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Carbon has a central role in biology and organic chemistry, and its solid allotropes
provide the basis of much of our modern technology'. However, the liquid form

of carbon remains nearly uncharted?, and the structure of liquid carbon and most

of its physical properties are essentially unknown®, But liquid carbon s relevant

for modelling planetary interiors*® and the atmospheres of white dwarfs®, as an
intermediate state for the synthesis of advanced carbon materials’®, inertial
confinement fusion implosions’®, hypervelocity impact events on carbon materials™
and our general understanding of structured fluids at extreme conditions™. Here we
present a precise structure measurement of liquid carbon at pressures of around
1million atmospheres obtained by in situ X-ray diffraction at an X-ray free-electron
laser. Our results show a complex fluid with transient bonding and approximately four
nearest neighbours on average, in agreement with quantum molecular dynamics
simulations. The obtained data substantiate the understanding of the liquid state of
one of the most abundant elements in the universe and can test models of the melting
line. The demonstrated experimental abilities open the path to performing similar
studies of the structure of liquids composed of light elements at extreme conditions.

Liquid carbon is difficult to produce in the laboratory>™. It requires
temperatures exceeding 4,000 K and pressures of at least several mega-
pascals. In nature, these conditions are presentin the interior of large
planetssuch astheice giants of our solar system, Uranus and Neptune,
inwhich liquid carbon may contribute to the unusual magnetic fields
of these planets*™>. Moreover, the equation of state of carbon is of sub-
stantial importance to estimate the composition of exoplanets from
their observed mass and radius, in particular, for the highly abundant
class of sub-Neptunes®. For technology applications, liquid carbonisan
important transient state for the synthesis of several advanced carbon
materials, such as carbon nanotubes’, nanodiamonds®* and Q-carbon®.

Liquid carbon may also be key for the synthesis of the BC-8 phase of
carbon, which has been predicted for decades at pressures beyond
diamond stability’®"” but could not be realized experimentally so far
despite extensive efforts'®. At the same time, carbonis used ininertial
confinement fusion experiments as an ablator material surrounding
the deuterium-tritium fuel®. The experimental design that achieved
an ignited fusion plasma at the National Ignition Facility®® relies on
high-density carbon (diamond) that is subjected to shock compres-
sionjustabove melting in the initial phase of the implosion. This initial
compression step is crucial for the subsequent fusion yield*, and a
better microscopic understanding of liquid carbon under dynamic
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compression will help to design more efficientimplosions, especially
as more amorphousforms of carbon are considered as future ablator
materials®.

Modelling the extreme conditions in which liquid carbon prevails
is challenging. Planetary interior pressures of around 100 GPa and
temperatures approaching 10,000 K resultin energy densities thatare
of the order of those stored in carbon-carbon bonds. Transient chemi-
cal bonds persisting from the sp*>-bonded diamond lattice are still
expected to shape the structure of liquid carbon at these conditions,
leading to tetrahedral coordination with four nearest neighbours
on average, which is in contrast to simple liquids with icosahedral
coordination with up to 12 nearest neighbours3. This complexity inhib-
its simple approximations and leaves first-principles simulations,
usually based on density functional theory with molecular dynamics
(DFT-MD), as the sole reliable method to provide predictive abilities.
However, even DFT-MD requires assumptions, such as the choice of the
exchange-correlation potential, and its computational limitations in
system size and simulation times may not capture all relevant physics
processes. There have been large discrepancies in the predictions of
the melting curve of carbon, including deviations up to a factor of 2
inmelting temperatures and fundamental differencesin the slope of
the melting curve for the diamond phase?. Machine-learning poten-
tials based on DFT try to circumvent the scaling limitations by vastly
extending spatial and temporal scales®; however, effects not covered
by the training dataarenot necessarily expected to be captured by the
scaled simulations. Although modern DFT-MD methods now seem to
converge on high-pressure equilibrium phase diagram calculations
with smaller variations®® %, these predictions remain to be tested
experimentally.

Probing the structural properties of carbon and other low-Zfluids
instatic high-pressure experiments, for example, using diamond anvil
cells, is challenging, and analogues such as glasses are used instead?®.
The high temperatures required to preserve the liquid state for pro-
longed periods lead to disintegration of the high-pressure sample
confinement. For X-ray probing, the small scattering power of light ele-
ments often hampers resolving liquid structures above the background
from surrounding material. In turn, most experimental approaches to
study liquid carbon have used dynamic techniques such as electrical or
optical flash heating and shock compression®. However, asinsitu X-ray
probing is difficult in these experiments, most results can up to now
provide only indirect evidence for the presence of liquid carbon, anda
detailedstructure measurement hasnotyetbeenachieved. Velocimetry
measurements in shock compression experiments can provide hints
of melting through small changes in the slope of the shock Hugoniot
curve®, Using pyrometry on decaying shocks, a temperature plateau
was associated with melting, and an anomalously high specific heat
in the liquid phase was interpreted to suggest a reconfiguration of
atomic packing, from a partially bonded complex fluid to an atomic
fluid between 10,000 Kand 60,000 K (ref. 30). Measurements of elec-
trical resistivity® and optical reflectivity® provided information on
the conductivity of liquid carbon before X-ray sources with sufficient
fluxbecameavailable to attempt measurements of structural proper-
ties. X-ray absorption spectroscopy at soft X-ray sources using femto-
second flash heating, in which the dynamics can be benchmarked by
extreme ultraviolet reflectivity®®, provided evidence for mand ebonds
inliquid carbon and some indirectinformation on structure based on
theoretical modelling®**. However, owing to the short timescales of
these studies, the investigated states had not reached thermal equi-
librium, and the theoretical methods applied require experimental
benchmarking. A direct X-ray scattering measurement of the atomic
structure of liquid carbon on the nanosecond timescale realized by
laser-driven shock compression could be achieved only at afew distinct
pointsink-space, which leaves substantial degrees of freedom for mod-
els**¥. Synchrotrons and hard X-ray free-electron lasers finally started
to allow for the measurement of diffraction patterns from liquidsin
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Fig.1|Schematic of the experimental setup. Glassy carbonsampleswere
subjected toshock compression with the DIiPOLE100-X drive laser. The
microscopic structure is probed by abright X-ray pulse of EUXFEL, and two area
detectorscollect the XRD patterns. The shock dynamics are captured by a VISAR.

dynamic compression experiments reaching extreme conditions® *2,

New facilities at the European XFEL (EuXFEL) set new standards in this
direction®.

The experiments reported here were performed using the DiPOLE
100-X high-energy laser at the High Energy Density-Helmholtz Inter-
national Beamline for Extreme Fields (HED-HIBEF) instrument of
EuXFEL**** Figure 1shows the experimental setup. The DiPOLE 100-X
laser was used to drive shock waves into glassy carbon samples, which
generate high-pressure states with simultaneous heating due to the
shock-induced entropy increase. Being a diode-pumped laser system,
DiPOLE 100-X features an energy and temporal pulse shape stability at
asub-per-centlevel, which allowsfor highly reproducible shot-to-shot
drive conditions. The bright X-ray pulses delivered by EuXFEL with a
photonenergy of 18 keVwere used forin situ X-ray diffraction (XRD) from
the shock-compressed sample to monitor the microscopic structure.
A velocity interferometer system for any reflector (VISAR) was used to
capture the shock dynamics and determine the pressure, together with
the diffraction data (Methods). Figure 2 shows integrated lineouts of
single-shot diffraction patterns acquired before shock breakout time
for increasing pressures. Ambient glassy carbon shows amorphous
features associated with sp? bonds. At (76 + 8) GPa, the sp? signature
vanishes, and we observe a partial transformation of the glassy carbon
to crystalline diamond. Remnants of the amorphous structure are still
present atthese conditions, possibly because of temperatures not con-
siderably exceeding the glass transition temperature®. This changes
at(83 +9) GPa, at which the diamond peaks substantially intensify and
sharpen in comparison with the lower pressure conditions. Thisiscon-
sistent with the formation of larger crystallites and the probed sample
volumebeing nearly fully composed of diamond. At (106 + 11) GPa, the
crystalline features start to diminish, together with the appearance of
broaderliquid correlation peaks. Weinterpret thisasacoexistence state
between diamond and liquid carbon; these features are also presentat
(126 +£12) GPa but with lower diamond content. At (160 +14) GPa, we
observe a purely liquid state.

Fromthe diffraction patterns, we canextract the static structure fac-
tor profiles S(k) for the covered scattering wavenumbers k, which allows
for a direct comparison with ab initio simulations based on DFT-MD
(Methods). Inagreement with the simulations, we find acomplex liquid
with broad liquid correlation peaks forming around the positions of
crystalline diamond (Fig. 3), which is compatible with transientbonds
resulting in approximately fourfold coordination on average”. More
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Fig.2|XRD patterns of shock-compressed glassy carbon. The drive pressure
increases from top to bottom, and the curves are shown with a constant offset
of10 a.u. The X-ray probing times of the lineouts are within1 ns before shock
release to probe mostly homogeneous conditions and avoid pressure release
states. Atambient conditions, broad amorphousstructures are present. Diamond
formationis observed above about 76 GPa, the coexistence of diamond and
liquid carbon fromabout 100 GPaand complete meltingatabout 160 GPa. The
quoted pressure uncertainties are dominated by the error estimations of the
shock velocity measurement (Methods). a.u., arbitrary units.

simplistic models with higher coordination numbers, suchas Lennard-
Jones, resultinafirst correlation peak between the two observed, and
suchastructure® isinconsistent with our observation. Calculating the
Fourier transform of S(k) allows us to determine the radial distribution
functiong(r) and with that the first and second coordination numbers of
theliquid carbon state. For the case of complete melting, Fig. 4a shows
arange of experimental reconstructions with varying k... (Methods).
The span of results is in good agreement with the DFT-MD simulation
that fits best to the corresponding XRD pattern. Again, a simple Len-
nard-Jones liquid does not match. Although the height and width of the
first correlation peaks vary between the chosen cutoffs, the integrated
areaunderneath the peaks and thus the extracted firstand second coor-
dination numbersremainrather constant. This is reasonable because
the structural information is encoded in the XRD pattern, in which
simple liquids with high coordination numbers areincompatible. For
complete melting, we find a first coordination number of 3.78 + 0.15
andasecond coordination number of17 + 2, whichisin agreement with
several DFT-MD predictions of the bonded liquid**¢~** and our DFT-MD
simulations (first coordination number of 3.66 + 0.05).

By fitting with DFT-MD, we also infer estimates for the temperature
and the density of the state reached within the probed volume. For
the cases with solid-liquid coexistence, we fit acombination of liquid
structure and thermal diffuse scattering of diamond, which can also
be obtained from DFT (Extended DataFig.4). Theoretical predictions

Experiment (106 + 11) GPa

Experiment (112 + 11) GPa

Experiment (126 + 12) GPa

Experiment (160 + 14) GPa

m DFT-MD 3.62 g cm™*, 6,557 K, 112 GPa
r s DFT-MD 3.69 g cm ™, 6,834 K, 122 GPa
s DFT-MD 3.76 g cm™, 6,749 K, 129 GPa
mmm— DFT-MD 3.79 g cm“a, 7,314 K, 140 GPa
Lennard-Jones liquid 3.8 g cm™ 7,000 K

o’
/o

k(10" m™)

Fig.3|DFT-MD fits of the experimentally obtained liquid structure. The
different datasets are shown with a constant offset of 1between the curves. For
the datawith solid-liquid coexistence, the crystalline peaks have been omitted
forfitting, and the liquid structure includes thermal diffuse scattering from
diamond. The grey-dashed curve shows a hypernetted chain calculation of the
liquid structure assuming a Lennard-Jones potential at similar conditions, which
resultsinafirst coordination number of around 11and shows the fundamental
difference to the observed structure, which has approximately fourfold
coordination.

expect the correlation peaks of S(k) to move to higher k withiincreas-
ing density and broaden for higher temperatures” (Extended Data
Fig. 3). Hence, we can provide experimental benchmarks for the
melting temperature, the volume change from solid to liquid and
theassociated latent heat through the liquid structure at melting. The
pressures extracted from the DFT-MD fits in Fig. 3 match with those
obtained experimentally from VISAR and XRD reasonably well within
the measurement uncertainty. Only for the highest pressure case,
thereis asmall discrepancy, but still within the margins, because the
uncertainties in temperature (+200 K) and density (+0.05g cm™) of
the DFT-fitresultinapressure error of around 8 GPa from the simula-
tions. In the following, we use the pressures inferred from VISAR and
the density from XRD. At (106 + 11) GPa, the positions of the crystalline
diamond peaks result in a density of 3.91 g cm™, whereas the den-
sity of the liquid is best matched by 3.62 g cm™ with a temperature
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Fig. 4 |Radial distribution function and phase diagram. a, Experimental
reconstructions of the radial distribution function for complete melting

at (160 £ 14) GPa and comparison with the simulation of the best fit to the
corresponding XRD patternand asimple Lennard-Jonesliquidat 3.8 gcmand
7,000 K.b, Ourresultsfor the fluid-solid coexistence and the pure fluid shown

0f 6,557 K. The volume change of about (7 + 1)% between the two phases
isinreasonable agreement with DFT-MD predictions along the melt-
ing curve in this pressure regime (8% at 104 GPa and 6% at 183 GPa;
ref. 46). Our data are also compatible with the pressure-temperature
slopeinref. 25of about 11.2 K GPa™. Using this value together with the
experimentally determined volume changein the Clausius-Clapeyron
relation, the entropy of melting and the latent heat are estimated to
beabout20 ) mol™ K" and about 130 kJ mol™, respectively. The purely
fluid state at (160 + 14) GPaisbest matched by adensity of 3.79 g cm™
and atemperature of 7,314 K.

Figure 4b shows these findings in the phase diagram of carbon with
different DFT-MD predictions of the melting curve®* and first coordi-
nation numbers?*, The temperature values of our results are inferred
from the comparison of the experimental and simulated structure
curves. Thus, we assume that the structural representation of liquid car-
boninoursimulationsiscorrect, whichis corroborated by the excellent
agreementwith our diffraction data (forexample, in comparison with
the simple Lennard-Jones liquid). Although our deduced temperatures
are not free from assumptions, we determine the liquid structure at
melting with high precision, whichwill be a valuable benchmark for all
future simulations of the melting transition of carbon in this regime.
In general, we find high consistency with the more recent DFT-MD
equation-of-state calculations in ref. 25, whereas other simulations*®
would require higher temperatures for melting, whichisinconsistent
with our results. Several melting curves based on more approximate
models*>° do not match our data. Our measurements are expected
to achieve thermodynamic equilibrium at the highest temperatures,
given the robust diamond formation before melting, the exceeding of
the glass transition temperature for glassy carbon and the observed
consistency withequilibrium melting models, with thatinbest agree-
ment?, also having similar simulation settings to those used in our
DFT-MD calculations. Moreover, we show the predicted coordination
numbers of distinct DFT-MD simulations in refs. 27,46. Again, we find
very good agreement with our measurements. The higher values pre-
dicted in ref. 46 match slightly better, but ref. 27 is also compatible
within the experimental and numerical uncertainties.

In conclusion, our pioneering experiments substantiate the view of
liquid carbon as acomplexliquid with approximately fourfold coordina-
tionat pressuresof about 100 GPa. Overall, the structures predicted by
modern DFT-MD simulations are in agreement with the experimental
data, whichunderlinesthe predictive power of this method at pressures
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incontext with the predictions of the carbon meltingline and coordination
numbers for liquid carbon. Thetemperature uncertainties shownarise from
theerror estimations of the DFT-MD fits, and the pressure uncertainties
correspond to the values quoted in Fig. 2.

around100 GPa and elevated temperatures. It should be noted thatall
curvesshown here were collected as single-shot events with arepetition
ratein therange of minutes. However, boththe drive laser and the X-ray
probe can run at 10 Hz. Thus, future experiments can obtain higher
precision by the accumulation of data and determine the liquid struc-
ture of aplethora of compounds made out of light elements at extreme
pressure and temperature conditions. This could lead to substantial
progressin models for the interior and the evolution of icy giant planets,
the classification of exoplanets made of similar constituents, defining
new processes of materials synthesis through extreme conditions, and
designing the best ablator materials for inertial confinement fusion.
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Methods

Laser-driven shock compression and experimental pressure
determination

The samples were subjected to shock compression using frequency-
doubled pulses of the DiPOLE 100-X laser (515 nm wavelength) and
aphase plate that produces asmoothed laser spot of approximately
250 pmindiameter. XRD was recorded by two Varex 4343CT flat panel
detectors. For more details on the experimental configuration and
geometry, see ref. 43. Quasi-flattop pulses of 10 ns with 35 ] maxi-
mum energy and 5 ns with 28 ) maximum energy resulted in steady
shock compression waves. The thickness of the samples was either
60 pumor 92 pm. For each drive condition, we obtained a time series
with intervals between different X-ray probe timings of 0.5-1ns,
and the data used for XRD fitting were within the last nanosecond
before the shock release for the 6-10 ns of total transit time. We
chose the timing before release to avoid the large density-pressure
gradients afterwards. Signal from any remaining cold material canbe
accounted for by subtracting the ambient pattern that is recorded
for each sample before the laser shot, with a scaling of the probe
timingrelative to the recorded shock release. When diamond peaks
are present, the density of the crystallites can be determined with
high precision and shows constant density within the measurement
uncertainty of 0.01 g cm™ as long as the shock propagates inside
the sample (Extended Data Fig.1). Thus, the assumption of a planar
steady shockis reasonably justified (Extended Data Fig. 2). Once the
shock releases on the sample rear side, the density of the diamond
crystallites approaches ambient density after a few nanoseconds
and reaches even lower values afterwards because of the residual
high temperatures. The different time series do not show substantial
effects of X-ray preheating, as the XRD features associated with the
weak sp?bonds diminish proportionally to the shock distance trav-
elled and are not markedly affected right after the impact of the drive
laser. As glassy carbon is not transparent to optical light, the VISAR
system can determine only shock transit times, and the assumption
of a steady shock propagation provides the shock velocity. In situ
XRD allows for determining density as long as diamond and/or liquid
carbon are present. With the obtained density and shock velocity,
the shock pressure P can be determined by the Rankine-Hugoniot
relations™:

P5=po[ _ZO]VSZ' @

S

The uncertainties of the resulting pressures are dominated by
the uncertainty of the shock velocity due to the quadratic scaling.
For the lower pressure conditions, there is very good overlap with
gas gun Hugoniot measurements on glassy (vitreous) carbon up
to 85 GPa (ref. 52; Extended Data Table 1 and Extended Data Fig. 1).
For higher pressures, there are no existing Hugoniot data in the
literature.

Liquid diffraction analysis

The total scattered X-ray intensity /(k) in our XRD patterns, which are
corrected for transmission through aluminium filters in front of the
detectors, is given by

1(k) = a(f > (K)S(K) + i (K)), (¥)]

where ais a scaling factor from atomic units to measured counts on
the detector. The static structure factor S(k) was then determined by
using the atomic form factors f(k) and incoherent scattering func-
tions /;,.(k) for carbon as tabulated in ref. 53. The normalization of the
experimental S(k) curve wasincluded into the fitting procedure to the
DFT-MD simulations by minimizing the function

2
[%‘) = PilincK) = p, f2 (K)S(K ?f;] , A3)

where theratio of the scaling parameters forincoherent and coherent
scattering, p, and p,, respectively, resulted in a constant value for all
analysed datasets as the incoherent scatteringis not affected by struc-
tural changes. For fitting the DFT-MD simulations, we cut the measured
XRD patternat k...= 7 A, because at higher angles, the applied filter
and geometry corrections for the detector sensitivity become more
severe* and would increase the uncertainty of our analysis. The radial
distribution function

kCth’O
g(r) =1+ Nlﬁ fo " [S(k) - 1 ksin(kr)dk 4)

with atomic number density nwas obtained from S(k) by linear extrap-
olation of the experimentally obtained curve for (160 + 14) GPa to
k=0.The coordination numbers

Nc=4mn I: r’g(r)dr (5)

were then obtained by integrating between the corresponding minima
ofg(r)atr,andr,. For thefirst coordination number,r, = 0andr,is given
by the first minimum of g(r). For the second coordination number, r,
is the first minimum of g(r) and r, is the second. The provided error
estimations of the coordination numbers were determined by rea-
sonable variations of k.,..;between 6.8 A and 7.5 A for calculating
g(r) and the density uncertainty.

DFT-MD simulations

All DFT-MD simulations in this work were performed with the Vienna
abinitiosimulation package (VASP)**¢. The electronic and ionic parts
were decoupled by the Born-Oppenheimer approximation and, for
fixedion positions, the electronic problem was solved in the finite tem-
perature DFT approach® using a projector-augmented wave pseudo-
potential (labelled PAW_PBE C_h)*** and the Perdew-Burke-Ernzerhof
functional®® for the exchange-correlation contribution. A2 x 2 x 2
Monkhorst-Pack sampling® was used for the k-space of a simulation
box with 64 atoms, and a plane wave cutoff energy of 1,000 eV was
used, inwhich the resulting structure curves show excellent agreement
with calculations using 216 atoms, which have been performed for
selected parameters. The molecular dynamics time stepwast= 0.2 fs.
ANosé-Hoover thermostat was used with the Nosé mass set to 0.5 am,
corresponding to 67 time steps (0.37 x 10" Hz). The number of the
considered MD steps (for the calculation of the structure factors) is
generally in the range 0f 10,000. To perform the least-square fitting
to the diffraction data, the staticion-ion structure factor was com-
puted on a density and temperature grid ranging from 3.6 gcm > to
3.9 gcmand from 6,000 K to 8,000 K with four and five density and
temperature increments, respectively. The simulations provide the
three-dimensional particle density distribution n(r, t), and by Fourier
transform and averaging, the structure factor S(k) can be obtained™.
Close tothe meltingline, finite size effects that can seed crystallization
features were circumvented by training a high-dimensional neural net-
work potential. The forces and energies predicted by DFT were learnt
by a Behler-Parrinello high-dimensional neural network potential®
implemented in the n2p2 software package®>**. For more details on this
method, seeref. 65. The temperature controlinall molecular dynamics
simulations was performed by aNosé-Hoover thermostat®*’. A finer
resolution of static structure factorsin the density-temperature plane
was achieved by computing a neural-network-based three-dimensional
representation of S(k) in the k-p-T space as suggested inref. 68. The
neural network is afeedforward neural network with linear connections



and layerswith 3, 64,1,024,1024,1,024, and 1 neurons and ReLU activa-
tionbetweenthelayers. Abenchmark of theinterpolation grid result at
3.7 gcm™and 8,000 K with a DFT-MD simulation using a box with 216
atoms at these conditions is shown in Extended Data Fig. 5.

Data availability

Datarecorded for the experiment at the European XFEL will be openly
available at https://doi.org/10.22003/XFEL.EU-DATA-002740-00 once
the data embargo of the experiment campaign 2740 has been lifted
(17 May 2026). The corresponding run numbers are provided in the
Extended Data Table 1. Before the end of the dataembargo, all relevant
data are available from the authors upon reasonable request.
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Extended DataFig.1|Glassy carbon Hugoniot data. Theinferred pressures
for the obtained shock velocities connect very well to previous gas gun shock
Hugoniot measurements of vitreous carbon by W. H. Gust (ref. 52 of the article).
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Extended DataFig.2|Assessment of the steadiness of theshock and
potentialinfluences of spatial gradients. Left: Examplary line VISAR image
showing the moment of shock release for different positions on the sample
rear side (run 551). Since the X-rays probe the small central area of the laser-
compressed sample, the shock transit time only varies by 0.3 ns within the
region probed by the X-rays. For stronger drives and thinner samples, this
variationis even smaller. The steadiness of the shockis underlined by taking

diffraction angle 2 0 (degrees)

X-ray diffraction snapshots at different time delays for the same drive conditions.
Whilethe shockisinside the sample, the pressure inferred from the diamond
(111) XRD peak remains constant within 2 %. Even at 0.4 ns after the shock
release, most of the sample remains at high pressure, while small portions of
the XRD feature already shift to lower densities resulting in aslight asymmetry
ofthe Braggreflection. At2.4 ns after the shock release, the whole sampleis
released to lower densities slightly below ambient density of diamond.
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Extended DataFig. 3 |Sensitivity of the DFT-MD structure calculations to
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thantotemperature,itshould be noted that the densityis only varied by 8 % in
total (in contrast to 29 % for the temperature), which is enough to provide stable
fitsto the obtained liquid structure data. The best fit parametersare 7=7,173K
and p=3.79 g/cm>for the depicted case.
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Extended DataFig. 4 |Fitting theliquid structure for the datashowing
diamond-liquid coexistence. For the elevated temperatures of the experiments,
thereis also thermal diffuse scattering of crystalline diamond, which needs to
be considered whenfitting density and temperatureto the liquid structure.
This contribution was determined from DFT-MD simulations of diamond
(seerefs.36 and 37 of the article). In the case shown as example (run 547), the
diamond contentisabout40 % whichis obtained by scaling the amount of
crystalline diffraction to the pure diamond case (e.g., run 551). While the
thermal diffuse backgroundis nearly linear with kand given that the temperature
isconstrained by the broadening of the correlation peaks and the density by
their position, theinfluence of the thermal diffuse scattering on the inferred
temperature and density valuesis negligible. For the other coexistence cases
showninthearticle, the diamond contentislower:~20 % for run 549 and -10 %
forrun1026.
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Extended DataFig.5|DFT-MD + NN upscaling and interpolationgrid
validation. Asanexample, we depictabenchmark of S(k) for 3.7 g/cm*and
8,000 K obtained from our DFT-MD interpolation grid based ona 64 atoms box
and aneuralnetwork (NN) toa DFT-MD runusing alarger box with 216 atoms.
The two cases show excellentagreement.



Extended Data Table 1| Hugoniot data

run I, (TW/cm?) ds(um) ti(ns) wvs (km/s) pd(g/cm3) p1(g/cm®) P(GPa) tx(ns) state
547 6.8 92 +1 8.6 +0.3 10.7 0.4 3.91 £+ 0.01 3.62 £ 0.05 106 £ 11 8.0 dia + liq
549 6.8 92 +1 84+03 11.04+ 0.4 391 £0.01 3.69 £0.05 112 £ 11 7.0 dia + liq
551 4.5 92+1 9.6 +03 9.6 0.4 3.80 & 0.01 - 83 +9 9.0 dia
1013 3.75 60+ 1 65+02 924+0.4 3.75+ 0.01 - 76 £ 8 6.0 dia
1026 7.6 92+1 7.6+02 11.6 & 0.3 3.92 +£0.01 3.76 £ 0.05 126 £ 11 7.5 dia + liq
1032 11.3 92+1 69+02 133104 - 3.79 4+ 0.05 160 + 14 6.0 lig

Measured shock Hugoniot parameters used for the X-ray diffraction data shown in Figs. 2 and 3 of the article for different laser intensities /.. The shock velocity v, was determined by dividing the
measured sample thickness (micrometer measurement uncertainty of 1 um) d, through the shock transit time t, assuming a steady shock. The density of crystalline diamond p4 was determined

via the lattice spacing inferred from the powder diffraction peaks. The density of the liquid state p, was obtained from the DFT-MD fits shown in Fig. 3 of the article. The pressure P was calculated
via the Hugnoniot relations and t, shows the X-ray probe time for the different experiments.



