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1 Introduction

Extended objects or defects are important observables that probe new dynamics inaccessible
to local operators. In the context of conformal field theories (CFTs), they have gotten
significant attention in recent years as part of the defect conformal bootstrap program [1-5].
There have been many recent developments which include studies of conformal boundaries [6—
23], monodromy defects [24-31], and line and surface defects [15, 32-39]. In this work we
consider line defects in fermionic models. The general setup is a scalar-fermion theory in
4 — ¢ dimensions with Yukawa interactions and a quartic potential for the scalars. Although
some parts of our analysis are quite general, we mostly focus on three interesting models,
characterized by the number of scalar fields in the 4 — ¢ description.

The Gross-Neveu-Yukawa (GNY) model contains a single real scalar and Ny Dirac
fermions. It has a perturbative fixed point in 4 — ¢ and is expected to flow to the same



three-dimensional universality class as the classic Gross-Neveu (GN) model. The GN model
is a fermionic CF'T with a four-fermion interaction originally formulated in d dimensions
displaying asymptotic freedom in the large-N; limit [40], and is believed to have a non-
trivial interacting fixed point in 2 + ¢ dimensions. In d > 2 dimensions, the GN model is
renormalizable in the large- Ny limit [41], but not for finite Ny. The GNY model can therfore
be considered a UV-completion of the GN model [42, 43].1

If we consider a complex scalar and N Dirac fermions we obtain the Nambu-Jona-Lasinio-
Yukawa (NJLY) model. Similarly to the GNY model, the NJLY model can be thought of as
a UV completion of the Nambu-Jona-Lasinio (NJL) model [46], a purely fermionic model
which exhibits asymptotic freedom in the large- Ny limit and has the same symmetries as
QCD. Similarly to the discussion above, in d = 3 both the NJL and NJLY models are
expected to describe the same universality class.?

With three real scalars we have the chiral Heisenberg (cH) model, which has an O(3)
symmetry in addition to the U(NNy) symmetry of the fermions. This model has been studied
less than the GNY and NJLY models in the literature, it is however expected to describe
the antiferromagnetic critical point of graphene [48]. The cH model also has a d = 2 + ¢
description known as the SU(2) Gross-Neveu model, where the fermion bilinear is contracted
with a Pauli matrix (see for example [49]).

It was recently pointed out that all these models admit line defects that can be studied
perturbatively [50, 51]. In the 4—¢ description, the defect is given by an exponential of a scalar
field integrated along a line. In d = 4 a free scalar has dimension A, = 1, which makes the
defect coupling marginal, and is therefore a good candidate for describing a non-trivial defect
CFT in d = 4 — ¢ dimensions. In [50] (see also [51]) it was shown that this is indeed the case.

It was also pointed out in [50], that the GN model in 2 4 ¢ dimensions admits a natural
line defect defined as the exponential of a fermion bilinear. In d = 2 a free fermion has
dimension Ay = % and the defect coupling is again marginal. In 2 + € dimensions one can
find a non-trival defect CF'T which is expected to be in the same universality class as the
defect CFT in 4 — ¢ dimensions described above. Most likely, this d = 2 + ¢ picture of the
defect can also be generalized to the NJL and the cH models discussed above. For the chiral
Heisenberg model, the defect is given by the exponential of a fermion bilinear, similar to the
GN model description. In the NJL model one can construct two fermion bilinears: ~ 1),
Y510, and the defect is given by an exponential of both these terms, neatly matching the
4 — ¢ analysis of [51]. In this work however, we focus exclusively on the 4 — ¢ expansion.

The line defect considered here is closely related to the localized magnetic field or
pinning line defect for the O(N) models studied in [38, 52-55]. Such a defect models
impurities localized in space, which can be implemented in lattice formulations by turning
on a background field. These types of magnetic defects are therefore very natural from an
experimental point of view, and indeed are expected to be observable in nature (see [55]
and references therein).

'For a specific number of fermions, Ny = 1/4, the interacting fixed point in d = 3 exhibits emergent
supersymmetry (SUSY) [44, 45].

2This model shows emergent SUSY as well, now for N; = 1/2, leading to a single Majorana, fermion in
d =3 [47].



We focus on what can be considered the two canonical configurations in defect CFT:
four-point functions on the defect, and two-point functions of bulk operators outside the defect.
Both these configurations have gotten significant attention in recent years [8, 13, 15, 56, 57],
as they are natural correlators to be studied using modern bootstrap techniques, both
numerical [34, 38, 58-61] and analytical [9, 29, 62-68]. For the magnetic line defect in the
O(N) model, perturbative correlators were calculated in [38, 69-71]. The results of this paper
generalize the analysis of O(N) models to include fermions.

Notice that in our setup the defect remains one-dimensional, while the bulk is allowed to
change dimension. It is also possible to keep the codimension fixed and to allow the defect
to change dimension, as is the case for monodromy defects [24, 25]. We do not consider
monodromy defects here, for interesting recent progress see for example [30]. Interpolating
between different dimensions and/or codimensions poses several challenges, as it is not clear
how to represent correlators across dimensions. This problem was recently tackled in the
context of BCFT [72] (see also [73, 74]). However, for higher codimension defects the analysis
is more involved. We do not study fermions across dimensions in this work, but we discuss
possible future directions in the conclusions.

The outline of the paper is as follows. In section 2 we discuss the fixed point of the line
defect in generalized Yukawa CFTs, and compute the two-loop S-function of the defect scalar.
In section 3 we focus on operators on the defect and compute two-, three-, and four-point
correlators of scalars and fermions. We check that our results are consistent with an expansion
of the four-point function in conformal blocks. In section 4, we move to bulk operators in
the presence of the defect, and study one- and two-point functions for the scalars. In this
section we also sketch the diagrams that contribute to two-point functions of fermions in the
presence of the line. We conclude in section 5 and give an outlook on further research.

2 Yukawa CFTs with a line defect

We are studying a general class of Yukawa models with O(NN) flavor symmetry. These theories
are described by the following action in d-dimensional Euclidean space, with 2 < d < 4:

1 T, Tra La A a i a
S = /ddx (28M¢“8“¢a + UGV + g NPT + TR ¢b¢b) , (2.1)

with 4t =0,...,d—1, 2° = 7 the Euclidean time direction, and @ = 1,... , N the index of the
O(N) symmetry. A choice of the matrix X% for a given N corresponds to a choice of model,
and in this work we focus on the ones mentioned in section 1 and listed in appendix B. For the
GNY (N =1) and NLJY (N = 2) models, ¢ is a matrix acting on the fermion flavor space
(¢=1,...,Ny) and on the spinor space, defining how the field ¢* interacts with fermions:

GNY:
NJLY:

v (,(plv"‘qr[)Nf)’ éé:]le%La;m Z:]}-Nf]]-ély
U= V) P =And,, S =1n 10,52 =1y 0. (23)

Here, 9" denotes Dirac fermions, and the y-matrices are in the four-dimensional representation
detailed in appendix A. Note that the GNY model consists of a single scalar field, while the
NJLY model contains one scalar field and one pseudoscalar field. For the cH model (N = 3),



we use a 2Ny X 2Ny representation of the y-matrices to express the action via

N
cH: W= (U, 0), U =wh,... ¢y") d=12®7)0,, E'=0"®1La,. (24)

In this case, the fermions are Dirac fermions only when N; = 2 and all the fields ¢* are
scalars. Note that the Yukawa vertex is not flavor-preserving in this case.

In order to perform calculations for all these models at once, we use the fact that the
following identities hold:?

tr DUy E0yY = ANy ¥ (2.5)
PRI DY = Nyty P (2.6)

The S—functions of the couplings in eq. (2.1) are known to several loop orders for each
model [75]. For general Yukawa and scalar couplings, they can be found up to two loops in
(the appendix of) [47]. We use their conventions in the rest of this paper. For the purpose of
writing our results for the three Yukawa models presented in appendix B in a compact way, we
write the f—functions in terms of the number of scalars N = 1,2, 3. In this parametrization,
setting Ny — 0 gives results that can be compared with the O(N) model. However, the
exact S—function depends on the chosen Yukawa couplings that appear in the Lagrangian in
eq. (2.1), and the parametrization of N should be considered with care and not be extended
to N > 3. Below, we only list the expressions up to O(e).

The f—functions are given by [76-78]

N +38
Pr=—eX+ (471_)2 (892)‘Nf - 4894Nf + 3)\2> + O(/\?)?gG) )‘2927 )\94) ) (27)
3
g , k19
ﬁg = —85 + (47’(‘)2 + 0(95) ) (28)

where 1 < N < 3. The Wilson-Fisher-Yukawa (WFY) fixed point can be reached for the
following values of the couplings at one loop in € := 4 — d:

2

+0(), (49;)2 - 2%1 +0(), (2.9)

)\* . 3/128
(4m)2  2k1(N +38)

where we see that g ~ O(y/€), while A ~ O(g). Furthermore, we have defined

k1:=2Ny—N +4, (2.10)

Rz = 2(4 — N) — iy + /12 (N2 = 16) + k1 (1 + 12(N + 4)). (2.11)

Note that all the dependency on Ny is contained in k.

3For the case of the cH model, one should replace v, by 12 ® v, on the left-hand sides, and v*v~* by
1> ® (v#4”~”) on the right-hand side of (2.6). Moreover, the Pauli matrices 0% are normalized such that
o =1.



2.1 Feynman rules

We collect in this section the Feynman rules associated to the action (2.1). The free
propagators in d dimensions are given by

—--- == (a(@1)db(T2))rmg=0 = 0" L2, (212)
—— = 1o, (2.13)

where we have defined the scalar propagator function in d = 4 — ¢ dimensions:

I'(1—-¢/2)
I = , (2.14)
2—¢/2 2(1—¢/2
Ar?e/ %( e/2)
with x;; := x; — x;. For d = 4 we have
L= — (2.15)
2T 4r2a2) '
The scalar propagator satisfies the Green’s equation
81-212'3' = —5(d) (.’L‘Z]) s (2.16)
where §(9)(z) refers to the d-dimensional Dirac delta function.
The interaction terms yield the following vertices in position space:
\/\A/\/ = —Ao/ddx5 I51s515515 , (2.17)
v = —go/ddx4 $1I14Ea@4134124. (218)

Note that one has to add a factor 1/n! when n vertices of the same kind are being inserted,
and that symmetry factors have to be taken into account.

2.2 Bulk renormalization

The couplings, as well as the (bulk) scalars ¢® and fermions ¥, ¥* get renormalized. We
can define the bare couplings and fields as

Xo=1ENZy, go=p29Z,, ¢o=Zed, Vo= ZyV, (2.19)

where we have introduced rescaled couplings g — ,u% g, A — uf to ensure that the couplings
in the renormalized Lagrangian are dimensionless. The expressions for the renormalization
factors Z; up to O(¢?) can be found in appendix B.

The renormalization factors allow us to obtain the anomalous dimensions 74, vy for the
scalar and fermionic fields, which are given here to first order in the couplings:

_dlogZy 292Nf
"= dlogp — (4m)2 0
_dlog Zy ¢*’N

= = ON2. g* \g?). 2.21

(3%, 9%, M%), (2.20)




This leads to the following values for the conformal dimensions evaluated at the WFY fixed
point defined in eq. (2.9):

€ 4 — N
Ay=1—— =1- O(&? 2.22
s=l-gtrw=1-cp = +0(), (2.22)
€ 3 ¢ N
Ay == —— =-_Z(2-— 2). 2.23
v=3-S+w=3-2(2-1) 40 (223

Furthermore, we need the normalization of their two-point functions, which are given by

6ab/\/’2 a N2§1 9
(@) (w2 = a s () ¥(e)) = Tpabiz, (224)
T2 T12
with
r(s) (k14 N —4)(1+R) 1
_ _ 2 == 2.2
Ny 20d— 2 € Srr1 +0(E%), Ny 7T+(’)(€), (2.25)
where we have defined the following combination:
N:=1+logm+ g, (2.26)

with yg = 0.57722... the Euler-Mascheroni constant.

2.3 Defect fixed point

One can define a defect CFT by adding a scalar line to the action (2.1), in the same way
as in the O(N) model [52]. This was shown in [50] for the GNY model, and generalized to
the NJLY and chiral Heisenberg models in [51]. More precisely,

Sdetect = So + hO/ dr ¢1 (T) . (227)

Here hg is the bare coupling of the defect, which extends in the Euclidean time direction T,
and Sy is the bulk action in terms of the bare couplings Ao and gg. The defect introduces
a new vertex

I = fho /OO dT2 112, (228)

— —c0

with 7 the point on the line, and where one should note that only ¢! and not ¢%, 4 =2,..., N

nor the fermions ¥, ¥ couple to the defect. As for the bulk Feynman rules, one should add a

factor 1/n! when n vertices are inserted, and symmetry factors have to be accounted for.
We renormalize the defect coupling in a similar way to the bulk couplings. We define

the bare coupling hg in terms of the renormalized coupling h as

ho = p2 hZy,, (2.29)

where Zj, is given in appendix B, and can be computed by extracting the divergences from
the one-point function of the renormalized scalar ¢* and requiring that it is finite:

((x))) = finite. (2.30)
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Figure 1. Diagrams contributing to the one-point function {{ ¢ )) up to O(e?). The defect is denoted
by a solid line, scalars by a dotted line, and fermions by solid arrowed lines. Bulk scalar couplings g
are represented by a black dot, bulk Yukawa couplings gy by a red dot and defect couplings hy by a
blue dot.

Note that the one-point function of a single fermion W is zero. The Feynman diagrams
that contribute to the one-point function of ¢® up to O(e?) are given in figure 1. It is
important to keep in mind that we are working perturbatively in the two bulk couplings A and
g, since they are O(e) and O(y/e) respectively at the WFY fixed point, but we need to keep
diagrams up to all orders in the defect coupling h since it is of order O(1). There are however
only a finite number of possible diagrams per order in A and g. The diagrams in figure 1
involving only scalar four-point couplings A (black dots) and defect couplings h (blue dots)
are the same as for the line defect in the O(/N) model and were already computed in [52]. The
diagrams in figure 1 that include the Yukawa coupling g (red dots) were recently computed
in [51]. Here we give the corresponding B—function for h up to O(e?), which match the
ones in [51]. Some of the diagrams in figure 1 are completely cancelled by the wavefunction
renormalizations of ¢* and ¥, while others do contribute to the defect counterterms.

We compute the f—function 3; from the divergent part of the diagrams and we obtain:

eh 1 [ Am3 1 5. ((2+N) h*N+8) At 9.3
— =, - (2 - _ 2= N
bn==5 T amy ( 6 >+ (47r)4{)\ h( 36 35 12) ~ ANy
N +4)N 2
+ ¢*h (—(g)f + h24Ny (1 - ”6>> } + O3, 6% N2, Mg?h). (2.31)

Using the values for A and g at the WFY fixed point in eq. (2.9), we find the corresponding
defect fixed point

h2 = AN DIV AE) O(e), (2.32)
K2

where the O(e) term is given in appendix B for N = 1,2, 3. If we include the finite part of
the one-point function, we can extract the one-point function coefficient ay:

5*'a N —4)(N +8
<<¢“(x)>>:|wilj’%, a2 = 2); +38)

The O(¢e) term is lengthy and given in the attached MATHEMATICA notebook.

+0(e). (2.33)



3 Correlators of defect operators

The bulk operators give rise to a plethora of defect operators. In this section, we consider
correlation functions between the lowest-lying defect operators. The lowest-lying scalars
are the first scalars appearing in the bulk-to-defect expansion of ¢%, and are labelled in the
following as (;Aﬁl and t%, with @ = 2,..., N. These correspond to the two scalar operators of
length 1 that arise due to the breaking of O(/N) symmetry in the bulk to O(N — 1) symmetry
on the defect, namely ¢! couples to the defect while ¢® does not. The conformal dimension
of ¢! was computed in [50] for the GNY model up to O(¢). It can be extracted from the
B—function of the defect coupling at the fixed point:

0 4—N
Bh|h:h* ! )e

", — _ - 2
Ap=1+] 0, (3.1)

which agrees with [50] for the case N = 1 corresponding to the pure GNY model. In this
section, we extend their results to general N, as well as compute additional defect correlators.
The operator t% (the tilt operator) has protected conformal dimension

Ay=1. (3.2)

Note that for the GNY model, there is no tilt operator, but only q31 = (;AS on the defect.

Besides the tilt there is another scalar defect operator with protected conformal dimension,
namely the displacement operator D. It is related to the bulk stress-energy tensor through
the Ward identity

0T =6 a2 Dy, p=1,...,d—1, (3.3)
and has transverse spin s = 1 and conformal dimension
Ap=2. (3.4)

The expansion of the bulk fermion on the defect gives us the defect fermions U, U with
conformal dimension

3—¢
A\i} = 5 + Y - (3.5)

The anomalous dimension 7, can be extracted from the two-point function.

Below we compute correlation functions between these operators and extract the cor-
responding defect CFT data.
3.1 Two-point functions

We start by computing the two-point functions between the defect operators to obtain their
anomalous dimensions and normalization constants.



3.1.1 Two-point functions of scalars

We consider first the two-point functions (' (r1)¢' (12) ) and (¢ (Tl)tB(TQ) ). The two-point
function of arbitrary (defect) scalars ¢ takes the general form

N o sab
a b _ 2
) = N (3.6
with 719 := 71 — 72, and where N 3 and A 3 correspond respectively to the normalization

constant and to the scaling dimensions given in (3.1) and (3.2).
In terms of Feynman diagrams, this two-point function can be expressed as

G ) = e+ A+ N+, ()
—C———0—

In the first diagram, the two external operators are connected through a single tree-level
propagator. The second diagram corresponds to the bulk self-energy and consists of an
internal fermion loop and two bulk Yukawa vertices (represented by red dots), while the third
one is special to the defect theory and involves two integrals along the line (represented by
blue dots) as well as a bulk four-scalar vertex (the black dot).

The fermion loop diagram is easy to compute and reads

~
//G N
\

O

ge tr X% By

2
95Nt 1
— szzfa °I1o (5 + N +log s + (9(52)) : (3.8)

where we have made use of the rule given in (2.5). The integral Bis is defined in (C.23) and
solved in (C.24), while the function I;2 corresponds to the scalar propagator and is defined
in (2.14). Finally, the constant X arising from dimensional regularization is defined in (2.26).
The expressions for the two other diagrams can be found in [38].

Requiring that the sum of the diagrams is finite allows us to compute the renormalization
factors for qgl and t%:

. . 1 - . ‘
(6°(r)8"(r2) ) = 5 (8(11)d5() ) = fimite, (3.9)
¢
and leads to
1 \h? + 8¢ Ny 5
1 \h? — 24¢° Ny g
As a sanity check, we can read the scaling dimensions from the renormalization factors:
dlog Z 5 4—N
Ajr=p——2 =1 O(e? 3.12
b=t = e £ O(E), (3.12)
dlog Z,
A= p gi 14 0(2), (3.13)

which agree with the results given in (3.1) and (3.2).



The normalization constants can now be extracted from the finite two-point functions,
and we find for the two scalars

Ngl_;{l—;(2+(N_4/)€(11_2N))+0(52)}, (3.14)
M2:${1_;<2+N;4>+0(52)}, (3.15)

where 1 depends on Ny and N and is defined in (2.10).

3.1.2 Two-point function of the displacement

We continue with the two-point function of the displacement. The displacement has transverse
spin s = 1 and can be constructed by taking a transverse derivative of the field <;A51:

Dy ~ aﬂ(lgl ) (3.16)

while there exist additional operators 3ﬂt& that correspond to taking the transverse derivative
of the tilt. The latter will not be considered here for brevity, but its correlators can be
computed in a similar way as the displacement correlators.

Because we can write the displacement as in eq. (3.16), the diagrams that contribute to
the two-point function are the same as for qga and are given in eq. (3.7). For the evaluation
of the diagrams, we need to first take the derivatives with respect to zi-, r3 and then send

r1,r3y — 0. This leads to the following expressions for the diagrams:

~
//O N
\

-0

20867 tr 2% By

2507 N 1
— _QOQTflucSab (6 + R+ log 75, + 0(52)> : (3.17)

The other diagrams were computed in [38].
We compute the renormalization factor for the displacement in the usual way, by requiring

that the two-point function is finite. This results in

1 Ah? 9 s

As a check, we compute the anomalous dimension of D and find
Ap = p—="= =24+ 0(?), (3.19)

where the O(e) contributions cancel as expected. We can extract the proper normalization

from the finite parts of the diagrams and obtain

N2 1{1—5(1—]\;_4>+(’)(52)}. (3.20)

27‘(’2 K1

~10 -



3.1.3 Two-point functions of fermions

Let us now turn our attention to the fermions. In 1d, the two-point function of fermions
takes the form

. . -0
(U(r)¥(m)) = N s (3.21)
12

where we have use the polarization spinors 51, s2 as defined in (A.8) in order to avoid cluttering,.
The diagrams involved are

(Br)b(m) = T R
+_4ﬁfj>k T TOE). (3.22)

As noted in [50], the second diagram is zero at order O(g). This can be easily checked
in the following way:

_m_\‘_ = goho 51/d7'3/dd96434114 D/ NEVIEYRD
Ngoho/de T13723 113123
= 0+ 0(%?), (3.23)

where in the second line we have used the 4d fermionic star-triangle relationship given
in (C.17), to which the corrections towards d = 4 — ¢ are of order O(g) while g ~ O(/e).
The third diagram can be computed as follows:

_@_ = 955 /dd$3/dd$4 11135 P34 X" Dyloa T34 8o

= 293N51PyB12 52

2N 517959 (1
% 81:13282 { +R—1+logrd + 0(5)} . (3.24)

3

Here we have made use of the rule given in (2.6) in order to be able to rewrite the integral
as a derivative of Bjs.
The fourth diagram is more involved and reads

ngghgﬁ/de/deL/ddCCs/dde@lIlle@5-’5621 Do 26135146 52, (3.25)

with ! = 1 for all our models of interest. The easiest way to compute it is to apply another
slashed derivative on the integral and compare the result to an ansatz. We define

Jig = /dT3/dT4/dd$5/dd9€6 1 115P5 156D 126135 146 , (3.26)

and assume that

A
J12:’72{5+B+010g7'122} . (327)

~11 -



We then compute

@1 J12 = —/dT3/dT4 Iis 31 @2 Y104, (3.28)

where we have used @@ = 187 and 97115 = —0¥ (215). After applying the identity (C.17),
we find

d1J12 = F?)ﬁ]l + (quadratic divergences) , (3.29)
T

from which we can read

1
A=C=0 B—_—— 3.30
’ 1676 (3:30)
We see that this diagram is finite (after dropping the quadratic divergences) and so it
contributes only to the normalization constant.

In the same way as for the scalars, we define a renormalization factor Z; such that

A N 1 ~ N .
<\If(7’1)\11(7'2)> = ?<\IIO(71)\I/0(TQ)> = ﬁmte, (331)
NG
for which we find
92N 2

which agrees with the renormalization factor for the bulk given in eq. (B.4).

The scaling dimension is given by

o3 _ gy N 2
Ay=3 4(2 m>+0(5), (3.33)

while the normalization constant reads

NZ = 1{1—5<2;~;1—N<1—N>+4(N_4)(N+8))+0(52)}. (3.34)

v 27T2 2/%1 2/%1 7T2 KR1KR2

Note that the renormalization factor as well the scaling dimension agree with the bulk

computation, as the diagrams contributing to these results are the same.*

3.2 Three-point functions

We now compute three-point functions between the lowest-lying operators. This gives us
various defect OPE coefficients, which can be compared with the OPE coefficients coming
from the conformal block expansion of the four-point function.

“This agreement is expected to be lifted at higher orders of e.
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3.2.1 Three-point functions of scalars

The three-point function between three defect scalars qg"’b’c, where (;AS“ = {q@l,t&}, is given
by a single Feynman diagram up to O(e):

(¢%(11) (12) ¢°(13)) = /. +O()
= NN Adedhae (3.35)

¢ - 20peq 20 qp
@ 7_122Aaba7_23 bca7_13 cab

where we have defined Ay, = %(Ag}a + Agr — Age).
This diagram was already evaluated in [38], and results in the following OPE coefficients:
3me (4k1 — Nf)y/2(4 — N)(N + 8)k2
)\5)1(3,1(];1 = — 5
8 K{(IN +8)

gt = Ll;’l‘ﬁl +0(?). (3.37)

+ 0(?), (3.36)

Since the OPE coefficients start at O(¢), they only appear at order O(g?) in the four-
point function of scalars.

3.2.2 Three-point functions involving (132

The first scalar operators that appear in the OPE gz@“ X gﬁa, gZS“ = {gﬁl,td}, after q31 itself,
are the degenerate operators s1. These operators have dimension close to 2, and can be
constructed from (¢')? and (¢%)2. In order to find the correct anomalous dimensions we
need to require that the three-point functions involving (ﬁ and s4 are finite. The diagrams
that contribute up to O(g) are

() P () F9°(m) = 177+ M+ T+ AT 406D
\s
— A2 PrPtst
= N2 N g5 (3.38)
7—12 C 7—23 C a,]— ac

The first three diagrams have been computed in [38], while the last one is the wavefunction
renormalization. Requiring that this three-point function is finite in € gives a renormalization
matrix Z, that has a lengthy expression and is given in a MATHEMATICA notebook. The
anomalous dimension can be computed by diagonalizing this matrix and taking the derivative:

Vsx = S 8)(K1421](VN_§)8)+ ra(N +4) + ko) + 0(52) ) (3.39)

where we have defined

k3 1= \/RIN? + 8k2(N — 4)(N — 2)(N +8) + 16(N — 4)2(N +8)2. (3.40)

We obtain the conformal dimension as Ay, = 2 —¢e + v, .
To complete the computation of the OPE coeflicients, we also need the normalization of
the two-point functions (s4(71)s+(72)). From the two-point function, we get
(N —1) (ko(N —2) + 4(N — 4)(N + 8) *+ k3)
167T4/<63

NZ =+ +0(e). (3.41)

We checked that the operators are now properly normalized, such that (s; (m)s_(m2)) = 0.
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Putting everything together, we can now extract the OPE coefficients, for which we find:

2%2 N -1
)\AlAl =4 +O g, 342
o \/mg + (ka(N — 2) + 4(N — 4)(N + 8))xs3 ) 42
N :5&5\/&3j:(mg(N—2)+4(N—4)(N+8))+O<€) (3.43)
tatbs:t \/@ N—]_ . .

While the diagrams of the three-point functions are computed to O(e), the OPE coefficients
can only be determined to O(1). The operators s+ are linear combinations of (¢)2 and (¢%)2,
and their mixing will receive a correction at O(e) that contributes to the OPE coefficients
and the normalization of their two-point functions. Unfortunately, computing the correction
to mixing would require knowing the anomalous dimensions of s+ to O(g?), or alternatively
computing additional four-point correlation functions of ngb and s+ to unmix the operators,

as was done recently in [79].

3.2.3 Three-point functions of two fermions and one scalar

A
= A

An example of a mixed correlator is the three-point function ( Upe ), which is given at
leading order by

(W(r)U(1)d%(m)) = _++=50 +O(e)

(51’}/02a82))\a PN
_ 2 U pe
= NiNje 550 9802 9800 + 96, (3.44)
T12 Ta3 713

with A;j; following the same convention as given below (3.35), where a refers to ¢°.

At order O(y/e) we have a single diagram contributing. It is easy to evaluate this
diagram using the usual commutation rules for % as well as the fermionic star-triangle
identity given in (C.17):

- 1
N = NN, 517"%%, ) ————— . 3.45
i N N gado ( 1Y 2) YR - (3.45)

After inserting the normalization constants derived in section 3.1 we find that the OPE
coefficient is

Nygge = 4\/\/2% +0(e). (3.46)

3.3 Four-point functions

Let us now turn our attention to the four-point functions, which are the first correlators in
our list to have non-trivial kinematics. These correlators can be expanded in 1d conformal
blocks to obtain defect CFT data, which we can compare with the OPE coefficients computed
in the previous section. We start by considering correlators of purely scalar operators, before
moving on to fermions and concluding with an example of a mixed correlator including
both scalars and fermions.
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3.3.1 Four-point functions of scalars

We start this section by the four-point functions of scalars. Such correlators depend kine-

matically on a single cross-ratio y, which we define as®
Ti2T:
x = 23 (3.47)
T13T24

Four-point functions of scalars take the following form:
(3 (71) 3 () () $Ura) ) = Nsu N NG5 Nopa Koy 2040 () (3.48)

with the conformal prefactor

(3.49)

. 1 (m ) Aga=Ba (714 ) Bge=Bga
4= - - - — ( — i .
Thée TRD The TR \ Ty Ti3

In terms of Feynman diagrams, the four-point function of arbitrary scalars is given up
to O(e) by

~ R

(6°(11) () ¢°(73) $(ra)) =+ S
+ N 0D, (3.50)

where the first diagrams are products of two-point functions, and the last one was com-
puted in [38].
Adding all diagrams in eq. (3.50), we obtain the following unit-normalized results:

2

1—y (N +8) —

2A
R é 3
FH ) =1+ + ( X ) + % (xlog(l —x)+ 1X logx> +0(e%),

(3.51)
2

fl&lE(X) _ 6&3XA¢;1+A1 + 65&3

<X log(1 — x) + 1X log X) + 0%, (3.52)

_ k2
k1(N +8)
X
(1—-x)?

6&?}5&2 5&66&{ 5&&556 K2 1 1— X

fai;éd”(x) _ gabged  sac 513&X2 4 gad gbe

2

log X) +0(),
(3.53)
where k1 and ko are defined in (2.10) and (2.11). Other orderings of ¢! and % are not

given here but can be computed in the same way straightforwardly from (3.50). The last
correlator f3¢(y) can be decomposed into a scalar (S), an antisymmetric (A), and a

5In higher d, four-point functions depend on two cross-ratios y and Y. In 1d the second cross-ratio is not
independent of x and becomes y =1 — x.
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traceless symmetric (7') contribution:

2
F&(x) = N]\il(li(X)Q(Q*‘X(X—?))
. HQ(N—i-l) X
Kl(N — 1)(N+8) 1—x
2

abed(y) = ﬂfix)Q(Z +x(x —2))

. 2K2 X
k(N +8)1—x

(xlogx + (1 —x)log(1 —x)) + O(e?),  (3.54)

_l’_

(xlogx + (1 — x)log(1 — x)) + O(e?), (3.55)

)3
00 = 5205 + 0. (3.56)

We can expand these four-point functions in the 1d conformal blocks
JAVFEIVAN
IaT () = xR 2P (A = Ajj, A+ A 285 %), ga = gn (3.57)

where A;; = A; — A; are the conformal dimensions of the external operators.

The first operators in the (;31 X qgl OPE are the degenerate operators st. They can be
unmixed, which we have done in section 3.2.2 in order to obtain the anomalous dimensions
vs,. and the OPE coefficients A&“é“sf
see the average of the conformal data for this operator, and we find

However, in the conformal block expansion we only

3ke 3k + 4(N + 8)(4 — N)

M) = <2_ 2 ) ( 2 )6

) =1+ (N £8) 92(x) (N 8) AG2(X) + -
(3.58)

3ko +4(N +8)(4— N

(B =20, + (B 2y, =22 TIREIEZD o), e

2 2 . 3KaE 9

)\élqgls+ + >\(£1<£187 =2 m + 0(5 ) (360)

This is also the case for the correlators fgi’é‘j(x) and f 11&6()(), which contain in addition
information on the OPE coefficients Ays,.. The OPE coefficients given in eq. (3.43) neatly
obey these relations.

From the other correlators we can obtain the OPE coefficients and anomalous dimensions
of Vi appearing in q@l x t% and T and fl&b, which are respectively a traceless symmetric
and antisymmetric operator appearing in t% x b,

2(ka+(4—N)(N+38)) 9 9 K2 9
Ay, =2+ + Ao =1l—e——F"——+ .61
v € (N+8)m O(e7), 11T E/il(N 8) O(e%), (3.61)
K9 2 2 2/‘4:2 2
Ar=24e——2 4 =2—e——2% _ 4 62
7 6/{1(8 N) O(e?), Ap 6H1(N 8) O(e?), (3.62)
A= 3+0(e?), Apa=1 +0(e?). (3.63)

Setting Ny — 0, we obtain the results for the O(N) model found in [38, 55| which provides
a final check for our results.
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3.3.2 Four-point functions of the displacement

We consider now the four-point function of the displacement:
(Da(r1)Ds (12)Dp(73)Ds (12)) = N Ka f#777 (x) (3.64)

Similarly to the two-point function, the diagrams contributing to this four-point function are
the same as for the four-point function of scalars, and are shown in eq. (3.50). Again, we
take the derivative with respect to the transverse coordinates Gf ,7=1,...,4, and then set
:Uj- — 0. The diagrams not involving fermions were already computed for the O(N) model
in [38], while the fermionic diagram is the renormalization of the wavefunction. Adding all
the diagrams and using the proper renormalization, we find the correlators up to O(¢):

P09 () =6150p5 + 65006 X" + 06 0ip———r
FHP7(X) =0pobps + 0ppdos X + 0p 7(1—x)*

+ 6((5,105,3& + 5,1/3(5,;& + 5;1&(5,9/3) 2 X

1061 (N +8) (1 — x)3
X (2x(1 = ) (x(1 = %) = 1) + x*(x(5 — 2x) — 5) log x
— (1= x)* 2% + x +2) log(1 - X))
+0(e%). (3.65)

3.3.3 Four-point functions of fermions

We now turn our attention to correlators involving four elementary fermions, identical up

to their flavor index. This correlator is given by

{

=1

(Tl)\i/(TQ)\i/(Tg)\i/(M»:m Tt T e
ﬁ_& Ly oE)

_T <f12 34(x) — uiéix)g,fu,m(lf )) : (3.66)

Tig ¥ 7'34 v

where the second term follows by crossing symmetry. The subscripts indicate the dependency
on the polarization spinors i, ss, 83, 84. The disconnected part of the correlator is easy
to compute and give

(U ()T (72) W (73) (1) Vatise. =( U (70) T (72) ) U (73) T (7))
b (7))

+<¢,( DU (74) ) (U () ¥ (1) )

{ 517%592)(537%s4)
7'12 ‘1’7'34

_M({SQ,],x}H{&;,l,l—x})} ) (3.67)

The connected part consists of two diagrams:

(U e ) )om = LTI + (TTY - (3.68)

r&m
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These diagrams belong to a new class that we have not encountered yet and that we name
H-diagrams. They can be expressed as

ST = 95 (5101 5°P252) (5335 Das4) Hia,34 (3.69)

where the integral Hys 34 is defined in (C.3) and has not been solved analytically yet. It is
however possible to solve the integral thanks to the derivatives in front, as shown in (C.19)—
(C.21). The second diagram can be calculated analogously, and we obtain the following
unit-normalized correlator:

fr2,30(x) =(517"52) (537 s4)

+ 646 (512%9"52) (5359 %s4)
K1
X (0@ =)+ X2 =) Togx + x(1 — x) log(1 )
ey (3.70)

We can extract new defect CFT data from this correlator by expanding it in the 1d blocks
of eq. (3.57). Since we have Ny fermions, there is a U(Ny) flavor symmetry and we need to
decompose the fermions in the singlet (S) and adjoint (Adj) representations. For this purpose,

we reinstate the flavor indices ¢ = 1,..., Ny, for which the decomposed correlator becomes:®
ijkl ij skl ¢S il 55k 575K Adj
12.34(X) =08 f5 34(x) + [ 0" 67" — N, 12,30(X) 5 (3.71)
15 (X):4+(“1+N)(X—1)3_2X((X—6>X+6)+ K1+ N
1234 (x —1)*(k1 + N —4) (k1 + N —4)
XE
2 —4+ N)—x(14 N
+64m1(X1)2(m+N4){ (k1 —4+4 N) — x(14 + 3r1 + 3N)
+x%(k1 + N —2) — x*(x(k1 + N = 2) —2(k1 + N — 3))log x
+ (x — D?(x(#1 + N = 2) +2) log(1 — x)} ; (3.72)
M) =X (1+x) + (1+x)(1 = x)log(1 — x)
12,34\X _(X_l)g 64r1(y — 1)2 X X X X g X
+ (1 - x)x*log x} : (3.73)

Let us decompose the singlet sector in the conformal blocks. For the first few operators, we find

g B € (1 e(Q7T—2N —2ky)
fi2,31(x) =g0(x) + 321{1910() ( N, 38IrI N, 93(x)

eB-=N-£1)

641 N7 oags(x)+.... (3.74)

5This decomposition is more intricate for the cH model, and the results below are valid for the GNY and
NJLY models.
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The absence of a conformal block ga—o(x) indicates that

Mg, = O(E), (3.75)

such that the squared OPE coefficients only contribute at O(g2). We can read off )\%\%1 as

the coefficient in front of the block ga—1(x), which matches the expression in eq. (3.46).

3.3.4 Four-point functions of fermions and scalars

In this section, we compute the mixed correlator with two fermions ¥, ¥ and two elementary
scalars ¢%, ¢?. The correlator takes the following form:

NEN?
2 & " a b
(W) ¥ (12)6"(13)0" (12)) = 5, 5 S5 00) (3.76)
T2 734 ¢
with the kinematical cross-ratio x defined in (3.47), and where the O(NN) tensor structure, as
well as the dependence on the polarization spinors si, s9, are encoded in ffzb . As before, the

disconnected part of the correlator is easy to obtain and consists of only one non-zero term:

(W ()8 (1) (1) 8" (72) Yae. = (W (71) ¥ (72) Y 3(7)8" () )

5. ~0
= 577sa) s (3.77)

= T3A. A,
Tig ¥T3y ¢

=1

The connected part consists of two fermion-scalar H-diagrams:

s ~ T

FOIEF P o = T+ 67

After using the rules for the ¥-matrices, we find that the first diagram gives

- ~ T

g:f g =42 (51 X% Fiz 04 59) (3.79)

with + if ¢% is a scalar and — if it is a pseudoscalar,” and where the integral Fi324 is
defined in (C.15) and solved in (C.18). Putting everything together, the unit-normalized
correlator reads

15 (x) =6 (51 - s2)
+ (512“Eb82)8imﬁ (x*log x — (1= x)2(2+ x) log(1 — )
L O(2). (3.80)

We expand this correlator in the 1d blocks of eq. (3.57) for the case of equal external
scalars, such that

20 =% 2U%P =1y,14. (3.81)

"In this formulation, the index b can be kept arbitrary since we have to commute X° with y-matrices twice.
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We find:

< 19 - =

4/4‘,1 92 (X) + 240/41 g4(X)

aa

12(x) = g90(x) +

S oaga(x)+ ..., (3.82)

where we emphasize that no sum is implied by the repetition of indices on the left-hand
side. Since the correlator and the block expansion have the same expression for qgl and
t% we find the same relations for the OPE coefficients A 31410 and Ay, which we denote
as A q;a éa o)
From the block expansion we see that for s, which has dimension Ag, ~ 2, we obtain

for brevity.

3

$ds Ndedas. = Iy (3.83)

(A3+ — 2)A\il\ils+)\(lga¢;a5+ + (AS_ — 2))\&/@8_)\&)%3%_ =0. (3.84)

A +A

s, Nadas,

Using the expressions for A;, and )‘¢31¢318i’ Aisy in egs. (3.39) and (3.43), we can extract
the OPE coefficients involving the fermions:

\ _(Nriz = 4(N — 4)(N +8) & i3) /g £ 4(N — (N +8) £ (N = 2)rz
Tsy 16K1K2y/KavV N — 1
+ 0. (3.85)

As expected from the conformal block expansion in eq. (3.74), the OPE coefficients start
at O(e).

4 Correlators of bulk operators with a defect

The three- and four-point functions of scalars and fermions on the defect provided us with
important defect data. In addition, we can also study bulk operators in the presence of the
line defect, and obtain new data such as bulk-to-defect OPE coefficients. In this section
we study two-point functions of bulk and defect operators, as well as two-point functions
of bulk scalars. At the end of the section we give a short outlook on how to generalize our
analysis to the case of fermionic operators.

4.1 Omne-point functions

Squared scalar. We computed the one-point function of ¢ in section 2 to extract the
B-function of the defect coupling. The coefficient of this one-point function, a4, appears in the
bulk channel expansion of the two-point function of ¢* in the presence of the line defect. One-
point function coefficients of other operators appear as well, the first one being the one-point
function of ¢? and the traceless symmetric tensor 7% = ¢%¢? — Lﬁ((bc)?g These observables

were computed for the O(N) model in [55]. At O(g) there are four diagrams that contribute:

Q Q O

77N
1

(6" "@h= /" + Sa o+

——— — -

R
+ O LO(E?). (1)

8Note that 7% does not appear for the GNY model, where N = 1.
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The diagrams not including any fermionic contributions were computed in [55, 69, 70], while
the diagram with the fermionic loop cancels the wavefunction renormalization of ¢%. In
order to compute the one-point function coefficient, we need the renormalization factor,
anomalous dimension, and normalization factor of ¢ and T%. The anomalous dimensions
for the GNY and NJLY models can be found in [47], while the others can be obtained from
computing the corrections to the propagator (¢%¢®(z1)¢p¢¢%(x2)). Generalized for N = 1,2, 3,
we find for ¢? up to O(e) [47, 75]

1 A(N+2) 9 ) _9
Zg =1= 1 ( g tigNy ) +O (=), (4.2)
_ANA+2) 467Ny 4y 2
Y2 = 3(47)2 + (42 +(’)()\ g A7), (4.3)
- r (%) V2N Lo (2RAD NV A8) (51 + N —4)+5aR(N +2) Lo (4.4
oS (d-2) 4k1(N+8) ‘ ’
For T%, we obtain the following results:
B 1 2X 9
2) 49Ny 2 4y 2
pu— 4.
T 3(47[_)2 + (471')2 + O()‘ g 7Ag )7 ( 6)
d
Ny = d(z) {1_€<(N+1)(N+8)(/€1+N—4)+m2N> 4_0(8%}7 (4.7)
V212 (d - 2) 2k1 (N +8)
from which we can extract the one-point function coefficients ay2 and ar:
(4—N)(N +38) (4—N)(N +38)
4 262V/2N €, or 2021/ ) 4

The O(e)-terms are lengthy and can be found in the attached MATHEMATICA notebook.

Fermion bilinear. Another interesting one-point function is ( WW(z) ), which appears in
the two-point function (U (z1)¥(z2))). In this case, ¥V is not a conformal primary, but
rather a conformal descendant of ¢. This can be seen from its conformal dimension being
Ap+2+0(e 2) [47]. The one-point function can be computed through Feynman diagrams,
and receives a contribution at O(y/). We will only consider the GNY and NJLY model
here, for which the one-point function is given by:

(0W(z)) = @ +O(e). (4.9)
This egg-shaped diagram is new and has the following expression:

gohoN
@ = Now g1, Lf’?)t ryt, (4.10)
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Hence, the one-point function coefficient can be written as

- _ag VA= N)(N+8) 81Ny
<<\1n1/(:c)>>—w%, agy = — Nt (47r)2\/§+(’)(5). (4.11)

4.2 Bulk-to-defect two-point functions

The correlators of a bulk and a defect operator give us the OPE coefficients of the bulk-to-
defect OPE. The fundamental bulk scalar ¢* can be decomposed into ¢31 and t%, and the
two-point function between these operators is given by the following diagrams:

(¢ (21)d"(2) ) =

N |
> I

/
&

?
!
!
|
|
|
I

°
s+ O roE. (4.12)

The first diagram does not involve any integration, while the second is a self-energy
correction. The third diagram is less trivial, and was computed in [69]. Adding all diagrams
and the proper renormalization terms, we obtain the following bulk-to-defect OPE coefficients:

A SN GN b1 ) 3(4—N)(log2—1)
a 1 _ ¢¢ o g 2
(" (z1)¢" (12))) = (ﬁsfé)%l\xf]%_%l , byp=1+4e 7 +0(%),  (4.13)
5NNy (4—N)(log2—1)

(6 (@) (r2))) = by =1+e +OE).  (414)

(#3) 5ot 261

4.3 Two-point functions of bulk scalars

In the presence of a defect, the two-point function of bulk operators is no longer fixed by
kinematics. Instead, it depends on two defect cross-ratios determined by the distance to
the defect and the distance between the bulk operators. The scalar two-point function
then takes the form

N2Fb(r
(¢ (z1)0"(x2) ) = W’ (4.15)

where F%(r,w) is a function of the cross-ratios

1_ iyt (@)’ + (23)° 1 _ 227 -2y 116
r4 - = T , wt—=——-. (4.16)
r |21 ||z | w |21 ||z |

It is sometimes convenient to switch to different cross-ratios z, z, which are related to r,w as

(4.17)

o
z=rw, z2=—.
w

The diagrams contributing to this two-point function, up to O(g), are shown in figure 2. They

consist of diagrams we already encountered when computing the one-point function of ¢%, of
diagrams coming from the wavefunction renormalization in the bulk, and one non-trivial one.
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Figure 2. Contributions to the two-point function ( ¢%(z1)¢®(x2))) up to O(e). The defect is denoted
by a solid line, scalars by a dotted line, and fermions by solid arrowed lines. Bulk scalar couplings g
are represented by a black dot, bulk Yukawa couplings gy by a red dot and defect couplings hy by a
blue dot.
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The non-trivial diagram is the X-shaped diagram, which was computed for a line defect
in the O(N) model in [69, 70]. Evaluating it in d = 4 gives:

ok T ()

o = —327T2d(d_2)4/d7'3d7'4X1234

B 3X\oh3H (r,w)

= 768 at] 23]
with X234 defined in (C.3), and where H(r,w) contains one unevaluated integral over a
Schwinger parameter « [69]:

+ 0(?), (4.18)

R N 2Z anh—l (a+2)(a+2)
Hirw) = /0 d \/(a+1)(a+zz)(a+z)(a+z)t h \/(a+1)(a+zz)' (4.19)

Even though the integral is unevaluated, the series expansions in the bulk and defect channels
are known.

Adding all diagrams in figure 2 and properly renormalizing them, we obtain
3(4—N)

]:ab(r,w) — 5ab£—A¢ + 5a15b1ai + 5(5ab + 26&15111)
4/€1

H(r,w)+O(2).  (4.20)

Here, ay is the one-point function coefficient given in eq. (2.33). We see that the general
form is the same as in [69, 70], except for additional fermionic contributions to the coefficient
in front of H(r,w). We can expand this expression in bulk and defect conformal blocks to
extract CFT data, and check with the explicit calculations in the previous sections.

4.3.1 Defect channel

In the defect channel, the correlator F(r,w) contains two types of operators: O(N)—singlets
@fn and O(N)—vectors @Zn Their conformal dimensions are given by

A@f,Y = A¢ +s+n+ fY(f)fX . (4.21)
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These operators are in general degenerate, except for n = 0, where they can be expressed
as derivatives of qgl and t:
0o~ 0 ... 01, Oy ~05.. 05, (4.22)

where 7,, = 1,...,d — 1 are the directions transverse to the defect. For higher n, one needs to
solve a mixing problem. This has been done in [38, 55] for the O(N) model and repeated
in section 3.2 for the case n = 1,s = 0 to obtain the anomalous dimension ~,,_. For general
n > 0,s we give the averaged CFT data.

The correlator F2%(r,w) can be decomposed in the two symmetry channels S (singlet)
and V' (vector):

F(r,w) = 616 Fy(r, w) 4 (67 — 6°16°Y) Fy (r, w), (4.23)
~ o 1 3(4—N) A 1 (4—N)
fS(r7w)_a¢+€A¢ te 41%1 H(r,w), ]:\/(’l“,’w) - fAcb te 4/€1 H(T7w)7 (424)
with )
¢ = 1—rw)(w—r) 2z (4.25)

rw R
Each of the channels can be composed in defect conformal blocks, which are known in
closed form [2]:

Fl(z,2) =Y 20 fa,(22), (4.26)
0

fa(z2) = (22)% (i) PR (72’ AA+1- ’2);22> o F) (—s, g 12— g _s ;) . (4.27)
where p = 1 is the dimension of the defect, ¢ = d — 1 the codimension, s is the transverse
spin and we have switched variables from 7, w to z, z using the definition in eq. (4.17). The
factor of 27% ensures that the blocks have a convenient normalization.

To expand the correlator in terms of these blocks, we need to know how to decompose
the function H(r,w). It turns out there is an elegant expression found in [69, 70]:

> (Hs - H,_y 1 1 .
H(r,w) = Z I — 5 + TOA | fora,s(r, w) . (4.28)
5=0 s+ 2 (S + %) s+ 2

The derivative of the block gives us the anomalous dimension of the corresponding operator,
and hence eq. (4.28) provides a straightforward way to extract defect CFT data.
The constant terms in eq. (4.24) correspond to the defect identity given by foo(r,w).
This leaves us with the factors £ ~2¢, whose expansion in defect blocks is well known [4].
Combining all the pieces together we are ready to extract the CFT data. Let us start
with the singlet channel. Expanding in conformal blocks gives us

Fs(r,w) = ag foo(r,w) +_27° 32@50&@5 S(rw) +0(e?), (4.29)
=0 207000
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where up to O(e) only operators with n = 0 appear. Combining eq. (4.29) and eq. (4.24),
and using the expression in eq. (4.28), we obtain the following OPE coefficients:

P s e (6(N—4) (k1(25+1)+3(N—4))
b¢@§,o =2 {1 + 4Ky <(2s +1)2 : (25 +1) Hs
+3(N — 4)HS;> + 0(52)} : (4.30)

For s = 0, we see that this matches exactly the bulk-to-defect OPE coefficient b 64, 8lven
in eq. (4.14). As stated above, to extract the anomalous dimension we only have to look
at the derivative term in eq. (4.28). This results in

3(4—N)e
41 (5+1)
(N —4)(s — 1)e

=1+s+ @5 £ 1) +0(e%). (4.31)

Aps, =Ng+s+n+ + O(?)

For s = 0, this matches with Aél given in eq. (3.1), while for s = 1 this should give us the
dimension of the displacement Ap = 2. Indeed, we see that for s = 1, the O(e) correction
is zero and the dimension is protected and equal to 2.

We are ready to move on to the vector channel. The expansion in conformal blocks
results in

A

Fy(ryw)=>27° BZ@VO fA@V L(rw) +0@E?), (4.32)
s=0 = 5,0

where we see that also here up to O(g), only the n = 0 family of operators appears. The
defect identity is not present in this case. We follow the same procedure as for the singlet
channel, and extract the bulk-to-defect OPE coefficients

. A N-4)( 2s+3 2sHs+H, 1
byov, =2 {1+5( )< i 2 ) +0(2) ). (4.33)

[N

4k (254 1)? (2s+1)

We can now compare this for s = 0 with 3¢t in eq. (4.14) and find a perfect match. The
anomalous dimensions are once again read off from the derivative term in the expansion of
H(r,w), and result in the following conformal dimensions:

A e(4—N)

e(N —4
Apv =Dp+s+n+——r 0 ( )s
5,0 4/@1(5—}—%)

+0(EH=1+s+
As a check, we see that for s = 0 the O(g) term disappears and we find the protected
dimension of the tilt A; = 1.

4.3.2 Bulk channel

In the bulk channel, the operators that appear in the ¢* x ¢* OPE are O(N) singlets Ogn,
where the first one is ¢?, and traceless symmetric representations Og:n, the first one of which
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is T%. The operators in the lowest twist family after ¢ and T% can be written as

a a 6ab C
ogo ~ Oy - O (M), Ofg ~ Oy ... 0y, <¢> @ — W@ )2> , (4.35)

where ¢ > 2. In the free theory, they are the higher-spin currents and hence their conformal
dimension and OPE coefficients are protected up to O(e) and given by the conformal
dimension of ¢ and their spin. The CFT data is given by

Apsa =20y + L+ O(e%), (4.36)
2,0
2K+1(A )2
2 — ol 2
Apo0s, = NO@A, + £ 1), T O, (4.37)
2 2 9
Agsor, = NAgpos, +O(€7). (4.38)

Operators with n > 0 are not protected up to this order, and are also degenerate. The
correlator can be decomposed in the two symmetry channels as:

F(r,w) = 6% Fg(r,w) + (5“15b1 - ﬁ) Fr(r,w), (4.39)
1 7 4— N)N -2

Fs(r,w) = v + % L 4]\321 )H(r,w) ) (4.40)

Frinw) =+ N p w). (4.41)

2/4,1

The decomposition in bulk channel blocks is more difficult, since they are not known in closed
form. One should also keep in mind that the correlator gets multiplied by a factor of £2¢
coming from the prefactor. However, as pointed out, eq. (4.20) has a similar form to the
correlator {(¢p?¢®)) computed for the O(NN) model in [69, 70], and we can reuse known results.
In particular, they found an expression for H(r,w) in terms of bulk blocks as well:

EH(r,w) = (0p — 1 —log 2)fg70(7“, w) + O(e), (4.42)

where fﬁ’lf (r,w) are the bulk channel conformal blocks, which are known as a double
sum [2, 80].

From eq. (4.42) we see that H(r,w) only corrects ¢, hence, for the CFT data of the other
operators we can directly use the results from [69, 70]. The other terms in eq. (4.41), after
multiplication with €24, are a constant term that corresponds to the bulk identity f(()),o(ra w),
and a term proportional to £2¢, whose expansion in bulk blocks is given in equation (167)
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of [69]. Putting eveything together, the expansion of Fgr in blocks can be written as follows:

oo
A ¢ 0
E70Fs(rw) =14 Agpp2 ap2fa m0 + z > o2 /\¢¢020a(920f2A¢+€,£
—od,..

o0
+ oy 2 Aos05 05 Fan,pirae+ O, (4.43)
£=0,2,... ’ ’

o
A — 0
X Fr(r,w) =Agr arfaro+ >, 2 )\¢¢Ogjoaogofm¢+e,z
(=24,...

o0
+ ) 2 A¢¢oglaozlf§A¢+e+2,z +0(e%), (4.44)
(=02,...

where the bar indicates an average over CF'T data since mixing needs to be solved before
one is able to extract the individual OPE and one-point coefficients. We can now extract
the CFT data of all operators except ¢? and T. For the O(V) singlets, using eq. (4.38), we
extract the following one-point functions of twist-two operators:

2 1—¢
(11)? [2r()
(4= N)(N +8)T ( 2 ) NT(£+1) { ( 2"‘2‘15;)
apns = el —
0570 TF%IQ2£2F (%>2 (N—4)(N+8)
N —4
L ) (2Hb + Hy — 2H, — H, 1 + 2log 2) > 1 (9(52)} . (4.45)
2/4/1 2 2

where a((;) is the O(e) correction to ag, which can be found in the attached MATHEMATICA
notebook. The averaged CF'T data for the higher-twist n = 1 operators is given by

(£+1)%(4 — N)(N +8)I (”Tl)?’
64mroNT (§+2) T (¢+3)

Asp0s, @05, =€ 0(c2). (4.46)

For the traceless symmetric operators, we find the following conformal dimensions and
OPE coefficients:

2 1—¢
(4= N)(N +8)0 (451 %ﬁ)” 2rpa)
{1 (‘ &

¢
anT = -
O[’o W%KQEQF(%)Q —4)(N+8)
(N —4) (2H s — 2H, + Hy — H, 3 +log(4)) )

+ 2 s + O(e?) (4.47)
2,%1
3

(0 +1)2(N +8)I (&L

“1287T (5+2)T(c+3)

To compare the expansion in eq. (4.44) with the one-point functions of ¢? and T, computed
in section 4.1, we need to know the bulk OPE coefficients Ay442 and Aggr. These can be
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Figure 3. Contributions to the two-point function ({ U(x1)¥(xz3) ) up to O(e). The defect is denoted
by a solid line, scalars by a dotted line, and fermions by solid arrowed lines. Bulk Yukawa couplings
go are represented by a red dot and defect couplings hg by a blue dot. The first and third diagrams
correspond to the disconnected part of the correlator, while the second and fourth are connected and
are the diagrams which make the correlator different to a defectless two-point function.

easily calculated and are given by

_ cab 2 _ 5’4/2(.“ + 2) 52

Appp2 = 0 < N naNm(N +8) + O( )) : (4.49)
Y- - Ry

)\¢¢T = \/§ \/5/&1 (N n 8) + O( 2) . (4.50)

With these OPE coefficients and the one-point functions in eq. (4.8), we can check the
block expansion in eq. (4.44) and see that it indeed reproduces the desired conformal data
of ¢? and T9.

4.4 Towards two-point functions of bulk fermions

We conclude this section by commenting on how to generalize the two-point function analysis
when the external operators are fermions. This is an interesting problem as the e-expansion
was originally designed to capture physics in three dimensions, however four-dimensional
fermions are very different objects compared to three-dimensional fermions. In order to
understand how fermionic correlators in d = 3 are encoded in the e-expansion, we can start
by calculating them in perturbation theory. We do not bring this calculation to completion
in this section, as the diagrams involved are a lot more challenging than the ones we have
studied so far. Nevertheless we sketch out the computation, and in the conclusion we discuss
in more detail possible future directions. Just as for the one-point function of the fermion
bilinear, here we will also restrict ourselves to the GNY and NJLY models.

The disconnected part of the correlator corresponds to the wavefunction renormaliza-
tion of the bulk fermion, and the diagrams are the first and third ones shown in 3. The
Feynman diagrams contributing to the connected part of the fermionic two-point function
(W(z1)¥(22))) up to O(e) are given in figure 3 (second and fourth diagrams).

The Y-diagram in figure 3 is the first connected diagram at O(g) ~ O(y/e). Setting
for convenience 71 = ™ = 0, it is given by

v quz,goho§1/d73/d4x4 @114 S PolaaT34 59

|

|

|
—_—

_ T goho 5 ( #112 +]1> s9, (4.51)

- 1
8(lzt |+ 2z ) \lat[lzz |
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where we have used the fermionic star-triangle identity given in (C.17). The remaining
one-dimensional integral is trivial to compute.

At O(e) we have one H-diagram that connects scalars insertions on the line to the
external fermions through two Yukawa vertices. This diagram contains a challenging ten-
dimensional (finite) integral that we only solve partially for now. We provide however a
solution for the 4d bulk integral, i.e., before performing the 73,74 integrals. After Wick
contractions the diagram gives

u = —N§ g5h§ 51/d73/d74/d49€5/d4966 D1 152 Ps Ts6 2 P Tng I35 La 52 -

I I
I I
I I
—_——

(4.52)
Using the fact that ©! = 1, and that one four-dimensional integral can be lifted by using
the fermionic star-triangle identity given in (C.17), we then have

u = Nin? gahd 51 91 / drs / dra Ioa ( / d*zs 7, 115125135145> Foy82. (4.53)

—_——

The tensor integral between the brackets can be solved by applying tensor decomposition.
There exists many automated tools to perform this step, and here we use the package
X [81]. We find

2.
Ji23;4 1= /d4965 tsq D15 l25135145 = o1 (4.54)

with ¢ the Kibble function defined as

OK = P34 + Pi3os + Praos + Wiz + Viog + Wizg + Uozy, (4.55)
1 1 1 1 1 1 1
Bpoggg = — ——— oy~ S 4.56
125 6475112134 (-712 * FEVERN CETR S VR D% -724) ’ (4.56)
1
Tion — — 4.57
1 64m0T12T13123 (4.57)
and with

234 7= Fro3a X12sa + 195 Y123 + 1543 Y120 + 15,5 V130 + o Vasa (4.58)

The X- and Y-integrals are defined in (C.3) and solved in (C.4) and (C.8). The prefactor
function f934 can be expressed in terms of propagators and read

J1234 = a1234 # + a23a1 £ + azarz #4 + (aa123 — 1)#,, (4.59)
with
1 Ioy I I3l Ioal
Gions = — (2_|_ 2alas | Toslan | Tozln
Io3194134 Ialos Izl Ti2034

1 1 1 1 1 1
I — =) Dy — =) L (— ). (460
3 (-713 +I14) > (112 +I14> % (112 +113>) (4.60)
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The function $195.4 AN also be expressed in an elegant way as

F193.4 7= D123y + b2siiafy + baizafs + crasfy (4.61)
with

1 1 1 1 1 1 2 1 1 1 1
b -::<+—++—)—(—><—>, 4.62
AT 1 \ Iy | Ly Ips Doy Isy  Iig Lo Iiz) \Iay Ia3 (462)

1 1 1 1 1 1

c ::++—2< + + > 4.63
12 I, I I3 Loz T2l Ii3las (4.63)

This is as far as we can go for now and we are left with a difficult two-dimensional integral
as well as a slashed derivative with respect to x1. We note however that this integral can
efficiently be computed numerically.

There is another path that one can take in order to try and solve this integral. Instead
of computing the bulk integrals, one could start with the defect integral over 75,74 and use,
e.g., Schwinger parametrization for computing the remaining eight-dimensional integral. This
approach was indeed useful for the computation of the X-diagram in the scalar two-point
case, however here it is not clear at present how these 8 integrals could be solved efficiently.

5 Conclusions

In this work we studied defect correlators for line defects in fermionic models using the
g-expansion. Our setup is a natural generalization of line defects previously considered in
O(N) models. Indeed, the definition of the defect as the integral of a scalar along a line is
identical to the magnetic line defect studied in [38, 55]. The main difference is the presence
of fermions in the bulk, which induce new fermionic excitations on the 1d defect.

We calculated a host of 1d correlators, putting special emphasis on the new fermionic
excitations. Closed-form expressions for four-point functions on the line were obtained in
terms of the unique 1d cross-ratio. These correlators can be used to easily extract CFT data
by means of a conformal block expansion, and can also be used as input in the numerical
bootstrap. The numerical bootstrap for magnetic line defects was initiated in [38]. The
numerical bootstrap plots should accommodate the models studied in this paper, where the
numbers of fermions Ny is a free parameter. One can also use the data calculated here to
steer the numerics, and hopefully solve particular models of interest. In table 1 it is shown
how the presence of fermions affects the CFT data for a low number of fermions, and for
N = 3, which is the particular case considered in [38]. One remarkable observation is that
the scaling dimension of the lowest-lying scalar qgl decreases for higher values of N;. Because
of this, the magnetic line defect in fermionic models seems to explain the numerics of [38]
better than the same line defect in the O(3) model. It would be interesting to see if the
inclusion of fermionic correlators to the numerics will improve the bounds.

In addition to correlators constrained to the line, we also studied how excitations in
the bulk are modified by the presence of the defect. We focused on two-point functions,
which have non-trivial kinematics and depend on two conformal invariants. For O(N) models
this analysis had been done recently in [69, 70]. Due to the similarity of the Feynman
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Nf:() NfZl Nf:2 Nf—)OO

A 1 1 1 1
Aj 1+e¢ 1+ % 1+ £ 1
As_ | 240.35502 | 2+ 0.78832 | 2+ 0.75055 2
Ar | 2+0.18 | 2+0.433 | 2+ 0.2909 2
Ay 3 3 3 3
Ay | 2+1.18 | 2+1.100e | 2+ 0.4909 2
Augi | 0.947226e | 2.1893¢ 1.6075¢ 0
Mjigigr | 2:84168c | 6.56789s | 4.82249¢ 0

Table 1. Values of the conformal dimensions and OPE coefficients of the lowest-lying operators in
the ¢! x @1, ¢4 x t and ¢! x t@ OPEs at first order in ¢, see (3.61) to (3.63). The values are given
for a pinning line defect in the O(3) model without fermions, and a pinning line defect in the chiral
Heisenberg model with Ny = 1,2, co.

diagram calculation, we could recycle several of their results, in particular the non-trivial
integral presented in (4.19).

Having understood two-point functions of scalars, the next step is to study two-point
functions of fermions. This analysis comes with several conceptual and technical challenges.
The question of how to analytically continue fermions across dimensions has not been studied
systematically, and a naive counting of tensor structures already shows disagreement between
three and four dimensions. This problem opens several avenues for future research. On
the one hand there is the explicit perturbative calculation, which we sketched at the end of
section 4. Regardless if one knows how to interpolate fermions across dimensions, the Yukawa
models considered here are well-defined pertubartive CFTs, and correlators involving fermions
exist and can be calculated. On the other hand, one can also investigate the kinematics of
fermion correlators at a more fundamental level, understanding for example the structure
of conformal blocks and how they depend on the spacetime dimension d. We should point
out that, even though in this paper we focused on a line defect, the questions raised above
are relevant for standard CFTs without defects. For example, the following bulk four-point
function (FW¢e) already exhibits interesting non-trivial behavior across dimensions [82]. To
our knowledge this type of correlator has never been studied using the e-expansion, and
would form an excellent starting point for the study of fermions across dimensions.
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A Spinor conventions

In this appendix we describe our conventions for the spinor fields for the cases N = 1,2,
which can be straightforwardly generalized to the case N = 3. In the action given in (2.1),
the fermions W are presented as vectors of Dirac fields 1" (i is the flavor index), which can
be decomposed into two basic Weyl spinors as follows:

P = (g) e G (A1)

with A =1,2,3,4, and o, & = 1,2. The Weyl spinors are two-component vectors defined as

X = <X1> , =& &). (A.2)
X2

Spinors with an undotted index « transform as left-handed spinors (1,0), while right-handed
spinors (0, 1) are complex conjugates of the (1,0) representation and carry a dotted index
&. The dot is here to indicate the transformation property, i.e.,

Xh = (xa)' (A.3)
Indices can be raised and lowered in the following way:
Xt = exg = —"xg, (A4)
which implies
X*6a = —Xa€” - (A.5)

Here the tensor ¢*? is defined as

612 = —621 = €91 = —€12 = +1, (Aﬁ)

and a similar definition can be formulated for dotted indices:
€48 = €aB €W = B (A.7)
For external operators it is convenient to use polarization spinors SA, 54 in order to
avoid cluttering of the indices. We define

Wils,) = A s ) = S, (A8)

and a similar definition holds for the Weyl fermions as well.
The four-dimensional (Euclidean) y-matrices are defined in the chiral representation as

(#)AB .= ((5/?)026 (a“o)oﬁ> , (A.9)

where we have introduced

(0") g = (00 ,iai) . (@MY= (JO,—iai) . (A.10)
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0

The Pauli matrices ¢°, 0" are defined as

01 00—z 10
o =1,, 01:<10>, 02:<i O)’ 03:<0_1>. (A.11)

The ~-matrices satisfy the Euclidean Clifford algebra
{348 = 2511 AB (A.12)

and we can define an additional ~-matrix as

B
(49)AB .= (ﬂg _]?d5> . (A.13)

This definition ensures that 4° satisfies the following properties:
(v’ "1 =0, (P)'=+", (*)*=1. (A.14)

As mentioned above, it is easy to generalize these conventions to higher-dimensional y-matrices,
keeping the representation arbitrary and relying on (2.5) and (2.6).

B More details on the 8—functions

The general S—function for the bulk coupling constants A4 $¢  as well as the anomalous
dimensions, are given in the appendix of [47] up to O(g?). The renormalization constants
up to O(g?) are:

1 ((N+8)A
(4m)2e 3

4(N 4+ 8)Nyg?X  12N;g*  12Nyg°

Zy=1
A + 6(4m)? A * w2\

+8Nf92 —

4(12 = 5N)Ngg* (14 +3N)A?
2(47)2 C 6(4m)2

1 6
e ( — 96N (4+ 4N — N) & 4+ 4(N + 8)Nyg2A

A
N 2
+ 12Ny (4N; — 2(N +4)) g* + (—58))\2> + 03, g% N2, Agh), (B.1)
1 N +2 ON2 — 40N — 32 + 24k, N +2
7 =1 - 2 AN 4 2
9 = Uy (’“g 3(4m)2” 8(4r)? 9T 7o(4m)2
1 (N +2)(5k1 —32) 5.5 . 3K? ,
t )i 72(47)2 gN+ 59
(4m)
+ 0N, 6% A%¢% Ag?), (B.2)

1 4(N +4)Ny N +2 1 (N —4)? — k2
Zy=14—5 (—2Nsg? t— )\2> Lgt
o=t a2 ( 19T Ramne 9 T nEng ) T anie 2 g

+ 0N, g% Ng% Ag"), (B.3)
- | N , N(TN +6(k; —4)) 4) 1 (N(N —dry) 4>
Zv =1+ ( 29 6@z 9 ) G g 7
+O(N, 6% X%, Ag") . (B.4)
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The S—function for the defect coupling was computed up to O(g?) in [51]. The corre-

sponding renormalization factor is given by

g1y L[N GNEN; (x?-6)ghiN
PTE T me 12 3(4m)? 9(4r)?
4 2 4
AN +4N; o RAN+8)  h N +2
~FULT O L 2oN, + A2 [ - -
ddmz ToENT 108(4m)2  48(4m)2 T T2(dm)?
L [PNEN;  gihuNg ) (KN +8)  hf
- Ny +8—2NN)+ 2222 T8 1
* (477)452{ 2 5 T9 (6N +8 )+ 108 9
+ O3, g% N2, Agh). (B.5)

Let us look at each model individually.

B.1 Gross-Neveu-Yukawa model (N = 1)

We start with considering the GNY model, which contains a single scalar field ¢ and Ny
fermions. Hence, the matrix ¥¢ = X! in eq. (2.1), which corresponds to I'; in [47], is given
by the identity matrix:

D =1y,1. (B.6)

The S—functions up to O(e?) were computed in [76] and we adopted the same conven-
tion as [47]:

1
BENY = _ox 4 ()2 (892,\Nf _48¢'N + 3A2>
1 242 4 6 173 3 6422 y,4
~ @t —12g°A\"Ny + 28" ANy + 384g Nf—? + O\, ¢°, A%, A\g")
(B.7)
aNy _ € 1 (g°(4Ns +6) L 3, 35 g\’ 6

By = 95 + e ( 5 + (@m) 2g° A 19 (16Nf +3) + 12 +0(g°).

(B.8)

The Wilson-Fisher-Yukawa (WFY) fixed point can be reached for the following values of
the couplings at one loop in € := 4 — d:

2
—(4m)? [ == o B.9
2
AGNY _ (q)2d £2 c 123 (k0 — 36
S = S T 2165 e —6) F (2 =36)

+262(97kg +72) + 15k1 (47K — 1188) — 2925k +40500> +(’)(53)} . (B.10)
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The p—function for h = h; is given by

h 1 AR3
BENY = - (292th + )

2 (4m)? 6

1 2 5 AR5 A2R3 A%

+ @ <4g4h3Nf — g*A\W3Ny — §7r294h3Nf - 5g4th - -t 12)
7

+ 0N, g% Ng%, Ag") (B.11)

leading to the following fixed point at O(e):

54 €
hGNY 2 _ 9% u a1 o 5
( * ) K2 + 2%%%5(451(/@2 — 54) + (,.@2 _ 24),{2 n 648) {('ﬁ( 9k1 — 8 6) + 5)%2

+3 (k1 (~2167% (k1 — 3) + £1(105k1 — 302) + 1545 ) — 4500) 13

— 216 (1 (3% (k1 — 6) (k1 — 3) + k1 (69k1 — 112) +171) — 1125 ) k5

+ 69984 (k1 — 6) (k1 — 3)r1 | + O(). (B.12)
B.2 Nambu-Jona-Lasinio-Yukawa model (N = 2)

When we extend the number of scalars to a real scalar and a real pseudoscalar, or one complex
scalar, and keep the number of fermions arbitrary at Ny, we obtain the NJLY model. The
matrix 2% = ¥, %2 is now given by: X! = In, 1y, ¥2 = In,iy5. The S-functions for A and
g are given up to two loop orders by [47]:

1 10
NJLY 2 2 4

- — — N — 48N
B 6)\+(47r)2<3)\ +8Nyf)Ag 8 fg>

1 20 40
— [ ZEX2 - 384N,¢% — 8N \g* + —N W)
(47r)4<3 197 = SRAT e

+ 0\, g% Ng% Agh), (B.13)
NJLY € 1 1 ( 8 4 I 9 5) 7

=g+ —— (2N +2)+ —— [ ——g3 X\ + =g\ — 12N .
By 59+ (4W)2( Ft2)+ @i\ 3¢ + 59 + (7 1g°) +0(g")

(B.14)
The zeros of these S—functions give us the fixed points A, g« of the NJLY model:
MY Brge 9% (3K (m — 40) + KT(160 — T5ka) + £1(5000 — 219k2) + 674k9 — 9680)

(471‘)2 _201{1 500%?(/&1 + Ko — 4)
n 0(53)’ (B.15)
(g,l:ULY)2 € 52(51(/-;2 + 260) + 36K — 870) 3
(Ot , B.1
@ o 300r7 roe o

The defect S-function is given by

hooo1 AR
Y = - 4 <2g2th + )

2 (4m)? 6
1 2 . A2RD BAZR3 A2Zh
46*h3 Ny — 3g*hN; — ¢ \W3N; — —w2g*h3 N, — - i
* (471')4( A AU T 8 9
+ 0N, g% X%, Ag") (B.17)
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which has a fixed point for g, A\x and

40 €
hNJLY 2 _*7 1 -1 1452 3
(he™) Ko + 15523 (41 (K2 — 60) + (k2 — 16) ko + 480) 6(1(187r1 — 1096) + 1452)r

+2 (m (72000772(,{1 — 2) + 3k1(353k1 + 1620) + 3708) - 34848) 2
— 160 (1 (257% (k1 — 4) (k1 — 2) + 3k1(179k1 — 72) + 2820) — 8712) Ky

+ 288000(r1 — 4) (k1 — 2)51} + O(?). (B.18)

B.3 Chiral Heisenberg model (N = 3)

The last model we consider is the chiral Heisenberg model. It contains three real scalars
and the model is invariant under O(3) rotations. The matrix X = $!, %2 33 is given by
the Pauli matrices o;:

Ea:Ua@)]lng. (B19>

The B—functions for A\ and g up to O(?) were calculated in [77], together with various
critical exponents. They are given by

1 11A2
BT = —ed+ — (892)\Nf—48g4]\7f+ 3 )

(4m)?
1 44 23)\3
- G <—3g2)\2Nf — 12¢* AN} + 384¢° Ny — 3) O3, 45 X242, Agh),
(B.20)
3 5 2
XH_ € 93N 3 1 _1Og)\_12 5 47¢q 5gA 7
(B.21)

The corresponding WFY fixed points are

AH _ 3koe N g2
(4m)2  22k1 10648k (k1 + Ko — 2)

( — 564k3 (kg — 44)

+ 6K2(2951kK9 — 9064) + 57k (10279 — 16412) — 74853k + 965052> +0O(e%),

(B.22)
(X2 & £2(2k1(5k2 4 1232) + 420k, — 8151) 5
= O(e%). B.23
4m? ~ 2m 193643 +0() (B-23)
The S—function of h is given by
i ch 1y o, A
Fn 2+(47r)2<g 175

1 2 AR5 11A2h3 B5A?h
T )4(—gZAh3Nf—37r294h3Nf+4g4h3Nf—;g4th— TR—T: +536 )
s
+O(X%, 6% \2g% Ag) (B.24)
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with the corresponding fixed point

_22 €

Pt = 79472 + 98706
= +-66”%“5(4H1(52——66)%—(H2——8)&24—264){<K1( ri F1

-10648ﬂ2(n1-1)-18717)-—87732)m§+-30ﬂ(162751-8928)4—7311)n§

— 88 (11 (12172 (k1 — 2)(k1 — 1) + Bk (8131 + 280) + 18753) — 21933) K

+<£$msm1—2xn1—1yq}+cx8). (B.25)

C Integrals

We gather in this appendix the integrals useful for the computations performed in this work.
Integrals are computed using dimensional regularization with d =4 — e. In our perturbative
computations, we encounter the following integrals:

Yio3 := /ddm VEVILYIEYR (C.1)
X1934 := /ddfﬁ5 I51o513515 , (C.2)
Hig 34 := /dd%/ddﬂfﬁ 5125136146156 = /dd% I15125Y345 , (C.3)

where I;; corresponds to the scalar propagator in d dimensions (see (2.14)). The three- and
four-point massless integrals X and Y are finite in d = 4 and have been solved analytically [83,
84]. The X-integral is given by

Xi234 = 111271524 xx D(x,X) (C.4)
with the Bloch-Wigner function
D) 1= —— (2Lia(x) ~ 2Lia() + log xXlog ;— ) (C5)
X=X 1 =X

and where the variables x, x are defined via

Ii31o4
Iolsy’

_ Ii31o4
Iiylos

(1=x)(1-x)

XX = (C.6)

In the case where all the external points are aligned (here in the 7-direction), the
X-integral can be expressed as a special limit of the result above:

TIiol3s o
X = D
1234 1672 (xx)
Iiol3s  x
= — — (x] 1—v)log(1l— . 7
%gl_xﬁng+( x) log(1 —x)) (C.7)

Note that in 1d, Xi234 is one degree of transcendentality lower than in higher d, and that
although the prefactor in (C.5) implies a divergence in the limit Y — x, it turns out to
be compensated by the numerator.
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The Y-integral can easily be obtained starting with X1234 and sending one of the external
points to oo:

Yigs = lim 4} Xioza - (C.8)

For the 1d limit mentioned above, this gives

I T T T T
Yio3 = —% <12 log —= + —> log 23) ) (C.9)
8% \7Ti3  ~Ti3  T13  TI3
with 7; := 7; — 7;. It is also useful to consider derivatives of the Y-integral, e.g.,
OtYi93 = —IaL13, (C.10)
1
(01-02)Y123 = 3 (12113 + 223 — I13123) . (C.11)

To the best of our knowledge there exists no analytical solution for the H-integral.
However several identities relate derivatives of the H-integral to its X and Y siblings [85, 86]:

OfHiz,30 = —T12Y134, (C.12)
1
(O1-02)Hi234 = 3 [I12(Y134 + Yo34) — X1234] - (C.13)

Other combinations can be obtained by using

Hig 34 = Ho134 = Hi12.43 = H3a12. (C.14)

In our calculations we only encounter the H-integral in the following special “spinor” com-
binations:

(Fi324)"? = (§1(d1 + B5)P2)"P Hiz 04, (C.15)

(G12,34) 5P = (§132) 2P (#394) P Hiz4 (C.16)

where we have written the matrix indices explicitly to avoid confusion.
The F-integral is finite and can be solved by using integration by parts, the fermionic
star-triangle relation

/ddm Psl1aloa@slss = —A7%¢ o F s 1o l13103 (C.17)

and going to a conformal frame. For the case where all the external points are aligned, this gives

0
T4—00 7Y
Fizo4 "~ 21—343715/123

= L X (Rlogy+ (14 01— ) log(1 — ) (C13)
Tf27'3?4 512761 — ’

where we have suppressed the indices for compactness.
The G-integral is also finite and can be solved by observing that the correlator given
in (3.69) for the case N = 1 needs to have the following structure in terms of spinor matrices:
GABCD _ (Y)AB ()P

1231 = 35— g12,34(x) - (C.19)
THT3y
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This implies

1
g12,34(x) = 175’273?4(31 - 02)(03 - O4)Hi2 34, (C.20)

which, after using the identities given in (C.11) and (C.13), turns into

_ 1 X
204876 (1 — x)?

((1=2)2 = %) +x*(2 = x) log x + x(1 — x)*log(1 — X)) -
(C.21)
The integrals described above are log-divergent in the limit where two external points

912,34(X)

coincide. In particular, we encounter repeatedly the integral Y72 in self-energy diagrams,
which reads:

1

Yii2 =
4.2
32Ty

1
(5 + RN+ logmh + (’)(5)) . (C.22)
Another divergent integral that appears in two-point fermion loops is the following:

BIQ = /dd.%'g/dd$4 113[2433]34(?3134. (023)

This integral is easy to relate to Y112 by using y-matrix identities and integration by parts:

1
By = 5/ddacg/ddm L131403 13,
1
_ §Y1127 (C.24)

where in the final result there is a 4 x 4 (or 2Ny x 2Ny) identity matrix implied. Note that in
the last line we have made use of Green’s equation (2.16). In the course of the computation,
a quadratic divergence dropped out as dimensional regularization is insensitive to it.
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