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I present an algorithm for the reconstruction of multivariate rational
functions from black-box probes. The arguably most important ap-
plication in high-energy physics is the calculation of multi-loop and
multi-leg amplitudes, where rational functions appear as coefficients in
the integration-by-parts reduction to basis integrals. I show that for a
dense coefficient the algorithm is nearly optimal, in the sense that the
number of required probes is close to the number of unknowns.

1 Introduction

The reduction of a large number of scalar Feynman integrals to a smaller set of
basis (or master) integrals is an almost universal step in precision calculations in
quantum field theories. In many cases, it is also among the most challenging parts
of the computation, and has therefore seen lots of attention and development over
the years.

The current standard approach is to derive integration-by-parts identities |1, 2]
for a set of seed integrals with fixed powers of propagators and irreducible scalar
products and solve the resulting system of linear relations via Gauss elimination [3].
The result is a subset of the seed integrals, each expressed in terms of a linear
combination of basis integrals. The coefficients are rational functions of kinematic
invariants and the space-time dimension.

It is often advantageous to insert numerical values for the dimension and the
invariants and solve the system over a finite field [4]. This strategy was initially



used to quickly eliminate redundant relations [5]. However, solving the system with
sufficiently many different probes, i.e. different numeric values for the variables,
it is possible to reconstruct the full result [6, 7]. In this way, one avoids large
intermediate expressions and can restrict the reconstruction to those coefficients
that are actually needed for the final result, for example a scattering amplitude.
Further advantages include ease of parallelisation, lower memory usage, and the
possibility to optimise the system further after a computationally cheap pilot run.

This general strategy has been further developed along several directions. Right
from the start, one can attempt to find combinations of relations that lead to
better behaved systems or even an explicit recursive solution to the reduction
problem [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. Since in a finite-field reduction
the very same system of linear equations has to be solved many times, it can
be worthwhile to record the solution steps once, optimise the recorded sequence,
and replay it to rapidly obtain further probes [20]. Other efforts target the
reconstruction itself. The complexity of the rational function coefficients depends
on the chosen basis integrals, and a judicious choice results in a factorisation
between the dimension and the kinematic invariants [21, 22]. Identifying common
factors in the coefficients can further reduce the number of probes required for the
reconstruction [23, 24, 25, 26|. Finally, the number of required probes depends on
the chosen reconstruction method, and various algorithms with different strengths
have been explored [27, 28, 29, 30].

In the following, I present an algorithm for “scaling up” from rational function
reconstruction in a single variable to the multivariate case. In section 2, I review
reconstruction in a single variable using Thiele interpolation [31]. T then discuss a
way to generalise the method to the multivariate case in section 3. The intended
application is the reconstruction of coefficients in the reduction to basis integrals.
In section 4, I apply the algorithm to complex reduction coefficients in a massive
four-loop propagator example and in the two-loop amplitude for diphoton plus
jet production [32]. T find that the number of required probes is close to optimal
when the fraction of vanishing polynomial coefficients in the numerator and the
denominator of the rational function is small.

2 Univariate Rational Function Reconstruction

Excellent introductions into the reconstruction of polynomials and rational functions
are given in [7, 27]. Let us briefly review the case of a univariate rational function.



We are given a rational function f in a single variable for which we want to find an
explicit form

f(a) = P2 0

where p,, pq are unknown polynomials with no common roots. f is a “black box”,
meaning that our only piece of information is an algorithm for computing f(¢)
for any ¢ in the domain of f. One strategy is to construct rational interpolations
fn for N probes (t;, f(t;)) with i =1,..., N. If N is large enough, we then find
fn = f with high probability.

We start with a single probe (¢, f(¢1)) and a constant interpolation
fi(x) = ar. (2)

Requiring f1(¢1) = f(t1) we immediately find a; = f(¢1). We then add a second
probe (to, f(t2)). If f1(t2) = f(t2) we note that we found agreement and continue
with the next probe. Otherwise, we introduce the interpolation
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fa(x) = a1 + (3)
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with a; = f(t1) as before and ay = . In general, after N independent probes

the interpolation has the form [31]
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For adding the next probe (ty.1, f(tny1)) we compute

Int1 — 1
C1 = f(tNJrl): Cit1 = - ) (5)
C; — Q;
for all i < N and construct fyy1 with ay.1 = cyy1 and aq, ..., ay taken from fy.

If the denominator in equation (5) vanishes, the probe adds no new information. We
then check if our present interpolation already agrees for this point, i.e. fy(tni1) =
f(tn+1), and terminate the reconstruction as soon as some chosen number of probes
are predicted correctly. Otherwise we continue with the next probe.

In many cases, the computational cost of the reconstruction is dominated by
either the evaluation of the probes or by the divisions in the calculation of the
auxiliary constants ¢; in equation (5). In the latter case, the alternative division-free



recursion

ny = f(tni1), Niy1 = (tvg1 — ti)d;, (6)
d1 = ]_, di+1 =n; — aidi, (7)
leading to ani1 = Zﬁ—i can be much more efficient.

Note that the reconstruction is optimal if two conditions are fulfilled. First, the
degrees of the numerator and the denominator in f should be equal or the degree
of the numerator should be larger by one. Second, the numerator and denominator
polynomials should be perfectly dense, with all coefficients non-zero. In this case
the number of required probes is equal to the number of unknown coefficients
plus the chosen number of probes used for confirmation. Empirically, the rational
functions encountered in integration-by-parts reduction without any kinematic
invariants are close to ideal with a typical overhead of about 10% in the number of
required probes.

3 Scaling up to Multiple Variables

In general, the rational function to be reconstructed has the form
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(8)

where the sums run over all powers 0 < p; < Py,...,0 <p, < P, in the numerator
and 0 < ¢ < @Q1,...,0 < ¢, < @, in the denominator. The degrees Pi,..., P,
and @y, ...,Q, are a priori unknown. To reconstruct a pair (P}, @Q;) of degrees
we can set all other variables to some fixed value, i.e. z; = t; for all j # 4, and
perform a univariate rational function reconstruction in the remaining free variable
x; |7, 27, 33].

Once we know the degrees, we can in principle determine the unknown coeffi-
cients C', D by simply solving a linear system of equations. Knowing the value of
f(t1,...,t,), we obtain the linear equation

S Coppn B0 = [ty 1) Doyt £ (9)

directly from the definition in equation (8). For N + 1 coefficients Cp, . ,.s Dgy....qns
we require N probes to express them in terms of a single coefficient which we can
set to an arbitrary non-zero value to fix the overall normalisation. If the numerator
and denominator polynomials are dense, the reconstruction is optimal in the sense



of needing the lowest possible number of probes. However, assuming constant-time
arithmetic for the arguments and coefficients, the time complexity for solving the
dense linear system is O(N?3) with a space complexity of O(N?). In practice it is
usually better to use a method that requires more probes but has better scaling
behaviour.

The univariate reconstruction based on Thiele interpolation we discussed in section 2
only requires O(N) space to store the arguments 1, ...,ty and the coefficients
ai,...,ay. To determine these coefficients, one needs to calculate N(N +1)/2 =
O(N?) auxiliary coefficients (cf. equation (5)), each of which can be computed
in constant time. Can we generalise that method to the multivariate case while
preserving the superior scaling behaviour?

The main idea is to set all of the variables zq,...,x, to a single variable z,
scaled to distinct powers so that we can recover the full dependence on z1,...,x,
after the reconstruction. Concretely, we consider the auxiliary function g(z) =

flzor, ... a%) with
ap =1, Qip1 = [1 + max(F;, Q;)]ay. (10)

We then use univariate reconstruction in z to find an explicit form for g(x). For
each term of the form C;z° we can formally interpret the power i as a number in a
mixed radix numeral system, where the individual digits correspond to the powers

Ply...,ppof xq,..., x,.

Let us consider a simple example for a black-box function f(x1,z5). Setting x5 to
a fixed value t, and using univariate reconstruction in x; we find

Co(tg) + Cl (tg)l’l
Do(tz) + Dg(tz)l’% '

flayta) = (11)
We ignore the coeflicients depending on t5; our only goal was to learn that the
largest power of xq is 2. This tells us to set ay = 2+ 1, so we introduce the auxiliary
function g(x) = f(z,z?*). From univariate reconstruction we obtain

1+ az+at
1424 a3

g(x) (12)
The last step is to read off the corresponding powers of the original variables x1, x5.
For the exponents in ¢ we have mixed radix notation 1 = 0:13,2 = 0,23,3 =
1,03,4 = 1713, where the subscript indicates the numeral base of the corresponding

position and the base of the leading digit is irrelevant. This tells us that the original



function is
14 T+ T1x9

T1,Te) = )
f (s, o) A

(13)

The method described so far can suffer from accidental cancellations between
numerator and denominator. For example, for f(z1,zs) = ;—f we would obtain the
auxillary function g(x) = x, which would lead us to believe the original function
was f(x1,22) = z1. To prevent this, we additionally shift the rescaled argument by
a randomly chosen number.! Spurious cancellations have to involve two or more
different variables. We therefore expect to avoid them by having at least one shifted
variable in each possible combination, i.e. we shift each variable except one.

Let us summarise the algorithm. Given a rational black-box function f in n
variables x1,...,x,

1. For each variable x; with ¢ < n, find the largest powers P; and (); in the
numerator and denominator. To do this, set all other variables to randomly
chosen values, x; = t; for all j # 4, and use univariate reconstruction in ;.

2. Compute the scaling powers oy, . . ., a;, using equation (10) and choose random
shifts sq,...,s,. One of the shifts can be set to zero, e.g. s;1 = 0.

3. Use univariate reconstruction to find g(z) from probes (t;, f(t;* +s1,...,t5" +
Sn))-

4. For each term C;z' in g(z), recover the powers pi,...,p, of the original
variables z1,...,x, from the mixed-radix digits of 7. Then, replace z* —
(1 — s1)P -+ - (T, — Sp) P

For the main application we have in mind, namely the reconstruction of coefficients
in the reduction to basis integrals, one aims to recover many rational functions
from probes with the same arguments. One way to use the same arguments

t 4+ s1,...,t9" + s, for different functions f,h,... is to choose the exponents
ai, ..., q, according to the maximum powers of the respective variables in any
of the numerators and denominators of f,h,.... Often, the highest powers of

all variables will be determined by a single function, such that the maximum
number of required probes remains unaffected. The price to pay is that for the
simple functions many vanishing coefficients will be reconstructed, increasing the
computing time required for the reconstruction itself. Alternatively, different sets
of probe arguments can be used for functions of widely disparate complexity.

!This random shift is also used with a slightly different purpose in the reconstruction algorithm
by Cuyt and Lee [7, 27, 33]. There, the goal is to ensure a unique structure and uniform
coeflicient normalisation of the reconstructed function.



One of the main advantages of numerical reduction is ease of parallelisation. This
requires that subsequent probes can be chosen without having to wait for the
outcome of feeding earlier probes into the reconstruction algorithm. In this respect,
algorithms for the reconstruction of dense rational functions tend to perform better
than methods aimed at sparse rational functions with many vanishing coefficients,
as for the latter the probe selection typically has to be adjusted dynamically. The
presented algorithm mostly decouples the seed choice from the reconstruction
progress. For n variables, the selection strategy has to be updated n times — after
determining the powers of each of the first n — 1 variables and once more to use
the final rescaled arguments.

4 Application to the Reduction to Basis Integrals

Let us now assess the efficiency of the algorithm presented in section 3 in practical
applications. For brevity, we will refer to the new method as “scaling” reconstruction.
We compare it to an algorithm proposed by Cuyt and Lee [33]. This algorithm
is described in detail in |7, 27]. We briefly recall the main steps. First, the
variables are rescaled with a common factor ¢ and shifted, leading to (z1,...,x,)
= (tyr + s1,- .-, tyn + Sp) with y, = 1. One then performs a univariate rational
reconstruction in ¢. Starting from the highest powers, the coefficients of #* are
reconstructed as polynomials in ¥, ...,y, and transformed back to the original
variables. For the comparison we use state-of-the-art implementations in the
public codes FireFly [27, 29, 34] and FiniteFlow |28, 35]. The comparison code
and the example rational functions in computer-readable form are available from
https://github.com/a-maier/scaling-rec.

For the scaling algorithm, the reconstruction is first performed over a number
of prime fields Zp, using arithmetic algorithms taken from NTL [36]. We start
with P = 1152921504 606 846 8383 and move to the next smaller prime numbers
as needed. The resulting coefficients are lifted to a higher characteristic with the
Chinese remainder theorem, specifically Bézout’s identity. The actual rational
coefficients are then reconstructed from the finite-field integers via an algorithm by
Wang [37]. Again, details are given in |7, 27].

In principle, the reconstruction can be simplified tremendously exploiting the
structure of the result |23, 24, 25]. Both FireFly and FiniteFlow can factorise
the numerator and denominator to a certain degree. FiniteFlow determines the
minimal degree in each variable to automatically factor out common monomi-
als. FireFly optionally performs univariate factorisation to identify any factors
depending on a single variable. Since we are mainly interested in assessing the



underlying reconstruction algorithms, we disable FireFly’s factorisation in the fol-
lowing comparisons. As there is no option to switch off factorisation in FiniteFlow,
we additionally compare the reconstruction after removing all monomial factors
from the function to be reconstructed.

4.1 Massive Four-Loop Propagator

Our first benchmark point is a coefficient in the differential equation [38, 39] for a
four-loop massive propagator. Setting the mass m = 1, the propagator is a function
of z = p?, where p is the external four-momentum. One obtains

with the ellipsis indicating a linear combination of further basis integrals with
less complex coefficients. ¢(z,d) is a rational function in z and the space-time
dimension d, where the numerator degrees in z and d are P, = P; = 81 and the
denominator degrees are (), = 80 and )y = 78. The numbers of probes required
for reconstructing the function over the first characteristic are shown in table 1 for
the scaling algorithm and FireFly together with a hypothetical optimal algorithm
that can determine one unknown coefficient per probe.

For a full rational function reconstruction probes are needed in several additional
prime fields. Since different implementations vary vastly in the amount of reused
information we refrain from a quantitative comparison.

Method Number of Probes

This work 13594
FireFly 16373
Optimal 12721

Table 1: Number of probes required to reconstruct a specific coefficient in the
differential equation for a four-loop propagator over the first characteristic.

Comparing the “Optimal” entry of table 1 to the total number of 13 123 monomials
in the ansatz given by equation (8) we observe that ¢(z, d) is dense in the sense that
about 97% of the coefficients in the ansatz are non-zero. We see that the scaling
algorithm performs close to optimal, with an overhead of about 7% additional
probes. In comparison, FireFly requires approximately 29% more probes.



The denominator of the reconstructed function contains an overall factor of d'z3.
The improvement gained by identifying and removing this factor is illustrated
in table 2, where we now also include FiniteFlow. The FiniteFlow entry does
not include a few hundred probes used to determine the overall degree of the
rational function and the degrees with respect to the individual variables from
Thiele interpolation, c.f. section 2 [40]. The other entries count the total number
of function evaluations.

Method Number of Probes
This work 13594
FireFly 16 020
FiniteFlow 2 18205
Optimal 12721

Table 2: Number of probes required to reconstruct a specific coefficient in the
differential equation for a four-loop propagator over the first characteristic
after removing an overall monomial factor. The FiniteFlow entry does
not include a few hundred probes used for degree determinations.

For the algorithm presented in section 3, the scaling powers in equation (10) are
completely determined by the numerator in the present example. Thus, removing
factors from the denominator does not affect the number of probes needed. However,
we do observe a slight reduction in the number of required evaluations with FireFly,
reducing the overhead to 26% compared to the optimum. The number of evaluations
needed with FiniteFlow exceeds the number of non-vanishing coefficients to be
determined by about 43%.

4.2 Diphoton Plus Jet Production at Two Loops

Next, let us consider the two-loop amplitude for diphoton plus jet production, taken
from [32]. Specifically, we choose the parity-even contribution with a left-handed
quark and a gluon in the initial state, a negative gluon helicity, opposite-sign
photon helicities, and no closed fermion loops. Denoting the quark helicity by A,
the number of active flavours by n, the number of colours by N¢, and the parity
transformation operator by P, the reduction has the structure

=1L
1+ P

T _ = C,2N52+C()Ncov+CQNg«, (15)

+ ny=0



where c_s, ¢, co are linear combinations of pentagon functions [41] with rational
coefficients. From ¢y we select the largest of these coefficients by Mathematica’s
ByteCount. We write this coefficient as a rational function in o3, 234, T45, T51,
where z;; = L‘%, and

s12 = (p1 +p2)2, So3 = (P2 —P3)27 s3a = (p3 +p4)2, S45 = (4 +p5)2, ss1= (p1 —p5)2

are Mandelstam invariants. After determining the numerator and denominator
degrees our ansatz according to equation (8) contains 136 934 unknown coefficients.
However, the actual rational function is much sparser than in the example in
section 4.1 and only approximately 22% of these coefficients are non-zero. In this
example, the full coefficient can be reconstructed using a single prime field. We
collect the number of required probes in table 3.

Method Number of Probes

This work 169132
FireFly 163 094
Optimal 30490

Table 3: Number of probes required to reconstruct the coefficient in the reduction
of the two-loop diphoton plus jet amplitude.

The scaling algorithm introduced in section 3 performs slightly worse than FireFly’s
reconstruction. Both algorithms are far from optimal for this scenario, requiring
more than five probes for each unknown coefficient.

The number of required reconstruction probes after removing an overall monomial
factor z3;22,x3-x2, is shown in table 4. As in section 4.1, we see no improvement
for the implementation of the algorithm presented in this work. In contrast,
FireFly needs approximately 20% fewer function evaluations than before. Most
strikingly, FiniteFlow is much closer to optimal than both FireFly and the scaling
reconstruction implementation, especially when using the FFPolyVandermonde
alternative polynomial reconstruction method. Even when enabling its identification
of univariate factors, FireF1ly still requires 87 485 probes, substantially more than
FiniteFlow. This difference between FiniteFlow and FireFly is unexpected and
deserves closer inspection. However, since the focus of the present work is on the
scaling algorithm and dense reconstruction, we leave further investigation to future
work.
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Method Number of Probes

This work 169132
FireFly 129 894
FiniteFlow 2 49216
FiniteFlow with FFPolyVandermonde 2 47381
Optimal 30490

Table 4: Number of required probes after removing the overall monomial prefactor.
The FiniteFlow entries do not include a few hundred probes used for
degree determinations.

5 Conclusion

I have presented an algorithm for the reconstruction of dense multivariate rational
functions. Multiple variables are mapped onto a single variable, using scaling
powers and shifts chosen such that the mapping can be inverted. In this way, the
problem is reduced to well-known univariate rational reconstruction.

The algorithm is tested on two examples taken from complex reductions to basis
integrals, a massive four-loop propagator and a two-loop five-point amplitude. For
the dense rational function encountered in the four-loop problem, the required
number of probes exceeds the number of unknown coefficients by only about 7%.
This compares favourably with the current state-of-the-art programs FireFly [27,
29] and FiniteFlow [28].

In the sparse two-loop example, the number of probes needed is about 4% above the
FireFly result when disabling factorisation. However, a comparison to FiniteFlow
reveals that in this case there is substantial room for improvements for both FireFly
and the presented algorithm. A further promising avenue for future research would
be to combine the univariate mapping with sparse rational reconstruction in a
single variable, see e.g. [12].
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