations. For eigenvalue decomposition, we
utilized formulas derived in Ref. 34.

As an example, we describe the computation of high-order
derivatives of the frame rotation matrix in (5), which satisfies the
Eckart embedding conditions. Differentiating (3) I times, we obtain

Ll T T
Z ( )(umdl—m - dlfmum) =0,
m

m=0

where the subscript I denotes the I-th derivative. Rearranging terms
yields a more convenient form for the recursive computation of
derivatives d;,

!
ux; + xluT = /\luT - uAlT + Z ( )(dl—murTn - “mle—m)> (7)
m=1

l
m
with

/11 = dl + K, (8)

and matrix exponential

a-e),- 5 SR, ©)

This system of equations is solved iteratively for each derivative x;,
starting with the initial value A; = 0 for I > 0 and Ao = I. At each iter-
ation, the three independent elements, Kl(xy ), Kl(xz), and Kl(y Z), are
determined by solving a linear system. The corresponding linear-
system matrix remains constant across all derivative orders [same
as in (6)], allowing its inverse to be computed once and reused. The
right-hand side of (7) depends on A, [also as in (6)], which is updated
recursively using (8) and (9). It also includes a sum over low-order
derivatives d; (k=0...1-1), which are computed in the earlier
steps of the recursion.

Derivatives of matrix powers [«"], are computed using the
Leibniz product rule,

W= 35 () 1, e

To ensure convergence of the exponential series in (9), we use the
scaling and squaring technique.”® In practice, truncating the expan-
sion after the 6th-order term with two to four scaling steps yields
accurate results. The solution of the Eckart equations typically con-
verges within 6-10 iterations. All operations are formulated as prod-
ucts of 3 x 3 matrices, allowing efficient execution in Python/JAX
using just-in-time compilation.

Finally, a note on multivariate partial derivatives. The coeffi-
cients of multivariate Taylor polynomials can be efficiently com-
puted by propagating univariate directional derivatives using the
interpolation approach of Griewank, Utke, and Walther’' (see also

SOFTWARE pubs.aip.org/aipl/jcp

Chap. 13.3 in Ref. 29). This method is implemented in Vibrojet
and is especially effective for Taylor expansions of rovibrational
operators in large molecules, where an N-mode truncation scheme is
commonly employed to improve convergence.”” The interpolation
of directional derivatives enables computation of partial deriva-
tives along selected directions without constructing the full high-
dimensional derivative tensor, resulting in significant computational
savings.

IV. IMPLEMENTATION

The mapping from internal to Cartesian coordinates, as
described in (2), is implemented via a user-defined function with the
following interface:

x::internal_to_partesian(q)

Here, g is an array of length 3N -6 containing internal coor-
dinate values, and x is an array of shape (N,3), contain-
ing the Cartesian coordinates of the N atoms in the molecule.
Users can implement frame embeddings either directly within
the internal_to_cartesian function or by applying predefined
function decorators for common embeddings. For example, to
enforce the Eckart frame, the eckart decorator can be applied,
which rotates the coordinate system accordingly,

eckart(qmln)(internal_to_partesian)

Here, g, is an array of reference (e.g., equilibrium) internal
coordinates, and m is an array of atomic masses. Similarly, to
shift coordinates to the center of mass, users can apply the
com(n1)(internal_to_cartesian) decorator.

Below is an example of a coordinate mapping for a triatomic
H,0 molecule using valence internal coordinates and the Eckart
frame:

from jax import numpy as jnp
from vibrojet.eckart import eckart

# Masses of 0, H, H atoms
masses = [15.9994, 1.00782505, 1.00782505]

6
7 # Equilibrium values of walence coordinates
s rl, r2, alpha = 0.958, 0.958, 1.824

9 90 = [r1l, r2, alphal

11 Q@eckart(q0, masses)

12 def valence_to_cartesian(q):

13 rl, r2, a=q

14 return jnp.array([

15 [0.0, 0.0, 0.0],

16 [ri*jnp.sin(a/2), 0.0, ri*jnp.cos(a/2)]1,
17 [-r2*jnp.sin(a/2), 0.0, r2*jnp.cos(a/2)],
18 D

20 xyz0 = valence_to_cartesian(q0)

Given a coordinate mapping function, the kinetic energy G-
matrix and pseudopotential U can be evaluated at specific internal
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coordinate values or over a grid using functions from the keo mod-
ule: Gmat, batch_Gmat, pseudo, and batch_pseudo. To compute
the G-matrix at a single point,

g= Gmat(q, m, internal _to _cartesian).

Here, ¢ is an array of shape (3N,3N) representing the full
G-matrix. The first 3N — 6 rows and columns correspond to vibra-
tional coordinates, followed by three rotational and three transla-
tional coordinates. All values are given in units of cm™, assuming
input bond distances are in A and angles in radians. For evaluating
over a batch of points,

g = batch _Gmat(q, m,internal _to _cartesian).

In this case, q is a 2D array of shape (D,3N —6), where D is the
number of grid points. The output g has shape (D,3N,3N). The
functions pseudo and batch_pseudo follow the same interface and
unit convention.

Below is an example of computing the G-matrix and U at a sin-
gle point and over a grid using the coordinate mapping for the H,O
molecule defined above:

1 from vibrojet.keo import Gmat, batch_Gmat,
< pseudo, batch_pseudo

masses = [15.9994, 1.00782505, 1.00782505]
rl, r2, alpha = 0.958, 0.958, 1.824

2
3
4
6 # compute G and U at single point
7 q0 = [r1, r2, alphal

s g = Gmat(q0, masses, valence_to_cartesian)

9 u = pseudo(q0, masses, valence_to_cartesian)
11 # compute G and U at grid points

12 q = jnp.array(

13 [

14 [r1, r2, alphal,

15 [r1 + 0.1, r2, alpha],

16 [r1, r2 + 0.1, alphal,

17 [r1, r2, alpha + 0.1],

18 ]

19 )

20 g = batch_Gmat(q, masses, valence_to_cartesian)

21 u = batch_pseudo(q, masses, valence_to_cartesian)

The Taylor series coefficients of a function can be computed
using the deriv_list function from the taylor module. It takes
the function to be differentiated, an expansion point, and a list of
multi-indices specifying the desired derivative terms,

coefs = deriv_1list( func,xo, deriv_ind, if_taylor).

The boolean parameter if_taylor determines the output: if set
to True, the function returns Taylor series coefficients; if set to
False, it returns the corresponding partial derivatives. For exam-
ple, to compute the Taylor expansion of the G-matrix for the H,O
molecule up to fourth order:

SOFTWARE pubs.aip.org/aipl/jcp

1 from vibrojet.taylor import deriv_list
import itertools

0

s

# Generate the list of multi-indices spectifying
# the integer exponents for each coordinate
# in the Taylor series ezpansion
max_order = 4 # max total expansion order
deriv_ind = [
elem

10 for elem in itertools.product (*[range (0,

— max_order + 1) for _ in range(len(q0))])
11 if sum(elem) <= max_order

© 0w N o o

14 # Function for computing kinetic G-matriz
15 # for the given masses of atoms and coordinates
16 func = lambda x: Gmat(x, masses,

< valence_to_cartesian)

18 g_coefs = deriv_list(func, deriv_ind, qO,
< if_taylor=True)

The output g_coefs is an array where the first dimension
indexes the corresponding derivative multi-indices in deriv_ind,
and the second and third dimensions correspond to the rows and
columns of the G-matrix. Each entry in g_coefs gives the Taylor
series coefficient of a G-matrix element associated with a specific
multi-index, evaluated at the expansion point qO.

The deriv_list function is not specific to the KEO and can
be employed to compute Taylor expansion coefficients for any user-
defined multivariate function. For example, it can be used to expand
PESs or dipole moment surfaces in the desired coordinate system.

V. EXAMPLES

We present variational calculations of the vibrational energies
of formaldehyde (H,CO) and ammonia (NH3), using the KEO and
PES represented by Taylor series expansions around a single ref-
erence configuration. These expansions are cast into an N-mode
representation, and the convergence of the computed vibrational
energies is examined with respect to both the Taylor expansion order
and the N-mode truncation order of both the KEO and PES. Com-
plete example calculations are available in the examples folder of
the Vibrojet repository.

For molecules such as NH3, which exhibit multiple minima
in the PES along one or more large-amplitude coordinates, the
standard approach is the Hougen-Bunker-Johns method.*® This
method treats large-amplitude coordinates on a grid while con-
structing Taylor expansions for the remaining quasi-rigid coordi-
nates at each grid point. However, it has been shown that reasonably
accurate expansions of the KEO and PES for NH3 can also be
obtained using rectilinear coordinates by expanding around a refer-
ence configuration corresponding to the planar equilibrium geom-
etry.”” In our NH; example, we employ this alternative approach,
treating the inversion coordinate within a Taylor expansion. We
show that the PES, kinetic G-matrix, and pseudopotential can be
efficiently expanded in terms of functions of individual internal
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FIG. 1. Definition of the internal angular coordinates used in vibrational energy
calculations for the (a) H,CO and (b) NH3 molecules.

curvilinear coordinates, such as Morse functions for stretching
coordinates and trigonometric functions for bending coordinates,
resulting in improved convergence of the Taylor series even for the
inversion vibrational motion.

For H,CO, the vibrational problem is solved using valence
bond coordinates: r1, 72, and r3 representing the C-O, C-Hj, and
C-H; bond lengths, respectively; two bond angles, 8, and 6,; and
one dihedral angle, 7, as defined in Fig. 1(a). The G-matrix, pseu-
dopotential, and PES, originally published in Ref. 38 and reim-
plemented in Python, are expanded in these coordinates around
the equilibrium configuration: r; = 1.2034 A, r,=r;=1.1038 A,
0, = 6, =121.84°,and 7 = 180°.

For NHj, the vibrational problem is solved using inter-
nal coordinates: ri, 7, and r3 represent the N-H;, N-H,, and
N-H; bond lengths, respectively; ss = (2823 — Bi3 - f12)/\/6 and
ss = (Bi3 — P12)/+/2, which are symmetry-adapted combinations of
bond angles; and p is the umbrella inversion coordinate, as defined
in Fig. 1(b). Unlike H,CO, we employ two sets of transformed
coordinates, ¥ and 3", for expanding the KEO (G-matrix and
pseudopotential) and PES, respectively,

SOFTWARE pubs.aip.org/aipl/jcp
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FIG. 2. One-dimensional slices of selected elements of the G-matrix (in cm~")
for NH3, shown along the umbrella coordinate p. Exact values are compared with
fourth-order Taylor series expansions around p = 90°, expressed in both original
internal coordinates g = {r1,r, 3, S4, S5, p} and transformed coordinates y® (q)
in (10).

the original internal coordinates at the same truncation order. This
improvement is especially notable for the PES, where the expansion
in internal coordinates around one of the minima fails to reproduce
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transformed @ and y") coordinates, we present in Figs. 2 and p (degrees) 1 (A)

3 one-dimensional slices of selected elements of the G-matrix and
PES for NH3 along the umbrella coordinate p. These slices, cal-
culated exactly on a grid, are compared with fourth-order Taylor
expansions in both the transformed coordinates and the original
internal coordinates. The results show that expansions in »“ and

V) coordinates yield significantly higher accuracy than those in

FIG. 3. One-dimensional slices of the PES (in cm~") for NHs, shown along the
umbrella coordinate p and stretching coordinate ry. Exact values are compared
with fourth-order Taylor series expansions around equilibrium p = 112.1° and
ry = 1.0116 A, expressed in both interal coordinates q = {r1, 2, 13, S4, S5, p} and
transformed coordinates y(*)(q) in (10).
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of the KEO and PES. We used Hermite functions as a primitive a. b.
basis for all coordinates of both molecules. In the second step, one- 10" 1 L B .:"C 82878
dimensional (1D) reduced-mode Schrédinger equations were solved =~ 1o ° o ED”%
independently for each coordinate. Each equation used the primi- e 100{e o @ E
tive basis for the target coordinate with the Hamiltonian averaged £ 1039" T
over the remaining coordinates using the zero-order primitive basis =  |* Lo 4 A
functions. The resulting eigenfunctions were then truncated using z 1077 8 o 3‘?
an energy threshold (typically 40 000-60000 cm™), producing six 5 grle =3 N5 PRD¢ 3 &
sets of 1D contracted basis functions, one for each coordinate. P‘ : N3 : Nog | 1074 vy :v'V, v

Next, we constructed a combined basis for the equivalent SL10°9 & N=y o T ;,

stretching coordinates: r, and r3 for H,CO and ry, 12, and r3 for - o dT ¥ '; W ;'yﬁ;{ 10-6 - v & v .
NHj;. This was done by solving reduced-mode Schrodinger equa- M v el v v
tions using the previously obtained 1D contracted basis functions ] 00 1000 6000 ) 0 1000 6000

for the stretching coordinates. As in the 1D case, the Hamiltonian
was averaged over the remaining coordinates using the ground-state
contracted basis functions. The same procedure was applied in par-
allel to the bending coordinates, i.e., 6; and 8, for HCO and s4 and
s5 for NHs. The resulting eigenfunctions were again truncated using
an energy threshold (30 000 cm™!) and used to form new contracted
basis sets for stretching and bending vibrations.

In the final step, the full vibrational basis was constructed as
a direct product of contracted basis functions for all coordinates.
To reduce the basis set size, we included only the product func-
tions whose total energy falls below a specified threshold. The total
energy is estimated as a sum of the individual energies of the con-
tracted basis functions. The resulting full-dimensional vibrational
Schrodinger equation was then solved to obtain the vibrational
energies and wavefunctions. Since our goal is to demonstrate the
convergence behavior of the KEO and PES Taylor expansions, we
employed relatively modest basis sets by setting the energy threshold
for the product basis at 12000 cm™" for both molecules.

In Figs. 4 and 5, we show the convergence of the first 100 vibra-
tional energy levels of H,CO and NH; with respect to the truncation
order of the N-mode expansion for the kinetic G-matrix and pseu-
dopotential (a) and the PES (b). The results are presented as absolute

a.
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FIG. 4. Convergence of the KEO and PES N-mode expansions for the first 100
vibrational energy levels of H,CO. Plotted are the absolute differences between
vibrational energies E; (i=1...100) computed using N and N —1 expan-
sion orders, for N = 2. . .6, shown as functions of the corresponding vibrational
energies relative to the zero-point energy. Panel (a) shows convergence for the
G-matrix and pseudopotential, and panel (b) shows convergence for the PES.

Ei(z\e':e) _ pv=0)

N=6 N=6 _ _
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FIG. 5. Convergence of the KEO and PES N-mode expansions for the first 100
vibrational energy levels of NHs. Plotted are the absolute differences between
vibrational energies E; (i=1...100) computed using N and N —1 expan-
sion orders, for N = 2... .6, shown as functions of the corresponding vibrational
energies relative to the zero-point energy. Panel (a) shows convergence for the
G-matrix and pseudopotential, and panel (b) shows convergence for the PES.

energy differences between calculations performed with Nand N - 1
truncation levels, plotted against the energy values relative to the
zero-point energy. In all calculations, the maximum order of the
Taylor series expansions for both the KEO and PES was fixed at 8th
order. When testing the N-mode convergence of the G-matrix and
pseudopotential, the PES expansion was held fixed at eighth order,
and vice versa. The results for both molecules demonstrate fast con-
vergence of the N-mode expansion for the KEO operator and a bit
slower convergence for the PES. Overall, a truncation at N =4 is
sufficient to achieve sub-wavenumber accuracy for the lowest 100
vibrational states.
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FIG. 6. Convergence of the KEO and PES Taylor series expansions for the first 100
vibrational energy levels of H,CO. Plotted are the absolute differences between
vibrational energies E; (i =1...100) computed using Taylor truncation orders
Dand D -2, for D = 4,6, 8, shown as functions of the corresponding vibrational
energies relative to the zero-point energy. Panel (a) shows convergence for the
G-matrix and pseudopotential, and panel (b) shows convergence for the PES.
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FIG. 7. Convergence of the KEO and PES Taylor series expansions for the first
100 vibrational energy levels of NH;. Plotted are the absolute differences between
vibrational energies E; (i =1...100) computed using Taylor truncation orders
Dand D -2, for D = 4,6,8, shown as functions of the corresponding vibrational
energies relative to the zero-point energy. Panel (a) shows convergence for the
G-matrix and pseudopotential, and panel (b) shows convergence for the PES.

The convergence of vibrational energies for HCO and NH3
with respect to the truncation order of the Taylor series expansion
is shown in Figs. 6 and 7, respectively. The plots present the absolute
energy differences between calculations using Taylor expansions of
orders D and D - 2, plotted against the corresponding energy val-
ues relative to the zero-point energy. For H,CO, convergence of the
KEO is achieved within 1 cm™ at the sixth expansion order, with
the difference between D = 8 and D = 6 being less than 1 cm™". For
NH3;, the KEO converges more slowly, which we attribute to the
choice of bending coordinates §;; [see Fig. 1(b)], where higher-order
terms are necessary for accurate expansions. The PES expansion for
NH3 converges faster than for H,CO due to the use of transformed
coordinates y'" in (10), particularly the use of Morse functions for
stretching coordinates.

VI. CONCLUSIONS

We presented Vibrojet, a Python implementation of a gen-
eral framework for constructing rovibrational KEOs and PESs for
arbitrary molecules, using user-defined internal coordinate systems
and frame embedding conditions. The framework supports effi-
cient evaluation of rovibrational operators either on grids of internal
coordinates or as truncated Taylor series expansions.

The implementation leverages Taylor-mode automatic differ-
entiation capabilities from the JAX library, specifically its jet mod-
ule, and includes extensions tailored to the specific needs associated
with rovibrational operator construction. These include, for exam-
ple, an efficient Taylor expansion of the KEO in the Eckart frame
embedding.

We demonstrated the utility of the framework through varia-
tional calculations of molecular vibrational energies based on Taylor
(N-mode) expansions of the KEO and PES. The results confirm good
convergence behavior of the computed energies with respect to the
expansion order.

SOFTWARE pubs.aip.org/aipl/jcp

The present approach, based on Taylor series expansion, can
be combined with traditional least-squares fitting methods to bal-
ance the accuracy and the computational cost of high-order expan-
sions. For example, Taylor expansions can be performed at multiple
reference points, and fitting approaches can then be used to con-
struct a unified representation by interpolating the corresponding
derivatives.

ACKNOWLEDGMENTS

We thank Benoit Richard for proofreading this manuscript
and for his helpful suggestions. The work of E.V. was supported
by the European Union’s Horizon Europe research and innova-
tion program under Marie Sklodowska-Curie Grant Agreement No.
101155136. The work of A.F.C. was supported by the Data Science
in Hamburg HELMHOLTZ Graduate School for the Structure of
Matter (DASHH, HIDSS-0002).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Andrey Yachmenev: Conceptualization (lead); Data curation (lead);
Formal analysis (lead); Investigation (lead); Methodology (lead);
Project administration (lead); Resources (lead); Software (lead);
Supervision (lead); Validation (lead); Visualization (lead); Writing —
original draft (lead); Writing — review & editing (lead). Emil Vogt:
Conceptualization (equal); Data curation (equal); Formal analy-
sis (equal); Investigation (equal); Methodology (equal); Resources
(equal); Validation (equal); Visualization (equal); Writing -
review & editing (equal). Alvaro Fernandez Corral: Conceptu-
alization (equal); Data curation (equal); Formal analysis (equal);
Investigation (equal); Methodology (equal); Resources (equal); Val-
idation (equal); Visualization (equal); Writing - review & edit-
ing (equal). Yahya Saleh: Conceptualization (equal); Data curation
(equal); Formal analysis (equal); Investigation (equal); Methodology
(equal); Resources (equal); Validation (equal); Visualization (equal);
Writing - review & editing (equal).

DATA AVAILABILITY

The data that support the findings of this study are avail-
able within the article and through the following repository:
https://github.com/robochimps/vibrojet.

REFERENCES

'K. Oenen, D. F. Dinu, and K. R. Liedl, “Determining internal coordinate sets
for optimal representation of molecular vibration,” J. Chem. Phys. 160, 014104
(2024).

2M. Schneider and G. Rauhut, “Comparison of curvilinear coordinates within
vibrational structure calculations based on automatically generated potential
energy surfaces,” J. Chem. Phys. 161, 094102 (2024).

J. Chem. Phys. 163, 072501 (2025); doi: 10.1063/5.0287347
© Author(s) 2025

163, 072501-8

01:0€:60 G20T 489010 L2


https://pubs.aip.org/aip/jcp
https://github.com/robochimps/vibrojet
https://doi.org/10.1063/5.0180657
https://doi.org/10.1063/5.0225991

The Journal

of Chemical Physics

3Y. Saleh, A. Fernandez Corral, E. Vogt, A. Iske, J. Kiipper, and A. Yachmenev,
“Computing excited states of molecules using normalizing flows,” ]. Chem. Theory
Comput. 21, 5221 (2025).

“E. Vogt, A. F. Corral, Y. Saleh, and A. Yachmenev, “Transferability and
interpretability of vibrational normalizing-flow coordinates,” arXiv:2502.15750
[physics] (2025).

5S. N. Yurchenko, W. Thiel, and P. Jensen, “Theoretical ROVibrational Ener-
gies (TROVE): A robust numerical approach to the calculation of rovi-
brational energies for polyatomic molecules,” J. Mol. Spectrosc. 245, 126
(2007).

SE. Mityus, G. Czaké, and A. G. Csiszdr, “Toward black-box-type full- and
reduced-dimensional variational (ro)vibrational computations,” J. Chem. Phys.
130, 134112 (2009).

7X.-G. Wang and T. Carrington, “A discrete variable representation method for
studying the rovibrational quantum dynamics of molecules with more than three
atoms,” J. Chem. Phys. 130, 094101 (2009).

8Q. Zhang, R.-S. Wang, and L. Wang, “Neural canonical transformations for
vibrational spectra of molecules,” J. Chem. Phys. 161, 024103 (2024).

9G. Avila and T. Carrington, “Solving the Schroedinger equation using Smolyak
interpolants,” J. Chem. Phys. 139, 134114 (2013).

195, C. Light and T. Carrington, “Discrete-variable representations and their
utilization,” Adv. Chem. Phys. 114, 263 (2000).

"J. Tennyson, M. A. Kostin, P. Barletta, G. J. Harris, O. L. Polyansky, J.
Ramanlal, and N. F. Zobov, “DVR3D: A program suite for the calculation of
rotation-vibration spectra of triatomic molecules,” Comput. Phys. Commun. 163,
85 (2004).

25, N. Yurchenko and T. M. Mellor, “Treating linear molecules in calculations of
rotation-vibration spectra,” ]. Chem. Phys. 153, 154106 (2020).

3 M. Mladenovi¢, “Rovibrational Hamiltonians for general polyatomic molecules
in spherical polar parametrization. I. Orthogonal representations,” ]. Chem. Phys.
112, 1070 (2000).

4X.-G. Wang and T. Carrington, “A simple method for deriving kinetic energy
operators,” J. Chem. Phys. 113, 7097 (2000).

'SE. Gatti, C. Mufioz, and C. Iung, “A general expression of the exact
kinetic energy operator in polyspherical coordinates,” ]. Chem. Phys. 114, 8275
(2001).

8D, W. Schwenke, “New rovibrational kinetic energy operators using poly-
spherical coordinates for polyatomic molecules,” J. Chem. Phys. 118, 10431
(2003).

'7A. Yachmenev and S. N. Yurchenko, “Automatic differentiation method for
numerical construction of the rotational-vibrational Hamiltonian as a power
series in the curvilinear internal coordinates using the Eckart frame,” J. Chem.
Phys. 143, 014105 (2015).

18D, Peléez and H.-D. Meyer, “The multigrid POTFIT (MGPF) method: Grid rep-
resentations of potentials for quantum dynamics of large systems,” ]. Chem. Phys.
138, 014108 (2013).

'9B. Ziegler and G. Rauhut, “Efficient generation of sum-of-products repre-
sentations of high-dimensional potential energy surfaces based on multimode
expansions,” |. Chem. Phys. 144, 114114 (2016).

20R. 1. Ovsyannikov, P. Jensen, M. Y. Tretyakov, and S. N. Yurchenko, “On the
use of the finite difference method in a calculation of vibration-rotation energies,”
Opt. Spectrosc. 107, 221-227 (2009).

2V A. Griewank, J. Utke, and A. Walther, “Evaluating higher derivative tensors
by forward propagation of univariate Taylor series,” Math. Comput. 69, 1117
(2000).

SOFTWARE pubs.aip.org/aipl/jcp

223, Walter, “Structured higher-order algorithmic differentiation in the forward
and reverse mode with application in optimum experimental design,” Ph.D. thesis,
Humboldt-Universitdt zu Berlin, Mathematisch-Naturwissenschaftliche Fakultit
IL, 2012.

22G. 0. Serensen, “A new approach to the Hamiltonian of nonrigid molecules,”
in Large Amplitude Motion in Molecules IT (Springer, 1979), pp. 97-175.

24V, V. Rybkin, U. Ekstrém, and T. Helgaker, “Internal-to-Cartesian back trans-
formation of molecular geometry steps using high-order geometric derivatives,”
J. Comput. Chem. 34, 1842 (2013).

25A. Y. Dymarsky and K. N. Kudin, “Computation of the pseudorotation matrix
to satisfy the Eckart axis conditions,” J. Chem. Phys. 122, 124103 (2005).

265, V. Krasnoshchekov, E. V. Isayeva, and N. E. Stepanov, “Determination of
the Eckart molecule-fixed frame by use of the apparatus of quaternion algebra,”
J. Chem. Phys. 140, 154104 (2014).

27 A. Yachmenev (2025). “Poblem with Eckart frame solution for methane using
quaternion method,” GitHub. https://github.com/robochimps/vibrojet/issues/4
28C. Moler and C. Van Loan, “Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later,” STAM Rev. 45, 3 (2003).

22, Griewank and A. Walther, Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation, 2nd ed. (Society for Industrial and Applied
Mathematics, 2008).

304, Griewank, D. Juedes, and J. Utke, “Algorithm 755: ADOL-C: A package for
the automatic differentiation of algorithms written in C/C++,” ACM Trans. Math.
Software 22, 131 (1996).

51LL. Benet and D. Sanders, “TaylorSeries.jl: Taylor expansions in one and several
variables in Julia,” ]. Open Source Software 4, 1043 (2019).

32]. Bettencourt, M. J. Johnson, and D. Duvenaud, “Taylor-mode automatic dif-
ferentiation for higher-order derivatives in JAX,” in Program Transformations for
ML Workshop at NeurIPS 2019, 2019.

33y, Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G.
Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang (2018).
“JAX: Composable transformations of Python + NumPy programs,” GitHub.
https://github.com/jax-ml/jax

34T, Mach and M. A. Freitag, “Solving the parametric eigenvalue problem by
Taylor series and Chebyshev expansion,” SIAM ]. Matrix Anal. Appl. 46, 957
(2025).

5], M. Bowman, T. Carrington, and H.-D. Meyer, “Variational quantum
approaches for computing vibrational energies of polyatomic molecules,” Mol.
Phys. 106, 2145 (2008).

36]. T. Hougen, P. R. Bunker, and J. W. C. Johns, “The vibration-rotation problem
in triatomic molecules allowing for a large-amplitude bending vibration,” J. Mol.
Spectrosc. 34, 136 (1970).

37M. Neff and G. Rauhut, “Towards black-box calculations of tunneling split-
tings obtained from vibrational structure methods based on normal coordinates,”
Spectrochim. Acta, Part A 119, 100 (2014).

38 A.F. Al-Refaie, A. Yachmenev, J. Tennyson, and S. N. Yurchenko, “ExoMol line
lists—VIII. A variationally computed line list for hot formaldehyde,” Mon. Not. R.
Astron. Soc. 448, 1704 (2015).

390. L. Polyansky, R. I Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson,
A. Yachmenev, S. N. Yurchenko, and N. F. Zobov, “Calculation of rotation-
vibration energy levels of the ammonia molecule based on an ab initio potential
energy surface,” J. Mol. Spectrosc. 327, 21 (2016).

405 N. Yurchenko, R. J. Barber, A. Yachmenev, W. Thiel, P. Jensen, and
J. Tennyson, “A variationally computed T = 300 K line list for NHj3,” J. Phys.
Chem. A 113, 11845 (2009).

J. Chem. Phys. 163, 072501 (2025); doi: 10.1063/5.0287347
© Author(s) 2025

163, 072501-9

01:0€:60 G20T 489010 L2


https://pubs.aip.org/aip/jcp
https://doi.org/10.1021/acs.jctc.5c00590
https://doi.org/10.1021/acs.jctc.5c00590
http://arxiv.org/abs/2502.15750
https://doi.org/10.1016/j.jms.2007.07.009
https://doi.org/10.1063/1.3076742
https://doi.org/10.1063/1.3077130
https://doi.org/10.1063/5.0209255
https://doi.org/10.1063/1.4821348
https://doi.org/10.1002/9780470141731.ch4
https://doi.org/10.1016/j.cpc.2003.10.003
https://doi.org/10.1063/5.0019546
https://doi.org/10.1063/1.480662
https://doi.org/10.1063/1.1313544
https://doi.org/10.1063/1.1361069
https://doi.org/10.1063/1.1574013
https://doi.org/10.1063/1.4923039
https://doi.org/10.1063/1.4923039
https://doi.org/10.1063/1.4773021
https://doi.org/10.1063/1.4943985
https://doi.org/10.1134/s0030400x09080104
https://doi.org/10.1090/s0025-5718-00-01120-0
https://doi.org/10.1007/bfb0048009
https://doi.org/10.1002/jcc.23327
https://doi.org/10.1063/1.1864872
https://doi.org/10.1063/1.4870936
https://github.com/robochimps/vibrojet/issues/4
https://doi.org/10.1137/s00361445024180
https://doi.org/10.1145/229473.229474
https://doi.org/10.1145/229473.229474
https://doi.org/10.21105/joss.01043
https://github.com/jax-ml/jax
https://doi.org/10.1137/23M1551961
https://doi.org/10.1080/00268970802258609
https://doi.org/10.1080/00268970802258609
https://doi.org/10.1016/0022-2852(70)90080-9
https://doi.org/10.1016/0022-2852(70)90080-9
https://doi.org/10.1016/j.saa.2013.02.033
https://doi.org/10.1093/mnras/stv091
https://doi.org/10.1093/mnras/stv091
https://doi.org/10.1016/j.jms.2016.08.003
https://doi.org/10.1021/jp9029425
https://doi.org/10.1021/jp9029425

