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1 Introduction

Extended objects or defects are important observables that probe new dynamics inaccessible

to local operators. In the context of conformal field theories (CFTs), they have gotten

significant attention in recent years as part of the defect conformal bootstrap program [1–5].

There have been many recent developments which include studies of conformal boundaries [6–

23], monodromy defects [24–31], and line and surface defects [15, 32–39]. In this work we

consider line defects in fermionic models. The general setup is a scalar-fermion theory in

4 − ε dimensions with Yukawa interactions and a quartic potential for the scalars. Although

some parts of our analysis are quite general, we mostly focus on three interesting models,

characterized by the number of scalar fields in the 4 − ε description.

The Gross-Neveu-Yukawa (GNY) model contains a single real scalar and Nf Dirac

fermions. It has a perturbative fixed point in 4 − ε and is expected to flow to the same

– 1 –



J
H
E
P
0
5
(
2
0
2
5
)
1
4
6

three-dimensional universality class as the classic Gross-Neveu (GN) model. The GN model

is a fermionic CFT with a four-fermion interaction originally formulated in d dimensions

displaying asymptotic freedom in the large-Nf limit [40], and is believed to have a non-

trivial interacting fixed point in 2 + ε dimensions. In d > 2 dimensions, the GN model is

renormalizable in the large-Nf limit [41], but not for finite Nf . The GNY model can therfore

be considered a UV-completion of the GN model [42, 43].1

If we consider a complex scalar and Nf Dirac fermions we obtain the Nambu-Jona-Lasinio-

Yukawa (NJLY) model. Similarly to the GNY model, the NJLY model can be thought of as

a UV completion of the Nambu-Jona-Lasinio (NJL) model [46], a purely fermionic model

which exhibits asymptotic freedom in the large-Nf limit and has the same symmetries as

QCD. Similarly to the discussion above, in d = 3 both the NJL and NJLY models are

expected to describe the same universality class.2

With three real scalars we have the chiral Heisenberg (cH) model, which has an O(3)

symmetry in addition to the U(Nf ) symmetry of the fermions. This model has been studied

less than the GNY and NJLY models in the literature, it is however expected to describe

the antiferromagnetic critical point of graphene [48]. The cH model also has a d = 2 + ε

description known as the SU(2) Gross-Neveu model, where the fermion bilinear is contracted

with a Pauli matrix (see for example [49]).

It was recently pointed out that all these models admit line defects that can be studied

perturbatively [50, 51]. In the 4−ε description, the defect is given by an exponential of a scalar

field integrated along a line. In d = 4 a free scalar has dimension ∆φ = 1, which makes the

defect coupling marginal, and is therefore a good candidate for describing a non-trivial defect

CFT in d = 4 − ε dimensions. In [50] (see also [51]) it was shown that this is indeed the case.

It was also pointed out in [50], that the GN model in 2 + ε dimensions admits a natural

line defect defined as the exponential of a fermion bilinear. In d = 2 a free fermion has

dimension ∆ψ = 1
2 and the defect coupling is again marginal. In 2 + ε dimensions one can

find a non-trival defect CFT which is expected to be in the same universality class as the

defect CFT in 4 − ε dimensions described above. Most likely, this d = 2 + ε picture of the

defect can also be generalized to the NJL and the cH models discussed above. For the chiral

Heisenberg model, the defect is given by the exponential of a fermion bilinear, similar to the

GN model description. In the NJL model one can construct two fermion bilinears: ∼ ψ̄ψ,

ψ̄γ5ψ, and the defect is given by an exponential of both these terms, neatly matching the

4 − ε analysis of [51]. In this work however, we focus exclusively on the 4 − ε expansion.

The line defect considered here is closely related to the localized magnetic field or

pinning line defect for the O(N) models studied in [38, 52–55]. Such a defect models

impurities localized in space, which can be implemented in lattice formulations by turning

on a background field. These types of magnetic defects are therefore very natural from an

experimental point of view, and indeed are expected to be observable in nature (see [55]

and references therein).

1For a specific number of fermions, Nf = 1/4, the interacting fixed point in d = 3 exhibits emergent

supersymmetry (SUSY) [44, 45].
2This model shows emergent SUSY as well, now for Nf = 1/2, leading to a single Majorana fermion in

d = 3 [47].

– 2 –



J
H
E
P
0
5
(
2
0
2
5
)
1
4
6

We focus on what can be considered the two canonical configurations in defect CFT:

four-point functions on the defect, and two-point functions of bulk operators outside the defect.

Both these configurations have gotten significant attention in recent years [8, 13, 15, 56, 57],

as they are natural correlators to be studied using modern bootstrap techniques, both

numerical [34, 38, 58–61] and analytical [9, 29, 62–68]. For the magnetic line defect in the

O(N) model, perturbative correlators were calculated in [38, 69–71]. The results of this paper

generalize the analysis of O(N) models to include fermions.

Notice that in our setup the defect remains one-dimensional, while the bulk is allowed to

change dimension. It is also possible to keep the codimension fixed and to allow the defect

to change dimension, as is the case for monodromy defects [24, 25]. We do not consider

monodromy defects here, for interesting recent progress see for example [30]. Interpolating

between different dimensions and/or codimensions poses several challenges, as it is not clear

how to represent correlators across dimensions. This problem was recently tackled in the

context of BCFT [72] (see also [73, 74]). However, for higher codimension defects the analysis

is more involved. We do not study fermions across dimensions in this work, but we discuss

possible future directions in the conclusions.

The outline of the paper is as follows. In section 2 we discuss the fixed point of the line

defect in generalized Yukawa CFTs, and compute the two-loop β-function of the defect scalar.

In section 3 we focus on operators on the defect and compute two-, three-, and four-point

correlators of scalars and fermions. We check that our results are consistent with an expansion

of the four-point function in conformal blocks. In section 4, we move to bulk operators in

the presence of the defect, and study one- and two-point functions for the scalars. In this

section we also sketch the diagrams that contribute to two-point functions of fermions in the

presence of the line. We conclude in section 5 and give an outlook on further research.

2 Yukawa CFTs with a line defect

We are studying a general class of Yukawa models with O(N) flavor symmetry. These theories

are described by the following action in d-dimensional Euclidean space, with 2 < d < 4:

S =

∫

ddx

(

1

2
∂µφ

a∂µφ
a + iΨ̄/∂Ψ + g Ψ̄ΣaφaΨ +

λ

4!
φaφaφbφb

)

, (2.1)

with µ = 0 , . . . , d−1, x0 = τ the Euclidean time direction, and a = 1 , . . . , N the index of the

O(N) symmetry. A choice of the matrix Σa for a given N corresponds to a choice of model,

and in this work we focus on the ones mentioned in section 1 and listed in appendix B. For the

GNY (N = 1) and NLJY (N = 2) models, Σa is a matrix acting on the fermion flavor space

(i = 1, . . . , Nf ) and on the spinor space, defining how the field φa interacts with fermions:

GNY: Ψ = (ψ1 , . . . ψNf ) , /∂ = 1Nf
γµ∂µ , Σ = 1Nf

14 , (2.2)

NJLY: Ψ = (ψ1 , . . . ψNf ) , /∂ = 1Nf
γµ∂µ , Σ1 = 1Nf

14 ,Σ
2 = 1Nf

iγ5 . (2.3)

Here, ψi denotes Dirac fermions, and the γ-matrices are in the four-dimensional representation

detailed in appendix A. Note that the GNY model consists of a single scalar field, while the

NJLY model contains one scalar field and one pseudoscalar field. For the cH model (N = 3),
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we use a 2Nf × 2Nf representation of the γ-matrices to express the action via

cH: Ψ = (Ψ+,Ψ−) ,Ψ± = (ψ1
± , . . . , ψ

Nf

± ) /∂ = (12 ⊗ γµ)∂µ , Σa = σa ⊗ 12Nf
. (2.4)

In this case, the fermions are Dirac fermions only when Nf = 2 and all the fields φa are

scalars. Note that the Yukawa vertex is not flavor-preserving in this case.

In order to perform calculations for all these models at once, we use the fact that the

following identities hold:3

tr ΣaγµΣbγν = 4Nfδ
abδµν , (2.5)

γµΣaγνΣaγρ = Nγµγνγρ . (2.6)

The β−functions of the couplings in eq. (2.1) are known to several loop orders for each

model [75]. For general Yukawa and scalar couplings, they can be found up to two loops in

(the appendix of) [47]. We use their conventions in the rest of this paper. For the purpose of

writing our results for the three Yukawa models presented in appendix B in a compact way, we

write the β−functions in terms of the number of scalars N = 1, 2, 3. In this parametrization,

setting Nf → 0 gives results that can be compared with the O(N) model. However, the

exact β−function depends on the chosen Yukawa couplings that appear in the Lagrangian in

eq. (2.1), and the parametrization of N should be considered with care and not be extended

to N > 3. Below, we only list the expressions up to O(ε).

The β−functions are given by [76–78]

βλ = −ελ+
1

(4π)2

(

8g2λNf − 48g4Nf +
N + 8

3
λ2
)

+ O(λ3, g6, λ2g2, λg4) , (2.7)

βg = −εg
2

+
κ1g

3

(4π)2
+ O(g5) , (2.8)

where 1 ≤ N ≤ 3. The Wilson-Fisher-Yukawa (WFY) fixed point can be reached for the

following values of the couplings at one loop in ε := 4 − d:

λ⋆
(4π)2

=
3κ2ε

2κ1(N + 8)
+ O(ε2) ,

g2
⋆

(4π)2
=

ε

2κ1
+ O(ε2) , (2.9)

where we see that g ∼ O(
√
ε), while λ ∼ O(ε). Furthermore, we have defined

κ1 := 2Nf −N + 4 , (2.10)

κ2 := 2(4 −N) − κ1 +
√

12 (N2 − 16) + κ1(κ1 + 12(N + 4)) . (2.11)

Note that all the dependency on Nf is contained in κ1.

3For the case of the cH model, one should replace γµ by 12 ⊗ γµ on the left-hand sides, and γµγνγρ by

12 ⊗ (γµγνγρ) on the right-hand side of (2.6). Moreover, the Pauli matrices σa are normalized such that

σaσa = 1.
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2.1 Feynman rules

We collect in this section the Feynman rules associated to the action (2.1). The free

propagators in d dimensions are given by

:= 〈φa(x1)φb(x2)〉λ=g=0 = δab I12 , (2.12)

:= /∂1I12 , (2.13)

where we have defined the scalar propagator function in d = 4 − ε dimensions:

Iij :=
Γ(1 − ε/2)

4π
2−ε/2

x
2(1−ε/2)
ij

, (2.14)

with xij := xi − xj . For d = 4 we have

I12 =
1

4π2x2
12

. (2.15)

The scalar propagator satisfies the Green’s equation

∂2
i Iij = −δ(d)(xij) , (2.16)

where δ(d)(x) refers to the d-dimensional Dirac delta function.

The interaction terms yield the following vertices in position space:

:= −λ0

∫

ddx5 I15I25I35I45 , (2.17)

:= −g0

∫

ddx4 /∂1I14Σa/∂4I34I24 . (2.18)

Note that one has to add a factor 1/n! when n vertices of the same kind are being inserted,

and that symmetry factors have to be taken into account.

2.2 Bulk renormalization

The couplings, as well as the (bulk) scalars φa and fermions Ψ̄,Ψi get renormalized. We

can define the bare couplings and fields as

λ0 = µελZλ , g0 = µ
ε
2 gZg , φ0 = Zφφ , Ψ0 = ZΨΨ , (2.19)

where we have introduced rescaled couplings g → µ
ε
2 g, λ → µελ to ensure that the couplings

in the renormalized Lagrangian are dimensionless. The expressions for the renormalization

factors Zi up to O(ε2) can be found in appendix B.

The renormalization factors allow us to obtain the anomalous dimensions γφ, γΨ for the

scalar and fermionic fields, which are given here to first order in the couplings:

γφ =
d logZφ
d logµ

=
2g2Nf

(4π)2
+ O(λ2, g4, λg2) , (2.20)

γΨ =
d logZΨ

d logµ
=

g2N

2(4π)2
+ O(λ2, g4, λg2) . (2.21)

– 5 –



J
H
E
P
0
5
(
2
0
2
5
)
1
4
6

This leads to the following values for the conformal dimensions evaluated at the WFY fixed

point defined in eq. (2.9):

∆φ = 1 − ε

2
+ γφ = 1 − ε

4 −N

2κ1
+ O(ε2) , (2.22)

∆Ψ =
3

2
− ε

2
+ γΨ =

3

2
− ε

4

(

2 − N

κ1

)

+ O(ε2) . (2.23)

Furthermore, we need the normalization of their two-point functions, which are given by

〈φa(x1)φb(x2)〉 =
δabN 2

φ

x
2∆φ

12

, 〈Ψ̄(x1)Ψ(x2)〉 =
N 2

Ψs̄1/x12s2

x
2(∆Ψ+1/2)
12

, (2.24)

with

Nφ =

√

√

√

√

Γ
(

d
2

)

2(d− 2)πd/2
− ε

(κ1 +N − 4)(1 + ℵ)

8π κ1
+ O(ε2) , NΨ =

1

π
+ O(ε) , (2.25)

where we have defined the following combination:

ℵ := 1 + log π + γE , (2.26)

with γE = 0.57722 . . . the Euler-Mascheroni constant.

2.3 Defect fixed point

One can define a defect CFT by adding a scalar line to the action (2.1), in the same way

as in the O(N) model [52]. This was shown in [50] for the GNY model, and generalized to

the NJLY and chiral Heisenberg models in [51]. More precisely,

Sdefect := S0 + h0

∫ ∞

−∞
dτ φ1(τ) . (2.27)

Here h0 is the bare coupling of the defect, which extends in the Euclidean time direction τ ,

and S0 is the bulk action in terms of the bare couplings λ0 and g0. The defect introduces

a new vertex

≡ −h0

∫ ∞

−∞
dτ2 I12 , (2.28)

with τ2 the point on the line, and where one should note that only φ1 and not φâ, â = 2, . . . , N

nor the fermions Ψ̄,Ψ couple to the defect. As for the bulk Feynman rules, one should add a

factor 1/n! when n vertices are inserted, and symmetry factors have to be accounted for.

We renormalize the defect coupling in a similar way to the bulk couplings. We define

the bare coupling h0 in terms of the renormalized coupling h as

h0 = µ
ε
2 hZh , (2.29)

where Zh is given in appendix B, and can be computed by extracting the divergences from

the one-point function of the renormalized scalar φa and requiring that it is finite:

〈〈φa(x) 〉〉 = finite . (2.30)

– 6 –
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Figure 1. Diagrams contributing to the one-point function 〈〈φa 〉〉 up to O(ε2). The defect is denoted

by a solid line, scalars by a dotted line, and fermions by solid arrowed lines. Bulk scalar couplings λ0

are represented by a black dot, bulk Yukawa couplings g0 by a red dot and defect couplings h0 by a

blue dot.

Note that the one-point function of a single fermion Ψ is zero. The Feynman diagrams

that contribute to the one-point function of φa up to O(ε2) are given in figure 1. It is

important to keep in mind that we are working perturbatively in the two bulk couplings λ and

g, since they are O(ε) and O(
√
ε) respectively at the WFY fixed point, but we need to keep

diagrams up to all orders in the defect coupling h since it is of order O(1). There are however

only a finite number of possible diagrams per order in λ and g. The diagrams in figure 1

involving only scalar four-point couplings λ (black dots) and defect couplings h (blue dots)

are the same as for the line defect in the O(N) model and were already computed in [52]. The

diagrams in figure 1 that include the Yukawa coupling g (red dots) were recently computed

in [51]. Here we give the corresponding β−function for h up to O(ε2), which match the

ones in [51]. Some of the diagrams in figure 1 are completely cancelled by the wavefunction

renormalizations of φa and Ψ, while others do contribute to the defect counterterms.

We compute the β−function βh from the divergent part of the diagrams and we obtain:

βh = − εh

2
+

1

(4π)2

(

λh3

6

)

+
1

(4π)4

{

λ2h

(

(2 +N)

36
− h2(N + 8)

35
− h4

12

)

− λg2h3Nf

+ g4h

(

−(N + 4)Nf

2
+ h24Nf

(

1 − π2

6

))}

+ O(λ3, g6, λ2g2, λg4) . (2.31)

Using the values for λ and g at the WFY fixed point in eq. (2.9), we find the corresponding

defect fixed point

h2
⋆ = −2(N − 4)(N + 8)

κ2
+ O(ε) , (2.32)

where the O(ε) term is given in appendix B for N = 1, 2, 3. If we include the finite part of

the one-point function, we can extract the one-point function coefficient aφ:

〈〈φa(x) 〉〉 =
δa1aφ

|x⊥|1+γφ
, a2

φ = −(N − 4)(N + 8)

2κ2
+ O(ε) . (2.33)

The O(ε) term is lengthy and given in the attached Mathematica notebook.
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3 Correlators of defect operators

The bulk operators give rise to a plethora of defect operators. In this section, we consider

correlation functions between the lowest-lying defect operators. The lowest-lying scalars

are the first scalars appearing in the bulk-to-defect expansion of φa, and are labelled in the

following as φ̂1 and tâ, with â = 2 , . . . , N . These correspond to the two scalar operators of

length 1 that arise due to the breaking of O(N) symmetry in the bulk to O(N − 1) symmetry

on the defect, namely φ1 couples to the defect while φâ does not. The conformal dimension

of φ̂1 was computed in [50] for the GNY model up to O(ε). It can be extracted from the

β−function of the defect coupling at the fixed point:

∆φ̂1 = 1 +
∂βh
∂h

|h=h⋆
= 1 +

(4 −N)ε

κ1
+ O(ε2) , (3.1)

which agrees with [50] for the case N = 1 corresponding to the pure GNY model. In this

section, we extend their results to general N , as well as compute additional defect correlators.

The operator tâ (the tilt operator) has protected conformal dimension

∆t = 1 . (3.2)

Note that for the GNY model, there is no tilt operator, but only φ̂1 ≡ φ̂ on the defect.

Besides the tilt there is another scalar defect operator with protected conformal dimension,

namely the displacement operator D. It is related to the bulk stress-energy tensor through

the Ward identity

∂µT
µν = δd−1(x⊥)Dν̂ , ν̂ = 1 , . . . , d− 1 , (3.3)

and has transverse spin s = 1 and conformal dimension

∆D = 2 . (3.4)

The expansion of the bulk fermion on the defect gives us the defect fermions Ψ̂, ˆ̄Ψ with

conformal dimension

∆Ψ̂ =
3 − ε

2
+ γΨ̂ . (3.5)

The anomalous dimension γΨ̂ can be extracted from the two-point function.

Below we compute correlation functions between these operators and extract the cor-

responding defect CFT data.

3.1 Two-point functions

We start by computing the two-point functions between the defect operators to obtain their

anomalous dimensions and normalization constants.

– 8 –
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3.1.1 Two-point functions of scalars

We consider first the two-point functions 〈 φ̂1(τ1)φ̂1(τ2) 〉 and 〈 tâ(τ1)tb̂(τ2) 〉. The two-point

function of arbitrary (defect) scalars φ̂a takes the general form

〈φ̂a(τ1)φ̂b(τ2)〉 = N 2
φ̂

δab

τ2∆
φ̂12

, (3.6)

with τ12 := τ1 − τ2, and where Nφ̂ and ∆φ̂ correspond respectively to the normalization

constant and to the scaling dimensions given in (3.1) and (3.2).

In terms of Feynman diagrams, this two-point function can be expressed as

〈 φ̂a(τ1) φ̂b(τ2) 〉 = + + + O(ε2) . (3.7)

In the first diagram, the two external operators are connected through a single tree-level

propagator. The second diagram corresponds to the bulk self-energy and consists of an

internal fermion loop and two bulk Yukawa vertices (represented by red dots), while the third

one is special to the defect theory and involves two integrals along the line (represented by

blue dots) as well as a bulk four-scalar vertex (the black dot).

The fermion loop diagram is easy to compute and reads

= g2
0 tr ΣaΣbB12

= −g2
0Nf

4π2
δabI12

(

1

ε
+ ℵ + log τ2

12 + O(ε2)

)

, (3.8)

where we have made use of the rule given in (2.5). The integral B12 is defined in (C.23) and

solved in (C.24), while the function I12 corresponds to the scalar propagator and is defined

in (2.14). Finally, the constant ℵ arising from dimensional regularization is defined in (2.26).

The expressions for the two other diagrams can be found in [38].

Requiring that the sum of the diagrams is finite allows us to compute the renormalization

factors for φ̂1 and tâ:

〈 φ̂a(τ1)φ̂b(τ2) 〉 =
1

Z2
φ̂

〈 φ̂a0(τ1)φ̂b0(τ2) 〉 = finite , (3.9)

and leads to

Zφ̂1 = 1 − 1

ε

λh2 + 8g2Nf

64π2
+ O

(

ε−2
)

, (3.10)

Zt = 1 − 1

ε

λh2 − 24g2Nf

192π2
+ O

(

ε−2
)

. (3.11)

As a sanity check, we can read the scaling dimensions from the renormalization factors:

∆φ̂1 = µ
∂ logZφ̂1

∂µ
= 1 + ε

4 −N

κ1
+ O(ε2) , (3.12)

∆t = µ
∂ logZt
∂µ

= 1 + O(ε2) , (3.13)

which agree with the results given in (3.1) and (3.2).

– 9 –
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The normalization constants can now be extracted from the finite two-point functions,

and we find for the two scalars

N 2
φ̂1 =

1

4π2

{

1 − ε

2

(

2 +
(N − 4)(1 − 2ℵ)

κ1

)

+ O(ε2)

}

, (3.14)

N 2
t =

1

4π2

{

1 − ε

2

(

2 +
N − 4

κ1

)

+ O(ε2)

}

, (3.15)

where κ1 depends on Nf and N and is defined in (2.10).

3.1.2 Two-point function of the displacement

We continue with the two-point function of the displacement. The displacement has transverse

spin s = 1 and can be constructed by taking a transverse derivative of the field φ̂1:

Dµ̂ ∼ ∂µ̂φ̂
1 , (3.16)

while there exist additional operators ∂µ̂t
â that correspond to taking the transverse derivative

of the tilt. The latter will not be considered here for brevity, but its correlators can be

computed in a similar way as the displacement correlators.

Because we can write the displacement as in eq. (3.16), the diagrams that contribute to

the two-point function are the same as for φ̂a and are given in eq. (3.7). For the evaluation

of the diagrams, we need to first take the derivatives with respect to x⊥
1 , x

⊥
2 and then send

x⊥
1 , x

⊥
2 → 0. This leads to the following expressions for the diagrams:

= 2g2
0δ
µ̂ν̂ tr ΣaΣbB12

= −g2
0δ
µ̂ν̂Nf

2π2
I12δ

ab
(

1

ε
+ ℵ + log τ2

12 + O(ε2)

)

. (3.17)

The other diagrams were computed in [38].

We compute the renormalization factor for the displacement in the usual way, by requiring

that the two-point function is finite. This results in

ZD = 1 − 1

(4π)2ε

(

λh2

12
+ 2g2Nf

)

+ O
(

ε−2
)

. (3.18)

As a check, we compute the anomalous dimension of D and find

∆D = µ
∂ logZD

∂µ
= 2 + O(ε2) , (3.19)

where the O(ε) contributions cancel as expected. We can extract the proper normalization

from the finite parts of the diagrams and obtain

N 2
D =

1

2π2

{

1 − ε

(

1 − N − 4

6κ1

)

+ O(ε2)

}

. (3.20)
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3.1.3 Two-point functions of fermions

Let us now turn our attention to the fermions. In 1d, the two-point function of fermions

takes the form

〈 ˆ̄Ψ(τ1)Ψ̂(τ2) 〉 = N 2
Ψ̂

s̄1γ
0s2

τ2∆
Ψ̂12

, (3.21)

where we have use the polarization spinors s̄1, s2 as defined in (A.8) in order to avoid cluttering.

The diagrams involved are

〈 ˆ̄Ψ(τ1)Ψ̂(τ2) 〉 = +

+ + + O(ε2) . (3.22)

As noted in [50], the second diagram is zero at order O(ε). This can be easily checked

in the following way:

= g0h0 s̄1

∫

dτ3

∫

ddx4 /∂4I14 Σ1/∂4I24I34 s2

∼ g0h0

∫

dτ3 τ13τ23 I13I23

= 0 + O(ε3/2) , (3.23)

where in the second line we have used the 4d fermionic star-triangle relationship given

in (C.17), to which the corrections towards d = 4 − ε are of order O(ε) while g ∼ O(
√
ǫ).

The third diagram can be computed as follows:

= g2
0 s̄1

∫

ddx3

∫

ddx4 /∂1I13 Σa /∂3I34 Σa /∂4I24I34 s2

= 2g2
0Ns̄1/∂2B12 s2

=
g2

0N

32π4

s̄1γ
0s2

τ3
12

{

1

ε
+ ℵ − 1 + log τ2

12 + O(ε)

}

. (3.24)

Here we have made use of the rule given in (2.6) in order to be able to rewrite the integral

as a derivative of B12.

The fourth diagram is more involved and reads

= g2
0h

2
0 s̄1

∫

dτ3

∫

dτ4

∫

ddx5

∫

ddx6 /∂1I15 Σ1 /∂5I56 Σ1 /∂6I26I35I46 s2 , (3.25)

with Σ1 = 1 for all our models of interest. The easiest way to compute it is to apply another

slashed derivative on the integral and compare the result to an ansatz. We define

J12 :=

∫

dτ3

∫

dτ4

∫

ddx5

∫

ddx6 /∂1I15/∂5I56/∂6I26I35I46 , (3.26)

and assume that

J12 =
γ0

τ2
12

{

A

ε
+B + C log τ2

12

}

. (3.27)
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We then compute

/∂1J12 = −
∫

dτ3

∫

dτ4 I13 /∂1/∂2Y124 , (3.28)

where we have used /∂1/∂1 = 1∂2
1 and ∂2

1I15 = −δ(d)(x15). After applying the identity (C.17),

we find

/∂1J12 =
3

16π6
1 + (quadratic divergences) , (3.29)

from which we can read

A = C = 0 , B = − 1

16π6
. (3.30)

We see that this diagram is finite (after dropping the quadratic divergences) and so it

contributes only to the normalization constant.

In the same way as for the scalars, we define a renormalization factor ZΨ̂ such that

〈 ˆ̄Ψ(τ1)Ψ̂(τ2) 〉 =
1

Z2
Ψ̂

〈 ˆ̄Ψ0(τ1)Ψ̂0(τ2) 〉 = finite , (3.31)

for which we find

ZΨ̂ = 1 − g2N

32π2ε
+ O

(

ε−2
)

, (3.32)

which agrees with the renormalization factor for the bulk given in eq. (B.4).

The scaling dimension is given by

∆Ψ̂ =
3

2
− ε

4

(

2 − N

κ1

)

+ O(ε2) , (3.33)

while the normalization constant reads

N 2
Ψ̂

= − 1

2π2

{

1 − ε

2κ1

(

2κ1 − ℵ
(

1 − N

2κ1

)

+
4

π2

(N − 4)(N + 8)

κ1κ2

)

+ O(ε2)

}

. (3.34)

Note that the renormalization factor as well the scaling dimension agree with the bulk

computation, as the diagrams contributing to these results are the same.4

3.2 Three-point functions

We now compute three-point functions between the lowest-lying operators. This gives us

various defect OPE coefficients, which can be compared with the OPE coefficients coming

from the conformal block expansion of the four-point function.

4This agreement is expected to be lifted at higher orders of ε.
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3.2.1 Three-point functions of scalars

The three-point function between three defect scalars φ̂a,b,c, where φ̂a = {φ̂1, tâ}, is given

by a single Feynman diagram up to O(ε):

〈 φ̂a(τ1) φ̂b(τ2) φ̂c(τ3) 〉 = + O(ε2)

= Nφ̂aNφ̂bNφ̂c

λφ̂aφ̂bφ̂c

τ2∆abc
12 τ2∆bca

23 τ2∆cab
13

, (3.35)

where we have defined ∆abc := 1
2(∆φ̂a + ∆φ̂b − ∆φ̂c).

This diagram was already evaluated in [38], and results in the following OPE coefficients:

λφ̂1φ̂1φ̂1 =
3πε

8

(4κ1 −Nf )
√

2(4 −N)(N + 8)κ2

κ2
1(N + 8)

+ O(ε2) , (3.36)

λttφ̂1 =
λφ̂1φ̂1φ̂1

3
+ O(ε2) . (3.37)

Since the OPE coefficients start at O(ε), they only appear at order O(ε2) in the four-

point function of scalars.

3.2.2 Three-point functions involving φ̂2

The first scalar operators that appear in the OPE φ̂a × φ̂a, φ̂a = {φ̂1, tâ}, after φ̂1 itself,

are the degenerate operators s±. These operators have dimension close to 2, and can be

constructed from (φ̂1)2 and (φ̂â)2. In order to find the correct anomalous dimensions we

need to require that the three-point functions involving φ̂ and s± are finite. The diagrams

that contribute up to O(ε) are

〈 φ̂a(τ1) φ̂b(τ2) φ̂cφ̂c(τ3) 〉 = + + + + O(ε2)

= N 2
φ̂aNs±

λφ̂aφ̂as±

τ
2∆

abc2

12 τ
2∆

bc2a
23 τ

2∆
ac2b

13

. (3.38)

The first three diagrams have been computed in [38], while the last one is the wavefunction

renormalization. Requiring that this three-point function is finite in ε gives a renormalization

matrix Zs that has a lengthy expression and is given in a Mathematica notebook. The

anomalous dimension can be computed by diagonalizing this matrix and taking the derivative:

γs±
=
ε(−4(N + 8)(−κ1 +N − 4) + κ2(N + 4) ± κ3)

4κ1(N + 8)
+ O(ε2) , (3.39)

where we have defined

κ3 :=
√

κ2
2N

2 + 8κ2(N − 4)(N − 2)(N + 8) + 16(N − 4)2(N + 8)2 . (3.40)

We obtain the conformal dimension as ∆s±
= 2 − ε + γs±

.

To complete the computation of the OPE coefficients, we also need the normalization of

the two-point functions 〈s±(τ1)s±(τ2)〉. From the two-point function, we get

N 2
s±

= ±(N − 1) (κ2(N − 2) + 4(N − 4)(N + 8) ± κ3)

16π4κ3
+ O(ε) . (3.41)

We checked that the operators are now properly normalized, such that 〈s+(τ1)s−(τ2)〉 = 0.
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Putting everything together, we can now extract the OPE coefficients, for which we find:

λφ̂1φ̂1s±
= ± 2κ2

√
N − 1

√

κ2
3 ± (κ2(N − 2) + 4(N − 4)(N + 8))κ3

+ O(ε) , (3.42)

λ
tâtb̂s±

= δâb̂
√

κ3 ± (κ2(N − 2) + 4(N − 4)(N + 8))
√
κ3

√
N − 1

+ O(ε) . (3.43)

While the diagrams of the three-point functions are computed to O(ε), the OPE coefficients

can only be determined to O(1). The operators s± are linear combinations of (φ̂1)2 and (φ̂â)2,

and their mixing will receive a correction at O(ε) that contributes to the OPE coefficients

and the normalization of their two-point functions. Unfortunately, computing the correction

to mixing would require knowing the anomalous dimensions of s± to O(ε2), or alternatively

computing additional four-point correlation functions of φ̂ and s± to unmix the operators,

as was done recently in [79].

3.2.3 Three-point functions of two fermions and one scalar

An example of a mixed correlator is the three-point function 〈 ˆ̄ΨΨ̂φ̂a 〉, which is given at

leading order by

〈 ˆ̄Ψ(τ1)Ψ̂(τ2)φ̂a(τ3) 〉 = + O(ε)

= N 2
Ψ̂

Nφ̂a

(s̄1γ
0Σas2)λ ˆ̄ΨΨ̂φ̂a

τ2∆ΨΨa
12 τ2∆ΨaΨ

23 τ2∆aΨΨ

13

+ O(ε) , (3.44)

with ∆ijk following the same convention as given below (3.35), where a refers to φa.

At order O(
√
ε) we have a single diagram contributing. It is easy to evaluate this

diagram using the usual commutation rules for Σa as well as the fermionic star-triangle

identity given in (C.17):

= N 2
Ψ̂

Nφ̂ag0

(

s̄1γ
0Σas2

) 1

64π4τ2
12τ23τ31

. (3.45)

After inserting the normalization constants derived in section 3.1 we find that the OPE

coefficient is

λ ˆ̄ΨΨ̂φ̂a
=

√
ε

4
√

2κ1
+ O(ε) . (3.46)

3.3 Four-point functions

Let us now turn our attention to the four-point functions, which are the first correlators in

our list to have non-trivial kinematics. These correlators can be expanded in 1d conformal

blocks to obtain defect CFT data, which we can compare with the OPE coefficients computed

in the previous section. We start by considering correlators of purely scalar operators, before

moving on to fermions and concluding with an example of a mixed correlator including

both scalars and fermions.
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3.3.1 Four-point functions of scalars

We start this section by the four-point functions of scalars. Such correlators depend kine-

matically on a single cross-ratio χ, which we define as5

χ :=
τ12τ34

τ13τ24
. (3.47)

Four-point functions of scalars take the following form:

〈 φ̂a(τ1) φ̂b(τ2) φ̂c(τ3) φ̂d(τ4) 〉 = Nφ̂aNφ̂bNφ̂cNφ̂d K4 f
abcd(χ) , (3.48)

with the conformal prefactor

K4 :=
1

τ∆
φ̂a +∆

φ̂b
12 τ∆

φ̂c +∆
φ̂d

34

(

τ24

τ14

)∆
φ̂a −∆

φ̂b
(

τ14

τ13

)∆
φ̂c −∆

φ̂d

. (3.49)

In terms of Feynman diagrams, the four-point function of arbitrary scalars is given up

to O(ε) by

〈 φ̂a(τ1) φ̂b(τ2) φ̂c(τ3) φ̂d(τ4) 〉 = +

+ + + O(ε2) , (3.50)

where the first diagrams are products of two-point functions, and the last one was com-

puted in [38].

Adding all diagrams in eq. (3.50), we obtain the following unit-normalized results:

f1111(χ) = 1 + χ2∆
φ̂1 +

(

χ

1 − χ

)2∆
φ̂1

+
3εκ2

κ1(N + 8)

(

χ log(1 − χ) +
χ2

1 − χ
logχ

)

+ O(ε2) ,

(3.51)

f1â1b̂(χ) = δâb̂χ∆
φ̂1 +∆t + εδâb̂

κ2

κ1(N + 8)

(

χ log(1 − χ) +
χ2

1 − χ
logχ

)

+ O(ε2) , (3.52)

f âb̂ĉd̂(χ) = δâb̂δĉd̂ + δâĉδb̂d̂χ2 + δâd̂δb̂ĉ
χ2

(1 − χ)2

+ ε(δâb̂δĉd̂ + δâĉδb̂d̂ + δâd̂δb̂ĉ)
κ2

κ1(N + 8)

(

χ log(1 − χ) +
χ2

1 − χ
logχ

)

+ O(ε2) ,

(3.53)

where κ1 and κ2 are defined in (2.10) and (2.11). Other orderings of φ̂1 and tâ are not

given here but can be computed in the same way straightforwardly from (3.50). The last

correlator f âb̂ĉd̂(χ) can be decomposed into a scalar (S), an antisymmetric (A), and a

5In higher d, four-point functions depend on two cross-ratios χ and χ̄. In 1d the second cross-ratio is not

independent of χ and becomes χ̄ = 1 − χ.

– 15 –



J
H
E
P
0
5
(
2
0
2
5
)
1
4
6

traceless symmetric (T ) contribution:

f âb̂ĉd̂S (χ) =
N

N − 1

χ2

(1 − χ)2
(2 + χ(χ− 2))

+ ε
κ2(N + 1)

κ1(N − 1)(N + 8)

χ

1 − χ
(χ logχ+ (1 − χ) log(1 − χ)) + O(ε2) , (3.54)

f âb̂ĉd̂T (χ) =
χ2

(1 − χ)2
(2 + χ(χ− 2))

+ ε
2κ2

κ1(N + 8)

χ

1 − χ
(χ logχ+ (1 − χ) log(1 − χ)) + O(ε2) , (3.55)

f âb̂ĉd̂A (χ) =
(2 − χ)χ3

2(1 − χ)2
+ O(ε2) . (3.56)

We can expand these four-point functions in the 1d conformal blocks

g
∆ij ,∆kl

∆ (χ) = χ∆
2F1 (∆ − ∆ij ,∆ + ∆kl; 2∆;χ) , g∆ := g0,0

∆ , (3.57)

where ∆ij = ∆i − ∆j are the conformal dimensions of the external operators.

The first operators in the φ̂1 × φ̂1 OPE are the degenerate operators s±. They can be

unmixed, which we have done in section 3.2.2 in order to obtain the anomalous dimensions

γs±
and the OPE coefficients λφ̂aφ̂as±

. However, in the conformal block expansion we only

see the average of the conformal data for this operator, and we find

f1111(χ) = 1 +

(

2 − 3κ2ε

κ1(N + 8)

)

g2(χ) + ε

(

3κ2 + 4(N + 8)(4 −N)

κ1(N + 8)

)

∂∆g2(χ) + . . . ,

(3.58)

(∆s+
− 2)λ2

φ̂1φ̂1s+
+ (∆s−

− 2)λ2
φ̂1φ̂1s−

= ε
3κ2 + 4(N + 8)(4 −N)

κ1(N + 8)
+ O(ε2) , (3.59)

λ2
φ̂1φ̂1s+

+ λ2
φ̂1φ̂1s−

= 2 − 3κ2ε

κ1(N + 8)
+ O(ε2) . (3.60)

This is also the case for the correlators f âb̂ĉd̂S (χ) and f11âb̂(χ), which contain in addition

information on the OPE coefficients λtts±
. The OPE coefficients given in eq. (3.43) neatly

obey these relations.

From the other correlators we can obtain the OPE coefficients and anomalous dimensions

of V̂ â appearing in φ̂1 × tâ, and T̂ âb̂ and Ââb̂, which are respectively a traceless symmetric

and antisymmetric operator appearing in tâ × tb̂.

∆V̂ = 2+ε
2(κ2 +(4−N)(N+8))

(N+8)κ1
+O(ε2) , λ2

tφ̂1V̂
= 1−ε

κ2

κ1(N+8)
+O(ε2) , (3.61)

∆T̂ = 2+ε
κ2

κ1(8+N)
+O(ε2) , λ2

ttT̂
= 2−ε

2κ2

κ1(N+8)
+O(ε2) , (3.62)

∆Â = 3+O(ε2) , λttÂ = 1+O(ε2) . (3.63)

Setting Nf → 0, we obtain the results for the O(N) model found in [38, 55] which provides

a final check for our results.
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3.3.2 Four-point functions of the displacement

We consider now the four-point function of the displacement:

〈Dµ̂(τ1)Dν̂(τ2)Dρ̂(τ3)Dσ̂(τ4)〉 = N 4
D K4 f

µ̂ν̂ρ̂σ̂(χ) . (3.64)

Similarly to the two-point function, the diagrams contributing to this four-point function are

the same as for the four-point function of scalars, and are shown in eq. (3.50). Again, we

take the derivative with respect to the transverse coordinates ∂µ̂j , j = 1, . . . , 4, and then set

x⊥
j → 0. The diagrams not involving fermions were already computed for the O(N) model

in [38], while the fermionic diagram is the renormalization of the wavefunction. Adding all

the diagrams and using the proper renormalization, we find the correlators up to O(ε):

f µ̂ν̂ρ̂σ̂(χ) =δµ̂ν̂δρ̂σ̂ + δµ̂ρ̂δν̂σ̂χ
4 + δµ̂σ̂δν̂ρ̂

χ4

(1 − χ)4

+ ε(δµ̂ν̂δρ̂σ̂ + δµ̂ρ̂δν̂σ̂ + δµ̂σ̂δν̂ρ̂)
κ2

10κ1(N + 8)

χ

(1 − χ)3

×
(

2χ(1 − χ)(χ(1 − χ) − 1) + χ3(χ(5 − 2χ) − 5) log χ

− (1 − χ)3(2χ2 + χ+ 2) log(1 − χ)
)

+ O(ε2) . (3.65)

3.3.3 Four-point functions of fermions

We now turn our attention to correlators involving four elementary fermions, identical up

to their flavor index. This correlator is given by

〈 ˆ̄Ψ(τ1)Ψ̂(τ2) ˆ̄Ψ(τ3)Ψ̂(τ4) 〉 = + +

+ + + O(ε3/2)

=
N 4

Ψ̂

τ2∆
Ψ̂12 τ2∆

Ψ̂34

(

f12,34(χ) − χ3

(1 − χ)3
f14,32(1 − χ)

)

, (3.66)

where the second term follows by crossing symmetry. The subscripts indicate the dependency

on the polarization spinors s̄1, s2, s̄3, s4. The disconnected part of the correlator is easy

to compute and give

〈 ˆ̄Ψ(τ1)Ψ̂(τ2) ˆ̄Ψ(τ3)Ψ̂(τ4) 〉disc. =〈 ˆ̄Ψ(τ1)Ψ̂(τ2) 〉〈 ˆ̄Ψ(τ3)Ψ̂(τ4) 〉
+ 〈 ˆ̄Ψ(τ1)Ψ̂(τ4) 〉〈 ˆ̄Ψ(τ3)Ψ̂(τ2) 〉

=
1

τ2∆
Ψ̂12 τ2∆

Ψ̂34

{

(s̄1γ
0s2)(s̄3γ

0s4)

− χ3

(1 − χ)3
({s2 , j , χ} ↔ {s4 , l , 1 − χ})

}

. (3.67)

The connected part consists of two diagrams:

〈 ˆ̄Ψ(τ1)Ψ̂(τ2) ˆ̄Ψ(τ3)Ψ̂(τ4) 〉conn. = + . (3.68)
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These diagrams belong to a new class that we have not encountered yet and that we name

H-diagrams. They can be expressed as

= g2
0(s̄1/∂1Σa/∂2s2)(s̄3/∂3Σa/∂4s4)H12,34 , (3.69)

where the integral H12,34 is defined in (C.3) and has not been solved analytically yet. It is

however possible to solve the integral thanks to the derivatives in front, as shown in (C.19)–

(C.21). The second diagram can be calculated analogously, and we obtain the following

unit-normalized correlator:

f12,34(χ) =(s̄1γ
0s2)(s̄3γ

0s4)

+
ε

64κ1
(s̄1Σaγ0s2)(s̄3Σaγ0s4)

× χ

(1 − χ)2

(

(1 − χ)(2 − χ) + χ2(2 − χ) logχ+ χ(1 − χ)2 log(1 − χ)
)

+ O(ε2) . (3.70)

We can extract new defect CFT data from this correlator by expanding it in the 1d blocks

of eq. (3.57). Since we have Nf fermions, there is a U(Nf ) flavor symmetry and we need to

decompose the fermions in the singlet (S) and adjoint (Adj) representations. For this purpose,

we reinstate the flavor indices i = 1, . . . , Nf , for which the decomposed correlator becomes:6

f ijkl12,34(χ) =δijδklfS12,34(χ) +

(

δilδjk − δijδkl

Nf

)

fAdj
12,34(χ) , (3.71)

fS12,34(χ) =
4 + (κ1 +N)(χ− 1)3 − 2χ((χ− 6)χ+ 6)

(χ− 1)3(κ1 +N − 4)
+

κ1 +N

(κ1 +N − 4)

+
χε

64κ1(χ− 1)2(κ1 +N − 4)

{

2(κ1 − 4 +N) − χ(14 + 3κ1 + 3N)

+ χ2(κ1 +N − 2) − χ2(χ(κ1 +N − 2) − 2(κ1 +N − 3)) logχ

+ (χ− 1)2(χ(κ1 +N − 2) + 2) log(1 − χ)

}

, (3.72)

fAdj
12,34(χ) =

χ3

(χ− 1)3
+

εχ

64κ1(χ− 1)2

{

χ(1 + χ) + (1 + χ)(1 − χ)2 log(1 − χ)

+ (1 − χ)χ2 logχ

}

. (3.73)

Let us decompose the singlet sector in the conformal blocks. For the first few operators, we find

fS12,34(χ) =g0(χ) +
ε

32κ1
g1(χ) −

(

1

Nf
− ε(17 − 2N − 2κ1)

384κ1Nf

)

g3(χ)

− ε(3 −N − κ1)

64κ1Nf
∂∆g3(χ) + . . . . (3.74)

6This decomposition is more intricate for the cH model, and the results below are valid for the GNY and

NJLY models.
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The absence of a conformal block g∆=2(χ) indicates that

λ ˆ̄ΨΨ̂s±

= O(ε) , (3.75)

such that the squared OPE coefficients only contribute at O(ε2). We can read off λ2
ˆ̄ΨΨ̂φ̂1

as

the coefficient in front of the block g∆=1(χ), which matches the expression in eq. (3.46).

3.3.4 Four-point functions of fermions and scalars

In this section, we compute the mixed correlator with two fermions ˆ̄Ψ, Ψ̂ and two elementary

scalars φa, φb. The correlator takes the following form:

〈 ˆ̄Ψ(τ1)Ψ̂(τ2)φ̂a(τ3)φ̂b(τ4) 〉 =
N 2

Ψ̂
N 2
φ̂

τ2∆
Ψ̂12 τ2∆

φ̂34

fab12 (χ) , (3.76)

with the kinematical cross-ratio χ defined in (3.47), and where the O(N) tensor structure, as

well as the dependence on the polarization spinors s̄1, s2, are encoded in fab12 . As before, the

disconnected part of the correlator is easy to obtain and consists of only one non-zero term:

〈 ˆ̄Ψ(τ1)Ψ̂(τ2)φ̂a(τ3)φ̂b(τ4) 〉disc. = 〈 ˆ̄Ψ(τ1)Ψ̂(τ2) 〉〈 φ̂a(τ3)φ̂b(τ4) 〉

=
(s̄1γ

0s2)

τ2∆
Ψ̂12 τ2∆

φ̂34

δab . (3.77)

The connected part consists of two fermion-scalar H-diagrams:

〈 ˆ̄Ψ(τ1)Ψ̂(τ2)φ̂a(τ3)φ̂b(τ4) 〉conn. = + . (3.78)

After using the rules for the Σ-matrices, we find that the first diagram gives

= ±g2
0(s̄1 ΣaΣbF13,24 s2) , (3.79)

with + if φa is a scalar and − if it is a pseudoscalar,7 and where the integral F13,24 is

defined in (C.15) and solved in (C.18). Putting everything together, the unit-normalized

correlator reads

fab12 (χ) =δab(s̄1 · s2)

± (s̄1ΣaΣbs2)
ε

8κ1

χ

(1 − χ)2

(

χ3 logχ− (1 − χ)2(2 + χ) log(1 − χ)
)

+ O(ε2) . (3.80)

We expand this correlator in the 1d blocks of eq. (3.57) for the case of equal external

scalars, such that

Σa = Σb , ΣaΣb = 1Nf
14 . (3.81)

7In this formulation, the index b can be kept arbitrary since we have to commute Σb with γ-matrices twice.
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We find:

faa12 (χ) = g0(χ) +
ε

4κ1
g2(χ) +

19ε

240κ1
g4(χ) − ε

8κ1
∂∆g4(χ) + . . . , (3.82)

where we emphasize that no sum is implied by the repetition of indices on the left-hand

side. Since the correlator and the block expansion have the same expression for φ̂1 and

tâ, we find the same relations for the OPE coefficients λφ̂1φ̂1O
and λttO, which we denote

as λφ̂aφ̂aO
for brevity.

From the block expansion we see that for s±, which has dimension ∆s±
∼ 2, we obtain

λ ˆ̄ΨΨ̂s+
λφ̂aφ̂as+

+ λ ˆ̄ΨΨ̂s−

λφ̂aφ̂as−
=

ε

4κ1
, (3.83)

(∆s+
− 2)λ ˆ̄ΨΨ̂s+

λφ̂aφ̂as+
+ (∆s−

− 2)λ ˆ̄ΨΨ̂s−

λφ̂aφ̂as−
= 0 . (3.84)

Using the expressions for ∆s±
and λφ̂1φ̂1s±

, λtts±
in eqs. (3.39) and (3.43), we can extract

the OPE coefficients involving the fermions:

λ ˆ̄ΨΨ̂s±

= ε
(Nκ2 − 4(N − 4)(N + 8) ± κ3)

√

κ3 ± 4(N − 4)(N + 8) ± (N − 2)κ2

16κ1κ2
√
κ3

√
N − 1

+ O(ε2) . (3.85)

As expected from the conformal block expansion in eq. (3.74), the OPE coefficients start

at O(ε).

4 Correlators of bulk operators with a defect

The three- and four-point functions of scalars and fermions on the defect provided us with

important defect data. In addition, we can also study bulk operators in the presence of the

line defect, and obtain new data such as bulk-to-defect OPE coefficients. In this section

we study two-point functions of bulk and defect operators, as well as two-point functions

of bulk scalars. At the end of the section we give a short outlook on how to generalize our

analysis to the case of fermionic operators.

4.1 One-point functions

Squared scalar. We computed the one-point function of φa in section 2 to extract the

β-function of the defect coupling. The coefficient of this one-point function, aφ, appears in the

bulk channel expansion of the two-point function of φa in the presence of the line defect. One-

point function coefficients of other operators appear as well, the first one being the one-point

function of φ2 and the traceless symmetric tensor T ab = φaφb − δab

N (φc)2.8 These observables

were computed for the O(N) model in [55]. At O(ε) there are four diagrams that contribute:

〈〈φaφb(x)〉〉 = + + + + O(ε2) . (4.1)

8Note that T ab does not appear for the GNY model, where N = 1.
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The diagrams not including any fermionic contributions were computed in [55, 69, 70], while

the diagram with the fermionic loop cancels the wavefunction renormalization of φa. In

order to compute the one-point function coefficient, we need the renormalization factor,

anomalous dimension, and normalization factor of φ2 and T ab. The anomalous dimensions

for the GNY and NJLY models can be found in [47], while the others can be obtained from

computing the corrections to the propagator 〈φaφb(x1)φcφd(x2)〉. Generalized for N = 1, 2, 3,

we find for φ2 up to O(ε) [47, 75]

Zφ2 = 1− 1

ε(4π)2

(

λ(N+2)

3
+4g2Nf

)

+O
(

ε−2
)

, (4.2)

γφ2 =
λ(N+2)

3(4π)2
+

4g2Nf

(4π)2
+O(λ2,g4,λg2) , (4.3)

Nφ2 =
Γ
(

d
2

)√
2N

2π
d
2 (d−2)

{

1−ε
(

2(ℵ+1)(N+8)(κ1+N−4)+κ2ℵ(N+2)

4κ1(N+8)

)

+O(ε2)

}

. (4.4)

For T ab, we obtain the following results:

ZT = 1 − 1

ε(4π)2

(

2λ

3
+ 4g2Nf

)

+ O
(

ε−2
)

, (4.5)

γT =
2λ

3(4π)2
+

4g2Nf

(4π)2
+ O(λ2, g4, λg2) , (4.6)

Nφ2 =
Γ
(

d
2

)

√
2π

d
2 (d− 2)

{

1 − ε

(

(ℵ + 1)(N + 8)(κ1 +N − 4) + κ2ℵ
2κ1(N + 8)

)

+ O(ε2)

}

, (4.7)

from which we can extract the one-point function coefficients aφ2 and aT :

aφ2 =
(4 −N)(N + 8)

2κ2

√
2N

+ O(ε) , aT =
(4 −N)(N + 8)

2κ2

√
2

+ O(ε) . (4.8)

The O(ε)-terms are lengthy and can be found in the attached Mathematica notebook.

Fermion bilinear. Another interesting one-point function is 〈〈 Ψ̄Ψ(x) 〉〉, which appears in

the two-point function 〈〈 Ψ̄(x1)Ψ(x2) 〉〉. In this case, Ψ̄Ψ is not a conformal primary, but

rather a conformal descendant of φ. This can be seen from its conformal dimension being

∆φ + 2 + O(ε2) [47]. The one-point function can be computed through Feynman diagrams,

and receives a contribution at O(
√
ε). We will only consider the GNY and NJLY model

here, for which the one-point function is given by:

〈〈 Ψ̄Ψ(x) 〉〉 = + O(ε) . (4.9)

This egg-shaped diagram is new and has the following expression:

= NΨ̄Ψ

g0h0Nf

16π3|x⊥|3 tr Σ1 . (4.10)
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Hence, the one-point function coefficient can be written as

〈〈 Ψ̄Ψ(x) 〉〉 =
aΨ̄Ψ

|x⊥|∆Ψ̄Ψ

, aΨ̄Ψ = −
√

(4 −N)(N + 8)√
κ1κ2

8π2Nf

(4π)2

√
ε+ O(ε) . (4.11)

4.2 Bulk-to-defect two-point functions

The correlators of a bulk and a defect operator give us the OPE coefficients of the bulk-to-

defect OPE. The fundamental bulk scalar φa can be decomposed into φ̂1 and tâ, and the

two-point function between these operators is given by the following diagrams:

〈〈φa(x1)φ̂b(τ2) 〉〉 = + + + O(ε2) . (4.12)

The first diagram does not involve any integration, while the second is a self-energy

correction. The third diagram is less trivial, and was computed in [69]. Adding all diagrams

and the proper renormalization terms, we obtain the following bulk-to-defect OPE coefficients:

〈〈φa(x1)φ̂1(τ2)〉〉=
δa1NφNφ̂1 b̂φφ̂1

(x̂2
12̂

)∆̂
φ̂1 |x⊥

1 |∆φ−∆̂
φ̂1

, b̂φφ̂1 =1+ε
3(4−N)(log2−1)

2κ1
+O(ε2), (4.13)

〈〈φa(x1)tb̂(τ2)〉〉=
δab̂NφNtb̂φt

(x̂2
12̂

)∆̂t |x⊥
1 |∆φ−∆̂t

, b̂φt=1+ε
(4−N)(log2−1)

2κ1
+O(ε2). (4.14)

4.3 Two-point functions of bulk scalars

In the presence of a defect, the two-point function of bulk operators is no longer fixed by

kinematics. Instead, it depends on two defect cross-ratios determined by the distance to

the defect and the distance between the bulk operators. The scalar two-point function

then takes the form

〈〈φa(x1)φb(x2) 〉〉 =
N 2
φFab(r, w)

|x⊥
1 |∆φ |x⊥

2 |∆φ
, (4.15)

where Fab(r, w) is a function of the cross-ratios

r +
1

r
=
τ2

12 + (x⊥
1 )2 + (x⊥

2 )2

|x⊥
1 ||x⊥

2 | , w +
1

w
=

2x⊥
1 · x⊥

2

|x⊥
1 ||x⊥

2 | . (4.16)

It is sometimes convenient to switch to different cross-ratios z, z̄, which are related to r, w as

z = rw , z̄ =
r

w
. (4.17)

The diagrams contributing to this two-point function, up to O(ε), are shown in figure 2. They

consist of diagrams we already encountered when computing the one-point function of φa, of

diagrams coming from the wavefunction renormalization in the bulk, and one non-trivial one.
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Figure 2. Contributions to the two-point function 〈〈φa(x1)φb(x2) 〉〉 up to O(ε). The defect is denoted

by a solid line, scalars by a dotted line, and fermions by solid arrowed lines. Bulk scalar couplings λ0

are represented by a black dot, bulk Yukawa couplings g0 by a red dot and defect couplings h0 by a

blue dot.

The non-trivial diagram is the X-shaped diagram, which was computed for a line defect

in the O(N) model in [69, 70]. Evaluating it in d = 4 gives:

= −
λ0h

2
0 Γ4

(

d
2

)

32π2d(d− 2)4

∫

dτ3 dτ4X1234

=
3λ0h

2
0H(r, w)

768π4|x⊥
1 ||x⊥

2 | + O(ε2) , (4.18)

with X1234 defined in (C.3), and where H(r, w) contains one unevaluated integral over a

Schwinger parameter α [69]:

H(r, w) = −
∫ ∞

0
dα

√

zz̄

(α+ 1)(α+ zz̄)(α+ z)(α+ z̄)
tanh−1

√

(α+ z)(α+ z̄)

(α+ 1)(α+ zz̄)
. (4.19)

Even though the integral is unevaluated, the series expansions in the bulk and defect channels

are known.

Adding all diagrams in figure 2 and properly renormalizing them, we obtain

Fab(r, w) = δabξ−∆φ + δa1δb1a2
φ + ε(δab + 2δa1δb1)

3(4 −N)

4κ1
H(r, w) + O(ε2) . (4.20)

Here, aφ is the one-point function coefficient given in eq. (2.33). We see that the general

form is the same as in [69, 70], except for additional fermionic contributions to the coefficient

in front of H(r, w). We can expand this expression in bulk and defect conformal blocks to

extract CFT data, and check with the explicit calculations in the previous sections.

4.3.1 Defect channel

In the defect channel, the correlator Fab(r, w) contains two types of operators: O(N)−singlets

ÔS
s,n and O(N)−vectors ÔV

s,n. Their conformal dimensions are given by

∆
Ô

S,V
s,n

= ∆φ + s+ n+ γ
Ô

S,V
s,n

. (4.21)
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These operators are in general degenerate, except for n = 0, where they can be expressed

as derivatives of φ̂1 and t:

ÔS
s,0 ∼ ∂⊥

i1 . . . ∂
⊥
is φ̂1 , ÔS

s,0 ∼ ∂⊥
i1 . . . ∂

⊥
is tâ , (4.22)

where in = 1, . . . , d− 1 are the directions transverse to the defect. For higher n, one needs to

solve a mixing problem. This has been done in [38, 55] for the O(N) model and repeated

in section 3.2 for the case n = 1, s = 0 to obtain the anomalous dimension γs±
. For general

n > 0, s we give the averaged CFT data.

The correlator Fab(r, w) can be decomposed in the two symmetry channels S (singlet)

and V (vector):

Fab(r, w) = δa1δb1F̂S(r, w) + (δab − δa1δb1) F̂V (r, w) , (4.23)

F̂S(r, w) = a2
φ +

1

ξ∆φ
+ ε

3(4 −N)

4κ1
H(r, w) , F̂V (r, w) =

1

ξ∆φ
+ ε

(4 −N)

4κ1
H(r, w) , (4.24)

with

ξ :=
(1 − rw)(w − r)

rw
=

x2
12

|x⊥
1 ||x⊥

2 | . (4.25)

Each of the channels can be composed in defect conformal blocks, which are known in

closed form [2]:

F(z, z̄) =
∑

Ô

2−s b̂2
OÔ

f̂
∆̂,s

(z, z̄) , (4.26)

f̂
∆̂,s

(z, z̄) = (zz̄)
∆̂

2

(

z̄

z

)
s
2

2F1

(

p

2
, ∆̂; ∆̂ + 1 − p

2
; zz̄

)

2F1

(

−s, q
2

− 1; 2 − q

2
− s;

z

z̄

)

, (4.27)

where p = 1 is the dimension of the defect, q = d − 1 the codimension, s is the transverse

spin and we have switched variables from r, w to z, z̄ using the definition in eq. (4.17). The

factor of 2−s ensures that the blocks have a convenient normalization.

To expand the correlator in terms of these blocks, we need to know how to decompose

the function H(r, w). It turns out there is an elegant expression found in [69, 70]:

H(r, w) =
∞
∑

s=0







Hs −Hs− 1

2

s+ 1
2

− 1
(

s+ 1
2

)2 +
1

s+ 1
2

∂
∆̂






f̂s+1,s(r, w) . (4.28)

The derivative of the block gives us the anomalous dimension of the corresponding operator,

and hence eq. (4.28) provides a straightforward way to extract defect CFT data.

The constant terms in eq. (4.24) correspond to the defect identity given by f̂0,0(r, w).

This leaves us with the factors ξ−∆φ , whose expansion in defect blocks is well known [4].

Combining all the pieces together we are ready to extract the CFT data. Let us start

with the singlet channel. Expanding in conformal blocks gives us

F̂S(r, w) = a2
φ f̂0,0(r, w) +

∞
∑

s=0

2−s b̂2
φÔS

s,0

f̂
∆̂

ÔS
s,0
,s

(r, w) + O(ε2) , (4.29)
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where up to O(ε) only operators with n = 0 appear. Combining eq. (4.29) and eq. (4.24),

and using the expression in eq. (4.28), we obtain the following OPE coefficients:

b̂φÔS
s,0

=2
s
2

{

1 +
ε

4κ1

(

6(N − 4)

(2s+ 1)2
− (κ1(2s+ 1) + 3(N − 4))

(2s+ 1)
Hs

+ 3(N − 4)Hs− 1

2

)

+ O(ε2)

}

. (4.30)

For s = 0, we see that this matches exactly the bulk-to-defect OPE coefficient b̂φφ̂1
given

in eq. (4.14). As stated above, to extract the anomalous dimension we only have to look

at the derivative term in eq. (4.28). This results in

∆
ÔS

s,0
= ∆φ + s+ n+

3(4 −N)ε

4κ1

(

s+ 1
2

) + O(ε2)

= 1 + s+
(N − 4)(s− 1)ε

κ1(2s+ 1)
+ O(ε2) . (4.31)

For s = 0, this matches with ∆φ̂1
given in eq. (3.1), while for s = 1 this should give us the

dimension of the displacement ∆D = 2. Indeed, we see that for s = 1, the O(ε) correction

is zero and the dimension is protected and equal to 2.

We are ready to move on to the vector channel. The expansion in conformal blocks

results in

F̂V (r, w) =
∞
∑

s=0

2−s b̂2
φÔV

s,0

f̂
∆̂

ÔV
s,0
,s

(r, w) + O(ε2) , (4.32)

where we see that also here up to O(ε), only the n = 0 family of operators appears. The

defect identity is not present in this case. We follow the same procedure as for the singlet

channel, and extract the bulk-to-defect OPE coefficients

b̂φÔV
s,0

= 2
s
2

{

1 +
ε(N − 4)

4κ1

(

2s+ 3

(2s+ 1)2
+

2sHs +Hs− 1

2

(2s+ 1)

)

+ O(ε2)

}

. (4.33)

We can now compare this for s = 0 with b̂φt in eq. (4.14) and find a perfect match. The

anomalous dimensions are once again read off from the derivative term in the expansion of

H(r, w), and result in the following conformal dimensions:

∆̂
ÔV

s,0
= ∆φ + s+ n+

ε(4 −N)

4κ1

(

s+ 1
2

) + O(ε2) = 1 + s+
ε(N − 4)s

κ1(2s+ 1)
+ O(ε2) . (4.34)

As a check, we see that for s = 0 the O(ε) term disappears and we find the protected

dimension of the tilt ∆t = 1.

4.3.2 Bulk channel

In the bulk channel, the operators that appear in the φa × φb OPE are O(N) singlets OS
ℓ,n,

where the first one is φ2, and traceless symmetric representations OT
ℓ,n, the first one of which
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is T ab. The operators in the lowest twist family after φ2 and T ab can be written as

OS
ℓ,0 ∼ ∂µ1

. . . ∂µℓ
(φa)2 , OT

ℓ,0 ∼ ∂µ1
. . . ∂µℓ

(

φaφb − δab

N
(φc)2

)

, (4.35)

where ℓ ≥ 2. In the free theory, they are the higher-spin currents and hence their conformal

dimension and OPE coefficients are protected up to O(ε) and given by the conformal

dimension of φ and their spin. The CFT data is given by

∆
O

S,T

ℓ,0

= 2∆φ + ℓ+ O(ε2) , (4.36)

λ2
φφOS

ℓ,0

=
2ℓ+1(∆φ)2

ℓ

Nℓ!(2∆φ + ℓ− 1)ℓ
+ O(ε2) , (4.37)

λ2
φφOT

ℓ,0

= Nλ2
φφOS

ℓ,0

+ O(ε2) . (4.38)

Operators with n > 0 are not protected up to this order, and are also degenerate. The

correlator can be decomposed in the two symmetry channels as:

Fab(r, w) = δabFS(r, w) +

(

δa1δb1 − δab

N

)

FT (r, w) , (4.39)

FS(r, w) =
1

ξ∆φ
+
a2
φ

N
+
ε(4 −N)(N − 2)

4Nκ1
H(r, w) , (4.40)

FT (r, w) = a2
φ +

ε(4 −N)

2κ1
H(r, w) . (4.41)

The decomposition in bulk channel blocks is more difficult, since they are not known in closed

form. One should also keep in mind that the correlator gets multiplied by a factor of ξ∆φ

coming from the prefactor. However, as pointed out, eq. (4.20) has a similar form to the

correlator 〈〈φaφb〉〉 computed for the O(N) model in [69, 70], and we can reuse known results.

In particular, they found an expression for H(r, w) in terms of bulk blocks as well:

ξH(r, w) = (∂∆ − 1 − log 2)f0
2,0(r, w) + O(ǫ) , (4.42)

where f∆12

∆,ℓ (r, w) are the bulk channel conformal blocks, which are known as a double

sum [2, 80].

From eq. (4.42) we see that H(r, w) only corrects φ2, hence, for the CFT data of the other

operators we can directly use the results from [69, 70]. The other terms in eq. (4.41), after

multiplication with ξ∆φ , are a constant term that corresponds to the bulk identity f0
0,0(r, w),

and a term proportional to ξ∆φ , whose expansion in bulk blocks is given in equation (167)
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of [69]. Putting eveything together, the expansion of FS,T in blocks can be written as follows:

ξ∆φFS(r, w) = 1 + λφφφ2 aφ2f∆
φ2 ,0 +

∞
∑

ℓ=2,4,...

2−ℓ λφφOS
ℓ,0
aOS

ℓ,0
f0

2∆φ+ℓ,ℓ

+
∞
∑

ℓ=0,2,...

2−ℓ λφφOS
ℓ,1
aOS

ℓ,1
f0

2∆φ+ℓ+2,ℓ + O(ε2) , (4.43)

ξ∆φFT (r, w) =λφφT aT f∆T ,0 +
∞
∑

ℓ=2,4,...

2−ℓ λφφOT
ℓ,0
aOT

ℓ,0
f0

2∆φ+ℓ,ℓ

+
∞
∑

ℓ=0,2,...

2−ℓ λφφOT
ℓ,1
aOT

ℓ,1
f0

2∆φ+ℓ+2,ℓ + O(ε2) , (4.44)

where the bar indicates an average over CFT data since mixing needs to be solved before

one is able to extract the individual OPE and one-point coefficients. We can now extract

the CFT data of all operators except φ2 and T . For the O(N) singlets, using eq. (4.38), we

extract the following one-point functions of twist-two operators:

aOS
ℓ,0

=

(4 −N)(N + 8)Γ
(

ℓ+1
2

)2
√

21−ℓΓ(ℓ+1)

NΓ(ℓ+ 1

2 )

π
3

4κ2 ℓ2Γ
(

ℓ
2

)2

{

1 + ε

(

−
2κ2a

(1)
φ

(N − 4)(N + 8)

+
(N − 4)

2κ1

(

2H ℓ−1

2

+H2ℓ − 2Hℓ −Hℓ− 1

2

+ 2 log 2
)

)

+ O(ε2)

}

, (4.45)

where a
(1)
φ is the O(ε) correction to aφ, which can be found in the attached Mathematica

notebook. The averaged CFT data for the higher-twist n = 1 operators is given by

λφφOS
ℓ,1
aOS

ℓ,1
= ε

(ℓ+ 1)2(4 −N)(N + 8)Γ
(

ℓ+1
2

)3

64πκ2NΓ
(

ℓ
2 + 2

)

Γ
(

ℓ+ 3
2

) + O(ε2) . (4.46)

For the traceless symmetric operators, we find the following conformal dimensions and

OPE coefficients:

aOT
ℓ,0

=

(4 −N)(N + 8)Γ
(

ℓ+1
2

)2
√

21−ℓΓ(ℓ+1)

Γ(ℓ+ 1

2 )

π
3

4κ2 ℓ2 Γ
(

ℓ
2

)2

{

1 + ε

(

−
2κ2a

(1)
φ

(N − 4)(N + 8)

+
(N − 4)

(

2H ℓ−1

2

− 2Hℓ +H2ℓ −Hℓ− 1

2

+ log(4)
)

2κ1

)

+ O(ε2)

}

(4.47)

λφφOT
ℓ,1
aOT

ℓ,1
=ε

(ℓ+ 1)2(N + 8)Γ
(

ℓ+1
2

)3

128πΓ
(

ℓ
2 + 2

)

Γ
(

ℓ+ 3
2

) + O(ε2) . (4.48)

To compare the expansion in eq. (4.44) with the one-point functions of φ2 and Tab computed

in section 4.1, we need to know the bulk OPE coefficients λφφφ2 and λφφT . These can be
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Figure 3. Contributions to the two-point function 〈〈 Ψ̄(x1)Ψ(x2) 〉〉 up to O(ε). The defect is denoted

by a solid line, scalars by a dotted line, and fermions by solid arrowed lines. Bulk Yukawa couplings

g0 are represented by a red dot and defect couplings h0 by a blue dot. The first and third diagrams

correspond to the disconnected part of the correlator, while the second and fourth are connected and

are the diagrams which make the correlator different to a defectless two-point function.

easily calculated and are given by

λφφφ2 = δab
(

√

2

N
− εκ2(N + 2)

2
√

2Nκ1(N + 8)
+ O(ε2)

)

, (4.49)

λφφT =
√

2 − εκ2√
2κ1(N + 8)

+ O(ε2) . (4.50)

With these OPE coefficients and the one-point functions in eq. (4.8), we can check the

block expansion in eq. (4.44) and see that it indeed reproduces the desired conformal data

of φ2 and T ab.

4.4 Towards two-point functions of bulk fermions

We conclude this section by commenting on how to generalize the two-point function analysis

when the external operators are fermions. This is an interesting problem as the ε-expansion

was originally designed to capture physics in three dimensions, however four-dimensional

fermions are very different objects compared to three-dimensional fermions. In order to

understand how fermionic correlators in d = 3 are encoded in the ε-expansion, we can start

by calculating them in perturbation theory. We do not bring this calculation to completion

in this section, as the diagrams involved are a lot more challenging than the ones we have

studied so far. Nevertheless we sketch out the computation, and in the conclusion we discuss

in more detail possible future directions. Just as for the one-point function of the fermion

bilinear, here we will also restrict ourselves to the GNY and NJLY models.

The disconnected part of the correlator corresponds to the wavefunction renormaliza-

tion of the bulk fermion, and the diagrams are the first and third ones shown in 3. The

Feynman diagrams contributing to the connected part of the fermionic two-point function

〈〈 Ψ̄(x1)Ψ(x2) 〉〉 up to O(ε) are given in figure 3 (second and fourth diagrams).

The Y -diagram in figure 3 is the first connected diagram at O(g) ∼ O(
√
ε). Setting

for convenience τ1 = τ2 = 0, it is given by

= N 2
Ψg0h0s̄1

∫

dτ3

∫

d4x4 /∂1I14 Σ1 /∂2I24I34 s2

= − π g0h0

8(|x⊥
1 | + |x⊥

2 |) s̄1

(

/x1/x2

|x⊥
1 ||x⊥

2 | + 1

)

s2 , (4.51)
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where we have used the fermionic star-triangle identity given in (C.17). The remaining

one-dimensional integral is trivial to compute.

At O(ε) we have one H-diagram that connects scalars insertions on the line to the

external fermions through two Yukawa vertices. This diagram contains a challenging ten-

dimensional (finite) integral that we only solve partially for now. We provide however a

solution for the 4d bulk integral, i.e., before performing the τ3 , τ4 integrals. After Wick

contractions the diagram gives

= −N 2
Ψ g

2
0h

2
0 s̄1

∫

dτ3

∫

dτ4

∫

d4x5

∫

d4x6 /∂1I15Σ1/∂5I56Σ1/∂6I26I35I46 s2 .

(4.52)

Using the fact that Σ1 = 1, and that one four-dimensional integral can be lifted by using

the fermionic star-triangle identity given in (C.17), we then have

= N 2
Ψπ

2 g2
0h

2
0 s̄1 /∂1

∫

dτ3

∫

dτ4 I24

(∫

d4x5 /x54 I15I25I35I45

)

/x24 s2 . (4.53)

The tensor integral between the brackets can be solved by applying tensor decomposition.

There exists many automated tools to perform this step, and here we use the package

X [81]. We find

J123;4 :=

∫

d4x5 /x54 I15I25I35I45 =
2

φK
j123;4 , (4.54)

with φK the Kibble function defined as

φK := Φ1234 + Φ1324 + Φ1423 + Ψ123 + Ψ124 + Ψ134 + Ψ234 , (4.55)

Φ1234 = − 1

64π6I12I34

(

1

I12
+

1

I34
− 1

I13
− 1

I14
− 1

I23
− 1

I24

)

, (4.56)

Ψ123 = − 1

64π6I12I13I23
, (4.57)

and with

j123;4 := 6f1234 X1234 + /g123;4
Y123 + /g124;3

Y124 + /g134;2
Y134 + /g234;1

Y234 . (4.58)

The X- and Y -integrals are defined in (C.3) and solved in (C.4) and (C.8). The prefactor

function 6f1234 can be expressed in terms of propagators and read

6f1234 = a1234 /x1 + a2341 /x2 + a3412 /x3 + (a4123 − 1)/x4 , (4.59)

with

a1234 := − 1

I23I24I34

(

2 +
I24I34

I14I23
+
I23I34

I13I24
+
I23I24

I12I34

−I34

(

1

I13
+

1

I14

)

− I24

(

1

I12
+

1

I14

)

− I23

(

1

I12
+

1

I13

))

. (4.60)
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The function /g123;4
can also be expressed in an elegant way as

/g123;4
:= b123;4/x1 + b231;4/x2 + b312;4/x3 + c123/x4 , (4.61)

with

b123;4 :=
1

I23

(

1

I12
+

1

I13
− 1

I23
+

1

I24
+

1

I34
− 2

I14

)

−
(

1

I12
− 1

I13

)(

1

I24
− 1

I23

)

, (4.62)

c123 :=
1

I2
12

+
1

I2
13

+
1

I2
23

− 2

(

1

I12I13
+

1

I12I23
+

1

I13I23

)

. (4.63)

This is as far as we can go for now and we are left with a difficult two-dimensional integral

as well as a slashed derivative with respect to x1. We note however that this integral can

efficiently be computed numerically.

There is another path that one can take in order to try and solve this integral. Instead

of computing the bulk integrals, one could start with the defect integral over τ3 , τ4 and use,

e.g., Schwinger parametrization for computing the remaining eight-dimensional integral. This

approach was indeed useful for the computation of the X-diagram in the scalar two-point

case, however here it is not clear at present how these 8 integrals could be solved efficiently.

5 Conclusions

In this work we studied defect correlators for line defects in fermionic models using the

ε-expansion. Our setup is a natural generalization of line defects previously considered in

O(N) models. Indeed, the definition of the defect as the integral of a scalar along a line is

identical to the magnetic line defect studied in [38, 55]. The main difference is the presence

of fermions in the bulk, which induce new fermionic excitations on the 1d defect.

We calculated a host of 1d correlators, putting special emphasis on the new fermionic

excitations. Closed-form expressions for four-point functions on the line were obtained in

terms of the unique 1d cross-ratio. These correlators can be used to easily extract CFT data

by means of a conformal block expansion, and can also be used as input in the numerical

bootstrap. The numerical bootstrap for magnetic line defects was initiated in [38]. The

numerical bootstrap plots should accommodate the models studied in this paper, where the

numbers of fermions Nf is a free parameter. One can also use the data calculated here to

steer the numerics, and hopefully solve particular models of interest. In table 1 it is shown

how the presence of fermions affects the CFT data for a low number of fermions, and for

N = 3, which is the particular case considered in [38]. One remarkable observation is that

the scaling dimension of the lowest-lying scalar φ̂1 decreases for higher values of Nf . Because

of this, the magnetic line defect in fermionic models seems to explain the numerics of [38]

better than the same line defect in the O(3) model. It would be interesting to see if the

inclusion of fermionic correlators to the numerics will improve the bounds.

In addition to correlators constrained to the line, we also studied how excitations in

the bulk are modified by the presence of the defect. We focused on two-point functions,

which have non-trivial kinematics and depend on two conformal invariants. For O(N) models

this analysis had been done recently in [69, 70]. Due to the similarity of the Feynman
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Nf = 0 Nf = 1 Nf = 2 Nf → ∞
∆t 1 1 1 1

∆φ̂1 1 + ε 1 + 2ε
3 1 + ε

5 1

∆s−
2 + 0.35502 2 + 0.78832 2 + 0.75055 2

∆T 2 + 0.1̄8ε 2 + 0.433ε 2 + 0.290̄9ε 2

∆A 3 3 3 3

∆V 2 + 1.1̄8ε 2 + 1.100ε 2 + 0.490̄9ε 2

λttφ̂1 0.947226ε 2.1893ε 1.6075ε 0

λφ̂1φ̂1φ̂1 2.84168ε 6.56789ε 4.82249ε 0

Table 1. Values of the conformal dimensions and OPE coefficients of the lowest-lying operators in

the φ̂1 × φ̂1, tâ × tb̂ and φ̂1 × tâ OPEs at first order in ε, see (3.61) to (3.63). The values are given

for a pinning line defect in the O(3) model without fermions, and a pinning line defect in the chiral

Heisenberg model with Nf = 1, 2,∞.

diagram calculation, we could recycle several of their results, in particular the non-trivial

integral presented in (4.19).

Having understood two-point functions of scalars, the next step is to study two-point

functions of fermions. This analysis comes with several conceptual and technical challenges.

The question of how to analytically continue fermions across dimensions has not been studied

systematically, and a naive counting of tensor structures already shows disagreement between

three and four dimensions. This problem opens several avenues for future research. On

the one hand there is the explicit perturbative calculation, which we sketched at the end of

section 4. Regardless if one knows how to interpolate fermions across dimensions, the Yukawa

models considered here are well-defined pertubartive CFTs, and correlators involving fermions

exist and can be calculated. On the other hand, one can also investigate the kinematics of

fermion correlators at a more fundamental level, understanding for example the structure

of conformal blocks and how they depend on the spacetime dimension d. We should point

out that, even though in this paper we focused on a line defect, the questions raised above

are relevant for standard CFTs without defects. For example, the following bulk four-point

function 〈Ψ̄Ψφφ〉 already exhibits interesting non-trivial behavior across dimensions [82]. To

our knowledge this type of correlator has never been studied using the ε-expansion, and

would form an excellent starting point for the study of fermions across dimensions.
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A Spinor conventions

In this appendix we describe our conventions for the spinor fields for the cases N = 1, 2,

which can be straightforwardly generalized to the case N = 3. In the action given in (2.1),

the fermions Ψ are presented as vectors of Dirac fields ψi (i is the flavor index), which can

be decomposed into two basic Weyl spinors as follows:

ψA =

(

χα
ξ†α̇

)

, ψ̄A =
(

ξα χ†
α̇

)

, (A.1)

with A = 1, 2, 3, 4, and α, α̇ = 1, 2. The Weyl spinors are two-component vectors defined as

χ =

(

χ1

χ2

)

, ξ† = (ξ1 ξ2) . (A.2)

Spinors with an undotted index α transform as left-handed spinors (1, 0), while right-handed

spinors (0, 1) are complex conjugates of the (1, 0) representation and carry a dotted index

α̇. The dot is here to indicate the transformation property, i.e.,

χ†
α̇ = (χα)† . (A.3)

Indices can be raised and lowered in the following way:

χα = ǫαβχβ = −ǫβαχβ , (A.4)

which implies

χαξα = −χαξα . (A.5)

Here the tensor ǫαβ is defined as

ǫ12 = −ǫ21 = ǫ21 = −ǫ12 = +1 , (A.6)

and a similar definition can be formulated for dotted indices:

ǫα̇β̇ = ǫαβ , ǫα̇β̇ = ǫαβ . (A.7)

For external operators it is convenient to use polarization spinors sA, s̄A in order to

avoid cluttering of the indices. We define

ψi(s, τ) := sAψi,A(τ) , ψ̄i(s, τ) := s̄Aψ̄i,A(τ) , (A.8)

and a similar definition holds for the Weyl fermions as well.

The four-dimensional (Euclidean) γ-matrices are defined in the chiral representation as

(γµ)AB :=

(

0 (σµ)αβ̇
(σ̄µ)α̇β 0

)

, (A.9)

where we have introduced

(σµ)αβ̇ :=
(

σ0 , iσi
)

, (σ̄µ)α̇β :=
(

σ0 ,−iσi
)

. (A.10)
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The Pauli matrices σ0 , σi are defined as

σ0 = 12 , σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (A.11)

The γ-matrices satisfy the Euclidean Clifford algebra

{γµ, γν}AB = 2δµν1AB , (A.12)

and we can define an additional γ-matrix as

(γ5)AB :=

(

1
β
α 0

0 −1
α̇
β̇

)

. (A.13)

This definition ensures that γ5 satisfies the following properties:

{γ5 , γµ} = 0 , (γ5)† = γ5 , (γ5)2 = 1 . (A.14)

As mentioned above, it is easy to generalize these conventions to higher-dimensional γ-matrices,

keeping the representation arbitrary and relying on (2.5) and (2.6).

B More details on the β−functions

The general β−function for the bulk coupling constants λabcd,Σa, as well as the anomalous

dimensions, are given in the appendix of [47] up to O(ε2). The renormalization constants

up to O(ε2) are:

Zλ = 1 +
1

(4π)2ε

(

(N + 8)λ

3
+ 8Nfg

2 − 4(N + 8)Nfg
2λ

6(4π)2
− 12Nfg

4

λ
+

12Nfg
6

π2λ

+
4(12 − 5N)Nfg

4

2(4π)2
− (14 + 3N)λ2

6(4π)2

)

+
1

(4π)4ε2

(

− 96Nf (4 + 4Nf −N)
g6

λ
+ 4(N + 8)Nfg

2λ

+ 12Nf (4Nf − 2(N + 4)) g4 +
(N + 8)2

9
λ2

)

+ O(λ3, g6, λ2g2, λg4) , (B.1)

Zg = 1 +
1

(4π)2ε

(

κ1g
2 − N + 2

3(4π)2
g2λ− 9N2 − 40N − 32 + 24κ1

8(4π)2
g4 +

N + 2

72(4π)2
λ2

)

+
1

(4π)4ε2

(

(N + 2)(5κ1 − 32)

72(4π)2
g2λ2 +

3κ2
1

2
g4

)

+ O(λ3, g6, λ2g2, λg4) , (B.2)

Zφ = 1 +
1

(4π)2ε

(

−2Nfg
2 +

4(N + 4)Nf

8(4π)2
g4 − N + 2

72(4π)2
λ2
)

+
1

(4π)4ε2

(

(N − 4)2 − κ2
1

2
g4

)

+ O(λ3, g6, λ2g2, λg4) , (B.3)

ZΨ = 1 +
1

(4π)2ε

(

−N

2
g2 +

N(7N + 6(κ1 − 4))

16(4π)2
g4
)

− 1

(4π)4ε2

(

N(N − 4κ1)

8
g4
)

+ O(λ3, g6, λ2g2, λg4) . (B.4)
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The β−function for the defect coupling was computed up to O(ε2) in [51]. The corre-

sponding renormalization factor is given by

Zh = 1 +
1

(4π)2ε

{

λh2

12
− g2λh2Nf

3(4π)2
−
(

π2 − 6
)

g4h22Nf

9(4π)2

− g4(N + 4)Nf

4(4π)2
+ g22Nf + λ2

(

−h2(N + 8)

108(4π)2
− h4

48(4π)2
+

N + 2

72(4π)2

)}

+
1

(4π)4ε2

{

g2λh2Nf

2
− g4h24Nf

3
+ g4 (6Nf + 8 − 2NN) + λ2

(

h2(N + 8)

108
+
h4

96

)}

+ O(λ3, g6, λ2g2, λg4) . (B.5)

Let us look at each model individually.

B.1 Gross-Neveu-Yukawa model (N = 1)

We start with considering the GNY model, which contains a single scalar field φ and Nf

fermions. Hence, the matrix Σa = Σ1 in eq. (2.1), which corresponds to Γi in [47], is given

by the identity matrix:

Σ = 1Nf
14 . (B.6)

The β−functions up to O(ε2) were computed in [76] and we adopted the same conven-

tion as [47]:

βGNY
λ = −ελ+

1

(4π)2

(

8g2λNf − 48g4Nf + 3λ2
)

− 1

(4π)4

(

−12g2λ2Nf + 28g4λNf + 384g6Nf − 17λ3

3

)

+ O(λ3, g6, λ2g2, λg4) ,

(B.7)

βGNY
g = −g ε

2
+

1

(4π)2

(

g3(4Nf + 6)

2

)

+
1

(4π)4

(

−2g3λ− 3

4
g5(16Nf + 3) +

gλ2

12

)

+ O(g6) .

(B.8)

The Wilson-Fisher-Yukawa (WFY) fixed point can be reached for the following values of

the couplings at one loop in ε := 4 − d:

(gGNY
⋆ )2 = (4π)2

(

ε

2κ1
+
ε2(2κ1(κ2 +288)+15(4κ2 −99))

432κ3
1

+O(ε3)

)

, (B.9)

λGNY
⋆ = (4π)2

{

εκ2

6κ1
+

ε2

216κ3
1(κ1 +κ2 −6)

(

−12κ3
1(κ2 −36)

+2κ2
1(97κ2 +72)+15κ1(47κ2 −1188)−2925κ2 +40500

)

+O(ε3)

}

. (B.10)
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The β−function for h ≡ h1 is given by

βGNY
h = −hε

2
+

1

(4π)2

(

2g2hNf +
λh3

6

)

+
1

(4π)4

(

4g4h3Nf − g2λh3Nf − 2

3
π2g4h3Nf − 5

2
g4hNf − λ2h5

12
− λ2h3

4
+
λ2h

12

)

+ O(λ3, g6, λ2g2, λg4) , (B.11)

leading to the following fixed point at O(ε):

(hGNY
⋆ )2 =

54

κ2
+

ε

2κ2
1κ

2
2(4κ1(κ2 − 54) + (κ2 − 24)κ2 + 648)

{

(κ1(149κ1 − 816) + 1125)κ3
2

+ 3
(

κ1

(

−216π2(κ1 − 3) + κ1(105κ1 − 302) + 1545
)

− 4500
)

κ2
2

− 216
(

κ1

(

3π2(κ1 − 6)(κ1 − 3) + κ1(69κ1 − 112) + 171
)

− 1125
)

κ2

+ 69984(κ1 − 6)(κ1 − 3)κ1

}

+ O(ε2) . (B.12)

B.2 Nambu-Jona-Lasinio-Yukawa model (N = 2)

When we extend the number of scalars to a real scalar and a real pseudoscalar, or one complex

scalar, and keep the number of fermions arbitrary at Nf , we obtain the NJLY model. The

matrix Σa = Σ1,Σ2 is now given by: Σ1 = 1Nf
14,Σ

2 = 1Nf
iγ5. The β-functions for λ and

g are given up to two loop orders by [47]:

βNJLY
λ = −ελ+

1

(4π)2

(

10

3
λ2 + 8Nfλg

2 − 48Nfg
4
)

− 1

(4π)4

(

20

3
λ2 − 384Nfg

6 − 8Nfλg
4 +

40

3
Nfg

2λ2
)

+ O(λ3, g6, λ2g2, λg4) , (B.13)

βNJLY
g = −ε

2
g +

1

(4π)2
(2Nf + 2) +

1

(4π)4

(

−8

3
g3λ+

1

9
gλ2 + (7 − 12Nf )g5

)

+ O(g7) .

(B.14)

The zeros of these β−functions give us the fixed points λ⋆, g⋆ of the NJLY model:

λNJLY
⋆

(4π)2
=

3κ2ε

20κ1
− 9ε2

(

3κ3
1(κ2 − 40) + κ2

1(160 − 75κ2) + κ1(5000 − 219κ2) + 674κ2 − 9680
)

500κ3
1(κ1 + κ2 − 4)

+ O(ε3) , (B.15)

(gNJLY
⋆ )2

(4π)2
=

ε

2κ1
+
ε2(κ1(κ2 + 260) + 36κ2 − 870)

200κ3
1

+ O(ε3) . (B.16)

The defect β-function is given by

βNJLY
h = − εh

2
+

1

(4π)2

(

2g2hNf +
λh3

6

)

+
1

(4π)4

(

4g4h3Nf − 3g4hNf − g2λh3Nf − 2

3
π2g4h3Nf − λ2h5

12
− 5λ2h3

18
+
λ2h

9

)

+ O(λ3, g6, λ2g2, λg4) , (B.17)
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which has a fixed point for g⋆, λ⋆ and

(hNJLY
⋆ )2 =

40

κ2
+

ε

15κ2
1κ

2
2(4κ1(κ2 − 60) + (κ2 − 16)κ2 + 480)

{

6(κ1(187κ1 − 1096) + 1452)κ3
2

+ 2
(

κ1

(

−2000π2(κ1 − 2) + 3κ1(353κ1 + 1620) + 3708
)

− 34848
)

κ2
2

− 160
(

κ1

(

25π2(κ1 − 4)(κ1 − 2) + 3κ1(179κ1 − 72) + 2820
)

− 8712
)

κ2

+ 288000(κ1 − 4)(κ1 − 2)κ1

}

+ O(ε2) . (B.18)

B.3 Chiral Heisenberg model (N = 3)

The last model we consider is the chiral Heisenberg model. It contains three real scalars

and the model is invariant under O(3) rotations. The matrix Σa = Σ1,Σ2,Σ3 is given by

the Pauli matrices σi:

Σa = σa ⊗ 12Nf
. (B.19)

The β−functions for λ and g up to O(ε2) were calculated in [77], together with various

critical exponents. They are given by

βχH
λ = − ελ+

1

(4π)2

(

8g2λNf − 48g4Nf +
11λ2

3

)

− 1

(4π)4

(

−44

3
g2λ2Nf − 12g4λNf + 384g6Nf − 23λ3

3

)

+ O(λ3, g6, λ2g2, λg4) ,

(B.20)

βχH
g = − ε

2
g +

1

(4π)2

(

2g3Nf + g3
)

+
1

(4π)4

(

−10g3λ

3
− 12g5Nf +

47g5

4
+

5gλ2

36

)

+ O(g7) .

(B.21)

The corresponding WFY fixed points are

λχH
⋆

(4π)2
=

3κ2ε

22κ1
+

ε2

10648κ3
1(κ1 + κ2 − 2)

(

− 564κ3
1(κ2 − 44)

+ 6κ2
1(2951κ2 − 9064) + 57κ1(1027κ2 − 16412) − 74853κ2 + 965052

)

+ O(ε3) ,

(B.22)

(gχH
⋆ )2

(4π)2
=

ε

2κ1
+
ε2(2κ1(5κ2 + 1232) + 420κ2 − 8151)

1936κ3
1

+ O(ε3) . (B.23)

The β−function of h is given by

βχH
h =− εh

2
+

1

(4π)2

(

2g2hNf +
λh3

6

)

+
1

(4π)4

(

−g2λh3Nf − 2

3
π2g4h3Nf +4g4h3Nf − 7

2
g4hNf − λ2h5

12
− 11λ2h3

36
+

5λ2h

36

)

+O(λ3, g6,λ2g2,λg4) , (B.24)
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with the corresponding fixed point

(hχH
⋆ )2 =

22

κ2
+

ε

66κ2
1κ

2
2(4κ1(κ2 − 66) + (κ2 − 8)κ2 + 264)

{

(

κ1

(

7947κ2
1 + 98706κ1

− 10648π2(κ1 − 1) − 18717
)

− 87732
)

κ2
2 + 3(κ1(1627κ1 − 8928) + 7311)κ3

2

− 88
(

κ1

(

121π2(κ1 − 2)(κ1 − 1) + 3κ1(813κ1 + 280) + 18753
)

− 21933
)

κ2

+ 383328(κ1 − 2)(κ1 − 1)κ1

}

+ O(ε2) . (B.25)

C Integrals

We gather in this appendix the integrals useful for the computations performed in this work.

Integrals are computed using dimensional regularization with d = 4 − ε. In our perturbative

computations, we encounter the following integrals:

Y123 :=

∫

ddx4 I14I24I34 , (C.1)

X1234 :=

∫

ddx5 I15I25I35I45 , (C.2)

H12,34 :=

∫

ddx5

∫

ddx6 I15I25I36I46I56 =

∫

ddx5 I15I25Y345 , (C.3)

where Iij corresponds to the scalar propagator in d dimensions (see (2.14)). The three- and

four-point massless integrals X and Y are finite in d = 4 and have been solved analytically [83,

84]. The X-integral is given by

X1234 =
I12I34

16π2
χχ̄D(χ , χ̄) , (C.4)

with the Bloch-Wigner function

D(χ, χ̄) :=
1

χ− χ̄

(

2Li2(χ) − 2Li2(χ̄) + logχχ̄ log
1 − χ

1 − χ̄

)

, (C.5)

and where the variables χ, χ̄ are defined via

χχ̄ =
I13I24

I12I34
, (1 − χ)(1 − χ̄) =

I13I24

I14I23
. (C.6)

In the case where all the external points are aligned (here in the τ -direction), the

X-integral can be expressed as a special limit of the result above:

X1234 =
I12I34

16π2
χ2D(χ , χ)

= −I12I34

8π2

χ

1 − χ
(χ logχ+ (1 − χ) log(1 − χ)) . (C.7)

Note that in 1d, X1234 is one degree of transcendentality lower than in higher d, and that

although the prefactor in (C.5) implies a divergence in the limit χ̄ → χ, it turns out to

be compensated by the numerator.
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The Y -integral can easily be obtained starting with X1234 and sending one of the external

points to ∞:

Y123 = lim
x4→∞

4π2x2
4X1234 . (C.8)

For the 1d limit mentioned above, this gives

Y123 = − I12

8π2

(

τ12

τ13
log

τ12

τ13
+
τ23

τ13
log

τ23

τ13

)

, (C.9)

with τij := τi − τj . It is also useful to consider derivatives of the Y -integral, e.g.,

∂2
1Y123 = −I12I13 , (C.10)

(∂1 · ∂2)Y123 =
1

2
(I12I13 + I12I23 − I13I23) . (C.11)

To the best of our knowledge there exists no analytical solution for the H-integral.

However several identities relate derivatives of the H-integral to its X and Y siblings [85, 86]:

∂2
1H12,34 = −I12Y134 , (C.12)

(∂1 · ∂2)H12,34 =
1

2
[I12(Y134 + Y234) −X1234] . (C.13)

Other combinations can be obtained by using

H12,34 = H21,34 = H12,43 = H34,12 . (C.14)

In our calculations we only encounter the H-integral in the following special “spinor” com-

binations:

(F13,24)AB := (/∂1(/∂1 + /∂3)/∂2)ABH13,24 , (C.15)

(G12,34)ABCD := (/∂1/∂2)AB(/∂3/∂4)CDH12,34 , (C.16)

where we have written the matrix indices explicitly to avoid confusion.

The F -integral is finite and can be solved by using integration by parts, the fermionic

star-triangle relation
∫

ddx4 /∂4I14I24/∂4I34 = −4π2/x12/x23I12I13I23 , (C.17)

and going to a conformal frame. For the case where all the external points are aligned, this gives

F13,24
τ4→∞∼ γ0

4
I34∂τ1

Y123

=
γ0

τ3
12τ

2
34

1

512π6

χ

1 − χ

(

χ2 logχ+ (1 + χ)(1 − χ) log(1 − χ)
)

, (C.18)

where we have suppressed the indices for compactness.

The G-integral is also finite and can be solved by observing that the correlator given

in (3.69) for the case N = 1 needs to have the following structure in terms of spinor matrices:

GABCD12,34 =
(γ0)AB(γ0)CD

τ3
12τ

2
34

g12,34(χ) . (C.19)
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This implies

g12,34(χ) =
1

4
τ3

12τ
3
34(∂1 · ∂2)(∂3 · ∂4)H12,34 , (C.20)

which, after using the identities given in (C.11) and (C.13), turns into

g12,34(χ) =
1

2048π6

χ

(1 − χ)2

(

(1 − χ)(2 − χ) + χ2(2 − χ) logχ+ χ(1 − χ)2 log(1 − χ)
)

.

(C.21)

The integrals described above are log-divergent in the limit where two external points

coincide. In particular, we encounter repeatedly the integral Y112 in self-energy diagrams,

which reads:

Y112 = − 1

32π4τ2
12

(

1

ε
+ ℵ + log τ2

12 + O(ε)

)

. (C.22)

Another divergent integral that appears in two-point fermion loops is the following:

B12 :=

∫

ddx3

∫

ddx4 I13I24/∂3I34/∂3I34 . (C.23)

This integral is easy to relate to Y112 by using γ-matrix identities and integration by parts:

B12 =
1

2

∫

ddx3

∫

ddx4 I13I24∂
2
3I

2
34

=
1

2
Y112 , (C.24)

where in the final result there is a 4 × 4 (or 2Nf × 2Nf ) identity matrix implied. Note that in

the last line we have made use of Green’s equation (2.16). In the course of the computation,

a quadratic divergence dropped out as dimensional regularization is insensitive to it.
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