crystals WVI\D\Py

Atrticle
Coarse-Graining and Classifying Massive High-Throughput
XFEL Datasets of Crystallization in Supercooled Water

Ervin S. H. Chia 1, Tim B. Berberich 2{", Egor Sobolev 2{7, Jayanath C. P. Koliyadu 27, Patrick Adams 3,

Tomas André *©, Fabio Dall Antonia 2(, Sebastian Cardoch (2, Emiliano De Santis >(©, Andrew Formosa 70,

Bjorn Hammarstrom 8(0, Michael P. Hassett 302, Seonmyeong Kim 90, Marco Kloos 29, Romain Letrun 202,

Janusz Malka 207, Diogo Melo 2{7, Stefan Paporakis 3", Tokushi Sato 27, Philipp Schmidt >0, Oleksii Turkot 20,
Mohammad Vakili 207, Joana Valerio 207, Tej Varma Yenupuri 1°07, Tong You %09, Raphaél de Wijn 209,

Gun-Sik Park °(J, Brian Abbey %’(, Connie Darmanin %7, Saga Bajt 1¥12(2, Henry N. Chapman 111213

Johan Bielecki 2(7, Filipe R. N. C. Maia 1°0, Nicusor Timneanu *', Carl Caleman 4, Andrew V. Martin 30,
Ruslan P. Kurta 207, Jonas A. Sellberg 3*( and Ne-te Duane Loh 14*

Department of Physics, National University of Singapore, Singapore 119077, Singapore; ervinc@nus.edu.sg
2 European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany; tim.berberich@xfel.eu (T.B.B.);
egor.sobolev@xfel.eu (E.S.); jayanath.koliyadu@xfel.eu (J.C.PK.); fabio.dall.antonia@xfel.eu (ED.A.);
marco.kloos@xfel.eu (M.K.); romain.letrun@xfel.eu (R.L.); janusz.malka@xfel.eu (J.M.);
diogo.melo@xfel.eu (D.M.); tokushi.sato@xfel.eu (T.S.); philipp.schmidt@xfel.eu (P.S.);
oleksii.turkot@xfel.eu (O.T.); mohammad.vakili@xfel.eu (M.V.); joana.valerio@xfel.eu (J.V.);
raphael.de.wijn@xfel.eu (R.d.W.); johan.bielecki@xfel.eu (J.B.); ruslan kurta@xfel.eu (R P.X.)
3 School of Science, RMIT University, Melbourne, VIC 3001, Australia; patrick.adams@icm.uu.se (P.A.);
s3717891@student.rmit.edu.au (M.P.H.); s3599678@student.rmit.edu.au (S.P.);
andrew.martin@rmit.edu.au (A.V.M.)
Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden;
tomas.andre@physics.uu.se (T.A.); nicusor.timneanu@physics.uu.se (N.T.); carl.caleman@physics.uu.se (C.C.)
Department of Chemistry—BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden;
edesantis@roma2.infn.it
Department of Mathematical and Physical Sciences, School of Computing Engineering and Mathematical
Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia; a.formosa@latrobe.edu.au (A.F);
b.abbey@latrobe.edu.au (B.A.); c.darmanin@latrobe.edu.au (C.D.)
check for La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3038, Australia
updates 8 Department of Applied Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden; bham@kth.se
Center for THz-Driven Biomedical Systems, Department of Physics and Astronomy, Institute of Applied
Physics, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea;
sm14.kim@samsung.com (S.K.); gunsik@snu.ac.kr (G.-S.P.)
Accepted: 15 August 2025 10" Department of Cell and Molecular Biology, Uppsala University, Box 596, 75124 Uppsala, Sweden;
Published: 19 August 2025 tej.v.yenupuri@icm.uu.se (T.V.Y.); tong.you@icm.uu.se (T.Y.); filipe.maia@icm.uu.se (ER.N.C.M.)
11 Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85,
22607 Hamburg, Germany; sasa.bajt@desy.de (S.B.); henry.chapman@desy.de (H.N.C.)
The Hamburg Centre for Ultrafast Imaging, Universitit Hamburg, Luruper Chaussee 149,
22761 Hamburg, Germany

Received: 13 June 2025
Revised: 8 August 2025

Citation: Chia, E.S.H.; Berberich,
T.B.; Sobolev, E.; Koliyadu, J.C.P.;
Adams, P.; André, T.; Antonia, ED.;

12

Cardoch, S.; De Santis, E.; Formosa, 13 Department of Physics, Universitiat Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
A etal. Coarse-Graining and 14 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
Classifying Massive High- *  Correspondence: jonassel@kth.se (J.A.S.); duaneloh@nus.edu.sg (N.-t.D.L.)

Throughput XFEL Datasets of
Crystallization in Supercooled Water. Abstract
Crystals 2025, 15, 734. https://

doi.org/10.3390/ cryst15080734 Ice crystallization in supercooled water is a complex phenomenon with far-reaching implica-
Copyright: © 2025 by the authors. tions across scientific disciplines, including cloud formation physics and cryopreservation.
Licensee MDPIL Basel, Switzerland. Experimentally studying such complexity can be a highly data-driven and data-hungry
This article is an open access article endeavor because of the need to record rare events that cannot be triggered on demand.
distributed under the terms and Here, we describe such an experiment comprising 561 million images of X-ray free-electron

conditions of the Creative Commons
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laser (XFEL) diffraction patterns (2.3 PB raw data) spanning the disorder-to-order transition
in micrometer-sized supercooled water droplets. To effectively analyze these patterns, we
propose a data reduction (i.e., coarse-graining) and dimensionality reduction (i.e., principal
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component analysis) strategy. We show that a simple set of criteria on this reduced dataset
can efficiently classify these patterns in the absence of reference diffraction signatures,
which we validated using more precise but computationally expensive unsupervised ma-
chine learning techniques. For hit-finding, our strategy attained 98% agreement with our
cross-validation. We speculate that these strategies may be generalized to other types of
large high-dimensional datasets generated at high-throughput XFEL facilities.

Keywords: XFEL; crystallization; machine learning; classification

1. Introduction

X-ray free-electron lasers (XFELs) can interrogate diverse and dynamic ensembles,
whether disordered [1,2] or crystalline [3,4]. High peak brightness, femtosecond time
resolution, and short wavelengths are properties of XFELs that enable observations of
dynamic processes at high spatiotemporal resolutions [5]. At these short length and time
scales, structural information at near-atomic length scales is probed faster than thermal
motion, obtaining snapshots of atomic arrangements that are effectively frozen in time.
With advanced instruments and detectors, XFELs are capable of interrogating ensembles
up to the MHz repetition-rate regime [6]. Coupled with high-performance computing,
fast input-output, and massive storage, we can study diverse structural dynamics [4,7] in
complex systems.

These capabilities make XFELs powerful tools for studying the anomalies of wa-
ter [8]. Several anomalous properties of water have been linked to its liquid-liquid phase
separation [9-11], where liquid water is hypothesized to spontaneously separate into
two structural motifs: a low-density phase where molecules are tetrahedrally coordinated
and a high-density phase with five nearest-neighbors. Signatures of this phase separation
become more apparent when water is deeply supercooled [12,13]. However, under such
conditions, liquid water spontaneously crystallizes in microseconds [14,15], making it diffi-
cult to separate signatures from fluid polymorphism and ice coarsening. The femtosecond
time resolution of XFELs, their extreme brilliance, and high throughput allow us a window
to study the structural motifs of supercooled water with atomic resolution prior to and
during the disorder—order transition.

A meaningful, consistent, and robust description of water’s disorder-order transition
requires measuring many deeply supercooled water droplets. We expect a wide variety
of structural motifs to manifest in these droplets at different stages of nucleation and crys-
tallization [16]. Even droplets at the same supercooling stage will nucleate and crystallize
stochastically and differently, likely leading to a diverse range of structural features. Such
large and diverse datasets that are complex and complicated to analyze propose a challenge
to extract meaningful information.

To meet this challenge, we demonstrate a combination of data and dimensional-
ity reduction that allows scalable and interpretable classification of petabytes of diverse
diffraction patterns. First, we reduced the data with angular coarse-graining of simple
summarizing statistics. We then used principal component analysis (PCA) to identify
important feature combinations. A second set of intuitive outlier statistics was computed
on these feature combinations that could effectively classify these patterns.



Crystals 2025, 15, 734

Sof21

2. Approach
2.1. Experimental Background

We used the SPB/SFX instrument [17] at the European XFEL (EuXFEL) to probe
millions of evaporatively supercooled water droplets to understand their disorder—order
pathways and propensities (Figure 1). Micrometer-sized droplets (2 pm to 12 pm) were
formed by a gas-focused liquid jet that undergoes Rayleigh breakup [18,19]. X-ray laser
pulses randomly probed these droplets as they were evaporatively cooled to different
temperatures. The nozzle-to-pulse vertical distance was varied from 0.3 mm to 60 mm to
evaporatively cool the droplets to different temperatures.

Gas Dynamic
Virtual Nozzle Adaptive-Gain
(GDVN) Integrating Pixel
Detector (AGIPD)

Self-Amplified Spontaneous Emission
(SASE) enhanced X-ray beam

Linear WA,
Accelerato VAYA'A'A'A'A'A"

Magnetic Undulator \
- Evaporatively ==
electron supercooled
beam dump water droplets

Figure 1. (Top row) Simplified schematic of the experiment at the SPB/SFX beamline at the European
XFEL (EuXFEL). We serially interrogated single water droplets of different temperatures and sizes
by adjusting the vertical displacement of the nozzle and the droplet size. (Bottom row) Exemplary
patterns on the AGIPD detector showcase the variety of diffraction features of extended shape
transforms of small truncated ice crystals that are growing in water droplets.

As such, our ultrafast high-throughput XFEL imaging of water droplets produced
enormous quantities of data. Approximately 561 million diffraction patterns were recorded
over four days of continuous data acquisition with the single-photon counting Adaptive
Gain Integrated Pixel Detector (AGIPD) [20,21] during the experiment. The AGIPD com-
prises sixteen front-end modules, each with sixteen square Application-Specific Integrated
Circuits (ASICs). Each ASIC, in turn, comprises 64 x 64 pixels, which totals more than
one million pixels on all ASICs of the entire detector. Including experimental metadata,
the total raw dataset occupies approximately 2.3 PB of storage, ballooning to 4.5 PB after
initial processing.

2.2. Data Description and Processing

Each pattern was corrected for known systematic variations. These variations arise
from the beam, experimental, and instrument conditions. These include effects from
the incident X-ray polarization, the variations in solid angles subtended by individual
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detector pixels, pixel-resolved gain, and thermally-induced fluctuations [22]. Finally, certain
pixels were identified and omitted from each diffraction pattern because they became
unresponsive to incident signals, likely due to prior overexposure to high-energy X-rays.

Then there are measurement uncertainties. Water’s low scattering cross-section, de-
spite the extremely brilliant XFEL pulses, makes each XFEL diffraction pattern inevitably
photon-limited. Such noisy patterns are susceptible to false-positive photon counts that
arise from detector thermal noise or other artifacts (even a false positive rate of 0.001% can
lead to dozens of false photons on a megapixel detector). Furthermore, each diffraction
pattern contains hidden variables that must be inferred (e.g., crystallite orientations and
structural motifs, and each water droplet’s random position with respect to the X-ray pulse,
etc.). These hidden variables can confuse both hit-finding and hit-classification [23].

We also detected a very low level of background X-ray photons that were scattered
from upstream optical elements, which were present as long as X-ray pulses were reaching
the detector, even without samples. Although the average scattering pattern from this
background was static, it covered a substantial fraction of our detector, making it infeasible
to mask out. Fortunately, this background only contributed to a small minority of photons
per pattern. This shot-noise-limited background meant that we could not subtract the
average value from every single pattern without incurring negative values. However, it
also meant that they could be ignored since they are unlikely to affect pattern classification.

2.3. Considerations for Classification

Studying the stochastic disorder-order transitions amongst millions of droplets in-
volves classifying them by their WAXS diffraction patterns. This classification comprises
two steps. First, we have to identify the patterns that contain significant diffraction scat-
tering from droplets, a procedure that is commonly referred to as hit-finding. Thereafter,
we must classify the structural motifs found in droplet-containing diffraction patterns (i.e.,
hit classification).

Classifying hits by their diffraction signatures is non-trivial for two reasons. First, each
of the probed droplets could contain a diverse range of structural motifs in nanometer-sized
frustrated nascent crystals. The diffraction signatures of these crystals are neither those of
microcrystals seen in well-established Serial Femtosecond Crystallography (SFX) [24,25] nor
structurally homogeneous like those expected in single-particle imaging [22,26]. Robust
classification procedures, including peak finding and data reduction routines, have been
developed for these imaging conditions [27,28]. Without references for the diffraction
signatures of these motifs, we typically turn to unsupervised learning, which dimensionally
reduces each WAXS pattern and then compares different pairs of such patterns for classifi-
cation. This brings us to the second challenge: each diffraction pattern comprises many
pixels (i.e., high-dimensional raw feature vectors), which makes pairwise comparisons
amongst the many millions of WAXS patterns computationally expensive. Hence, it is
necessary to coarse-grain the raw feature vectors, where we reduce the data so that it is
small enough to store and compute efficiently while retaining sufficiently discriminating
features for classification.

2.4. Angular Coarse-Graining with Means and Maxes

Naturally, this entire 2.3 PB dataset of raw detector data is too cumbersome for many
classification routines in unsupervised machine learning. Suppose we represent this full
dataset as a two-dimensional design matrix X comprising N rows of measurements (i.e.,
diffraction patterns) and D columns of measurement features (i.e., number of pixels per
pattern). The time-complexity of unsupervised classification techniques that interrogate
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pairs of measurements at a time increases quadratically with N. Hence, such methods are
infeasible with N = 5.6 x 108 patterns.

Coarse-graining in physics is the process of simplifying a complex system by reducing
its number of degrees of freedom to focus on macroscopic behavior. This process is
analogous to data reduction, where less important details are integrated or averaged out in
order to scale up to larger datasets.

Here, to efficiently compare all the 5.6 108 patterns, we coarse-grained away scatter-
ing information contained in high resolutions of g values, retaining summarizing statistics
of the signal received by each of the 256 ASICs of the AGIPD (Figure 2). When there are
few small ice crystals in each droplet, this coarse-graining loses information about their
shape and strain since their Bragg transforms lie within the angular scale spanned by
single ASICs. Should there be many large crystals in an illuminated water droplet, this
coarse-graining makes the number of crystals in the droplet less apparent.

Nevertheless, this coarse-graining allows us to effectively reduce our dataset sizes
by orders of magnitude, dramatically speeding up downstream machine learning. In this
study, we pursued two levels of coarse-graining: the intensity mean and maximum of the
64 x 64 pixels on an ASIC (i.e., ASIC level) or non-overlapping 8 x 8 pixel blocks within
each ASIC (i.e., sub-ASIC level) (Figure 3).

Notably, this coarse-graining is different from simply binning pixels on our detector
since we are also computing the maximum values within each set of pixels (i.e., max-
pooling). Binning either at the ASIC or sub-ASIC level is a natural way of coarse-graining
the diffuse scattering pattern of liquid water (i.e., hits), and distinguishing these from
misses (i.e., no water droplet was substantially illuminated by X-rays). Maximum-pooling
routines are commonly used to detect when Bragg scattering from sub-micrometer crystals
rises above the diffuse scattering of amorphous water [24,29]. Overall, ASIC-level and
sub-ASIC-level coarse-graining resulted in a 4096-fold and 64-fold data reduction per
pattern, respectively.

Blank Liquid water Water + ice Ice
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Figure 2. Examples of different classes of patterns (columns) at different levels of mean coarse-

graining (rows). Whereas these classes are evident with mean-features at both the ASIC level and
sub-ASIC level, discriminating details are much better preserved with the latter. Colors range from
10th to 90th percentile ADU in pattern.
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Figure 3. Effects of coarse-graining a pattern with strong ice scattering and very weak liquid water
scattering. We coarse-grain the mean-features (top row) and max-features (bottom row) of this
pattern either at the sub-ASIC level (middle column) or the ASIC level (right column). For sub-ASIC
coarse-graining, details of the crystal shape/size transforms can still be observed. Upon further
coarse-graining to the ASIC level, only the presence of ice scattering can be determined. The max-
features are more sensitive to the presence of crystallinity, while the mean-features are more attuned
to broader scattering features of liquid water. Colors range from 5th to 95th percentile ADU in pattern.

Whereas sub-ASIC-level coarse-graining retains some information about shape trans-
forms and number densities of crystals within each illuminated droplet (middle row of
Figure 2), ASIC-level coarse-graining already has sufficient discriminating power to classify
patterns into misses and different types of hits (bottom row of Figure 2).

2.5. Covariance as a Statistical Criterion for Feature Attention

Not all of the coarse-grained features of the detector are equally informative. For
example, some scattering angles do not receive much signal because they do not correspond
to persistent or prevalent structural ordering in the sample. Furthermore, scattering signals
within a single pattern can be correlated due to symmetry in the sample (e.g., rotational
symmetry in liquid water; discrete symmetries in nascent crystals). In both cases, we turn
to feature covariances to quantify which sets of coarse-grained features deserve attention
for downstream pattern classification.

Principal component analysis (PCA) can efficiently identify co-varying sets of features
and rank them by statistical significance [30]. Commonly employed as a dimensionality
reduction technique, PCA reprojects each measurement into a new linear basis spanned
by the eigenvectors of the data’s feature covariance matrix. Each eigenvector is composed
of a linear combination of detector features. Crucially, these eigenvectors are ranked by
their ability to explain the covariance seen across all the measurements (i.e., patterns in our
case). Hence, PCA allows us to reproject each diffraction pattern onto the most statistically
significant feature combinations (i.e., eigenvectors with highest explained variance).

The design matrix of our coarse-grained dataset X.g € RN*D has far more rows
(i.e, N = 5.6 x 10® measurements) than columns (i.e., D = 256 or D = 16,384 resultant
features for ASIC vs sub-ASIC coarse-graining, respectively). Hence, we compute its PCA
by diagonalizing the D x D feature covariance matrix (averaged over the N patterns) as
opposed to naively performing singular value decomposition on the far larger N x D
design matrix (Appendix A).
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3. Results
3.1. Impact of Coarse-Graining

To a limited degree, the mean-features after angular coarse-graining amplified the
signal-to-noise ratio within each ASIC (or 8 x 8 pixel sub-ASIC block). This amplification
was because summing correlated signals within each ASIC (e.g., extended shape transforms
of crystals, or diffuse water ring) allowed them to outpace the contributions from uncorre-
lated detector thermal noise, which was calibrated to fluctuate around 0 analog-to-digital
units (ADUs). This amplification is most apparent, for example, when signals from diffuse
liquid scattering fill an ASIC. The summative signal on the entire ASIC grows linearly with
the number of its pixels, but uncorrelated noise grows with the square root of the number
of pixels instead.

Figure 2 shows that different types of information necessary for classification are
retained at the two coarse-graining levels. The columns of Figure 2 show the four broad
categories of classification: blanks (i.e., misses), hits containing only liquid water, hits
containing both liquid water and ice, and hits that are mostly if not all ice. Whereas these
four categories are distinguishable with just the mean-features at the ASIC level (bottom
row), the important Bragg shape transforms of the nascent crystals are only resolvable at
the sub-ASIC level.

3.2. Principal Component Analysis

Figure 4 shows that more than 99.9% of the total variance of the ASIC-level mean-
features across the entire dataset was captured by the three most significant PCA modes.
The first PCA mode of the ASIC-level mean-features mostly describes variations in the
diffuse liquid water scattering (with negligible changes in the detector-sample distance and
photon energy). The second PCA mode of the mean-features mostly describes deviations
that are orthogonal to the first mode’s diffuse scattering due to Bragg scattering from
illuminated ice nuclei or crystals.

The ASIC-level max-features are more sensitive to where ice scattering is expected.
For comparison, the bottom row of Figure 4 also shows the first two PCA modes of the
ASIC-level max-features. Recall that max-features retain the maximum pixel intensity
within each ASIC, which are tuned to capture coherent Bragg scattering when long-range
order starts developing in nascent nanometer-size ice crystals. Comparing the PCA modes
of max-features with those from mean-features, we see that the amplitudes of the former
are larger where ice scattering is expected. This implies that these two modes capture most
of the variations in the maxes amongst patterns due to ice scattering.

Note that these PCA modes show some rotational symmetry about the optical axis,
largely because the signatures of liquid water and ice scattering should have this invariance
when averaged over single observations of millions of water droplets. Deviations from this
symmetry are likely owing to asymmetries in the detector’s response to photons.

Finally, the middle row of Figure 4 does not readily offer clear decision boundaries to
classify misses from hits, nor amongst the different types of hits. PCA enables a re-encoding
of the diffraction patterns. By projecting each pattern onto the found PCA modes, we are
able to succinctly express our patterns as loadings onto these projections. The patterns can
be largely reconstructed using the loadings from the modes with the highest explained
variance A. Hence, these loadings are an effective form of data compression.

Naively projecting the diffraction patterns from one run (i.e., a continuous burst of
data collected in a 10-minute interval, typically comprising ~ 10° patterns) onto its first two
PCA mean-feature or max-feature modes does not yield physically interpretable decision
boundaries for the four pattern categories (column labels of Figure 2). This absence of
interpretability is typical of PCA since this data reduction is engineered to determine linear
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combinations of existing features that explain the data covariance; these new combinations
of existing features suggested by PCA are not guaranteed to have a physical interpretation.
Additional PCA modes and distributions can be found in Appendix A (Figures A3 and A4).
In Section 3.3 below, we propose a secondary dimensionality reduction based upon PCA
that automatically suggests interpretable statistics for classification.
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Figure 4. Results of principal component analysis (PCA). (A): Normalized explained variance ratios
(Appendix A) A for mean (blue) and maximum (red) features for all 5.6 x 108 patterns. This variance
rapidly falls off within the first ten principal components, indicating that most feature covariations
can be captured within the first ten PCA modes. Distribution of PCA mean-feature (B) and max-
feature (C) weights for the first two components across one run. The first two principal components
of the mean-features (D,E) and max-features (F,G).

3.3. Outlier Statistics on Ice-Sensitive ASICs for Classification

Recall that our task at hand is to classify patterns into misses versus hits, then subclas-
sify hits into different categories (Figure 2). Hits could contain scattering signatures from
liquid water and crystalline ice in different mixtures. Fortunately, Figure 4 demonstrates
that the principal modes of the ASIC-level max-features can be used to identify the subset
of ASICs on the detector that are sensitive to ice-scattering. So, in principle, we can refocus
our classification efforts onto features from this subset of ASICs that are sensitive to ice
scattering (i.e., ice-sensitive ASICs).

Figure 5 shows the distribution of outlier statistics of these ice-sensitive ASICs for
approximately two million patterns in two different XFEL runs. Specifically, these statistics
are simply the maxima of each pattern’s ASIC-level max-features and mean-features, but
only for its ice-sensitive ASICs. This distribution of outlier statistics shows far more
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structure than the naive PCA projection of all ASICs’ features Figure 4. By inspecting the
distribution in Figure 5, we determine thresholds in this two-dimensional feature space of
outlier statistics defined on the ice-sensitive ASICs. We initially proposed thresholds based
on persistent features in the mean—-max distributions. We inspected that the frames within
these boundaries corresponded to the descriptions in Table 1. These features are influenced
by the adaptive gain-switching of the detector, particularly when strong hits are observed,
resulting in the detector switching from high to low gain.

We first identified a group of patterns, which we label as class 0, that are demarcated
by the lower left rectangle (red in Figure 5), corresponding to high-confidence misses. The
spread in the maximum of mean-features within this class (horizontal axis in Figure 5)
arose from low levels of static background scattering, plus uncertainties in these ASICs in
the absence of scattering from a droplet (see discussion in Section 2.2). In Figure 5, class 1
patterns are candidate misses with exceptional outliers in thermal noise (see Section 2.2).
Similarly, class 2 patterns are also misses but where a few unmasked ‘hot-pixels” had bright
fluctuations. These localized fluctuations increased the max-features (upper Figure 5) more
than they increased the mean-features (right in Figure 5).

Run 312
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Figure 5. Distribution of patterns from two experiment runs based on two outlier statistics (see axis
labels). The high-confidence blanks are defined by signal limits (average of 0.2 photons and maximum
of 3 photons per ASIC), which are demarcated by red dashed lines. Boundaries for classification were
guided by separating dense clusters of patterns with similar combinations of outlier statistics.
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Table 1. Representing 454,775,678 patterns across 440 runs that were automatically labeled according
to the decision boundaries in Figure 5. The signal thresholds for both max-feature and mean-feature
in each class are also included. Fewer than 0.01% of the patterns did not fall into these seven classes.

Class Label Num. Patterns Mean Limits (Photons) Max Limits (Photons) Interpretation
0 4.21 x 108 (92.69%) [1072,0.17] [0.1,3.4] blanks (high-confidence)
1 4.32 x 10° (0.98%) [1075,0.17] [3.4,10.8] blanks with high thermal noise
2 1.75 x 107 (3.80%) [1073,0.17] [10.8,17.0] blanks (hot pixels activated)
3 2.62 x 10° (0.06%) [1075,0.17] [17.0, 107.5] weak hits
4 5.01 x 10° (1.12%) [0.17, 1075] [1.9,10.8] strong liquid water hits
5 5.94 x 10° (1.28%) [0.17, 1075] [10.8, 108] liquid water and ice hits
6 2.61 x 10° (0.06%) [0.01, 1075] [108, 10800] strong ice hits

The relationship between mean-features and max-features regarding ASICs is expected
to be different for ice versus liquid water scattering. At hard X-ray energies, the scattering
intensity from liquid water scales linearly with the total number of illuminated electrons
n,. Comparatively, the Bragg diffraction intensities scale quadratically I(g) o n2. This
difference is exaggerated by AGIPD’s adaptive gain, which switched from high to medium
gain when a pixel received a high number of photon counts (e.g., Bragg scattering from ice).

Here, the spread in each pattern’s maxima of mean-features in their ice-sensitive ASICs
is dominated by the fraction of droplet’s mass that is illuminated by X-ray pulses.

These droplets (2-12 um diameter) arrived randomly at the nominal focus of the
ensemble of X-ray pulses (100 nm full-width half-max beam diameter). The pattern’s
total intensity is inversely proportional to the distance between the illuminating X-ray
pulse’s centroid from each droplet’s center of mass: illuminated 7, increases as the pulse
strikes closer to each droplet’s center. Conversely, droplets that are illuminated by weak
wide-intensity tails of the X-ray pulses [31] result in lower mean-features. Although the
X-ray pulse energies fluctuated from pulse-to-pulse, the positional jitter of the partially
synchronized water droplets accounts for the majority of the intensity variations between
patterns within each class.

As such, the patterns in class 3 were observed to be hits with weak ice scattering plus
a very weak diffuse water ring. These class 3 patterns could be due to ice scattering from
the low-intensity tails of X-ray pulses. The patterns in class 4 shown in Figure 5 primarily
contain liquid water scattering. The most striking patterns are those in classes 5 and 6,
which contain strong Bragg scattering from ice with a spread of intensities in the diffuse
water ring.

3.4. Massive Hit-Finding and Hit-Classification

Compared to identifying blanks with only the total signal of each recorded pattern,
classifying patterns using the two outlier statistics in Figure 5 is more robust against
uncertainties in detector response, background counts, and variations.

A second outlier statistic enables us to distinguish different classes more carefully. For
example, if only the mean outlier statistic was used, the distributions in Figure 5 would be
projected down to the x-axis, causing classes 4, 5, and 6 to be indistinguishable.

Remarkably, the fixed ADU thresholds on these statistics (as shown in Figure 5)
allowed us to automatically classify 4.5 x 10° patterns across Table 1.

Validating our classification of 108 individual patterns by manual inspection is infeasi-
ble. Nevertheless, for each of the 555 runs, we checked that the class boundaries matched
the ADU thresholds in Figure 5. In runs where the beam attenuation was intentionally
adjusted, the class boundaries would cross these thresholds and their automatic classifica-
tion would fail. Furthermore, we also pooled together the average patterns from random
subsets of 100 patterns within each class of each run. In total, we created seven such aver-
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age patterns for each run and manually inspected these averages for diffraction features
expected for each type. Examples of these averages can be found in Figures A1 and A2.

While these inspection techniques were simplistic, they allowed us to quickly ascertain
that pattern classification was self-consistent for 440 of the 555 runs. This was completed
by ensuring that class 0 averages had no water-related scattering signatures. The classi-
fication statistics for these 440 runs are tabulated in Table 1. The more careful validation
in Section 3.5 suggested the hit/blank classification was statistically more robust than the
classification within each hit class.

3.5. Cross-Validating Hits and Blanks

Since it is impractical to validate the classification in Section 3.4 by individually in-
specting hundreds of millions of patterns, we instead cross-validated these class labels
using unsupervised machine learning. One option combines manifold learning and cluster-
ing, where patterns are projected into a low-dimensional embedding, and like-patterns on
this embedding are then clustered into classes. The computational complexity to initialize
this unsupervised learning approach essentially scales quadratically with the number of
patterns, which limits our cross-validating to ~ 10° patterns of a single run at a time.

Further, the memory footprint of individual patterns for this cross-validation exercise
was still unnecessarily large. Figure 4 shows that we could dimensionally reduce each
pattern’s ASIC-level feature vectors by representing them as the weights of their mean-
and max-features. Projecting the patterns as PCA weights captures 99.9% of the observed
variance in the patterns within the first three modes, which, as we shall see below, was
sufficient to discern the boundaries amongst blanks and different types of hits. We recast
each pattern into its ten-dimensional (10D) feature vector: the concatenation of the five PCA
weights/projections of each pattern’s ASIC-level mean- and max-features, respectively.
We chose to use five instead of three modes each as Figure 4A shows that the explained
variance ratio distinctly flattens off after five components. We believe that including two
more modes as a precautionary measure to retain smaller variations would aid classification
without incurring significant computational costs. This projection reduced each pattern’s
feature vector from a dimensionality of D = 2 x 256 to D = 10.

two-dimensional (2D) embedding of 10° patterns (i.e., single run) was learned using
the Uniform Manifold Approximation Projection (UMAP) [32] (Figure 6A). Whereas the
details of this 2D embedding depend on how it was randomly initialized, the embedding’s
decision boundaries are primarily dictated by the similarities and differences amongst the
patterns’ 10D feature vectors. Typically, the dimensions of UMAP’s learned embedding do
not have an obvious physical interpretation.

The class boundaries in the UMAP embedding (Figure 6) are clearer than those in
Figure 5. These clearer boundaries might arise because the former compared 10D feature
vectors (derived from PCA) rather than only 2D outlier features in the latter. Recall that the
2D outlier statistics were based on ice-sensitive ASICs identified from the first PCA mode.

The most striking feature in UMAP’s embedding is that it contains a single large cluster
of patterns surrounded by far smaller clusters. This large cluster mostly contains blanks
(class 0 shown in red), while the smaller clusters primarily hold the remaining classes.
Class 2 hits (yellow points), which, as we recall from Table 1, are blanks with hot pixels, are
isolated in a small cluster, indicating strong unique features on such patterns. Although
we can discern blanks from hits in the UMAP embedding, class 0 blanks occasionally
appeared in the smaller clusters (insets of Figure 6A). Class 4 patterns (gray) were unevenly
distributed amongst the smaller cluster, indicating that the simple thresholds using the
outlier statistics in Figure 5 were insufficiently discriminating.
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Figure 6. (A): UMAP embedding from one run (=100 patterns), colored by the assigned class from
classification. (B): Automated re-labeling of the patterns in the UMAP embedding with DBSCAN.
The large cluster dominated by the blank class (red in (A)) is re-categorized as a new set of blanks
(dark blue in (B)), while all other hits were treated as hits (pink in (B)).

We used Density-based Spatial Clustering of Applications with Noise (DBSCAN) to
automatically cluster the patterns in their UMAP embedding into hits versus blanks. It
is straightforward to identify which DBSCAN clusters are predominately class 0 blanks:
since the experimental hit-rates are expected to be low, the most populous cluster should
be classified as blanks. Figure 6B shows UMAP-DBSCAN’s binary class labels of blarnks
(dark blue) versus hits (pink).

We iterate that hit-finding using UMAP-DBSCAN on 10D PCA-reduced feature vectors
appears to be better defined than conducting the same with simplistic thresholds on 2D
outlier statistics, as laid out in Section 3.3. The limitations of hit-finding using the 2D outlier
statistics become evident when we visualize UMAP-DBSCAN's hit-blank labels in the 2D
axes of outlier statistics in Figure 7. Separately plotted, the DBSCAN'’s blanks occur within
the class 0 threshold boundaries proposed in Section 3.3. However, a small fraction of
UMAP-DBSCAN’s hits extend into the same region occupied by the blank classes. From
this overlap, we conclude that outlier statistics can be used to identify class boundaries to
classify the diffraction patterns, but this process is not refined enough to do so with high
accuracy. We iterate that manually labeling a million patterns is infeasible and subjective.
Henceforth, we treat UMAP-DBSCAN's class labels as the presumptive “ground truth’.

The confusion matrix in Table 2 shows the correspondence between classification of
patterns in one run by UMAP-DBSCAN (rows) and by outlier statistics (columns). The
diagonal entries of the table represent how well the two methods agree, and they are
considered the ‘true’ positives (for hits) and ‘true” negatives (for blanks). Patterns that
fall into these diagonal entries are consistently classified by both methods and thus likely
reliable. Most of the patterns (95%) were labeled as blanks by both methods. The off-
diagonal entries, which account for 2% of the patterns, indicate where the two sets of
classifications disagree.

The discussion above for ~ 10° patterns might tempt us to cross-validate the hits
found with outlier statistics against those from the UMAP-DBSCAN binary clustering for
all 108 patterns across all 440 runs in Table 1. However, UMAP-DBSCAN clustering is still
computationally expensive and may require manual hyperparameter tuning when a run’s
experimental conditions deviate from the majority. For instance, the density and structure
of the UMAP embedding are defined by its n_neighbors and min_dist hyperparameters,
which govern the emphasis on the local or global data structure and how close UMAP
is allowed to embed similar patterns together, respectively. Additionally, DBSCAN'’s
clustering is highly dependent on the eps hyperparameter that specifies the maximum
distance between points to be considered as part of a cluster. Runs with fewer patterns
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would inevitably have a sparser distribution of patterns in the embedding, which would
necessitate an increase in the eps hyperparameter to achieve the same clustering results.

5 DBSCAN miss DBSCAN hit

\

3 .

2

e

0—4 -2 0 2 4 —4 -2 0 2 4

T T o e 10 0
Number of patterns Number of patterns

Figure 7. Hit-miss binary classification from DBSCAN clustering in the UMAP embedding, individu-
ally plotted as a function of the patterns” outlier statistics.

Table 2. Hit-finding confusion matrix between classification by UMAP-DBSCAN and outlier statistics
for two characteristic runs. Classes from outlier statistics were binarized by setting classes 1 to 6 as
hits and class 0 as blanks to compare with the binary classification found with unsupervised learning.

Hit (Outlier Statistics) Miss (Outlier Statistics)

Hit (UMAP-DBSCAN) 2.86 x 10%,2.21% 9.31 x 10%, 0.72%
Miss (UMAP-DBSCAN) 1.67 x 10%,1.29% 1.24 x 10°, 95.79%

4. Discussion

Classifying massive numbers of diffraction patterns can be accelerated with machine
learning. If strong priors about patterns and interrogated structures such as preferred
molecular structures are available, supervised learning trained on data that enforces these
priors can be a good option [33,34]. However, supervised learning is not expected to gener-
alize to out-of-distribution samples, which makes them unreliable for classifying previously
unseen novel phenomena such as the complex structural dynamics in nucleating water.

Absent such priors, unsupervised machine learning for dimensionality reduction and
classification can be a powerful alternative. Unsupervised approaches that use pairwise
comparisons between unlabeled patterns require little to no prior knowledge for classifi-
cation. This self-descriptive method also circumvents human biases that influence data
interpretation. However, limited human supervision is inevitable for hyperparameter
tuning and for inspecting and batch-validating the class boundaries. Nevertheless, these
unsupervised approaches can drastically reduce the efforts of human supervision by orders
of magnitude, where, instead of inspecting individual patterns, we only need to inspect
large groups of patterns for intra-class uniformity and sensible inter-class separations.

Although massive XFEL datasets take up a great deal of storage, they are often highly
reducible. From Table 1, we see that high-confidence blanks comprise 92.7% of the patterns
among the 440 runs analyzed. Removing these high-confident blanks (N = 4.21 x 108),
which individually uses 4.2 MB of storage, amounts to saving 1.77 PB of processed data.
Unsupervised learning, as shown in this paper, can rapidly identify classes of uninformative
patterns (e.g., blanks), which can be discarded to reduce data storage.
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Naively, dimensionality reduction of hits (e.g., using PCA or UMAP) can also reduce
data storage. However, in practice, we recommend keeping the raw detector data for
the hits alongside a hierarchy of dimensionally reduced representations (e.g., ASIC level
or sub-ASIC level). This three-tiered hierarchy naturally leads to a divide-and-conquer
strategy for pattern classification: efficient hit-finding with only the ASIC-level features
of all the patterns; hit-classification with the sub-ASIC-level features for just the hits; and
using the sub-ASIC-level features to quickly identify and extract signatures of structural
motifs from different regions of each raw detector pattern. Finally, precise and expensive
analysis can be reserved for a much smaller subset of the original patterns, identified by
hit-classification. Each step in this strategy analyzes fewer patterns than the previous steps,
which helps with the burgeoning dimensionality of pattern features as we step forward.

These PCA-reduced representations might be useful for efficiently computing photon
correlations, using orthogonal bases to compute realspace structural correlations [35]. Per-
haps an efficient transformation to PCA’s orthogonal basis could speed up the computation
of these correlations.

We must be aware of classification errors when using automated hit-finding to reduce
data storage. These errors are commonly termed false positives (Type I error) and false
negatives (Type Il error), which depend on the hit-finding approach and hyperparameters.
The experimenter must ultimately decide whether these error rates are tolerable.

Table 2 estimated the ‘false” negative (0.7%) and ‘true’ positive (2.21%) rates for two
runs. Since these runs are characteristic of the other 438 runs, we expect these rates to
subsequently be similar as well. Although the ‘false’ negative rate appears acceptable,
this is still a substantial 31% of the actual ‘true” positives. Concretely, we had to decide
whether permanently ignoring ~ 10% out of 10* hits is tolerable for subsequent analyses.
The experimenter can choose to spend more time reducing this false positive rate, but
arguably with diminishing returns.

False positives also impact downstream analyses, but with less severity than false
negatives. These blanks can still be identified and removed in more careful subsequent
classification, for example using the cross-validation methods in Section 3.5. These unsu-
pervised methods are likely to be computationally expensive (e.g., the UMAP analysis in
Figure 6) and require manual inspection to ensure that the newly proposed blanks do not
contain meaningful scattering signals. Until such a classification method is developed, the
prudent strategy would be to keep the false positives.

A possible but often impractical way to reduce these error rates is to perform unsuper-
vised learning on the entire dataset. However, pairwise comparisons between patterns are
commonly used in unsupervised learning routines to learn embeddings, which can quickly
become prohibitively expensive as the number of patterns increases. This poor scaling is
related to the fact that clustering is known to be an NP-hard problem [36].

Unsupervised hit-classification is even more difficult with imbalanced classes. In XFEL
experiments where the hit-rates are low, hits are severely under-represented in the entire
dataset (see Table 1). Such severe class imbalances are known to cause minority classes to
be merged, misrepresented, or ignored entirely by clustering algorithms.

To validate the different hit classes, we selected three runs conducted with different
droplet sizes and nozzle distances and inspected the average one-dimensional radial
fluence-normalized profiles of a hundred random patterns from classes 6 and 4 (Table 1) in
each run (Figures 8 and 9, respectively). Although we did not directly measure the droplet
temperatures, we were able to rank these three runs by droplet temperature. Ranking was
conducted via nozzle distance (corresponding to evaporation time) and droplet size, which
are factors known to affect the final temperature of the droplets [37].
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Figure 8. One-dimensional (1D) fluence-normalized profiles, averaged from 100 ice-rich class 6 pat-
terns alongside their respective 2D average diffraction patterns. In the warmest configuration
((A), 12 um droplets, 25 mm nozzle distance), there is still significant diffuse liquid scattering that
can be observed on top of the ice. For colder and smaller droplets ((B), 5 pm droplets, 45 mm nozzle
distance and (C), 5 um droplets, 60 mm nozzle distance), there is no longer a significant liquid scattering
signal, revealing crystalline shape transforms that are convolved upon the hexagonal ice Bragg peaks.
Miller indices of hexagonal ice are indicated in the figures (red in 1D profile; white in 2D patterns).
Two-dimensional patterns are rendered with a dynamic range spanning from 5th to 95th percentile of
ADU values.
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Figure 9. One-dimensional (1D) profiles, averaged from 100 water-rich class 4 patterns. (A): Beam
fluence-normalized profiles show that the 12 pm droplets are approximately twice as bright as 5 um
droplets as the volume illuminated by the X-ray pulse scales approximately linearly with droplet
radius. (B): Beam fluence-normalized profiles rescaled to the first intensity maximum near 1.9 Ail.
In this rescaling, the differences in profile shape are easier to compare. The observed peak shifts near
1.9A " and 30 A" are consistent with earlier published results, and most prominent for the first
peak compared to the second.
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In the ice-rich class 6, crystal diffraction peaks were observed at Miller indices of
hexagonal ice. However, the peaks in the hundred-pattern averages showed significant
peak broadening, especially around the triplet (010), (002), (011). This broadening is likely
attributed to the shape transforms of small crystals [38]. The average of one hundred pat-
terns is scant enough to prevent averaging away the shape transforms, but it is insufficient
to show fully formed powder rings. Therefore, a new classification strategy that focuses on
these shape transforms is needed to classify the different ice patterns, which will be the
subject of a future study.

In the water-rich class 4, we observed a sensible trend in fluence as a function of droplet
size, as well as a temperature dependence of the first two scattering peaks that corroborated
with previously published results [3]. The patterns from the warmest configuration of
12 pm droplets and 25 mm nozzle distance are approximately twice as bright as in the other
two runs. This is because the X-ray-illuminated droplet volume of the former is slightly
more than twice that of the latter pair. Upon normalization to account for this, the peak
shifting becomes prominent (Figure 9B). This peak shift is seen most prominently for the
first peak, while the second peak appears as a weak shoulder forming.

Although it largely succeeds at classifying patterns by scattering signatures, coarse-
graining could lead to misclassification of different types of hits. For example, shape
information from small crystals would be coarse-grained away and not register a signifi-
cantly high maximum to be detected as ice scattering instead of liquid-only scattering.

Overall, while unsupervised learning on very large numbers of patterns can be made
easier with coarse-graining and dimensionality reduction, efficient and accurate pairwise
comparisons between patterns will still be a bottleneck. In principle, we can achieve such
efficiency by cleverly picking representative subsamples of the entire dataset to learn the
rules for classifying the entire dataset.

5. Conclusions

To summarize, we present a strategy to reduce massive XFEL datasets for hit-finding
and hit-classification. This strategy includes coarse-graining detector features, then using
PCA to find significant feature combinations on the detector (Section 3.3). We show that
simplistic outlier statistics from these feature combinations can quickly inform interpretable
classification. This classification is largely consistent with those found using more careful
unsupervised learning on a small subset of the entire dataset, described in Section 3.5.

Developing these strategies for data reduction and hit-finding requires sufficient stor-
age, compute, and high-performance computing expertise provided by the experimental
facilities. This work serves as a strong example of how close collaboration between users
and the experimental facility can bring clear benefits to the broader XFEL community
by co-creating general data reduction approaches that help to streamline storage and
accelerate analyses.

Our cautious success here makes us hopeful that our coarse-graining and dimensionality-
reduction approach should also work for other microcrystal experiments at XFELs. Further, it
paves the way toward live hit-finding and classification during data acquisition, albeit with
safeguards to minimize false negatives even if at the expense of admitting substantial numbers
of false positives.
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Appendix A

The sum of squares matrix is the covariance of features in a dataset. Following
the convention of the design matrix X having dimensions Nmeasurements X Ddimensions, the
D x D sum of squares matrix S is defined as the sum of outer products of measurements:

S £ XTX
N
= Z XnX 1
n=1
Since the covariances of features are only concerned with the variations from the mean,
the design matrix can be centered by measurements (rows) and dimensions (columns).

The singular value decomposition (SVD) of X is equivalent to finding its principal
components, allowing it to be written as

X = UxSxVx
In this form, the row and column-normalized scatter matrix Xx can be written as

E = X™X = (VxSEUY) (UxsxVY)
= VxS3V] (A1)
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Because the left and right singular vectors, U and V, respectively, are unitary, the
product simplifies and the scatter matrix can be succinctly represented with V and the
corresponding singular values S. SVD, however, takes O(ND?) + O(D?) time to solve
exactly, making it extremely expensive to compute for large dataset problems such as ours.

Instead, consider the eigen-decomposition of Z:

X = U):A):Ugl (A2)
Match Equations (A1) and (A2) by setting
Ar =S% Uz =Vy

We can compute the SVD of X by computing the eigen-decomposition of X instead. This is
significantly faster and more viable than straightforward SVD as the scatter matrix only
scales with number of dimensions D and not the number of measurements N [39].

The singular values A; represent the amount of variance within the dataset explained
by its corresponding singular vector ;. To obtain the weights of the patterns, they are
projected onto the basis of singular vectors.

For our analysis, we first rescaled each column to lie between [—1,1|. Each measure-
ment was then centered to a mean of 0 and rescaled to a variance of 1.

To compute L, the mean across the entire dataset must first be computed. This is
achieved with a first pass through the dataset, accumulating the sum from each ASIC
(dimension) while also keeping track of the maximum, minimum, and number of entries N.

In a second pass through the dataset, the covariance matrix is accumulated by re-
trieving chunks of data by runs, performing the necessary centering and scaling, and then
computing the outer product.

Class 0 pattern average Class 1 pattern average Class 2 pattern average

6 04
0.4

5 04

02
4 02 0.2

0.0 00 0.0
2 0.2
1 -02 -02 :
0 ~04 ~04

~04

Class 4 pattern average

w
Class number

Class 5 pattern average Class 6 pattern average

038
0.4 25 20 0.6
0.2 20 15 0.4
1.5
0.0 1.0 02
1.0 0.0
—02 05
05 -0.2
—04 0.0
0.0 04

Figure A1. Averages from 100 patterns of classes for a run that was successfully classified. Such series
of images were used to validate if the automatic classification by the class boundaries successfully
classified the patterns into their expected class definitions as tabulated in Table 1. Colors cover the
5th to 95th percentile ADU in pattern.
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Figure A2. Averages from 100 patterns of classes for a run that was not successfully auto-classified.
Residual signals can still be found in class 0 patterns, which should correspond to high-confidence
blanks. Colors cover the 5th to 95th percentile ADU in pattern.
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Figure A3. Top 5 PCA components, ranked by their explained variance, for mean (above) and
maximum (bottom) coarse-graining. The distribution of points for a single run (N =~ 10%) is shown in
Figure A4. The first three PCA mean modes appear to describe scattering rings, while the fourth and
fifth appear to capture detector asymmetry at large scattering angles. The first two PCA maximum
modes capture a similar scattering pattern, but the subsequent three suggest detector hotspots at
high scattering angles co-occurring with the central scattering band.
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Figure A4. Pairwise log-density plots for distribution of patterns projected to the top 5 components
for mean (A) and maximum (B) from one run (N ~ 10°). These 5 components correspond to the
modes shown in Figure A3.
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