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Obtaining hadronic two-point functions is a central step in spectroscopy calculations in lattice
QCD. This requires solving the Dirac equation repeatedly, which is computationally demanding.
The distillation method addresses this difficulty by using the lowest eigenvectors of the spatial
Laplacian to construct a subspace in which the Dirac operator can be fully inverted. This approach
is efficient for nonlocal operators such as meson-meson and baryon-baryon operators. However,
local multiquark operators with four or more (anti)quarks are computationally expensive in this
framework: the cost of contractions scales with a high power of the number of Laplacian eigenvectors.
We present a position-space sampling method within distillation that reduces this cost scaling by
performing the momentum projection only over sparse grids rather than the full spatial lattice.
We demonstrate the efficiency of this unbiased estimator for single-meson, single-baryon and local
tetraquark operators. Using Wilson-clover fermions at the SU (3)-flavour-symmetric point, we apply
this method to study the importance of local tetraquark operators for the finite-volume T..(3875)"
spectrum. To this end, we extend a large basis of bilocal DD* and D* D™ scattering operators by
including local tetraquark operators. The inclusion of local operators leads to significant shifts in
several energy levels. Finally, we show the effect of these shifts on the DD* scattering phase shift

from a single-channel s-wave Liischer analysis.

I. INTRODUCTION

In recent decades, numerous exotic hadrons have
been discovered, including the x.1(3872) and other
charmonium-like states, as well as various tetraquarks
and pentaquarks [1, 2]. A prominent example is the
T..(3875)" tetraquark, which was observed and stud-
ied at LHCD [3, 4]. It was found in the DD+ mass
spectrum just below the D**D? threshold and is an
I(JP) = 0(1%) state. With a minimal quark content
of cctid, it does not fit into the quark model picture and
is therefore clearly an exotic hadron. Another interesting
exotic hadron is the d*(2380) dibaryon discovered by the
WASA-at-COSY collaboration [5]. It is an excited state
of the deuteron with I(J) = 0(3%), lying about 80 MeV
below the AA threshold.

These discoveries call for theoretical predictions of
the masses, widths, and other properties of such exotic
hadrons. Lattice quantum chromodynamics (QCD) is
the only known method to provide such predictions from
first principles. Since in lattice QCD one always works in
a finite box, it is necessary to relate finite-volume quan-
tities obtained there to infinite-volume observables. For
single-particle states that are stable within QCD, finite
volume effects on the energy are exponentially suppressed
by the box size times the smallest mass scale, i.e. the
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pion mass [6]. However, most hadrons are not QCD-
stable and can decay into other hadrons. In this case,
the finite-volume contributions only decay with inverse
powers of the box size and have to be taken into account.
One way of dealing with these finite-volume effects is to
use Liischer’s finite-volume quantization conditions [7, 8].
They relate the low-lying finite-volume energies to the
scattering amplitude in infinite volume. The positions of
the poles in this amplitude are then used to extract the
masses and widths of the hadrons via amplitude analysis.

The current best strategy for computing the low-lying
finite-volume spectrum is the variational method [9]. It
uses a basis of interpolating operators, all carrying the
quantum numbers of the desired hadron, to construct a
correlator matrix. By solving a generalized eigenvalue
problem (GEVP), the lowest few energy levels can be
extracted at large FEuclidean times. To suppress the in-
fluence of excited states, one wants to use many such op-
erators, and since the inner structure of exotic hadrons
is generally not known, they should have different spin,
color and spatial structures to capture the low-lying spec-
trum well. Therefore, we want to use nonlocal scattering
operators to describe states that resemble weakly bound
“molecular” states, as well as local operators for more
deeply bound states. Not including such a variety of
operators can lead to an inaccurate finite-volume spec-
trum [10].

An efficient framework for computing correlation func-
tions of nonlocal operators is distillation [11]. It em-
ploys Laplacian Heaviside (LapH) smearing, in which



the lowest eigenvectors of the spatial Laplacian define
a subspace that allows to fully invert the Dirac oper-
ator. Distillation has been used successfully for two
and three meson scattering [10, 12-22], tetraquarks [23—
26], meson-baryon scattering [27-31] and baryon-baryon
scattering [32-35]. On the other hand, two-point func-
tions of local multiquark operators with four or more
(anti)quarks can be obtained more easily using standard
approaches such as the point-to-all method. Neverthe-
less, they have also been computed within the distillation
framework [25, 36, 37]. It is challenging to use these local
operators in distillation because one needs to construct
high-rank tensors, which make the contractions compu-
tationally expensive. A possible solution to this problem
was recently proposed [38].

In this paper, we present a different approach for re-
ducing the cost of local operators in distillation. This
method uses position-space sampling, and we applied it
to the quantum numbers relevant for the T, tetraquark.

This paper is organized as follows: In Section II, we
give a brief overview of the distillation method and show
why local multiquark operators are expensive in this
framework. In Section III, we present a position-space
sampling method within distillation and show how it can
be used to reduce the cost of local multiquark operators.
In Section IV, we investigate the efficiency of this method
for single-meson, single-baryon and local tetraquark op-
erators, and analyze the importance of the latter for the
T.. tetraquark. We end with our conclusion in Section V.

II. DISTILLATION METHOD

In hadron spectroscopy, field smearing is crucial for
reducing the coupling of hadron operators to high-energy
states. For the quark fields, we can use a smearing kernel
K (t) that acts on spin, color and position space but does
not mix different time slices. The smeared quark field is
then given by

Yam (1) = K (8) 9 (t). (1)

A widely used quark smearing method is LapH smear-
ing, employed in distillation [11, 39]. To establish nota-
tion and make this paper self-contained, we briefly re-
view LapH smearing and the distillation method. The
smearing kernel K in LapH smearing is constructed
from the lowest eigenvectors of the (stout-smeared [40])
gauge-covariant Laplacian A(t). More precisely, we set
K = VVT where V contains the lowest N, eigenvectors
of A(t). Since all eigenvalues A*)(t) of the Laplacian are
negative, we order them as

AW <=2 () < -AO (@) <., (2)

and define V as

where v(¥) (t) is the eigenvector corresponding to the
eigenvalue A\®)(¢). This is a 3|A3| x N, matrix, where
A3 is the spatial lattice and 3 is the number of colors.
The Laplacian acts trivially in spin space, so V' and the
smearing kernel K constructed from it do as well. Since
the Laplacian is defined in terms of the gauge links, its
eigenvectors, and thus V (¢), are time-dependent. We call
the Laplacian eigenvectors Laplace modes and the index
k the Laplace mode index.

Using only the N, lowest Laplace modes is similar to
imposing a cutoff o2 on its eigenvalues. This way, the
smearing kernel can be written in compact form as

K =0(c*+A) (4)

(cf. [39]), using the Heaviside function ©. The difference
from the former definition is that the number of eigen-
values of —A(t) below 02 does not need to be constant
across different time slices. However, in [39] it was shown
that this number changes very little. Therefore, in nu-
merical simulations we use a constant number of vectors
to define K.

The Laplacian is covariant under gauge transforma-
tions, rotations on the lattice, parity and charge conju-
gation, and since the smearing kernel K is defined in
terms of its eigenvectors, it preserves these symmetries
as well. Thus, no relevant symmetry of the quark fields
is broken by LapH smearing.

When we smear the quark fields with K, we get the
smeared quark propagator (with flavour f) as

St am(t',t) = K{')-Spt',t) - K(t)T

—V(t nt / T (5)

=VE)VQE) - St t) - V)V (2)
in terms of the unsmeared propagator Sy = D7, Here,
Dy is the Dirac operator for the quark with Havour f.
This is a 12|A3| x 12|As| matrix, and it is not feasible to
invert it fully. However, K is a projector onto the space
spanned by the IV, lowest Laplace modes. This so-called
LapH subspace is 4N,, dimensional, and N, is typically
a few tens or a few hundreds; consequently, the Dirac
operator can be fully inverted in this subspace. This is
done by introducing the so-called perambulator, defined
as

(Tr)ap(t',t) = V(E) - (Sp)as(t',t) - V(). (6)

Here we have explicitly written out the spin indices. The

perambulator is a 4N,, X 4N,, matrix, and it can be com-

puted by solving the Dirac equation for each Laplace

mode v*)(¢) and spin index 3 at the source, and then

projecting the result to the Laplace modes at the sink.
Finally, the smeared propagator is given by

(Sf,5m) gt 1) = V(') - (tp)as(t't) - V), (T)

in terms of the perambulator.
As an example, we consider the charged pion to illus-
trate how distillation works in practice. For this, we use



the operator

O7(t)= Y e P (dysu)(,1), (®)

xrEA3

which is projected to momentum p.! Its unsmeared two-
point function is given by

o )y= Y er@E-e)
x/ , xEN3

{tr [Sy(a! ¢z, t) - Sa(a! s, 1)T])

9)

where (.. .) is the expectation value over the gauge fields
only. To get the smeared two-point function, we replace
the propagators by the smeared ones according to Eq. (7).
This gives us

Com(t',1) = (tr [@(t') - 7 (¢, 1) - @) - (¥, 1) 1])
(10)
where we have collected the momentum projection and
the Laplace modes in the mode doublets ®(t) defined as

oDty = " e PP (@, 1) () (x, 1). (11)
xEA3

They form an N, x N, matrix. Here we have explic-
itly written out the Laplace mode indices (k,l) and the
color index a in addition to the position index x. Using
these mode doublets in numerical simulations is easier
than recomputing or storing the Laplace modes. We see
that distillation has turned the pion two-point function
into simple matrix-matrix multiplications in the LapH
subspace.

Before moving on to more complicated operators, we
address the question of how many Laplace modes to use.
As mentioned above, we can relate the number of Laplace
modes N, to a cutoff 2 on the eigenvalues of the Lapla-
cian. This cutoff corresponds to a certain smearing ra-
dius, which we can tune to obtain a fast convergence of
the effective energy for a given two-point function. Once
we have chosen a certain N,, we want to keep the phys-
ical smearing radius constant as we change the lattice
spacing a and the volume V. In [39], it was shown that
to keep the physical smearing radius constant, we have
to keep the number of Laplace modes N, proportional to
the physical volume V = a3|A3|. Thus, going to larger
volumes increases the computational cost for computing
the perambulators. In addition, the contractions become
more expensive. For simple meson two-point functions,
this is manageable, but for local multiquark operators
with four or more (anti)quarks, it becomes problematic.

1 We suppress the dependence on the momentum p in most cases.

FIG. 1. Tensor network diagrams of two-point functions in
distillation of operators relevant for the T.. tetraquark; a
bilocal DD* (top) and a local tetraquark operator (bottom).
For the bilocal DD* operator, the two terms from the Wick
contraction are topologically distinct, whereas for the local
tetraquark operator, they have the same topology. The spin
structure is suppressed.

A. Local multiquark operators in distillation

As for mesons, we can use distillation for baryons [11,
33, 39] by following the same steps as before: we first
compute an unsmeared baryon two-point function and
replace the propagators with smeared ones. Then we
want to somehow absorb the Laplace modes and the mo-
mentum projection into a tensor. For mesons, we ended
up with the mode doublets, which form a rank-2 ten-
sor. But for baryons, we get a rank-3 tensor with one
Laplace mode index for each quark. These mode triplets
are defined as

gkbm) () = Z e P e, k) (w,t)vél)(a:,t)vgm)(m,t).
xEA;3

(12)
Similarly, we can proceed and compute two-point func-
tions of bilocal meson-meson and baryon-baryon scatter-
ing operators. We can reuse the mode doublets and
triplets we have already defined for them, since the
mesons and baryons are each projected to a separate mo-
mentum.

The computational cost of computing two-point func-
tions of meson and bilocal meson-meson operators scales
as N2 since the contractions consist of matrix-matrix
multiplications in the LapH subspace. An example for
such a meson-meson operator is the bilocal DD* opera-
tor that is relevant for the T, tetraquark. We visualized
the tensor network diagram of its two-point function in
the top panel of Figure 1. One can see that it consists
only of traces in the LapH subspace.

For baryon and bilocal baryon-baryon operators, the



cost for computing two-point functions asymptotically
scales as N} as we have to contract matrices (the per-
ambulators) with rank-3 tensors (the mode triplets).

However, as mentioned in the introduction, we are also
interested in local multiquark operators. For example, for
the T,. tetraquark, a generic local tetraquark operator
has the form

OT(t)~ 3 e P=(ceud)(w, t), (13)

xzEA3

where we have suppressed the spin and color structure.
It could, for example, be a local DD* or a diquark-
antidiquark operator. When computing two-point func-
tions, we again collect the momentum projection and
the Laplace modes into a tensor, which in this case has
rank 4. For a local DD* operator, it is given by

E(Ic,l,m,o) (t) —

ST ey (@ ) 0D (a, ) o)™ (1) 0y (a, 1),
xEA3
(14)

whereas for a diquark-antidiquark operator the color
structure differs. The tensor network diagram of the cor-
responding two-point function in distillation is displayed
in the bottom panel of Figure 1. In Figure 2, we visual-
ize the order in which the propagators and the Laplace
modes are contracted to first obtain the perambulators
and =. Then these tensors are contracted to arrive at the
two-point function.

Consequently, the overall computational cost for this
two-point function scales as N. This is very expensive,
especially for large physical volumes. An additional prob-
lem is the memory required to store the rank-4 tensor =.

The problem becomes more severe when we want to
use local hexaquark operators for dibaryons such as the
d*(2380). These operators are of the form

O (t) ~ Z e~ P (yyuddd)(zx, t), (15)

xEA3

where again we have suppressed the spin and color struc-
ture. It is not clear whether these operators are rele-
vant for the low-lying finite-volume energies of a certain
dibaryon system. Previous lattice studies found that they
are not important for the low-lying nucleon-nucleon en-
ergies [35, 41, 42], but it is possible that they are relevant
for other dibaryons such as the d* and the H [43].

To use these local hexaquark operators in distillation,
we would have to construct a rank-6 tensor, and the com-
putational cost would scale as N7. This is prohibitively
expensive even for a reasonably small number of Laplace
modes such as N, = 32.

The reason why the computational cost for these lo-
cal multiquark operators scales so badly is the order in
which the tensors are contracted. By summing over the
position indices first, we construct high-rank tensors that
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FIG. 2. Tensor network diagrams of the same tetraquark two-
point function as in the bottom panel of Figure 1. Here, all
tensors involved in distillation are displayed to visualize the
order in which they are contracted. In the conventional dis-
tillation method (top), the perambulators 74 (with flavour f)
are constructed by contracting the propagators Sy with the
neighboring V' matrices. The remaining V’s are contracted
with e~"P*" which gives the rank-4 tensor =. In the position-
space sampling method (bottom), the propagators are con-
tracted with all four V’s connected to it, giving the smeared
propagators Sy sm. The contraction with the exponentials is
then performed only over subspaces of the spatial lattice (in-
dicated by the dashed lines). The spin and color structure is
suppressed in these diagrams.

[ -
~
F R

make the contractions over the Laplace mode indices ex-
pensive. To avoid these high-rank tensors, we can change
the contraction order as it is visualized in the bottom
panel of Figure 2 for a local tetraquark operator. This
means we explicitly construct the smeared propagators
as defined in Eq. (7) by summing over all Laplace mode
indices first. The remaining contraction then involves
a double sum over the position indices &’ and x as in
Eq. (9).

Let us analyze the cost scaling for this case. The com-
putation of the smeared propagators from perambulators
consists of two matrix-matrix multiplications with costs
N2|A3| and N,|A3|%, and the double sum over the posi-
tion space scales as |Az|%. As mentioned before, to have
a constant smearing radius, we have to keep N, propor-



tional to the physical volume V = a?|A3|. Consequently,
for a constant lattice spacing, the asymptotic cost scaling
is proportional to N3, and it comes from computing the
smeared propagators. This is much better than the N?
and N; scaling for local tetraquark and hexaquark op-
erators when constructing the aforementioned high-rank
tensors, and it is independent of the number of quarks.
But since |As| > N,, the computation is still very expen-
sive. Moreover, one would have to write the full Laplace
modes to disk or recompute them for each contraction
batch job; both options are impractical.

The solution we propose in this paper for these local
multiquark operators is to use a position-space sampling
method in addition to distillation. This reduces the cost
of computing the smeared propagators and of the con-
tractions.

III. POSITION-SPACE SAMPLING

The basic idea of the position-space sampling method
is to compute the smeared propagators only on subspaces

J

~ A2
Com(t', 1) = <7~|l 3 >
|A3|‘A3‘m/€]\é
ZGAg

where we have added the prefactor |As|?/(|A%]|As|) to

ensure the correct normalization. The expectation value

(--)gaw is now an expectation value both over the
g

gauge fields and over the two subspaces, since they do
not have to be the same for all gauge configurations.

For general local multiquark operators, the procedure
is the same, only the contraction of the smeared prop-
agators is more complicated. In the tensor network di-
agram in the bottom panel of Figure 2, we use dashed
lines to indicate the contractions that are performed us-
ing position-space sampling.

To use this approach, we need to store the Laplace
modes on the two subspaces A; and Aj for each gauge
configuration. Various approaches for defining these sub-
spaces have been used in the literature [44, 45], though
not combined with distillation. They can be grouped into
two categories: sparse grids and random subspaces. The
former uses some types of sparse grids, such as regular
grids, where only every fourth or every eighth point in
each spatial direction is used. With this sparsening ap-
proach, a relatively large separation between the points
can be used, without introducing significant additional
noise from field sparsening. However, the disadvantage
is that it leads to an incomplete momentum projection,
so the resulting estimator is biased (cf. [45]).

The second approach uses fully random subspaces,
meaning that the points are chosen randomly from the

eiip'(wlim) tr [Su,sm(mla t/; T, t) : Sd, Sm(ﬂ?/, t/; Z, t)T] >

A5 C A rather than on the full spatial lattice A3. More
precisely, we choose two subspaces, A5 and Aj: the first
for the sink and the second for the source. Then, we
compute the smeared propagators D;lsm(w’,t/ ;a,t) for
all ' € Ay and = € Az from the perambulators and the
Laplace modes, and contract them to obtain the two-
point function. The subspaces A5 and Az have to be
chosen with a certain scheme for each gauge configuration
and source time ¢ if multiple sources are used. Before we
look at possible sparsening schemes, we first illustrate
how this position-space sampling method works.

Applying this sparsening approach to the charged pion
Eq. (9), we obtain the smeared pion two-point function
within position-space sampling Cyy, (', t) as

16
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full spatial lattice A3. The advantage of this approach
is that it leads to a complete momentum projection, so
the resulting estimator is unbiased. However, numeri-
cal investigations show that it leads to a larger variance
compared to the sparse-grids method [45].

In this work, we propose to use a regular sparse grid
that is randomly shifted. More precisely, we choose a
point separation Nge, that divides the spatial extent N,
of the lattice and define the subspace

Asz = {an + & |ng = 0, Neep, 2Neep, - - -
(k=1,2,3)},

) Ns - Nsep

(17)

with a random offset £ € A3. The number of points in
this subspace is |A3 z| = |A3|/Neep®. To properly sample
the full lattice, we use a different random offset & for
each gauge configuration and source time ¢ for the sparse
grid at the source (denoted by A3 z). For the sparse grid
at the sink (denoted by /13,53/), we sample a single ran-
dom offset &' for each gauge configuration, and use it for
all sink times ¢'. This allows us to preserve correlations
between different sink times t’, yielding more precise ef-
fective energies.

The important difference from the sparse-grids method
without a random offset is that this sparsening approach
is unbiased. To show this, we first note that all two-point



functions of local operators with definite momentum can
be written as

Ot t) = (f(@ ;@ 1))g. (18)

x’  xEA3

The function f encompasses the (smeared) quark prop-
agators and the exponential from the momentum pro-
jection. When applying our position-space sampling
method, this expression becomes

Ct',t) = < [As|* R ICRLL t)> (19)
’ As0l?, 5 T aan
’ E,GA&@/
EEA:;,;;_

Here, we have changed the notation for the expectation
value to (...)s 5z, since the expectation value over the

sparse grids is just an average over all possible offsets &’
and . Consequently, we have

1
(- gan = W w;{\ (e (20)

To make the dependence on &' and & in the sparse
grids explicit, we can write

A z00 = Aso + 3" (21)

where the addition is understood elementwise. That way
we can move the offsets & and & from the sum into f.
Using these properties, Eq. (19) becomes

N 1 ) )
C(t,t)= T E (f(@ +& ' x+2,1),. (22)
3,0 x',x€hs 0
&' &EA3

Due to the periodicity of the spatial lattice, we can per-
form the substitutions

~/

-z -2, Tox—=x (23)

in the offsets. Then, the sum over ' and x becomes
trivial, yielding a factor |A3o|?. Finally, we obtain

Ct',t)=> {f@& t&,1),=Ct1), (24)

~/,i€A3

i.e. we recover the sum over the full spatial lattice. Con-
sequently, the position-space sampling estimator is unbi-
ased.

We can also adapt this derivation to mixed two-point
functions of a local and a bilocal operator. In that case,
we only use position-space sampling for the local opera-
tor, i.e. only at the sink or the source. Hence, also for
these mixed two-point functions, the position-space sam-
pling estimator is unbiased.?

2 In this case, the random offset in the sparse grid is not required
to obtain an unbiased estimator.

The point separation N, in the sparse grids gives us
control over the variance, where for Ng, = 1 we get the
result from distillation without position-space sampling.
Ideally, we want to choose Ny such that the uncer-
tainty from position-space sampling is much smaller than
the Monte Carlo error. We expect that the noise from
position-space sampling depends primarily on the physi-
cal distance aNse, between the points as the lattice spac-
ing and volume are changed. Thus, once we have chosen
an Nyep for a given operator, we want to keep aNgep con-
stant as we change the lattice spacing and volume. This
means we keep the number of points in the sparse grids
|A3]/Nuep” proportional to the physical volume a®|As],
i.e. proportional to the number of Laplace modes N,. As
a result, we have the same V3 cost scaling as for Neep =1
(cf. Section ITA), but with a much smaller prefactor
that depends on the chosen Ny.,. In addition, the scal-
ing towards the continuum (a — 0) is improved when
keeping aNgep constant, compared to Ngp = 1. Conse-
quently, position-space sampling makes local multiquark
operators with four or more (anti)quarks feasible within
distillation, especially in large physical volumes.

IV. NUMERICAL INVESTIGATION

In this section, we show spectroscopy results from ap-
plying our position-space sampling method. First, we
study the efficiency of this method and investigate which
point separation Ngep, should be used for computing two-
point functions of single-meson, single-baryon and local
tetraquark operators. Then, we analyze the importance
of the latter for the T,. tetraquark by comparing the
low-lying finite-volume spectrum with and without in-
cluding local tetraquark operators. Finally, we investi-
gate the effect of including these operators on the s-wave
DD* scattering phase shift determined using Liischer’s
finite-volume quantization conditions. All errors only
include statistical uncertainties computed using the I'-
method [46].

A. Lattice setup

The simulations were performed using two CLS [47]
gauge ensembles with O(a)-improved Wilson fermions
at the SU(3) flavour symmetric point. This means the
quark mass is approximately set to the average of the
physical u, d and s quarks. The relevant parameters for
the simulations are summarized in Table I. The resulting
pion mass is m, ~ 420 MeV on both ensembles. For the
valence charm quark, the same fermion action was used.
Its quark mass was tuned such that the D meson mass
approximately matches the average of the physical D°,
D™ and D masses, which is 1901 MeV. The unphysical
pion mass results in a D* meson that is stable within
QCD; this avoids three-particle decays of the T,.. For
the B450 ensemble, we also used a heavier-than-physical



charm quark with hopping parameter x. = 0.115336, re-
sulting in a D mass of mp = 2753 MeV. We used stout
smearing [40] in the spatial Laplacian.

B. Nip dependence of position-space sampling
method

To study the efficiency of our position-space sam-
pling method, we computed two-point functions of single-
meson, single-baryon and local tetraquark operators us-
ing different point separations Ny, in the sparse grids.
Then we investigated the change in the variance of both
the effective energy F.g and the energy from a plateau fit
to Eeg. When decreasing the point separation Ngep, we
expect the variance to decrease until the error is domi-
nated by the Monte Carlo error. From there on, decreas-
ing Ngep will not reduce the overall error further. That
Nsep value is the ideal point separation for numerical sim-
ulations, although one can choose a bigger Ny, to make
simulations affordable at the cost of a larger error. The
goal of this investigation is to find that ideal Ngqp.

We did this Nyep-dependence analysis mostly using the
B450 ensemble (see Table I) to keep the computational
cost lower. The sparse grids that we use for position-
space sampling (c.f. Eq. (17)) require a point separation
Ngep that divides the spatial extent N, of the lattice.
For B450 this value is Ny = 32, so the possible Nyp
are Ngp = 1,2,4,8,16,32 where Ny, = 1 means us-
ing the full lattice and Ngep = 32 means using only one
point from the spatial lattice on a given time slice. The
maximum point separation N, = 32 led to large noise
such that the correlator data was not usable. Therefore,
Ngep = 16 is the biggest separation that we used.

1. Single-meson and single-baryon operators

As an example single-meson system, we investigated
the D meson. For that, we used the pseudoscalar opera-
tor

OP(t)= Y e P (wysc)(a,t) (25)

xEA;3

for the momenta p = 0 and p = 2%(1,0,0), where L =
aNy is the physical lattice size. The top left panel in
Figure 3 shows the effective energy EL; obtained from
D meson two-point functions with p = 0 for Ny =
4,8,16. For single mesons, we used the cosh definition of
the effective energy. We see a significant decrease in error
when going from Ngep, = 16 to Ngop = 8. But the error
does not decrease further when going to Ny, = 4. This
indicates that the error from position-space sampling is
dominated by the Monte Carlo error already for Nge, = 8.

The top right panel in Figure 3 shows the D meson
energies Eﬁsep obtained from plateau fits to EZ as a
function of Ngep. We used the same fit range for all Ngep

to isolate the Ny, dependence, and we normalized the
result with the Ngp = 1 value ElD . Unlike for the ef-
fective energy, the zero-momentum plateau fit shows no
significant change in error up to Ngep = 16; this indi-
cates that the decreased errors in the effective energy are
associated with increased correlations between different
t. For p* = (2r/L)?, the error in the energy By is
constant for Ns, < 8 and increases for Ny, = 16. For
both momenta, all Eﬁsep values are consistent with the
Nsep = 1 value, which is expected since the position-space
sampling estimator is unbiased.

We repeated this analysis for the nucleon N using the
operator

(’)N(t) = Z e 'PT [sabc Prug (ul:,r Cvys Py dc)] (z,t),
xEA3

(26)
where C' is the charge conjugation matrix, Py is the pos-
itive parity projector, and the Roman letters are color
indices. Here we also used momenta with p> = 0 and
p? = (2r/L)?, but for the latter, we averaged over the
six spatial directions to improve the signal. The obtained
results are shown in the bottom panels of Figure 3. As
for the D meson, we see a clear decrease in the error
of the zero-momentum effective energy when going from
Ngep = 16 to Ngep = 8. Decreasing the point separation
any further does not lead to a reduction in the error.
Similarly, the error of the energies E]J\\,'SQp obtained from

plateau fits to Eé\fff are stable for Nyep < 8. For Nyep, = 16,
the zero-momentum energy shows a slight error increase,
whereas the p? = (2m/L)? value increases significantly.
Nonetheless, the change in error between Ny, = 16 and
Nsep = 8 in the effective energy is much bigger than in
the fit result, indicating again the increased correlation
in the data. The same analysis for the pion and the D*
meson leads to similar results.

We conclude that position-space sampling works well
for two-point functions of single-meson and -baryon op-
erators, i.e. we can use a large point separation Ny, in
the sparse grids without observing an increase in the er-
ror of observables. Consequently, on the B450 ensemble
and for these observables, the ideal point separation is
Nsep = 8.

2. Tetraquark operators

Position-space sampling starts to yield large cost sav-
ings for local multiquark operators with four or more
(anti)quarks. Therefore, we now investigate its Ngep de-
pendence for local tetraquark operators relevant for the
T.. tetraquark. It is a I(JF) = 0(17) state with minimal
quark content cciid. Simple local tetraquark operators
that carry these quantum numbers are the local DD*
operator

TPP™ (1) = Z e P (uvse dyic)(m,t) —{u < d}, (27)
xrcAs3



TABLE 1. Parameters of the gauge ensembles used for the simulations. The lattice spacing was determined in [48]. Nz and
Ngrc are the number of gauge field configurations and sources per gauge configuration used. The point separation Ngep denotes

the value that was used for the T.. simulations.

Ensemble N2 x N, B a [fm] Ky = Kqg = Ks Ke Netg Nasre Ny Neep
B450 32% x 64 3.46 0.0749 0.136890 0.126243 1612 8 32 8
N202 48% % 128 3.55 0.0633 0.137000 0.128423 899 8 68 8
] - p'=0
0.724 1.00151 p'=(2r/L)
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FIG. 3. Effective energies Ef; for the D meson (h = D, top left) and the nucleon (b = N, bottom left) at zero momentum
and for different point separations Nsep. The red bands are results from plateau fits for Ngep = 4. The right panel displays the
energies E]}{,sep obtained from plateau fits to E’; for the D meson (top right) and the nucleon (bottom right) as a function of

Nsep. The energies E]}{,sep were computed using momenta with p? = 0 and p” = (2r/L)?, and are normalized with the Neep = 1

value E7.

the local D* D* operator
TP P (1) = Y e PPey(@y e dye)(wm, 1) (28)
zCEA;
and the local diquark-antidiquark operator
TIUE) = 3 e PP (eqpe e Crice eade 1aCs d, ) (1),

zEA3
(29)

Such local tetraquark operators have already been in-
corporated in simulations [25, 36, 49]. The diquark-
antidiquark operator is in the (3, ® 3.)1. color represen-
tation, but there is also a diquark-antidiquark operator
in the (6. ® 6.)1. representation. The latter is usually
discarded in favour of the former because of the repulsive
interactions in the diquark 6, and the antidiquark 6., [50].
Using Fierz transformations, the diquark-antidiquark op-
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FIG. 4. Plateau values Eﬁsep from plateau fits to the effective
energy of the local DD* and diquark-antidiquark two-point
functions vs. the point separation Ngp. The plateau values
are normalized with the Ngop = 4 value E4T .

di . o
erator T; 4 can be represented as a linear combination of

products of two color singlet currents of the form

> e PT@r s dl pe)(w,t) (30)
xEA3

for various combinations of elements I'4, I'p of the Clif-
ford algebra [51, 52]. Hence, this operator is related to
the local DD* and the local D*D* operator. However,
since we do not use a complete basis of operators of the
type given in Eq. (30), the diquark-antidiquark operator
is still linearly independent.

In this work, we only consider the zero-momentum
case, i.e. p = 0, therefore the operators T,PP", T,P™P”
and TM belong to the T; irreducible representation
(irrep) of the octahedral group Oj. For the Ngep-
dependence analysis, we only consider the local DD* and
the local diquark-antidiquark operator. Due to their sim-
ilar structure, we expect the local D*D* operator to be-
have similarly to the local DD* operator.

These tetraquark operators are not optimized, and the
energy levels for this multiparticle system are closely
spaced. Therefore, we do not expect the excited states
to decay before the signal is lost, implying that they do
not correspond to genuine finite-volume energies. To still
extract observables which we can use to compare differ-
ent Ngep, values, we performed plateau fits to the effective
energies at late times. Again, we used the same plateau
range across all Ngep.

The resulting plateau values E?\}SSP as a function of the
point separation Ny, are displayed in Figure 4. The
cost for computing these two-point functions scales as
Nsep_G7 and they are more expensive than the single-
hadron two-point functions. Therefore, we only used the
point separations Ngep = 4, 8,16, and we used the best
estimate E] to normalize the results. As for the nucleon,

there is a decrease in error when going from Ny, = 16
to Nsep = 8, but then the error stabilizes. The effective
energy shows the same behavior, although the reduction
in error from Ngep = 16 to Ngep = 8 is more significant
there. Hence, also for local tetraquark operators, we have
a significant increase in correlation between different ¢
when reducing the point separation.

We conclude that also for local tetraquark operators
the position-space sampling method works well and that
the optimal point separation for these operators is Ngep =
8 on B450.

The other ensemble that we used for the T.. simula-
tions is the N202 (see Table I). It has the lattice size
N, = 48, so possible and reasonable point separations
are Ngep = 4,6,8,12,16. Its lattice spacing is ~ 15%
smaller than that of B450. This means if we want to
keep aNgep constant, we would have to use a point sep-
aration Ngep ~ 9.5. Consequently, we should use either
Nsep = 8 or Nyp = 12. Our numerical investigation
for Ngep = 8,12 and 16 showed that the plateau values
E}\}SGP for the local tetraquark operators stabilize already
at Ngop = 12. But there is still a small error reduction
in the effective energy when going from Ny, = 12 to
Nsep = 8. Therefore, we also choose Ny, = 8 for the
N202 ensemble. The results for the T,. presented in the
next section were all obtained using this point separation.

C. Results for T,

In this section, we present our spectroscopy results rel-
evant for the T,.. We begin by analyzing the importance
of local tetraquark operators for the finite-volume spec-
trum, then we show their effect on the DD* s-wave scat-
tering phase shift.

1. Importance of local operators for finite-volume spectrum

The importance of local tetraquark operators for the
finite-volume cctid, isospin-0, Tl+ spectrum has been dis-
cussed in the literature [25, 37]. The authors find that
these operators, more precisely the diquark-antidiquark
operator, have little effect on the ground state but a sig-
nificant impact on the first excited state. In these two
works, the rank-4 tensor = mentioned in Section IT A was
used to compute two-point functions of local tetraquark
operators within distillation. Because of their cost scal-
ing with NP, a smaller number of eigenvectors was used
for the local tetraquark operators than for the bilocal
meson-meson operators. This is different in our simula-
tions, where we used the same N, for all operators.

For our importance analysis, we used a large basis of
bilocal DD* and D* D* operators in addition to the three
local tetraquark operators defined in Eqs. (27-29). The
bilocal DD* operators are constructed from linear com-



binations of operators of the form

O'?pD*(t) = Z e~ P @) (s e) (a1, t) (dyic)(x2,t)

zl,m2€A3
- {u AN d}a
(31)
and the bilocal D*D* operator from
D*D* 1\ _
Oi,p (t) -
Y @y (@) () (dyie) (2, 1).
x1,x2EA3
(32)

Both were combined with the appropriate momentum
structures to end up in the Tfr irrep (all of them are
in the rest frame). The guiding principle for construct-
ing these bilocal scattering operators was the following:
we included as many operators as there are (degenerate)
non-interacting energy levels on a given momentum shell.

To systematically investigate the effect of the different
operator types and momentum shells on the spectrum,
we organized the DD* and the D*D* operators on a
given momentum shell in groups that we call

D™ (k*)D* (k*) {Nops}, (33)

where k = %p is the integer momentum and Nops is the
number of operators in this group. For the DD* type
operators we used the momentum shells k% = 0, 1,2 with
Nops = 1,2, 3 operators, respectively. For the D*D* we
used k% = 0,1 with Nops = 1,2, respectively. In to-
tal, those are 9 bilocal meson-meson operators. Together
with the three local tetraquark operators, whose group
we call T {3}, the basis consists of 12 operators. For our
investigation, we ordered these groups as follows: first the
local tetraquark operators 7' {3}, then the D) D* opera-
tor groups ordered by increasing non-interacting D) D*
energy. In this order, we extended the basis one opera-
tor group at a time, and in each step we extracted the
low-lying energies. Then we repeated the same analy-
sis without the tetraquark operators. By comparing the
different energy values, we can deduce how important a
certain operator group is for obtaining the correct spec-
trum.

To extract the low-lying energy levels, we used the vari-
ational method outlined in [9]. This means we solved the
GEVP

C(t)vn(t,to) = An(t, to) Clto)vn(t,to) (34)
for the correlator matrix
Cij(t) = (0i(1)0;(0)T) (35)

where O; are the operators in the given basis. From the
eigenvalues A\, (t,to) we computed the effective energy

_¢1L10g<>\n(t+a7t0)) (36)

Eeﬁ’n(t) B )\n(t7t0)
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by setting to/a = [t/(2a)] where [-] is the ceiling
function. That way, the condition tq > ¢/2 holds
which ensures a suppression of the excited states with
O(e™FNops =En)t) iy B, (t) [9]. The energy levels E,
could, in principle, be extracted directly from Eeg n(t).
However, the FE,, are strongly correlated with the non-
interacting DD* energies. To reduce statistical errors,
we therefore extracted the energies using plateau fits to
the effective energy differences

AECH,H (t) = chf,n (t) - mg-f(t) - mchf* (t)v (37)
where m2;(t) and ml% (t) are the effective masses of the
D and D* meson, respectively. This gives us the energy
differences AFE,, = E,, — mp — mp+ where mp and mp-
are the D and D* masses. We computed these masses
separately from plateau fits to mZ%; and mfﬂ* to obtain
the F,.

This method is very similar to performing fits to ratios
of correlators, which can lead to fake plateaus [53]. To
avoid this, we performed fits in a region where both the
two-particle effective energy and the single-particle effec-
tive masses have reached a plateau. This approach was
advocated in [54].

The resulting energies for the different operator bases
on the N202 ensemble are shown in the top panels of
Figure 5. The plot for the ground state energy (top left
panel) shows that the inclusion of local tetraquark oper-
ators doesn’t change this level significantly. The result
from just using one bilocal scattering operator already
agrees well with the best estimate from using all 12 op-
erators.

For the first excited state (top right panel), we see that
the energies from only using bilocal operators decrease in
a step-like manner when adding operator groups. On the
other hand, when including the local tetraquark opera-
tors, the energy already converges when using the first 3
operator groups. When using all bilocal operators, the
resulting energy is still roughly 1 o away from the 12 op-
erators result. This indicates that the bilocal scattering
operators on their own do not capture the correct spec-
trum well. We also see that the local tetraquark opera-
tors on their own do not capture the spectrum correctly:
for both the ground and the first excited state, the T' {3}
result is far away from the 12 operators result.

In a Liischer analysis, both the two-particle energy lev-
els and the single-particle masses are important as both
enter the calculation. Consequently, a large correlation
between the two can result in a significant error cancel-
lation. Therefore, we also analyzed the correlated ratio
between the interacting energies and the threshold en-
ergy mp + mp~. The results are displayed in the lower
panels of Figure 5. Compared to the upper panels, we
see a large error cancellation, which results in a more
significant difference between the result from the bilocal
and the full operator basis. For both the ground and the
first excited state, we see a step-like decrease in the en-
ergies from the bilocal bases, and they do not reach the
12 operators result. On the other hand, the bases with
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FIG. 5. Finite-volume ground state (top left) and first excited state (top right) energy from using different operator bases
with and without local tetraquark operators. The x-axis denotes the last operator group added to the basis for computing F,;
groups to the left were already present (except 7' {3} when only bilocal operators are used). The red bands show the results
from using all 12 operators. The lower panels show the same results, but the energies are normalized with the threshold energy
using correlated ratios. We removed the T {3} energies from the lower plots due to their large values compared to the others.

All energies were computed on the N202 gauge ensemble.

local operators result in energies that stabilize when only
including a few operator groups. Consequently, the best
estimates from the bilocal and the full operator bases dif-
fer significantly. For the ground state, the difference is
roughly 2 ¢ and for the first excited state it is approxi-
mately 3 ¢. Presumably, adding more D(*) D* operators
on higher momentum shells to the bilocal operator basis
would decrease the resulting energies. However, the bilo-
cal operators become increasingly expensive on higher
momentum shells due to the larger number of momen-
tum combinations.

This type of operator-importance analysis provides a
useful way to test the reliability of the extracted spec-
trum. Even without comparing the energies from the
bilocal and the full basis, one can infer that the first ex-
cited state is not reliably determined using only our set

of bilocal operators.

Utilizing the basis consisting of all bilocal operators
and that of all local and bilocal operators, we computed
the low-lying finite-volume spectrum on both ensembles.
The results are displayed in Figure 6. For the N202,
we see the energy shift for the ground and first excited
state that we have already discussed. Besides those two
energy levels, there are also significant shifts in higher
excited states. Especially, the state below the D*D*(0)
threshold, which shifts by roughly 5 ¢ upon inclusion
of local operators. The only level that is unaffected by
the local operators is the state below the DD*(1) non-
interacting level.

On the B450 ensemble, which has a coarser lattice
spacing and a smaller physical volume, the inclusion of
local operators has a smaller impact. The ground state
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FIG. 6. Finite-volume ccid, isospin-0 spectrum in the 75" irrep for the operator basis consisting only of bilocal scattering

operators and for the full operator basis including also local tetraquark operators.

The energies are normalized with the

threshold energy using correlated ratios. The spectrum is presented for the N202 (left) and the B450 (middle) gauge ensembles.
In addition, energies on B450 computed with a heavier-than-physical charm quark are displayed (right). The horizontal lines
denote the non-interacting D™ D* energies (with the integer back-to-back momentum squared in the parentheses).

and the first excited state energy shift by roughly 0.5 o.
The two levels close to the D*D*(0) threshold remain
mostly unaffected. The smaller effect of the local opera-
tors on B450 could be due to its smaller physical volume,
which leads to more widely spaced finite-volume energy
levels. Consequently, excited states are more suppressed
in the effective energy.

In Figure 6 we also show energies on the B450 ensemble
that we computed with the heavier than physical charm
quark (c.f. Chapter IV A). We include them because the
Ty tetraquark, which is deeply bound [55, 56], arises from
substituting the two charm quarks with bottom quarks.
Local tetraquark operators were found to be essential
for correctly determining the finite-volume spectrum of
the Ty, particularly its ground state [25]. Therefore, we
expect a stronger binding and a bigger importance of
local tetraquark operators with our heavy charm quark.

This is what we see: the ground state energy shifts by
roughly 1.5 o and the first excited state by 1 ¢ upon
including local operators. There is also a significant shift
in the state above the D D*(1) non-interacting level. This
shift was already present with the physical charm quark
(not displayed in the plot), but it is enhanced with the
heavier charm quark.

We conclude that both the bilocal operators and the
basis consisting of local and bilocal operators qualita-
tively produce the same finite-volume spectrum, i.e. one
does not miss an energy level when not including local
tetraquark operators. But depending on the gauge en-
semble, the inclusion of local operators can result in sig-
nificant shifts in some levels. Consequently, not including
them can lead to a considerable systematic error.



TABLE II. Correction factors for the modified dispersion re-
lation.

Ensemble AD AD*
B450 0.928(7) 0.91(1)
N202 0.968(4) 0.965(6)

2.  s-wave Liischer analysis

To relate our finite-volume spectrum to the infinite-
volume s-wave DD* scattering phase shift, we utilized
Liischer’s quantization condition [8]. We performed a
single-channel s-wave analysis, which means we assumed
a negligible d-wave interaction. In this case, we can ob-
tain the s-wave scattering phase shift §y directly from
the center-of-mass (cm) scattering momentum ¢c,, via
the generalized zeta function [57]. In the rest frame, this

relation is given by
2 e L
——Zpo (1, —— |, 38
NI ( o ) (38)

where ¢. is given in terms of the Mandelstam s via

Gem cot 60 (QCm) =

V5=t mh g, md (39)

Our finite-volume spectra were obtained in the rest
frame, so in our case s = E2.

We measured a deviation from the continuum disper-
sion relation for the D and the D* meson on the two en-
sembles that we used. Therefore, we employed a modified
dispersion relation given by Ap? + m?2, with a parameter
A < 1. This modification can be derived from Symanzik
effective field theory in the limit of small momenta, and
it has already been used, e.g. in [58]. It results in the
following equation for gem:

V5 =\ Apa + b+ Aot md. (40)
The solution is

2
2 mp~ —Mp

S
o =T Ao

by 2*_)\ . 2
2\/(/\D/\D*) D™D 5 DmDJr)\D/\D* ,

Ap + Ap+ + ()\D - )\D*)

S

(41)

which has the correct limit for Ap, Ap= — 1.

We obtained the two correction factors A\p and Ap-
from a constant fit to (Epe (p)? —m?.,) /p® where
Ep(p) and Ep«(p) are the D and D* energies for mo-
mentum p. We choose the fit range (%)sz =1,2,3.
The resulting values are listed in Table II.

For single-channel D D* scattering, Liischer’s quantiza-
tion condition is valid between the u-channel cut coming
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and the vertical gray dashed line shows the start of the wu-
channel cut.

from the one pion exchange (at ¢, ~ —m2/4) and the
D*D*(0) threshold. Therefore, we only used the lowest
2 energy levels on both the B450 and the N202 ensem-
ble for our analysis. The third level on N202 could, in
principle, also be used, but it is strongly influenced by
d-wave.

The resulting g, cot dg are displayed in Figure 7. As
expected, the shifts in the finite-volume energies upon in-
clusion of local operators also appear in the phase shift.
We see that the improved spectrum results in a better
agreement between N202 and B450. The analysis with-
out local operators would have suggested a large dis-
cretization effect, and this is reduced now.

Our results indicate an intersection of gy, cot dg at pos-
itive y/—q2,,, which corresponds to a virtual bound state.
However, the presence of the nearby left-hand cut (u-cut)
may distort this [25, 59-62]. We plan to investigate this
in future work.

V. CONCLUSION

We have presented a position-space sampling method
for local multiquark operators within the distillation
framework that avoids a strong cost scaling of the con-
tractions with the physical volume. It is an unbiased
stochastic estimator for correlators that uses randomly
displaced sparse grids to compute the momentum pro-
jection. It allows combining local multiquark operators
and bilocal scattering operators in a variational analysis.

We investigated the variance of this estimator as a
function of the point separation in the sparse grids.
We did this for single-meson and -baryon operators but



also for local tetraquark operators relevant for the T,
tetraquark. For these operators, we can use a large point
separation while still getting a statistical error that is
dominated by the Monte Carlo error. This makes lo-
cal multiquark operators affordable in large physical vol-
umes.

For the T.., we analyzed the importance of local
tetraquark operators for the finite-volume spectrum. To
that end, we investigated the convergence of the energy
levels upon enlarging a basis consisting of purely bilocal
operators and one that also includes local operators. We
find qualitative agreement between the spectra obtained
from the two bases. However, we observe a fast conver-
gence when using the mixed basis, whereas with the bilo-
cal basis, the energies converge more slowly. Depending
on the gauge ensemble, several energy levels shift sig-
nificantly upon inclusion of local operators. Finally, we
performed a single-channel s-wave Liischer analysis for
the spectra from the bilocal and the full operator basis
to compare the resulting DD* phase shifts.

We conclude that not including local tetraquark op-
erators in an analysis of the T,. can lead to significant
systematic errors. Future work will extend this analy-
sis also to the moving frame and will include multiple
physical volumes and lattice spacings.
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