
Solvable Nonunitary Fermionic Long-Range Model with Extended Symmetry

Adel Ben Moussa ,
1
Jules Lamers ,

1,2,*
Didina Serban ,

1
and Ayman Toufik

1

1
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We define and study a long-range version of the XX model, arising as the free-fermion point of the XXZ-

type Haldane-Shastry (HS) chain. It has a description via nonunitary fermions, based on the free-fermion

Temperley-Lieb algebra, and may also be viewed as an alternating glð1j1Þ spin chain. Even and odd lengths

behave very differently; we focus on odd length. The model is integrable, and we explicitly identify two

commuting Hamiltonians. While nonunitary, their spectrum is real by PT symmetry. One Hamiltonian is

chiral and quadratic in fermions, while the other is parity invariant and quartic. Their one-particle spectra

have two linear branches, realizing a massless relativistic dispersion on the lattice. The appropriate

fermionic modes arise from “quasi-translation” symmetry, which replaces ordinary translation symmetry.

The model exhibits exclusion statistics, like the isotropic HS chain, with even more “extended symmetry”

and larger degeneracies.
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Introduction—Strongly interacting quantum many-body

systems lie at the core of condensed-matter physics. In two

dimensions such systems exhibit rich collective behaviors,

e.g., fractional excitations and spin-charge separation.

Several particularly interesting disorder-driven critical

phenomena, like the plateau transition in the integer

quantum Hall effect, and geometric problems, e.g., poly-

mers or percolation, are inherently nonunitary [1–3]. The

few tools available to treat such systems analytically are

mostly based on super-spin chains, loop models, and the

Heisenberg XXZ chain [4–6]. Despite their integrability,

these nonunitary models remain challenging to analyze, as

it is not yet well understood how their nonunitary infinite-

dimensional symmetries are realized.

Models with long-range interactions constitute an

important chapter of integrability. Prominent examples

are Calogero-Sutherland systems [7] and the associated

spin chains [8,9], which are deeply related to matrix

models, exclusion statistics, and 2D CFT [10,11]. Long-

range spin chains arise in AdS/CFT integrability too [12].

Rather than a Bethe ansatz, such models are tackled via

symmetry-based algebraic methods. In particular, the

trigonometric spin-Calogero-Sutherland system and the

associated Haldane-Shastry (HS) chain have extended

(Yangian) spin symmetry [13,14] rendering the spectrum

very simple and degenerate [14,15]. Yet there are few, if

any, examples of nonunitary spin chains with extended

symmetry to serve as finite discretizations of the nonunitary

CFTs with current-algebra symmetry expected for disor-

dered critical systems [16].

Main result—We introduce a new integrable system that

can be viewed as a long-range XX model, a long-range

model of nonunitary fermions, or a long-range alternating

glð1j1Þ superspin chain. It has (i) a family of conserved

charges, (ii) extended symmetry, (iii) an extremely degen-

erate and simple spectrum.

This model arises as the free-fermion point of the HS

chain. Underlying it is a “parent model” whose symmetries

and spectrum are understood in detail: the XXZ-type HS

chain [14,17,18]. It generalizes the HS chain by breaking

the suð2Þ spin symmetry to uð1Þ while preserving its key

properties. Crucially, the extended spin symmetry persists

[14], where the Yangian is replaced by quantum-affine

suð2Þ. A deformation parameter q plays the role of the

anisotropy Δ ¼ ðqþ q−1Þ=2 of the Heisenberg XXZ chain,

with q ¼ 1 the isotropic case. For generic q, the parent

model behaves like the HS chain, yet new features appear at

roots of unity. Here we consider the important case q ¼ i.
For the Heisenberg XXZ chain this gives the XX model

(Δ ¼ 0), equivalent to free fermions via the Jordan-Wigner

transformation. The model introduced in this Letter is the

point q ¼ i of the parent model, described from a new

fermionic perspective. We combine general knowledge

from the parent model with fermionic techniques capturing

the special features at q ¼ i.
Our model has several striking features. Its properties

depend sensitively on the parity of the system size. The

parent model’s antiferromagnetic (ground)state is nonde-

generate for even length and doubly degenerate for odd

length. At q ¼ 1, this yields two different CFT sectors in

the scaling limit [15,19,20]. At q ¼ i, the difference for
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finite size is even more dramatic, presumably due to the

global symmetry discussed below. In this Letter we focus

on an odd number of sites. We can give three conserved

charges from (i) explicitly. One is a “quasi-translation,”

replacing the lattice translation since ordinary translation

invariance is broken. The second charge is free fermionic,

and parity odd (chiral). The third charge has quartic

interactions and is parity even, thus naturally assuming

the role of Hamiltonian. Like in [21], for q ≠ 1 extended

symmetry (ii) is incompatible with periodicity. Instead, the

Hamiltonians are “quasi-periodic,”, i.e., they commute with

the quasi-translation. Although the model is nonunitary, the

spectrum is real by PT invariance, cf. [22]. The reward for

having complicated interactions is that this spectrum is

extremely simple as in (iii): sums of quasiparticle energies

with linear dispersions, comprising two branches associ-

ated with even and odd mode numbers. Linear dispersions

also occur for the (antiperiodic) 1=r Hubbard model [23]

and spin chains in AdS3=CFT2 integrability [24]. The

interaction in the quartic Hamiltonian implements a stat-

istical selection rule that excludes successive occupied

mode numbers, originating in the parent model and

matching the “motif” description of the HS chain [15].

This selection rule comes with high degeneracies caused by

(ii). The extended symmetry, inherited from the parent

model, contains glð1j1Þ.
Significance—The HS chain captures the salient proper-

ties of the Heisenberg XXX chain, notably its description i

n terms of spinons as quasiparticles with fractional

statistics. This is particularly useful in the scaling limit

in the antiferromagnetic regime, which is captured by the

SUð2Þk¼1 Wess-Zumino-Witten CFT [13,19,20]. The

present model, combining exclusion statistics with a

fermionic realization, will play a similar role for nonuni-

tary spin chains and their logarithmic CFT limits, which

are notoriously hard to analyze. An explicit lattice

regularization, with a new kind of realization for the

symmetry algebra, is a great theoretical asset.

Methodology—Our results are obtained as follows [25].

Recall that the Heisenberg XXX chain has a hidden

algebraic structure, the suð2Þ Yangian, providing both

commuting charges and their diagonalization via the

algebraic Bethe ansatz. For XXZ the Yangian is q deformed

to quantum-affine suð2Þ [28]. At q ¼ i the Jordan-Wigner

transformation provides a more direct treatment by fer-

mionic methods. If periodicity is replaced by special

boundary conditions, the suð2Þ spin symmetry persists

in the guise of Uqslð2Þ, enabling techniques based on the

Temperley-Lieb (TL) algebra, both for general q and at

q ¼ i [6,21].
For the HS chain, the Yangian plays another role: its

generators are different, and commute with the Hamiltonian

[13], providing extended spin symmetry rather than the full

spectrum. Instead, an algebraic formalism—using so-called

Dunkl operators and “freezing”—allows one to construct

the commuting charges, Yangian, and eigenvectors

[14,29–31], cf. [32]. This lifts to the XXZ-type level [18],

providing the commuting charges, extended (quantum-

affine) spin symmetry, explicit spectrum, and eigenvectors

of the parent model.

We leverage this knowledge of the parent model,

reviewed in [25], supplemented by fermionic techniques.

We extract the first few explicit commuting charges from

the parent model by specializing to q ¼ i. The TL algebra

provides the bridge to Jordan-Wigner-like fermions. We

exhibit discrete symmetries, and describe the extended

symmetry, and exact spectrum inherited from the parent

model. Exploiting the quasi-translation operator, we define

fermions that can be Fourier transformed to bring the

Hamiltonians to a simple form and describe part of the

eigenstates in the corresponding Fock basis.

The model—Consider fermions hopping on a 1D lattice

with an odd number N sites. The simplest formulation of

our model uses nonunitary fermionic operators with anti-

commutation relations [6]

ffi; f
þ
j g ¼ ð−1Þiδij; ffi; fjg ¼ ffþi ; f

þ
j g ¼ 0: ð1Þ

They are related to canonical Jordan-Wigner fermions as

fj ¼ ð−iÞjcj, f
þ
j ¼ ð−iÞjc†j . The fs will avoid a prolifer-

ation of factors of i and make the symmetries more

transparent. From the two-site fermionic operators

gi≡fiþfiþ1; gþi ¼ fþi þfþiþ1; 1⩽ i <N; ð2Þ

we construct the quadratic combinations

ei ≡ gþi gi; 1 ⩽ i < N; ð3Þ

which obey the free-fermion TL algebra relations

e2i ¼ 0; eiei�1ei¼ ei; ½ei;ej� ¼ 0 if ji− jj> 1: ð4Þ

Further define the nested TL commutators [25] (§C)

e½i;j� ≡ ½½� � � ½ei; eiþ1�; � � ��; ej�

¼ sijðg
þ
j gi þ ð−1Þi−jgþi gjÞ; i ≠ j; ð5Þ

where sij ≡ ð−1Þði−jÞðiþj−1Þ=2, and we set e½i;i� ≡ ei. Note

that (5) is bilinear in the fermions (1). Finally, set

tk ≡ tan
πk

N
; tk;l ≡

Yl−1

i¼k

ti ðk < lÞ; tk;k ≡ 1: ð6Þ

Then the chiral Hamiltonian reads
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HL ¼
i

2

X

1⩽i⩽j<N

hLije½i;j�;

hL
ij ≡

XN

n¼jþ1

tn−j;n−ið1 − ð−1Þit2n−i;nÞ: ð7Þ

We do not imply any periodicity of the sites; (7) is not

translation invariant. Instead, it commutes with the

quasi-translation operator

G ¼ ð1þ tN−1eN−1Þ � � � ð1þ t1e1Þ; GN ¼ 1; ð8Þ

which takes over the role of the usual lattice translation.

The next charge is a linear combination of anticommu-

tators of the nested commutators (5),

H ¼ −
1

4N

XN−1

i⩽j<k⩽l

ðhL
ij;kl þ hR

ij;klÞfe½i;j�; e½k;l�g;

hL

ij;kl ≡ ð−1Þk−j
XN

nð>lÞ

tn−l;n−jtn−k;n−ið1 − ð−1Þit2n−i;nÞ;

hR
ij;kl ≡ ð−1Þl−jþk−ihL

N−l;N−k;N−j;N−i: ð9Þ

Stemming from the parent model, these quantities, and

higher charges that we do not give here, commute [25],

½G;HL� ¼ ½G;H� ¼ ½HL;H� ¼ 0: ð10Þ

Symmetries—The commuting charges (7)–(9) have sev-

eral transformation properties and symmetries.

Parity—Parity reverses the lattice sites, PðfiÞ ¼ fNþ1−i.

This preserves (1) since N is odd. The TL generators

transform as PðeiÞ ¼ eN−i. We have

PðHLÞ ¼ −HL; PðHÞ ¼ H; PðGÞ ¼ G−1: ð11Þ

The first of these relations is highly nontrivial [25].

Time reversal—We define time reversal as complex

conjugation of coefficients with respect to the Fock basis

fþi1 � � � f
þ
iM
j∅i. By using the fs, TðeiÞ ¼ ei and (7)–(9) have

real matrix elements, except for the prefactor in (7). Thus,

TðHLÞ ¼ −HL; TðHÞ ¼ H; TðGÞ ¼ G: ð12Þ

Since the Hamiltonians (and their eigenstates) are PT

invariant, their spectrum is real [33–36]. The same is true

for the “quasi-momentum” p ¼ −i logG.
Charge conjugation—The particle-hole transformation

C0ðfiÞ ¼ fþi ; C0ðfþi Þ ¼ fi; ð13Þ

gives C0ðeiÞ ¼ −ei, preserving (4). Including a suitable

antilinear transformation U, see [25], gives charge con-

jugation C ¼ C0U. It acts on the conserved charges by

CðHLÞ ¼ −HL; CðHÞ ¼ H; CðGÞ ¼ G: ð14Þ

Global symmetry—The model can be seen as a long-

range spin chain with alternating glð1j1Þ representations.

Recall that glð1j1Þ has two bosonic and two fermionic

generators, which we denote by N, E, and F1; F
þ
1 , respec-

tively. The nontrivial (anti)commutation relations are

½N;F1� ¼−F1; ½N;Fþ1 � ¼Fþ1 ; fF1;F
þ
1 g¼E; ð15Þ

and E is central. This is just a fermionic version of the usual

spin algebra. Each site i carries a glð1j1Þ representation

generated by fi, f
þ
i , the number operator ð−1Þifþi fi and

central charge ð−1Þi. From this perspective, our model is a

long-range glð1j1Þ superspin chain. It has a global glð1j1Þ
symmetry generated by

F1 ¼
XN

i¼1

fi; Fþ1 ¼
XN

i¼1

fþi ;

N ¼
XN

i¼1

ð−1Þifþi fi; E ¼
XN

i¼1

ð−1Þi ¼ −1; ð16Þ

Indeed, these operators commute with all ei, and thus with

the conserved charges (7)–(9).

Since F21 ¼ ðFþ1 Þ
2 ¼ 0, glð1j1Þ produces fewer descen-

dants than suð2Þ does at q ¼ 1. This is compensated by

additional bosonic generators

F2 ¼
XN

i<j

fifj; Fþ2 ¼
XN

i<j

fþi f
þ
j ; ð17Þ

which commute with the ei, hence with (7)–(9). Together,

(16) and (17) generate the full global-symmetry algebra

[5,37]. It is the Uqslð2Þjq¼i symmetry from the parent

model in fermionic language, cf. [6] (Sec. 2.3).

Extended symmetry—The parent model has quantum-

affine slð2Þ symmetry, which underpins its large degen-

eracies. Its specialization to q ¼ i is tricky and seems

absent in the mathematical literature. A detailed study will

be performed elsewhere. The extended symmetry is visible

in the highly degenerate spectrum.

Exact spectrum—The spectrum and degeneracies of the

parent model are known explicitly [14,17,18]. Like for the

HS chain, the quantum numbers are “motifs” [15] fμmg,
consisting of integers 1 ⩽ μm < N increasing as

μmþ1 > μm þ 1; 1 ⩽ m < M: ð18Þ

Such a motif labels an M-fermion state with quasimomen-

tum p ¼ ð2π=NÞ
P

m μm mod 2π setting the eigenvalue eip

of G. Its energy is additive:

EL

fμmg
¼

XM

m¼1

εLμm ; Efμmg ¼
XM

m¼1

εμm ; ð19Þ
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with dispersions having two linear branches (Fig. 1):

εLn ¼

�
n; n even;

n − N; n odd;
εn ¼ jεLnj: ð20Þ

This state has (often many) descendants due to the extended

symmetry. Its multiplicity is [13,18] N þ 1 for the empty

motif (at M ¼ 0), and otherwise

μ1ðN − μMÞ
YM−1

m¼1

ðμmþ1 − μm − 1Þ: ð21Þ

Given the extremely simple dispersion, further (“acciden-

tal”) degeneracies between different motifs occur much

more often than even for the HS chain.

Fermionic approach—Lacking periodicity, we cannot

simply Fourier transform the fs as usual. The key to

defining a good basis of fermions is to start at one end of the

lattice and use the quasi-translation operator:

Φi ≡ G1−if1G
i−1; Φ

þ
i ≡ G1−ifþ1 G

i−1: ð22Þ

These dressed fermions, reminiscent of [38], are periodic,

ΦiþN ¼ Φi; Φ
þ
iþN ¼ Φ

þ
i ; ð23Þ

and obey nonlocal anticommutation relations [25]

fΦi;Φ
þ
j g ¼ −ð1þ tj−iÞ; fΦi;Φjg ¼ fΦþ

i ;Φ
þ
j g ¼ 0:

ð24Þ

The nontrivial relation only depends on the distance.

Because of (23) we may Fourier transform (22) as usual.

Set a0 ≡ i and an ≡ inþ1=2 else. The rescaled Fourier

modes

Ψ̃n ≡
an

N

XN

j¼1

e−2iπ nj=NΦj; Ψ̃
þ
n ≡

an

N

XN

j¼1

e2iπ nj=NΦþ
j ;

ð25Þ

obey canonical anticommutation relations

fΨ̃n; Ψ̃
þ
mg ¼ δnm; fΨ̃n; Ψ̃mg ¼ fΨ̃þ

n ; Ψ̃
þ
mg ¼ 0: ð26Þ

They are covariant under quasi-translations in the sense

GΨ̃nG
−1¼ e−2iπn=NΨ̃n; GΨ̃

þ
n G

−1¼ e2iπn=NΨ̃þ
n : ð27Þ

The relation to the original fermions is strikingly simple.

The zero modes commute with the Hamiltonians: they are

just the fermionic glð1j1Þ generators from (16) [25],

1

a0
Ψ̃0 ¼

XN

i¼1

fi ¼ F1;
1

a0
Ψ̃

þ
0 ¼

XN

i¼1

fþi ¼ Fþ1 : ð28Þ

The other modes are explicit linear combinations of the

two-site fermions (2), with coefficients given in [25],

Sec. C2. In these terms, HL is diagonal:

HL ¼
XN−1

n¼1

εLnΨ̃
þ
n Ψ̃n: ð29Þ

Numerics for low N confirms the equality with (7). If j∅i is
the fermionic vacuum, then by (26) the Fock states

jn1;…; nMi≡ Ψ̃
þ
n1
…Ψ̃

þ
nM
j∅i; ð30Þ

form an HL eigenbasis labeled by all 2N fermionic mode

numbers 0 ⩽ n1 < … < nM < N. The quasi-momentum is

p ¼ ð2π=NÞ
P

m nm mod 2π, and the chiral energy EL

fnmg
¼P

m εLnm matches (19)–(20) when fnmg is a motif.

Next, (9) takes the quartic form [25]

H ¼
XN−1

n¼1

εnΨ̃
þ
n Ψ̃n þ

X

1⩽m<n<N
1⩽r<s<N

Ṽmn;rsΨ̃
þ
mΨ̃

þ
n Ψ̃rΨ̃s: ð31Þ

The commutation (10) only allows Ṽmn;rs ≠ 0 if [25] the

quasi-momentum and chiral energy are conserved:

mþ n ¼ rþ s mod N; εLm þ εLn ¼ εLr þ εLs: ð32Þ

Numerics for odd N ⩽ 9 suggest the stronger selection rule

that mþ n ¼ rþ s be odd, with nonzero values Ṽ ¼ �4

determined by Ṽmn;rs ¼ Ṽrs;mn and

Ṽmn;mþk;n−k ¼ð−1Þkþ14δm odd; 0⩽ 2k<n−m: ð33Þ

For one-particle states jni only the quadratic part of (31)

contributes, reproducing the nonchiral dispersion (20). The

quartic part implements the statistical repulsion rule (18): H

is genuinely interacting. Thus, (30) are generally not

eigenstates of H. In [25] Sec. D we illustrate this for the

two-fermion spectrum, showing how Ṽ “squeezes” adja-

cent modes to extended-symmetry descendants. E.g., for

N ¼ 5 we know from the parent model that j1; 2i is an

FIG. 1. The dispersion relations (20) alternate between two

linear branches, realizing chiral and “full” (up to a shift) massless

relativistic dispersions on the lattice.
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extended-symmetry descendant of the motif f3g. This

matches εLn þ εLnþ1 ¼ εL2nþ1modN (cf. Fig. 1), yet for H

relies on the contribution of Ṽ12;12 ¼ −4 to ε1 þ ε2 þ

Ṽ12;12 ¼ ε3. A fermionic description of the full

spectrum requires a deeper understanding of the extended

symmetry.

Outlook—We obtained and analysed a long-range fer-

mionic model with extended symmetry from the XXZ-type

HS chain (“parent model”) at q ¼ i. It can be also viewed

as a long-range alternating superspin chain. Periodicity,

being incompatible with the symmetry, is modified to

quasi-translation invariance. As for Heisenberg XXZ, we

get a free-fermion Hamiltonian, HL. Albeit quadratic in

fermions from the start, its explicit diagonalization relies on

quasi-translated fermions akin to [38]. Another conserved

charge, H, has a four-fermion interaction realizing the

statistical repulsion known from the isotropic HS

chain. Both Hamiltonians have a Weyl-like spectrum on

the lattice. Together, these features render the model

rather simple, although a full understanding requires an

explicit fermionic realization of the extended symmetry.

This, and a systematic construction of the eigenvectors,

which are known for the parent model, is left for future

work.

In spin chains, even or odd length may lead to different

properties due to the excitations’ topological nature. The

distinction is more pronounced for alternating glð1j1Þ spin
chains, cf. [6]. Presently, it becomes extreme due to a pole

in the parent model’s long-range potential. For even N, the

parent Hamiltonian diverges as q → i, and regularization

sets all energies to zero. Yet, the wave functions remain

nontrivial, and numerics indicates Jordan blocks up to size

N=2þ 1. While indecomposable representations are

expected at central charge E ¼ 0, their dimensions signal

that these are not just zigzag modules for systems with

merely global symmetry [39]. We will soon report on even

N [40]. A spin chain with a similar spectrum arose in

AdS/CFT integrability [41].

Another important direction is the continuum limit,

where we expect conformal invariance. Explicit identifi-

cation of the CFT requires determining the extended

symmetry. The isotropic HS chain suggests Kac-Moody

symmetry in the CFT limit, perhaps level-1 glð1j1Þ [42]. It
will be interesting to find the continuum counterpart

of HL, reminding the Virasoro generator L0, and see what

happens with the dispersion relation’s staggering. The

relativistic-like dispersions for odd N seems well adapted

to the continuum limit, albeit at odds with the vanishing

spectrum for even N. In the scaling limit, the fs will

yield symplectic fermions, but the difference between even

and odd length we see goes beyond that between the

Ramond and Neveu-Schwarz sectors, requiring further

insight.

For Heisenberg XXZ, other root-of-unity cases, notably

q3 ¼ 1 [43], are special too. Their analogs for the parent

model will also exhibit extended symmetry, quasi-

translation invariance, nonunitarity and statistical level

repulsion. More generally, it would be exciting to study

root-of-unity points of the XXZ-type Inozemtsev chain [44],

which interpolates between a quasiperiodic Heisenberg

XXZ chain and our parent model.
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