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Abstract

Ice crystallization in supercooled water is a complex phenomenon with far-reaching implica-

tions across scientific disciplines, including cloud formation physics and cryopreservation.

Experimentally studying such complexity can be a highly data-driven and data-hungry

endeavor because of the need to record rare events that cannot be triggered on demand.

Here, we describe such an experiment comprising 561 million images of X-ray free-electron

laser (XFEL) diffraction patterns (2.3 PB raw data) spanning the disorder-to-order transition

in micrometer-sized supercooled water droplets. To effectively analyze these patterns, we

propose a data reduction (i.e., coarse-graining) and dimensionality reduction (i.e., principal
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component analysis) strategy. We show that a simple set of criteria on this reduced dataset

can efficiently classify these patterns in the absence of reference diffraction signatures,

which we validated using more precise but computationally expensive unsupervised ma-

chine learning techniques. For hit-finding, our strategy attained 98% agreement with our

cross-validation. We speculate that these strategies may be generalized to other types of

large high-dimensional datasets generated at high-throughput XFEL facilities.

Keywords: XFEL; crystallization; machine learning; classification

1. Introduction

X-ray free-electron lasers (XFELs) can interrogate diverse and dynamic ensembles,

whether disordered [1,2] or crystalline [3,4]. High peak brightness, femtosecond time

resolution, and short wavelengths are properties of XFELs that enable observations of

dynamic processes at high spatiotemporal resolutions [5]. At these short length and time

scales, structural information at near-atomic length scales is probed faster than thermal

motion, obtaining snapshots of atomic arrangements that are effectively frozen in time.

With advanced instruments and detectors, XFELs are capable of interrogating ensembles

up to the MHz repetition-rate regime [6]. Coupled with high-performance computing,

fast input–output, and massive storage, we can study diverse structural dynamics [4,7] in

complex systems.

These capabilities make XFELs powerful tools for studying the anomalies of wa-

ter [8]. Several anomalous properties of water have been linked to its liquid–liquid phase

separation [9–11], where liquid water is hypothesized to spontaneously separate into

two structural motifs: a low-density phase where molecules are tetrahedrally coordinated

and a high-density phase with five nearest-neighbors. Signatures of this phase separation

become more apparent when water is deeply supercooled [12,13]. However, under such

conditions, liquid water spontaneously crystallizes in microseconds [14,15], making it diffi-

cult to separate signatures from fluid polymorphism and ice coarsening. The femtosecond

time resolution of XFELs, their extreme brilliance, and high throughput allow us a window

to study the structural motifs of supercooled water with atomic resolution prior to and

during the disorder–order transition.

A meaningful, consistent, and robust description of water’s disorder–order transition

requires measuring many deeply supercooled water droplets. We expect a wide variety

of structural motifs to manifest in these droplets at different stages of nucleation and crys-

tallization [16]. Even droplets at the same supercooling stage will nucleate and crystallize

stochastically and differently, likely leading to a diverse range of structural features. Such

large and diverse datasets that are complex and complicated to analyze propose a challenge

to extract meaningful information.

To meet this challenge, we demonstrate a combination of data and dimensional-

ity reduction that allows scalable and interpretable classification of petabytes of diverse

diffraction patterns. First, we reduced the data with angular coarse-graining of simple

summarizing statistics. We then used principal component analysis (PCA) to identify

important feature combinations. A second set of intuitive outlier statistics was computed

on these feature combinations that could effectively classify these patterns.
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detector pixels, pixel-resolved gain, and thermally-induced fluctuations [22]. Finally, certain

pixels were identified and omitted from each diffraction pattern because they became

unresponsive to incident signals, likely due to prior overexposure to high-energy X-rays.

Then there are measurement uncertainties. Water’s low scattering cross-section, de-

spite the extremely brilliant XFEL pulses, makes each XFEL diffraction pattern inevitably

photon-limited. Such noisy patterns are susceptible to false-positive photon counts that

arise from detector thermal noise or other artifacts (even a false positive rate of 0.001% can

lead to dozens of false photons on a megapixel detector). Furthermore, each diffraction

pattern contains hidden variables that must be inferred (e.g., crystallite orientations and

structural motifs, and each water droplet’s random position with respect to the X-ray pulse,

etc.). These hidden variables can confuse both hit-finding and hit-classification [23].

We also detected a very low level of background X-ray photons that were scattered

from upstream optical elements, which were present as long as X-ray pulses were reaching

the detector, even without samples. Although the average scattering pattern from this

background was static, it covered a substantial fraction of our detector, making it infeasible

to mask out. Fortunately, this background only contributed to a small minority of photons

per pattern. This shot-noise-limited background meant that we could not subtract the

average value from every single pattern without incurring negative values. However, it

also meant that they could be ignored since they are unlikely to affect pattern classification.

2.3. Considerations for Classification

Studying the stochastic disorder–order transitions amongst millions of droplets in-

volves classifying them by their WAXS diffraction patterns. This classification comprises

two steps. First, we have to identify the patterns that contain significant diffraction scat-

tering from droplets, a procedure that is commonly referred to as hit-finding. Thereafter,

we must classify the structural motifs found in droplet-containing diffraction patterns (i.e.,

hit classification).

Classifying hits by their diffraction signatures is non-trivial for two reasons. First, each

of the probed droplets could contain a diverse range of structural motifs in nanometer-sized

frustrated nascent crystals. The diffraction signatures of these crystals are neither those of

microcrystals seen in well-established Serial Femtosecond Crystallography (SFX) [24,25] nor

structurally homogeneous like those expected in single-particle imaging [22,26]. Robust

classification procedures, including peak finding and data reduction routines, have been

developed for these imaging conditions [27,28]. Without references for the diffraction

signatures of these motifs, we typically turn to unsupervised learning, which dimensionally

reduces each WAXS pattern and then compares different pairs of such patterns for classifi-

cation. This brings us to the second challenge: each diffraction pattern comprises many

pixels (i.e., high-dimensional raw feature vectors), which makes pairwise comparisons

amongst the many millions of WAXS patterns computationally expensive. Hence, it is

necessary to coarse-grain the raw feature vectors, where we reduce the data so that it is

small enough to store and compute efficiently while retaining sufficiently discriminating

features for classification.

2.4. Angular Coarse-Graining with Means and Maxes

Naturally, this entire 2.3 PB dataset of raw detector data is too cumbersome for many

classification routines in unsupervised machine learning. Suppose we represent this full

dataset as a two-dimensional design matrix X comprising N rows of measurements (i.e.,

diffraction patterns) and D columns of measurement features (i.e., number of pixels per

pattern). The time-complexity of unsupervised classification techniques that interrogate
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3. Results

3.1. Impact of Coarse-Graining

To a limited degree, the mean-features after angular coarse-graining amplified the

signal-to-noise ratio within each ASIC (or 8 × 8 pixel sub-ASIC block). This amplification

was because summing correlated signals within each ASIC (e.g., extended shape transforms

of crystals, or diffuse water ring) allowed them to outpace the contributions from uncorre-

lated detector thermal noise, which was calibrated to fluctuate around 0 analog-to-digital

units (ADUs). This amplification is most apparent, for example, when signals from diffuse

liquid scattering fill an ASIC. The summative signal on the entire ASIC grows linearly with

the number of its pixels, but uncorrelated noise grows with the square root of the number

of pixels instead.

Figure 2 shows that different types of information necessary for classification are

retained at the two coarse-graining levels. The columns of Figure 2 show the four broad

categories of classification: blanks (i.e., misses), hits containing only liquid water, hits

containing both liquid water and ice, and hits that are mostly if not all ice. Whereas these

four categories are distinguishable with just the mean-features at the ASIC level (bottom

row), the important Bragg shape transforms of the nascent crystals are only resolvable at

the sub-ASIC level.

3.2. Principal Component Analysis

Figure 4 shows that more than 99.9% of the total variance of the ASIC-level mean-

features across the entire dataset was captured by the three most significant PCA modes.

The first PCA mode of the ASIC-level mean-features mostly describes variations in the

diffuse liquid water scattering (with negligible changes in the detector-sample distance and

photon energy). The second PCA mode of the mean-features mostly describes deviations

that are orthogonal to the first mode’s diffuse scattering due to Bragg scattering from

illuminated ice nuclei or crystals.

The ASIC-level max-features are more sensitive to where ice scattering is expected.

For comparison, the bottom row of Figure 4 also shows the first two PCA modes of the

ASIC-level max-features. Recall that max-features retain the maximum pixel intensity

within each ASIC, which are tuned to capture coherent Bragg scattering when long-range

order starts developing in nascent nanometer-size ice crystals. Comparing the PCA modes

of max-features with those from mean-features, we see that the amplitudes of the former

are larger where ice scattering is expected. This implies that these two modes capture most

of the variations in the maxes amongst patterns due to ice scattering.

Note that these PCA modes show some rotational symmetry about the optical axis,

largely because the signatures of liquid water and ice scattering should have this invariance

when averaged over single observations of millions of water droplets. Deviations from this

symmetry are likely owing to asymmetries in the detector’s response to photons.

Finally, the middle row of Figure 4 does not readily offer clear decision boundaries to

classify misses from hits, nor amongst the different types of hits. PCA enables a re-encoding

of the diffraction patterns. By projecting each pattern onto the found PCA modes, we are

able to succinctly express our patterns as loadings onto these projections. The patterns can

be largely reconstructed using the loadings from the modes with the highest explained

variance λ. Hence, these loadings are an effective form of data compression.

Naively projecting the diffraction patterns from one run (i.e., a continuous burst of

data collected in a 10-minute interval, typically comprising ∼ 106 patterns) onto its first two

PCA mean-feature or max-feature modes does not yield physically interpretable decision

boundaries for the four pattern categories (column labels of Figure 2). This absence of

interpretability is typical of PCA since this data reduction is engineered to determine linear
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Table 1. Representing 454,775,678 patterns across 440 runs that were automatically labeled according

to the decision boundaries in Figure 5. The signal thresholds for both max-feature and mean-feature

in each class are also included. Fewer than 0.01% of the patterns did not fall into these seven classes.

Class Label Num. Patterns Mean Limits (Photons) Max Limits (Photons) Interpretation

0 4.21 × 108 (92.69%) [10−5, 0.17] [0.1, 3.4] blanks (high-confidence)
1 4.32 × 106 (0.98%) [10−5, 0.17] [3.4, 10.8] blanks with high thermal noise
2 1.75 × 107 (3.80%) [10−5, 0.17] [10.8, 17.0] blanks (hot pixels activated)
3 2.62 × 105 (0.06%) [10−5, 0.17] [17.0, 107.5] weak hits
4 5.01 × 106 (1.12%) [0.17, 1075] [1.9, 10.8] strong liquid water hits
5 5.94 × 106 (1.28%) [0.17, 1075] [10.8, 108] liquid water and ice hits
6 2.61 × 105 (0.06%) [0.01, 1075] [108, 10800] strong ice hits

The relationship between mean-features and max-features regarding ASICs is expected

to be different for ice versus liquid water scattering. At hard X-ray energies, the scattering

intensity from liquid water scales linearly with the total number of illuminated electrons

ne. Comparatively, the Bragg diffraction intensities scale quadratically I(q) ∝ n2
e . This

difference is exaggerated by AGIPD’s adaptive gain, which switched from high to medium

gain when a pixel received a high number of photon counts (e.g., Bragg scattering from ice).

Here, the spread in each pattern’s maxima of mean-features in their ice-sensitive ASICs

is dominated by the fraction of droplet’s mass that is illuminated by X-ray pulses.

These droplets (2–12 µm diameter) arrived randomly at the nominal focus of the

ensemble of X-ray pulses (100 nm full-width half-max beam diameter). The pattern’s

total intensity is inversely proportional to the distance between the illuminating X-ray

pulse’s centroid from each droplet’s center of mass: illuminated ne increases as the pulse

strikes closer to each droplet’s center. Conversely, droplets that are illuminated by weak

wide-intensity tails of the X-ray pulses [31] result in lower mean-features. Although the

X-ray pulse energies fluctuated from pulse-to-pulse, the positional jitter of the partially

synchronized water droplets accounts for the majority of the intensity variations between

patterns within each class.

As such, the patterns in class 3 were observed to be hits with weak ice scattering plus

a very weak diffuse water ring. These class 3 patterns could be due to ice scattering from

the low-intensity tails of X-ray pulses. The patterns in class 4 shown in Figure 5 primarily

contain liquid water scattering. The most striking patterns are those in classes 5 and 6,

which contain strong Bragg scattering from ice with a spread of intensities in the diffuse

water ring.

3.4. Massive Hit-Finding and Hit-Classification

Compared to identifying blanks with only the total signal of each recorded pattern,

classifying patterns using the two outlier statistics in Figure 5 is more robust against

uncertainties in detector response, background counts, and variations.

A second outlier statistic enables us to distinguish different classes more carefully. For

example, if only the mean outlier statistic was used, the distributions in Figure 5 would be

projected down to the x-axis, causing classes 4, 5, and 6 to be indistinguishable.

Remarkably, the fixed ADU thresholds on these statistics (as shown in Figure 5)

allowed us to automatically classify 4.5 × 108 patterns across Table 1.

Validating our classification of 108 individual patterns by manual inspection is infeasi-

ble. Nevertheless, for each of the 555 runs, we checked that the class boundaries matched

the ADU thresholds in Figure 5. In runs where the beam attenuation was intentionally

adjusted, the class boundaries would cross these thresholds and their automatic classifica-

tion would fail. Furthermore, we also pooled together the average patterns from random

subsets of 100 patterns within each class of each run. In total, we created seven such aver-
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age patterns for each run and manually inspected these averages for diffraction features

expected for each type. Examples of these averages can be found in Figures A1 and A2.

While these inspection techniques were simplistic, they allowed us to quickly ascertain

that pattern classification was self-consistent for 440 of the 555 runs. This was completed

by ensuring that class 0 averages had no water-related scattering signatures. The classi-

fication statistics for these 440 runs are tabulated in Table 1. The more careful validation

in Section 3.5 suggested the hit/blank classification was statistically more robust than the

classification within each hit class.

3.5. Cross-Validating Hits and Blanks

Since it is impractical to validate the classification in Section 3.4 by individually in-

specting hundreds of millions of patterns, we instead cross-validated these class labels

using unsupervised machine learning. One option combines manifold learning and cluster-

ing, where patterns are projected into a low-dimensional embedding, and like-patterns on

this embedding are then clustered into classes. The computational complexity to initialize

this unsupervised learning approach essentially scales quadratically with the number of

patterns, which limits our cross-validating to ∼ 106 patterns of a single run at a time.

Further, the memory footprint of individual patterns for this cross-validation exercise

was still unnecessarily large. Figure 4 shows that we could dimensionally reduce each

pattern’s ASIC-level feature vectors by representing them as the weights of their mean-

and max-features. Projecting the patterns as PCA weights captures 99.9% of the observed

variance in the patterns within the first three modes, which, as we shall see below, was

sufficient to discern the boundaries amongst blanks and different types of hits. We recast

each pattern into its ten-dimensional (10D) feature vector: the concatenation of the five PCA

weights/projections of each pattern’s ASIC-level mean- and max-features, respectively.

We chose to use five instead of three modes each as Figure 4A shows that the explained

variance ratio distinctly flattens off after five components. We believe that including two

more modes as a precautionary measure to retain smaller variations would aid classification

without incurring significant computational costs. This projection reduced each pattern’s

feature vector from a dimensionality of D = 2 × 256 to D = 10.

two-dimensional (2D) embedding of 106 patterns (i.e., single run) was learned using

the Uniform Manifold Approximation Projection (UMAP) [32] (Figure 6A). Whereas the

details of this 2D embedding depend on how it was randomly initialized, the embedding’s

decision boundaries are primarily dictated by the similarities and differences amongst the

patterns’ 10D feature vectors. Typically, the dimensions of UMAP’s learned embedding do

not have an obvious physical interpretation.

The class boundaries in the UMAP embedding (Figure 6) are clearer than those in

Figure 5. These clearer boundaries might arise because the former compared 10D feature

vectors (derived from PCA) rather than only 2D outlier features in the latter. Recall that the

2D outlier statistics were based on ice-sensitive ASICs identified from the first PCA mode.

The most striking feature in UMAP’s embedding is that it contains a single large cluster

of patterns surrounded by far smaller clusters. This large cluster mostly contains blanks

(class 0 shown in red), while the smaller clusters primarily hold the remaining classes.

Class 2 hits (yellow points), which, as we recall from Table 1, are blanks with hot pixels, are

isolated in a small cluster, indicating strong unique features on such patterns. Although

we can discern blanks from hits in the UMAP embedding, class 0 blanks occasionally

appeared in the smaller clusters (insets of Figure 6A). Class 4 patterns (gray) were unevenly

distributed amongst the smaller cluster, indicating that the simple thresholds using the

outlier statistics in Figure 5 were insufficiently discriminating.







Crystals 2025, 15, 734 14 of 21

Naively, dimensionality reduction of hits (e.g., using PCA or UMAP) can also reduce

data storage. However, in practice, we recommend keeping the raw detector data for

the hits alongside a hierarchy of dimensionally reduced representations (e.g., ASIC level

or sub-ASIC level). This three-tiered hierarchy naturally leads to a divide-and-conquer

strategy for pattern classification: efficient hit-finding with only the ASIC-level features

of all the patterns; hit-classification with the sub-ASIC-level features for just the hits; and

using the sub-ASIC-level features to quickly identify and extract signatures of structural

motifs from different regions of each raw detector pattern. Finally, precise and expensive

analysis can be reserved for a much smaller subset of the original patterns, identified by

hit-classification. Each step in this strategy analyzes fewer patterns than the previous steps,

which helps with the burgeoning dimensionality of pattern features as we step forward.

These PCA-reduced representations might be useful for efficiently computing photon

correlations, using orthogonal bases to compute realspace structural correlations [35]. Per-

haps an efficient transformation to PCA’s orthogonal basis could speed up the computation

of these correlations.

We must be aware of classification errors when using automated hit-finding to reduce

data storage. These errors are commonly termed false positives (Type I error) and false

negatives (Type II error), which depend on the hit-finding approach and hyperparameters.

The experimenter must ultimately decide whether these error rates are tolerable.

Table 2 estimated the ‘false’ negative (0.7%) and ‘true’ positive (2.21%) rates for two

runs. Since these runs are characteristic of the other 438 runs, we expect these rates to

subsequently be similar as well. Although the ‘false’ negative rate appears acceptable,

this is still a substantial 31% of the actual ‘true’ positives. Concretely, we had to decide

whether permanently ignoring ∼ 103 out of 104 hits is tolerable for subsequent analyses.

The experimenter can choose to spend more time reducing this false positive rate, but

arguably with diminishing returns.

False positives also impact downstream analyses, but with less severity than false

negatives. These blanks can still be identified and removed in more careful subsequent

classification, for example using the cross-validation methods in Section 3.5. These unsu-

pervised methods are likely to be computationally expensive (e.g., the UMAP analysis in

Figure 6) and require manual inspection to ensure that the newly proposed blanks do not

contain meaningful scattering signals. Until such a classification method is developed, the

prudent strategy would be to keep the false positives.

A possible but often impractical way to reduce these error rates is to perform unsuper-

vised learning on the entire dataset. However, pairwise comparisons between patterns are

commonly used in unsupervised learning routines to learn embeddings, which can quickly

become prohibitively expensive as the number of patterns increases. This poor scaling is

related to the fact that clustering is known to be an NP-hard problem [36].

Unsupervised hit-classification is even more difficult with imbalanced classes. In XFEL

experiments where the hit-rates are low, hits are severely under-represented in the entire

dataset (see Table 1). Such severe class imbalances are known to cause minority classes to

be merged, misrepresented, or ignored entirely by clustering algorithms.

To validate the different hit classes, we selected three runs conducted with different

droplet sizes and nozzle distances and inspected the average one-dimensional radial

fluence-normalized profiles of a hundred random patterns from classes 6 and 4 (Table 1) in

each run (Figures 8 and 9, respectively). Although we did not directly measure the droplet

temperatures, we were able to rank these three runs by droplet temperature. Ranking was

conducted via nozzle distance (corresponding to evaporation time) and droplet size, which

are factors known to affect the final temperature of the droplets [37].
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In the ice-rich class 6, crystal diffraction peaks were observed at Miller indices of

hexagonal ice. However, the peaks in the hundred-pattern averages showed significant

peak broadening, especially around the triplet (010), (002), (011). This broadening is likely

attributed to the shape transforms of small crystals [38]. The average of one hundred pat-

terns is scant enough to prevent averaging away the shape transforms, but it is insufficient

to show fully formed powder rings. Therefore, a new classification strategy that focuses on

these shape transforms is needed to classify the different ice patterns, which will be the

subject of a future study.

In the water-rich class 4, we observed a sensible trend in fluence as a function of droplet

size, as well as a temperature dependence of the first two scattering peaks that corroborated

with previously published results [3]. The patterns from the warmest configuration of

12 µm droplets and 25 mm nozzle distance are approximately twice as bright as in the other

two runs. This is because the X-ray-illuminated droplet volume of the former is slightly

more than twice that of the latter pair. Upon normalization to account for this, the peak

shifting becomes prominent (Figure 9B). This peak shift is seen most prominently for the

first peak, while the second peak appears as a weak shoulder forming.

Although it largely succeeds at classifying patterns by scattering signatures, coarse-

graining could lead to misclassification of different types of hits. For example, shape

information from small crystals would be coarse-grained away and not register a signifi-

cantly high maximum to be detected as ice scattering instead of liquid-only scattering.

Overall, while unsupervised learning on very large numbers of patterns can be made

easier with coarse-graining and dimensionality reduction, efficient and accurate pairwise

comparisons between patterns will still be a bottleneck. In principle, we can achieve such

efficiency by cleverly picking representative subsamples of the entire dataset to learn the

rules for classifying the entire dataset.

5. Conclusions

To summarize, we present a strategy to reduce massive XFEL datasets for hit-finding

and hit-classification. This strategy includes coarse-graining detector features, then using

PCA to find significant feature combinations on the detector (Section 3.3). We show that

simplistic outlier statistics from these feature combinations can quickly inform interpretable

classification. This classification is largely consistent with those found using more careful

unsupervised learning on a small subset of the entire dataset, described in Section 3.5.

Developing these strategies for data reduction and hit-finding requires sufficient stor-

age, compute, and high-performance computing expertise provided by the experimental

facilities. This work serves as a strong example of how close collaboration between users

and the experimental facility can bring clear benefits to the broader XFEL community

by co-creating general data reduction approaches that help to streamline storage and

accelerate analyses.

Our cautious success here makes us hopeful that our coarse-graining and dimensionality-

reduction approach should also work for other microcrystal experiments at XFELs. Further, it

paves the way toward live hit-finding and classification during data acquisition, albeit with

safeguards to minimize false negatives even if at the expense of admitting substantial numbers

of false positives.
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Appendix A

The sum of squares matrix is the covariance of features in a dataset. Following

the convention of the design matrix X having dimensions Nmeasurements × Ddimensions, the

D × D sum of squares matrix S is defined as the sum of outer products of measurements:

S , XTX

=
N

∑
n=1

xnxT
n

Since the covariances of features are only concerned with the variations from the mean,

the design matrix can be centered by measurements (rows) and dimensions (columns).

The singular value decomposition (SVD) of X is equivalent to finding its principal

components, allowing it to be written as

X = UXSXVT
X

In this form, the row and column-normalized scatter matrix ΣX can be written as

Σ = XTX =
(

VXST
XUT

X

)(

UXSXVT
X

)

= VXS2
XVT

X (A1)
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