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I present an algorithm for the reconstruction of multivariate rational
functions from black-box probes. The arguably most important ap-
plication in high-energy physics is the calculation of multi-loop and
multi-leg amplitudes, where rational functions appear as coefficients in
the integration-by-parts reduction to basis integrals. I show that for a
dense coefficient the algorithm is nearly optimal, in the sense that the
number of required probes is close to the number of unknowns.

1 Introduction

The reduction of a large number of scalar Feynman integrals to a smaller set of
basis (or master) integrals is an almost universal step in precision calculations in
quantum field theories. In many cases, it is also among the most challenging parts
of the computation, and has therefore seen lots of attention and development over
the years.

The current standard approach is to derive integration-by-parts identities [1, 2]
for a set of seed integrals with fixed powers of propagators and irreducible scalar
products and solve the resulting system of linear relations via Gauss elimination [3].
The result is a subset of the seed integrals, each expressed in terms of a linear
combination of basis integrals. The coefficients are rational functions of kinematic
invariants and the space-time dimension.

It is often advantageous to insert numerical values for the dimension and the
invariants and solve the system over a finite field [4]. This strategy was initially
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used to quickly eliminate redundant relations [5]. However, solving the system with
sufficiently many different probes, i.e. different numeric values for the variables,
it is possible to reconstruct the full result [6, 7]. In this way, one avoids large
intermediate expressions and can restrict the reconstruction to those coefficients
that are actually needed for the final result, for example a scattering amplitude.
Further advantages include ease of parallelisation, lower memory usage, and the
possibility to optimise the system further after a computationally cheap pilot run.

This general strategy has been further developed along several directions. Right
from the start, one can attempt to find combinations of relations that lead to
better behaved systems or even an explicit recursive solution to the reduction
problem [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Since in a finite-field reduction
the very same system of linear equations has to be solved many times, it can
be worthwhile to record the solution steps once, optimise the recorded sequence,
and replay it to rapidly obtain further probes [20]. Other efforts target the
reconstruction itself. The complexity of the rational function coefficients depends
on the chosen basis integrals, and a judicious choice results in a factorisation
between the dimension and the kinematic invariants [21, 22]. Identifying common
factors in the coefficients can further reduce the number of probes required for the
reconstruction [23, 24, 25, 26]. Finally, the number of required probes depends on
the chosen reconstruction method, and various algorithms with different strengths
have been explored [27, 28, 29, 30].

In the following, I present an algorithm for “scaling up” from rational function
reconstruction in a single variable to the multivariate case. In section 2, I review
reconstruction in a single variable using Thiele interpolation [31]. I then discuss a
way to generalise the method to the multivariate case in section 3. The intended
application is the reconstruction of coefficients in the reduction to basis integrals.
In section 4, I apply the algorithm to complex reduction coefficients in a massive
four-loop propagator example and in the two-loop amplitude for diphoton plus
jet production [32]. I find that the number of required probes is close to optimal
when the fraction of vanishing polynomial coefficients in the numerator and the
denominator of the rational function is small.

2 Univariate Rational Function Reconstruction

Excellent introductions into the reconstruction of polynomials and rational functions
are given in [7, 27]. Let us briefly review the case of a univariate rational function.
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We are given a rational function f in a single variable for which we want to find an
explicit form

f(x) =
pn(x)

pd(x)
, (1)

where pn, pd are unknown polynomials with no common roots. f is a “black box”,
meaning that our only piece of information is an algorithm for computing f(t)
for any t in the domain of f . One strategy is to construct rational interpolations
fN for N probes (ti, f(ti)) with i = 1, . . . , N . If N is large enough, we then find
fN = f with high probability.

We start with a single probe (t1, f(t1)) and a constant interpolation

f1(x) = a1. (2)

Requiring f1(t1) = f(t1) we immediately find a1 = f(t1). We then add a second
probe (t2, f(t2)). If f1(t2) = f(t2) we note that we found agreement and continue
with the next probe. Otherwise, we introduce the interpolation

f2(x) = a1 +
x− t1
a2

(3)

with a1 = f(t1) as before and a2 =
t2−t1

f(t2)−a1
. In general, after N independent probes

the interpolation has the form [31]

fN(x) = a1 +
x− t1

a2 +
x−t2

a3+
x−t3

···+
x−tN−1

aN

. (4)

For adding the next probe (tN+1, f(tN+1)) we compute

c1 = f(tN+1), ci+1 =
tN+1 − ti
ci − ai

, (5)

for all i ≤ N and construct fN+1 with aN+1 = cN+1 and a1, . . . , aN taken from fN .
If the denominator in equation (5) vanishes, the probe adds no new information. We
then check if our present interpolation already agrees for this point, i.e. fN (tN+1) =
f(tN+1), and terminate the reconstruction as soon as some chosen number of probes
are predicted correctly. Otherwise we continue with the next probe.

In many cases, the computational cost of the reconstruction is dominated by
either the evaluation of the probes or by the divisions in the calculation of the
auxiliary constants cj in equation (5). In the latter case, the alternative division-free
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recursion

n1 = f(tN+1), ni+1 = (tN+1 − ti)di, (6)

d1 = 1, di+1 = ni − aidi, (7)

leading to aN+1 =
nN+1

dN+1
can be much more efficient.

Note that the reconstruction is optimal if two conditions are fulfilled. First, the
degrees of the numerator and the denominator in f should be equal or the degree
of the numerator should be larger by one. Second, the numerator and denominator
polynomials should be perfectly dense, with all coefficients non-zero. In this case
the number of required probes is equal to the number of unknown coefficients
plus the chosen number of probes used for confirmation. Empirically, the rational
functions encountered in integration-by-parts reduction without any kinematic
invariants are close to ideal with a typical overhead of about 10% in the number of
required probes.

3 Scaling up to Multiple Variables

In general, the rational function to be reconstructed has the form

f(x1, . . . , xn) =

∑

Cp1,...,pnx
p1
1 · · · xpn

n
∑

Dq1,...,qnx
q1
1 · · · xqn

n

, (8)

where the sums run over all powers 0 ≤ p1 ≤ P1, . . . , 0 ≤ pn ≤ Pn in the numerator
and 0 ≤ q1 ≤ Q1, . . . , 0 ≤ qn ≤ Qn in the denominator. The degrees P1, . . . , Pn

and Q1, . . . , Qn are a priori unknown. To reconstruct a pair (Pi, Qi) of degrees
we can set all other variables to some fixed value, i.e. xj = tj for all j 6= i, and
perform a univariate rational function reconstruction in the remaining free variable
xi [7, 27, 33].

Once we know the degrees, we can in principle determine the unknown coeffi-
cients C,D by simply solving a linear system of equations. Knowing the value of
f(t1, . . . , tn), we obtain the linear equation

∑

Cp1,...,pnt
p1
1 · · · tpnn = f(t1, . . . , tn)

∑

Dq1,...,qnt
q1
1 · · · tqnn (9)

directly from the definition in equation (8). For N +1 coefficients Cp1,...,pn , Dq1,...,qn ,
we require N probes to express them in terms of a single coefficient which we can
set to an arbitrary non-zero value to fix the overall normalisation. If the numerator
and denominator polynomials are dense, the reconstruction is optimal in the sense
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of needing the lowest possible number of probes. However, assuming constant-time
arithmetic for the arguments and coefficients, the time complexity for solving the
dense linear system is O(N3) with a space complexity of O(N2). In practice it is
usually better to use a method that requires more probes but has better scaling
behaviour.

The univariate reconstruction based on Thiele interpolation we discussed in section 2
only requires O(N) space to store the arguments t1, . . . , tN and the coefficients
a1, . . . , aN . To determine these coefficients, one needs to calculate N(N + 1)/2 =
O(N2) auxiliary coefficients (cf. equation (5)), each of which can be computed
in constant time. Can we generalise that method to the multivariate case while
preserving the superior scaling behaviour?

The main idea is to set all of the variables x1, . . . , xn to a single variable x,
scaled to distinct powers so that we can recover the full dependence on x1, . . . , xn

after the reconstruction. Concretely, we consider the auxiliary function g(x) =
f(xα1 , . . . , xαn) with

α1 = 1, αi+1 = [1 + max(Pi, Qi)]αi. (10)

We then use univariate reconstruction in x to find an explicit form for g(x). For
each term of the form Cix

i we can formally interpret the power i as a number in a
mixed radix numeral system, where the individual digits correspond to the powers
p1, . . . , pn of x1, . . . , xn.

Let us consider a simple example for a black-box function f(x1, x2). Setting x2 to
a fixed value t2 and using univariate reconstruction in x1 we find

f(x1, t2) =
C0(t2) + C1(t2)x1

D0(t2) +D2(t2)x2
1

. (11)

We ignore the coefficients depending on t2; our only goal was to learn that the
largest power of x1 is 2. This tells us to set α2 = 2+1, so we introduce the auxiliary
function g(x) = f(x, x3). From univariate reconstruction we obtain

g(x) =
1 + x+ x4

1 + x2 + x3
. (12)

The last step is to read off the corresponding powers of the original variables x1, x2.
For the exponents in g we have mixed radix notation 1 = 0?13, 2 = 0?23, 3 =
1?03, 4 = 1?13, where the subscript indicates the numeral base of the corresponding
position and the base of the leading digit is irrelevant. This tells us that the original
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function is

f(x1, x2) =
1 + x1 + x1x2

1 + x2
1 + x2

. (13)

The method described so far can suffer from accidental cancellations between
numerator and denominator. For example, for f(x1, x2) =

x2

x1
we would obtain the

auxillary function g(x) = x, which would lead us to believe the original function
was f(x1, x2) = x1. To prevent this, we additionally shift the rescaled argument by
a randomly chosen number.1 Spurious cancellations have to involve two or more
different variables. We therefore expect to avoid them by having at least one shifted
variable in each possible combination, i.e. we shift each variable except one.

Let us summarise the algorithm. Given a rational black-box function f in n
variables x1, . . . , xn

1. For each variable xi with i < n, find the largest powers Pi and Qi in the
numerator and denominator. To do this, set all other variables to randomly
chosen values, xj = tj for all j 6= i, and use univariate reconstruction in xi.

2. Compute the scaling powers α1, . . . , αn using equation (10) and choose random
shifts s1, . . . , sn. One of the shifts can be set to zero, e.g. s1 = 0.

3. Use univariate reconstruction to find g(x) from probes (ti, f(t
α1

i +s1, . . . , t
αn

i +
sn)).

4. For each term Cix
i in g(x), recover the powers p1, . . . , pn of the original

variables x1, . . . , xn from the mixed-radix digits of i. Then, replace xi →

(x1 − s1)
p1 · · · (xn − sn)

pn .

For the main application we have in mind, namely the reconstruction of coefficients
in the reduction to basis integrals, one aims to recover many rational functions
from probes with the same arguments. One way to use the same arguments
tα1

i + s1, . . . , t
αn

i + sn for different functions f, h, . . . is to choose the exponents
α1, . . . , αn according to the maximum powers of the respective variables in any

of the numerators and denominators of f, h, . . . . Often, the highest powers of
all variables will be determined by a single function, such that the maximum
number of required probes remains unaffected. The price to pay is that for the
simple functions many vanishing coefficients will be reconstructed, increasing the
computing time required for the reconstruction itself. Alternatively, different sets
of probe arguments can be used for functions of widely disparate complexity.

1This random shift is also used with a slightly different purpose in the reconstruction algorithm
by Cuyt and Lee [7, 27, 33]. There, the goal is to ensure a unique structure and uniform
coefficient normalisation of the reconstructed function.
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One of the main advantages of numerical reduction is ease of parallelisation. This
requires that subsequent probes can be chosen without having to wait for the
outcome of feeding earlier probes into the reconstruction algorithm. In this respect,
algorithms for the reconstruction of dense rational functions tend to perform better
than methods aimed at sparse rational functions with many vanishing coefficients,
as for the latter the probe selection typically has to be adjusted dynamically. The
presented algorithm mostly decouples the seed choice from the reconstruction
progress. For n variables, the selection strategy has to be updated n times — after
determining the powers of each of the first n− 1 variables and once more to use
the final rescaled arguments.

4 Application to the Reduction to Basis Integrals

Let us now assess the efficiency of the algorithm presented in section 3 in practical
applications. For brevity, we will refer to the new method as “scaling” reconstruction.
We compare it to an algorithm proposed by Cuyt and Lee [33]. This algorithm
is described in detail in [7, 27]. We briefly recall the main steps. First, the
variables are rescaled with a common factor t and shifted, leading to (x1, . . . , xn)
= (ty1 + s1, . . . , tyn + sn) with yn = 1. One then performs a univariate rational
reconstruction in t. Starting from the highest powers, the coefficients of ti are
reconstructed as polynomials in y1, . . . , yn and transformed back to the original
variables. For the comparison we use state-of-the-art implementations in the
public codes FireFly [27, 29, 34] and FiniteFlow [28, 35]. The comparison code
and the example rational functions in computer-readable form are available from
https://github.com/a-maier/scaling-rec.

For the scaling algorithm, the reconstruction is first performed over a number
of prime fields ZP , using arithmetic algorithms taken from NTL [36]. We start
with P = 1152 921 504 606 846 883 and move to the next smaller prime numbers
as needed. The resulting coefficients are lifted to a higher characteristic with the
Chinese remainder theorem, specifically Bézout’s identity. The actual rational
coefficients are then reconstructed from the finite-field integers via an algorithm by
Wang [37]. Again, details are given in [7, 27].

In principle, the reconstruction can be simplified tremendously exploiting the
structure of the result [23, 24, 25]. Both FireFly and FiniteFlow can factorise
the numerator and denominator to a certain degree. FiniteFlow determines the
minimal degree in each variable to automatically factor out common monomi-
als. FireFly optionally performs univariate factorisation to identify any factors
depending on a single variable. Since we are mainly interested in assessing the
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underlying reconstruction algorithms, we disable FireFly’s factorisation in the fol-
lowing comparisons. As there is no option to switch off factorisation in FiniteFlow,
we additionally compare the reconstruction after removing all monomial factors
from the function to be reconstructed.

4.1 Massive Four-Loop Propagator

Our first benchmark point is a coefficient in the differential equation [38, 39] for a
four-loop massive propagator. Setting the mass m = 1, the propagator is a function
of z = p2, where p is the external four-momentum. One obtains

z
d

dz
= q(z, d) + . . . , (14)

with the ellipsis indicating a linear combination of further basis integrals with
less complex coefficients. q(z, d) is a rational function in z and the space-time
dimension d, where the numerator degrees in z and d are Pz = Pd = 81 and the
denominator degrees are Qz = 80 and Qd = 78. The numbers of probes required
for reconstructing the function over the first characteristic are shown in table 1 for
the scaling algorithm and FireFly together with a hypothetical optimal algorithm
that can determine one unknown coefficient per probe.

For a full rational function reconstruction probes are needed in several additional
prime fields. Since different implementations vary vastly in the amount of reused
information we refrain from a quantitative comparison.

Method Number of Probes

This work 13 594
FireFly 16 373
Optimal 12 721

Table 1: Number of probes required to reconstruct a specific coefficient in the
differential equation for a four-loop propagator over the first characteristic.

Comparing the “Optimal” entry of table 1 to the total number of 13 123 monomials
in the ansatz given by equation (8) we observe that q(z, d) is dense in the sense that
about 97% of the coefficients in the ansatz are non-zero. We see that the scaling
algorithm performs close to optimal, with an overhead of about 7% additional
probes. In comparison, FireFly requires approximately 29% more probes.
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The denominator of the reconstructed function contains an overall factor of d1z3.
The improvement gained by identifying and removing this factor is illustrated
in table 2, where we now also include FiniteFlow. The FiniteFlow entry does
not include a few hundred probes used to determine the overall degree of the
rational function and the degrees with respect to the individual variables from
Thiele interpolation, c.f. section 2 [40]. The other entries count the total number
of function evaluations.

Method Number of Probes

This work 13 594
FireFly 16 020
FiniteFlow & 18 205
Optimal 12 721

Table 2: Number of probes required to reconstruct a specific coefficient in the
differential equation for a four-loop propagator over the first characteristic
after removing an overall monomial factor. The FiniteFlow entry does
not include a few hundred probes used for degree determinations.

For the algorithm presented in section 3, the scaling powers in equation (10) are
completely determined by the numerator in the present example. Thus, removing
factors from the denominator does not affect the number of probes needed. However,
we do observe a slight reduction in the number of required evaluations with FireFly,
reducing the overhead to 26% compared to the optimum. The number of evaluations
needed with FiniteFlow exceeds the number of non-vanishing coefficients to be
determined by about 43%.

4.2 Diphoton Plus Jet Production at Two Loops

Next, let us consider the two-loop amplitude for diphoton plus jet production, taken
from [32]. Specifically, we choose the parity-even contribution with a left-handed
quark and a gluon in the initial state, a negative gluon helicity, opposite-sign
photon helicities, and no closed fermion loops. Denoting the quark helicity by λq,
the number of active flavours by nf , the number of colours by NC , and the parity

transformation operator by P̂ , the reduction has the structure

1 + P̂

2









λq = L

+

−

−









nf=0

= c
−2N

−2
C + c0N

0
C + c2N

2
C , (15)
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where c
−2, c0, c2 are linear combinations of pentagon functions [41] with rational

coefficients. From c0 we select the largest of these coefficients by Mathematica’s
ByteCount. We write this coefficient as a rational function in x23, x34, x45, x51,
where xij =

sij
s12

, and

s12 = (p1 + p2)
2, s23 = (p2 − p3)

2, s34 = (p3 + p4)
2, s45 = (p4 + p5)

2, s51 = (p1 − p5)
2

are Mandelstam invariants. After determining the numerator and denominator
degrees our ansatz according to equation (8) contains 136 934 unknown coefficients.
However, the actual rational function is much sparser than in the example in
section 4.1 and only approximately 22% of these coefficients are non-zero. In this
example, the full coefficient can be reconstructed using a single prime field. We
collect the number of required probes in table 3.

Method Number of Probes

This work 169 132
FireFly 163 094
Optimal 30 490

Table 3: Number of probes required to reconstruct the coefficient in the reduction
of the two-loop diphoton plus jet amplitude.

The scaling algorithm introduced in section 3 performs slightly worse than FireFly’s
reconstruction. Both algorithms are far from optimal for this scenario, requiring
more than five probes for each unknown coefficient.

The number of required reconstruction probes after removing an overall monomial
factor x2

23x
2
34x

2
45x

2
51 is shown in table 4. As in section 4.1, we see no improvement

for the implementation of the algorithm presented in this work. In contrast,
FireFly needs approximately 20% fewer function evaluations than before. Most
strikingly, FiniteFlow is much closer to optimal than both FireFly and the scaling
reconstruction implementation, especially when using the FFPolyVandermonde

alternative polynomial reconstruction method. Even when enabling its identification
of univariate factors, FireFly still requires 87 485 probes, substantially more than
FiniteFlow. This difference between FiniteFlow and FireFly is unexpected and
deserves closer inspection. However, since the focus of the present work is on the
scaling algorithm and dense reconstruction, we leave further investigation to future
work.
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Method Number of Probes

This work 169 132
FireFly 129 894
FiniteFlow & 49 216
FiniteFlow with FFPolyVandermonde & 47 381
Optimal 30 490

Table 4: Number of required probes after removing the overall monomial prefactor.
The FiniteFlow entries do not include a few hundred probes used for
degree determinations.

5 Conclusion

I have presented an algorithm for the reconstruction of dense multivariate rational
functions. Multiple variables are mapped onto a single variable, using scaling
powers and shifts chosen such that the mapping can be inverted. In this way, the
problem is reduced to well-known univariate rational reconstruction.

The algorithm is tested on two examples taken from complex reductions to basis
integrals, a massive four-loop propagator and a two-loop five-point amplitude. For
the dense rational function encountered in the four-loop problem, the required
number of probes exceeds the number of unknown coefficients by only about 7%.
This compares favourably with the current state-of-the-art programs FireFly [27,
29] and FiniteFlow [28].

In the sparse two-loop example, the number of probes needed is about 4% above the
FireFly result when disabling factorisation. However, a comparison to FiniteFlow

reveals that in this case there is substantial room for improvements for both FireFly

and the presented algorithm. A further promising avenue for future research would
be to combine the univariate mapping with sparse rational reconstruction in a
single variable, see e.g. [42].
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