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Solvable Nonunitary Fermionic Long-Range Model with Extended Symmetry
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We define and study a long-range version of the XX model, arising as the free-fermion point of the Xxz-
type Haldane-Shastry (HS) chain. It has a description via nonunitary fermions, based on the free-fermion
Temperley-Lieb algebra, and may also be viewed as an alternating g{(1|1) spin chain. Even and odd lengths
behave very differently; we focus on odd length. The model is integrable, and we explicitly identify two
commuting Hamiltonians. While nonunitary, their spectrum is real by PT symmetry. One Hamiltonian is
chiral and quadratic in fermions, while the other is parity invariant and quartic. Their one-particle spectra
have two linear branches, realizing a massless relativistic dispersion on the lattice. The appropriate
fermionic modes arise from “quasi-translation” symmetry, which replaces ordinary translation symmetry.
The model exhibits exclusion statistics, like the isotropic HS chain, with even more “extended symmetry”

and larger degeneracies.
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Introduction—Strongly interacting quantum many-body
systems lie at the core of condensed-matter physics. In two
dimensions such systems exhibit rich collective behaviors,
e.g., fractional excitations and spin-charge separation.
Several particularly interesting disorder-driven critical
phenomena, like the plateau transition in the integer
quantum Hall effect, and geometric problems, e.g., poly-
mers or percolation, are inherently nonunitary [1-3]. The
few tools available to treat such systems analytically are
mostly based on super-spin chains, loop models, and the
Heisenberg xxz chain [4-6]. Despite their integrability,
these nonunitary models remain challenging to analyze, as
it is not yet well understood how their nonunitary infinite-
dimensional symmetries are realized.

Models with long-range interactions constitute an
important chapter of integrability. Prominent examples
are Calogero-Sutherland systems [7] and the associated
spin chains [8,9], which are deeply related to matrix
models, exclusion statistics, and 2D CFT [10,11]. Long-
range spin chains arise in AdS/CFT integrability too [12].
Rather than a Bethe ansatz, such models are tackled via
symmetry-based algebraic methods. In particular, the
trigonometric spin-Calogero-Sutherland system and the
associated Haldane-Shastry (HS) chain have extended
(Yangian) spin symmetry [13,14] rendering the spectrum
very simple and degenerate [14,15]. Yet there are few, if
any, examples of nonunitary spin chains with extended
symmetry to serve as finite discretizations of the nonunitary
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CFTs with current-algebra symmetry expected for disor-
dered critical systems [16].

Main result—We introduce a new integrable system that
can be viewed as a long-range XX model, a long-range
model of nonunitary fermions, or a long-range alternating
gl(1]1) superspin chain. It has (i) a family of conserved
charges, (ii) extended symmetry, (iii) an extremely degen-
erate and simple spectrum.

This model arises as the free-fermion point of the HS
chain. Underlying it is a “parent model” whose symmetries
and spectrum are understood in detail: the Xxz-type HS
chain [14,17,18]. It generalizes the HS chain by breaking
the 31(2) spin symmetry to 1 (1) while preserving its key
properties. Crucially, the extended spin symmetry persists
[14], where the Yangian is replaced by quantum-affine
31(2). A deformation parameter ¢ plays the role of the
anisotropy A = (g + ¢~')/2 of the Heisenberg Xxz chain,
with ¢ = 1 the isotropic case. For generic ¢, the parent
model behaves like the HS chain, yet new features appear at
roots of unity. Here we consider the important case g = i.
For the Heisenberg xXz chain this gives the XX model
(A = 0), equivalent to free fermions via the Jordan-Wigner
transformation. The model introduced in this Letter is the
point g =i of the parent model, described from a new
fermionic perspective. We combine general knowledge
from the parent model with fermionic techniques capturing
the special features at g = i.

Our model has several striking features. Its properties
depend sensitively on the parity of the system size. The
parent model’s antiferromagnetic (ground)state is nonde-
generate for even length and doubly degenerate for odd
length. At g = 1, this yields two different CFT sectors in
the scaling limit [15,19,20]. At g = i, the difference for
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finite size is even more dramatic, presumably due to the
global symmetry discussed below. In this Letter we focus
on an odd number of sites. We can give three conserved
charges from (i) explicitly. One is a “quasi-translation,”
replacing the lattice translation since ordinary translation
invariance is broken. The second charge is free fermionic,
and parity odd (chiral). The third charge has quartic
interactions and is parity even, thus naturally assuming
the role of Hamiltonian. Like in [21], for ¢ # 1 extended
symmetry (ii) is incompatible with periodicity. Instead, the
Hamiltonians are “quasi-periodic,”, i.e., they commute with
the quasi-translation. Although the model is nonunitary, the
spectrum is real by PT invariance, cf. [22]. The reward for
having complicated interactions is that this spectrum is
extremely simple as in (iii): sums of quasiparticle energies
with linear dispersions, comprising two branches associ-
ated with even and odd mode numbers. Linear dispersions
also occur for the (antiperiodic) 1/r Hubbard model [23]
and spin chains in AdS;/CFT, integrability [24]. The
interaction in the quartic Hamiltonian implements a stat-
istical selection rule that excludes successive occupied
mode numbers, originating in the parent model and
matching the “motif” description of the HS chain [15].
This selection rule comes with high degeneracies caused by
(i1). The extended symmetry, inherited from the parent
model, contains gl(1]1).

Significance—The HS chain captures the salient proper-
ties of the Heisenberg xxx chain, notably its description i
n terms of spinons as quasiparticles with fractional
statistics. This is particularly useful in the scaling limit
in the antiferromagnetic regime, which is captured by the
SU(2),_, Wess-Zumino-Witten CFT [13,19,20]. The
present model, combining exclusion statistics with a
fermionic realization, will play a similar role for nonuni-
tary spin chains and their logarithmic CFT limits, which
are notoriously hard to analyze. An explicit lattice
regularization, with a new kind of realization for the
symmetry algebra, is a great theoretical asset.

Methodology—Our results are obtained as follows [25].

Recall that the Heisenberg xxXX chain has a hidden
algebraic structure, the 31(2) Yangian, providing both
commuting charges and their diagonalization via the
algebraic Bethe ansatz. For Xxz the Yangian is g deformed
to quantum-affine 8u(2) [28]. At ¢ = i the Jordan-Wigner
transformation provides a more direct treatment by fer-
mionic methods. If periodicity is replaced by special
boundary conditions, the 8u(2) spin symmetry persists
in the guise of U,8[(2), enabling techniques based on the
Temperley-Lieb (TL) algebra, both for general ¢ and at
qg=11[621].

For the HS chain, the Yangian plays another role: its
generators are different, and commute with the Hamiltonian
[13], providing extended spin symmetry rather than the full
spectrum. Instead, an algebraic formalism—using so-called
Dunkl operators and “freezing”—allows one to construct

the commuting charges, Yangian, and eigenvectors
[14,29-31], cf. [32]. This lifts to the xxz-type level [18],
providing the commuting charges, extended (quantum-
affine) spin symmetry, explicit spectrum, and eigenvectors
of the parent model.

We leverage this knowledge of the parent model,
reviewed in [25], supplemented by fermionic techniques.
We extract the first few explicit commuting charges from
the parent model by specializing to g = i. The TL algebra
provides the bridge to Jordan-Wigner-like fermions. We
exhibit discrete symmetries, and describe the extended
symmetry, and exact spectrum inherited from the parent
model. Exploiting the quasi-translation operator, we define
fermions that can be Fourier transformed to bring the
Hamiltonians to a simple form and describe part of the
eigenstates in the corresponding Fock basis.

The model—Consider fermions hopping on a 1D lattice
with an odd number N sites. The simplest formulation of
our model uses nonunitary fermionic operators with anti-
commutation relations [6]

{fifit =Dy Afufiy={f"f7=0 (1)
They are related to canonical Jordan-Wigner fermions as
f;=(=i)c;, fi = (=i)ic]. The fs will avoid a prolifer-
ation of factors of i and make the symmetries more
transparent. From the two-site fermionic operators

gi=fitfin., g =f+fl 1<i<N, (2)
we construct the quadratic combinations
ei = g; gi, l<i<N, (3)

which obey the free-fermion TL algebra relations

6%20, €,e;y1¢;=¢;, [ei,ej]:() lf|l—J|>1 (4)

Further define the nested TL commutators [25] (§C)

el = H o [ei’ €i+1], e ']:ej]
=sijlg/ 9+ (=D)glg).  i#j  (5)
where s;; = (=1)(=)0=1/2 "and we set ;) = e;. Note

that (5) is bilinear in the fermions (1). Finally, set

Tk -1
tkEtanﬁ, tk,lzgti (k< l), tk,kE 1. (6)

Then the chiral Hamiltonian reads
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i
H =2 > hhep,

1<i<j<N

W= "ty jan(1=(=1)2,,). (7)

n=j+1

We do not imply any periodicity of the sites; (7) is not
translation invariant. Instead, it commutes with the
quasi-translation operator

G:(1+tN—leN—l)”'(1+tlel)’ GN: 1, (8)

which takes over the role of the usual lattice translation.
The next charge is a linear combination of anticommu-
tators of the nested commutators (5),

| M
H= ~Iv Z (i + HS) e et
i<j<k<l

N
hIi‘j;kl = (_])k_'] Z tn—l.n—jtn—k,n—i(l - (_])lti_l‘,n)»
(>1)

R = (=1 v i ©)

Stemming from the parent model, these quantities, and
higher charges that we do not give here, commute [25],

(G, H"] = [G.H] = [H", H] = 0. (10)

Symmetries—The commuting charges (7)-(9) have sev-
eral transformation properties and symmetries.
Parity—Parity reverses the lattice sites, P(f;) = fyy1-i-
This preserves (1) since N is odd. The TL generators
transform as P(e;) = ey_;. We have
P(HY) = —HY, P(H) =H, P(G) = G\ (11)
The first of these relations is highly nontrivial [25].
Time reversal—We define time reversal as complex
conjugation of coefficients with respect to the Fock basis
-+ fi |@). By using the fs, T(e;) = e; and (7)~(9) have
real matrix elements, except for the prefactor in (7). Thus,
T(H") = —H", T(H) = H, T(G) =G. (12)
Since the Hamiltonians (and their eigenstates) are PT
invariant, their spectrum is real [33-36]. The same is true
for the “quasi-momentum” p = —ilogG.
Charge conjugation—The particle-hole transformation

Co=r  CUhH=r (13)

gives C'(e;) = —e;, preserving (4). Including a suitable

antilinear transformation U, see [25], gives charge con-

jugation C = C'U. It acts on the conserved charges by
C(H") = —H",

CH)=H, C(G)=G. (14)

Global symmetry—The model can be seen as a long-
range spin chain with alternating gl(1|1) representations.
Recall that gl(1|1) has two bosonic and two fermionic
generators, which we denote by N, E, and F;, FT respec-
tively. The nontrivial (anti)commutation relations are

IN.F|]=-F,, [NF{]=F, {F.,F[}=E (15
and E is central. This is just a fermionic version of the usual
spin algebra. Each site i carries a gl(1|1) representation
generated by f;, f;, the number operator (—1)'f} f; and
central charge (—1)". From this perspective, our model is a
long-range gl(1|1) superspin chain. It has a global gl(1]|1)
symmetry generated by

N
FIZZfi’ FTIZf;F’
i=1 i=1
N=>"(-Dififi. E=>(-1)=-1. (16

i1 i1
Indeed, these operators commute with all e;, and thus with
the conserved charges (7)—(9).

Since F} = (F])? = 0, gl(1]1) produces fewer descen-
dants than 8u(2) does at ¢ = 1. This is compensated by
additional bosonic generators

N N
Fy=Y fify,  B=Y_fifr, (17
i<j i<j

which commute with the e;, hence with (7)—(9). Together,
(16) and (17) generate the full global-symmetry algebra
[5,37]. It is the Uq§I(2)|q:i symmetry from the parent
model in fermionic language, cf. [6] (Sec. 2.3).

Extended symmetry—The parent model has quantum-
affine 80(2) symmetry, which underpins its large degen-
eracies. Its specialization to ¢ =i is tricky and seems
absent in the mathematical literature. A detailed study will
be performed elsewhere. The extended symmetry is visible
in the highly degenerate spectrum.

Exact spectrum—The spectrum and degeneracies of the
parent model are known explicitly [14,17,18]. Like for the
HS chain, the quantum numbers are “motifs” [15] {u,,},
consisting of integers 1 < p,, < N increasing as

M1 > My + 1, 1<m<M. (18)
Such a motif labels an M-fermion state with quasimomen-
tum p = (2z/N) Y., #,, mod 27 setting the eigenvalue e’”
of G. Its energy is additive:

M M
E?um}zzlfbm’ E{um}=28ﬂm, (19)

046503-3



PHYSICAL REVIEW LETTERS 134, 046503 (2025)

with dispersions having two linear branches (Fig. 1):

L n,
&, =
n—N,

This state has (often many) descendants due to the extended
symmetry. Its multiplicity is [13,18] N + 1 for the empty
motif (at M = 0), and otherwise

neven,

= |ey). 20
o . 0

M-1
/’tl(N_/’lM) H(/’tm+1 —Hm — 1) (21)
m=1

Given the extremely simple dispersion, further (“acciden-
tal”) degeneracies between different motifs occur much
more often than even for the HS chain.

Fermionic approach—Lacking periodicity, we cannot
simply Fourier transform the fs as usual. The key to
defining a good basis of fermions is to start at one end of the
lattice and use the quasi-translation operator:

®; =G'"7'f,G, O =G'7fGL (22)

These dressed fermions, reminiscent of [38], are periodic,
Qi y = P;, q)ltqv = qﬁ (23)
and obey nonlocal anticommutation relations [25]

(@@} =—(1+12), {P: @} = {0, @7} =0.

(24)

The nontrivial relation only depends on the distance.
Because of (23) we may Fourier transform (22) as usual.

Set ay=i and a, = i"t'/? else. The rescaled Fourier
modes
a, a,
E_”E e 2iﬂnj/Nq)_’ lil;: E_”E ez”’"J/N(Iﬁ,
N J N 4
J=1 J=1

obey canonical anticommutation relations

(P00} =60 (¥, ={¥). ¥} =0. (26)

They are covariant under quasi-translations in the sense

Gfpn Gl= e—2iﬂn/Nq;n,

G, Gl =e2m/Npf  (27)
The relation to the original fermions is strikingly simple.
The zero modes commute with the Hamiltonians: they are

just the fermionic gl(1]1) generators from (16) [25],

FIG. 1. The dispersion relations (20) alternate between two
linear branches, realizing chiral and “full” (up to a shift) massless
relativistic dispersions on the lattice.

1 . N
a—olPo:Zfi:Fl, —W* Zf* Fi. o (28)
=1

The other modes are explicit /inear combinations of the
two-site fermions (2), with coefficients given in [25],
Sec. C2. In these terms, H" is diagonal:

N-1
H- =) e ¥, (29)
n=1

Numerics for low N confirms the equality with (7). If | @) is
the fermionic vacuum, then by (26) the Fock states

|n1,...,nM>Eq‘,fl...‘i‘IM|®>, (30)

form an H" eigenbasis labeled by all 2V fermionic mode
numbers 0 < n; < ... < ny < N. The quasi-momentum is
p=2x/N)> , nn, ‘mod 2m, and the chiral energy EY, | =

> m € matches (19)-(20) when {n,,} is a motif.
Next, (9) takes the quartic form [25]

N-1

H=> %%+ > V. U099 (31
n=1 I<m<n<N
1<r<s<N

The commutation (10) only allows an;rs # 0 if [25] the
quasi-momentum and chiral energy are conserved:
m+n=r+s modN, e e =¢e+e (32)
Numerics for odd N < 9 suggest the stronger selection rule
that m +n = r + s be odd, with nonzero values V = +4
determined by an s = V,s,m,, and

an;erk,n—k = (_1)k+1 0 < 2k<n—m. (33)

46m odd>»
For one-particle states |n) only the quadratic part of (31)
contributes, reproducing the nonchiral dispersion (20). The
quartic part implements the statistical repulsion rule (18): H
is genuinely interacting. Thus, (30) are generally not
eigenstates of H. In [25] Sec. D we illustrate this for the
two-fermion spectrum, showing how V “squeezes” adja-
cent modes to extended-symmetry descendants. E.g., for
N =5 we know from the parent model that |1,2) is an
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extended-symmetry descendant of the motif {3}. This
matches &, + &, | = €5, | noay (cf. Fig. 1), yet for H
relies on the contribution of \712;12 =—-4 10 g +e&+
\712;12 =¢&3. A fermionic description of the full
spectrum requires a deeper understanding of the extended
symmetry.

Outlook—We obtained and analysed a long-range fer-
mionic model with extended symmetry from the Xxz-type
HS chain (“parent model”) at ¢ = i. It can be also viewed
as a long-range alternating superspin chain. Periodicity,
being incompatible with the symmetry, is modified to
quasi-translation invariance. As for Heisenberg xxz, we
get a free-fermion Hamiltonian, H". Albeit quadratic in
fermions from the start, its explicit diagonalization relies on
quasi-translated fermions akin to [38]. Another conserved
charge, H, has a four-fermion interaction realizing the
statistical repulsion known from the isotropic HS
chain. Both Hamiltonians have a Weyl-like spectrum on
the lattice. Together, these features render the model
rather simple, although a full understanding requires an
explicit fermionic realization of the extended symmetry.
This, and a systematic construction of the eigenvectors,
which are known for the parent model, is left for future
work.

In spin chains, even or odd length may lead to different
properties due to the excitations’ topological nature. The
distinction is more pronounced for alternating gI(1|1) spin
chains, cf. [6]. Presently, it becomes extreme due to a pole
in the parent model’s long-range potential. For even N, the
parent Hamiltonian diverges as ¢ — i, and regularization
sets all energies to zero. Yet, the wave functions remain
nontrivial, and numerics indicates Jordan blocks up to size
N/2+4 1. While indecomposable representations are
expected at central charge E = 0, their dimensions signal
that these are not just zigzag modules for systems with
merely global symmetry [39]. We will soon report on even
N [40]. A spin chain with a similar spectrum arose in
AdS/CFT integrability [41].

Another important direction is the continuum limit,
where we expect conformal invariance. Explicit identifi-
cation of the CFT requires determining the extended
symmetry. The isotropic HS chain suggests Kac-Moody
symmetry in the CFT limit, perhaps level-1 gL(1|1) [42]. It
will be interesting to find the continuum counterpart
of H*, reminding the Virasoro generator L, and see what
happens with the dispersion relation’s staggering. The
relativistic-like dispersions for odd N seems well adapted
to the continuum limit, albeit at odds with the vanishing
spectrum for even N. In the scaling limit, the fs will
yield symplectic fermions, but the difference between even
and odd length we see goes beyond that between the
Ramond and Neveu-Schwarz sectors, requiring further
insight.

For Heisenberg xxz, other root-of-unity cases, notably
g®> =1 [43], are special too. Their analogs for the parent

model will also exhibit extended symmetry, quasi-
translation invariance, nonunitarity and statistical level
repulsion. More generally, it would be exciting to study
root-of-unity points of the Xxz-type Inozemtsev chain [44],
which interpolates between a quasiperiodic Heisenberg
XXz chain and our parent model.

Acknowledgments—We thank P. Di Francesco, F. Essler,
P. Fendley, H. Frahm, A. Gainutdinov, F. Gohmann,
J. Jacobsen, V. Pasquier, H. Saleur, V. Schomerus,
R. Weston, and J.-B. Zuber for inspiring discussions. We
further thank the referees for useful feedback. J.L. was
funded by LabEx Mathématique Hadamard (LMH), and in
the final stage by ERC-2021-CoG-BrokenSymmetries
101044226. A.B.M. and D.S. thank CERN, where part
of this work was done, for hospitality.

[1] J.T. Chalker and P.D. Coddington, Percolation, quantum
tunnelling and the integer Hall effect, J. Phys. C 21, 2665
(1988).

[2] M. R. Zirnbauer, Towards a theory of the integer quantum
Hall transition: From the nonlinear sigma model to super-
spin chains, Ann. Phys. (Berlin) 506, 513 (1994).

[3] I. A. Gruzberg, A.W.W. Ludwig, and N. Read, Exact
exponents for the spin quantum Hall transition, Phys.
Rev. Lett. 82, 4524 (1999).

[4] W.M. Koo and H. Saleur, Representations of the Virasoro
algebra from lattice models, Nucl. Phys. B426, 459 (1994).

[5] N. Read and H. Saleur, Enlarged symmetry algebras of spin
chains, loop models, and S-matrices, Nucl. Phys. B777, 263
(2007).

[6] A. M. Gainutdinov, N. Read, and H. Saleur, Continuum
limit and symmetries of the periodic g/(1|1) spin chain,
Nucl. Phys. B871, 245 (2013).

[7] FE. Calogero, Exactly solvable one-dimensional many-body
problems, Lett. Nuovo Cimento (1971-1985) 13, 411
(1975); B. Sutherland, Exact ground-state wave function
for a one-dimensional plasma, Phys. Rev. Lett. 34, 1083
(1975).

[8] F.D. M. Haldane, Exact Jastrow—Gutzwiller resonating-
valence-bond groundstate of the spin-1/2 antiferromagnetic
Heisenberg chain with 1/r2 exchange, Phys. Rev. Lett. 60,
635 (1988); B.S. Shastry, Exact solution of an s = 1/2
Heisenberg antiferromagnetic chain with long-ranged inter-
actions, Phys. Rev. Lett. 60, 639 (1988).

[9] V.I. Inozemtsev, On the connection between the one-
dimensional s = 1/2 Heisenberg chain and Haldane-
Shastry model, J. Stat. Phys. 59, 1143 (1990).

[10] F. Haldane, Physics of the ideal semion gas: Spinons and
quantum symmetries of the integrable Haldane—Shastry spin
chain, in Correlation Effects in Low-Dimensional Electron
Systems, edited by A. Okiji and N. Kawakami (Springer,
New York, 1994), Vol. 118.

[11] A.P. Polychronakos, Generalized statistics in one
dimension, in Topological Aspects of Low Dimensional
Systems: Session LXIX, 1998 (2002), p. 415, arXiv:hep-th/
9902157.

046503-5



PHYSICAL REVIEW LETTERS 134, 046503 (2025)

[12] A. Rej, Review of AdS/CFT integrability, Chapter 1.3:
Long-range spin chains, Lett. Math. Phys. 99, 85 (2012).

[13] E. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard, and
V. Pasquier, Yangian symmetry of integrable quantum
chains with long-range interactions and a new description
of states in conformal field theory, Phys. Rev. Lett. 69, 2021
(1992).

[14] D. Bernard, M. Gaudin, F. D. M. Haldane, and V. Pasquier,
Yang-Baxter equation in long range interacting systems,
J. Phys. A 26, 5219 (1993).

[15] E. D. M. Haldane, “Spinon gas” description of the s = 1/2
Heisenberg chain with inverse-square exchange: Exact spec-
trum and thermodynamics, Phys. Rev. Lett. 66, 1529 (1991).

[16] D. Bernard, (Perturbed) conformal field theory applied
to 2D disordered systems: An introduction, in Low-
Dimensional Applications of Quantum Field Theory, edited
by L. Baulieu, V. Kazakov, M. Picco, and P. Windey (1997),
p. 19, arXiv:hep-th/9509137.

[17] D. Uglov, The trigonometric counterpart of the
Haldane-Shastry model, arXiv:hep-th/9508145; J. Lamers,
Resurrecting the partially isotropic Haldane-Shastry
model, Phys. Rev. B 97, 214416 (2018).

[18] J. Lamers, V. Pasquier, and D. Serban, Spin-Ruijsenaars,
g-deformed HaldaneShastry and Macdonald polynomials,
Commun. Math. Phys. 393, 61 (2022).

[19] D. Bernard, V. Pasquier, and D. Serban, Spinons in
conformal field theory, Nucl. Phys. B428, 612 (1994).

[20] P. Bouwknegt, A. W. W. Ludwig, and K. Schoutens, Spinon
bases, Yangian symmetry and fermionic representations of
Virasoro characters in conformal field theory, Phys. Lett. B
338, 448 (1994).

[21] V. Pasquier and H. Saleur, Common structures between
finite systems and conformal field theories through quantum
groups, Nucl. Phys. B330, 523 (1990).

[22] C. M. Bender, Making sense of non-Hermitian Hamilto-
nians, Rep. Prog. Phys. 70, 947 (2007).

[23] F. Gebhard and A.E. Ruckenstein, Exact results for a
Hubbard chain with long-range hopping, Phys. Rev. Lett.
68, 244 (1992); P.-A. Bares and F. Gebhard, Asymptotic
Bethe-ansatz results for a Hubbard chain with 1/ sinh-
hopping, J. Low Temp. Phys. 99, 565 (1995); F
Gohmann and V. Inozemtsev, The Yangian symmetry of
the Hubbard models with variable range hopping, Phys.
Lett. A 214, 161 (1996).

[24] A. Dei and A. Sfondrini, Integrable spin chain for stringy
Wess—Zumino—Witten models, J. High Energy Phys. 07
(2018) 109; M. R. Gaberdiel, R. Gopakumar, and B. Nairz,
Beyond the tensionless limit: Integrability in the symmetric
orbifold, J. High Energy Phys. 06 (2024) 30; S. Frolov and
A. Sfondrini, Comments on integrability in the symmetric
orbifold, J. High Energy Phys. 08 (2024) 179.

[25] See  Supplemental ~Material at  http://link.aps.org/
supplemental/10.1103/PhysRevLett.134.046503 for more
details, which includes Refs. [26,27].

[26] G. Ferrando, J. Lamers, F. Levkovich-Maslyuk, and D.
Serban, Bethe ansatz inside Calogero-Sutherland models,
arXiv:2308.16865.

[27] R. Klabbers and J. Lamers, How coordinate Bethe ansatz
works for Inozemtsev model, Commun. Math. Phys. 390,
827 (2022).

[28] L.D. Faddeev, How algebraic Bethe ansatz works for
integrable model, in Les Houches School of Physics:
Astrophysical Sources of Gravitational Radiation (1996),
p. 149, arXiv:hep-th/9605187.

[29] A.P. Polychronakos, Lattice integrable systems of
Haldane—Shastry type, Phys. Rev. Lett. 70, 2329 (1993).

[30] A.P. Polychronakos, Exact spectrum of SU(n) spin chain
with inverse-square exchange, Nucl. Phys. B419, 553
(1994). hep-th/9310095

[31] J.C. Talstra and F.D.M. Haldane, Integrals of motion
of the Haldane-Shastry model, J. Phys. A 28, 2369
(1995).

[32] J. Lamers and D. Serban, From fermionic spin-Calogero-
Sutherland models to the Haldane-Shastry spin chain by
freezing, J. Phys. A 57, 235205 (2024).

[33] C. Korff and R. Weston, PT symmetry on the lattice: The
quantum group invariant XXZ spin chain, J. Phys. A 40,
8845 (2007).

[34] C. Korff, Turning the quantum group invariant XXZ spin-
chain Hermitian: A conjecture on the invariant product,
J. Phys. A 41, 194013 (2008).

[35] C. Korff, PT-invariance and representations of the
Temperley-Lieb algebra on the unit circle, in Proceedings
of the RAQIS’07, edited by L. Frappat and E. Ragoucy
(2007), p. 99, arXiv:0712.2205.

[36] A. Morin-Duchesne, J. Rasmussen, P. Ruelle, and Y. Saint-
Aubin, On the reality of spectra of U, (sl,)-invariant XXZ
Hamiltonians, J. Stat. Mech. (2016) 053105.

[37] To be precise, gL(1]1) is the “little quantum group” and A,
the “Lusztig quantum group” of U,8((2) at g = i.

[38] P. Fendley, Free fermions in disguise, J. Phys. A 52, 335002
(2019).

[39] V. Schomerus and H. Saleur, The GL(1|1) WZW-model:
From supergeometry to logarithmic CFT, Nucl. Phys. B734,
221 (2006).

[40] A. Ben Moussa, J. Lamers, and J. Serban, The g-deformed
Haldane—Shastry chain at ¢ = i with even length, arXiv:
2411.02472.

[41] C. Ahn and M. Staudacher, The integrable (hyper) eclectic
spin chain, J. High Energy Phys. 02 (2021) 019._

[42] T. Creutzig and D. Ridout, W-algebras extending g[(1|1), in
Lie Theory and Its Applications in Physics, Springer
Proceedings in Mathematics & Statistics Vol. 36, edited
by V. Dobrev (Springer, New York, 2013), pp. 349-367,
10.1007/978-4-431-54270-4_24.

[43] A.V. Razumov and Y.G. Stroganov, Spin chains and
combinatorics, J. Phys. A 34, 3185 (2001).

[44] R. Klabbers and J. Lamers, The deformed Inozemtsev spin
chain, SciPost Phys. 17, 155 (2024).

046503-6



