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Multiple pulsar timing arrays (PTAs) have recently reported evidence for nHz stochastic gravitational

wave background (SGWB), stimulating intensive discussions about its physical origin. In principle, the

sources may be either supermassive black hole binaries (SMBHBs) or processes in the early Universe. One

key difference between the two lies in the statistics of the SGWB frequency power spectrum. In particular,

the often assumed Gaussian random SGWB does not accurately describe the distribution of the collective

SMBHB emission. This work presents a semianalytical framework for calculating the non-Gaussian

statistics of SGWB power expected from SMBHBs. We find that (a) wave interference between individual

SMBHBs with indistinguishable observed frequencies and (b) the Poisson fluctuation of the source

numbers, together shape the non-Gaussian statistics. Implementing the non-Gaussian statistics developed

in this work, we investigate the sensitivity of current and future PTA datasets in distinguishing the origin of

the SGWB through non-Gaussian information. Additionally, we find an interesting approximation of the

non-Gaussian statistics, which has implications for accurately and practically treating non-Gaussianity in

PTA Bayesian analyses.

DOI: 10.1103/PhysRevD.111.043022

I. INTRODUCTION

The recent detection of nanohertz (nHz) stochastic gravi-

tational wave background (SGWB) by pulsar timing arrays

(PTAs) [1–8] has inspired intensive discussions of its

astrophysical implications. Supermassive black hole binaries

(SMBHBs) are a promising source of SGWB, from which

we may infer the abundance and evolution history of the

cosmic SMBHB population [9–16]. On the other hand,

various early-Universe processes have been speculated to be

alternative nHz SGWB sources (see [17] for a summary).

In principle, SMBHBs and early Universe sources can be

distinguished by the different statistical properties of the

SGWB they produce. SMBHBs at redshifts z < 1 contrib-

ute significantly to the SGWB at nanohertz frequencies,

characterized by strong signal strength due to their prox-

imity, and they emit mostly monochromatic gravitational

waves (GWs) over decades of observation. In contrast,

early Universe sources, produced at high redshift, are

heavily redshifted and contribute minimally due to their

larger distance. These sources usually emit over a broad

frequency range. A much larger number of sources would

be required for early Universe sources to contribute to the

same signal power as SMBHBs at the same observed

frequency. Thus, it is usually assumed that the latter

produces a Gaussian and isotropic SGWB, while the former

is certainly non-Gaussian due to Poissonian fluctuations of

a finite number of SMBHBs and may show random power

anisotropy if there are nearby loud SMBHBs. Along this

line, there have been some efforts towards measuring the

spectral variance beyond Gaussian fluctuations [18–24], or

anisotropies of the nHz SGWB [25–32]. In these analyses,

spectral variance is usually quantified or parametrized

based on SMBHB population synthesis. Specially,

Refs. [33,34] derived the probability distribution of the
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characteristic strain Pðh2cÞ given a SMBHB population

model, which enabled a quantitative constraint on SMBHB

population models using the PTA data [34]. For the study of

anisotropy, forecasts are made based on SMBHB popula-

tion simulations, and measurements from the PTA data are

performed under the simplifying assumption of a Gaussian

random SGWB. Spectral variance and anisotropy are two

different manifestations of Poisson fluctuations of a finite

number of SMBHBs, in the intrinsic (e.g., GW amplitude

and frequency) and extrinsic (e.g., sky localization) param-

eter spaces, respectively. Focusing on a different aspect,

Allen et al. [35,36] calculated the variance of the Hellings-

Downs correlation [37] for a simple population of

SMBHBs, taking into account interference between GW

sources of overlapping frequencies. They demonstrated two

sources of variance: one arising from the finite number of

pulsar pairs being used and another cosmic variance due to

interference effects.

As summarized above, different aspects of nHz SGWB

sourced by a finite number of SMBHBs are related. Both

spectral variance and anisotropy originate from Poissonian

fluctuation in the number of SMBHBs and are affected by

interference, and deviation from the Hellings-Downs cor-

relation can be result from interference [35,36,38,39] or

spatial anisotropy [40–42]. In previous works, each aspect

has only been investigated separately, assuming other

aspects are known or independent. Here, we consider a

unified framework for dealing with Poissonian fluctuations

in the number of SMBHBs and GW interference. The major

challenge is efficiently computing the non-Gaussian prob-

ability distribution PðδzÞ for general SMBHB population

models, where δz is observed photon redshift from a given

single pulsar in the network.

This work demonstrates an efficient method for comput-

ing PðδzÞ that accounts for the Poisson statistics and

interference. The key is to use the cumulant generating

function for δz (see Sec. II for details). As a result, we find

that interference is the major source of variance in jδzj2. At
the same time, the non-Gaussianity originates from the

Poisson fluctuation in the source number (see Fig. 4). With

the non-Gaussian statistics PðδzÞ developed in this work,

we estimate the likelihood ratio against the conventionally

used Gaussian statistics and find that the current PTA

dataset is capable of finding substantial evidence of non-

Gaussian statistics (Fig. 5). However, we find narrowing

down the population model parameters challenging due to

the significant statistical variance caused by interference

(Fig. 6) given the current PTA sensitivity. As we will see, a

more extended observation period and a lower timing noise

level expected from future PTA data will enable substan-

tially improved constraints on population model parame-

ters. Under current PTA sensitivity, we find the Gaussian

statistics are still a good approximation in inferring the

strain power spectrum h2cðfÞ of the SGWB from SMBHBs

(Fig. 7). As PTA data of lower timing noise accumulates in

the foreseeable future, we find the Gaussian statistics will

eventually bias the inference of h2cðfÞ (Fig. 7).
This paper is organized as follows. In Sec. II, we briefly

introduce compound Poisson statistics and the correspond-

ing cumulant generating function (CGF) are key to

computing the exact PTA signal distribution PðδzÞ for

SMBHB population models. In Sec. III, we introduce a

parametrized form of the SMBHB population model to be

considered in this work and provide details about calculat-

ing the redshift distribution PðδzÞ. Building on these,

we perform a likelihood ratio test comparing non-

Gaussian and Gaussian statistics. Concluding remarks will

be given in Sec. IV. Throughout this work, we adopt a flatΛ

cold dark matter cosmology with Ωm ¼ 0.3, ΩΛ ¼ 0.7,

H0 ¼ 70 km s−1Mpc−1.

II. COMPOUND POISSON STATISTICS

In this section, we develop the mathematical formalism

for computing the probability density function (PDF) of the

PTA observable, PðδzÞ. The basic idea was also explored

in Ref. [34]. Assuming that individual gravitational wave

sources are monochromatic over the observational period

of PTAs, each source can be characterized by its current

observed frequency fGW and another set of M parameters

collectively referred to as Θ. The following differential

distribution can describe a general source population:

d1þMN̄

dMΘd ln f
: ð1Þ

The average source number in a logarithmic frequency

interval Δ ln f and in a multidimensional parameter-space

volume element ΔMΘ is thus given by ΔN̄.
The actual source numberΔN is expected to be a random

number that fluctuates around its expectation value

hΔNi ¼ ΔN̄. It follows Poisson statistics, i.e.,

ΔN ∼ PoisðΔN̄Þ: ð2Þ

Source numbers in nonoverlapping volumes of the param-

eter space are independent random numbers.

For any signal sðΘ; fÞ that obeys the superposition

principle, the population-summed signal S is a weighted

sum over the entire source parameter space:

S ¼
X

n

snΔNn; ð3Þ

where we divide the source parameter space into individual

blocks indexed by n, and sn ¼ sðΘn; f
n
GWÞ is the corre-

sponding weight. Linearity of Eq. (3) suggests that the total

signal S is drawn from a compound Poisson distribution.

In the special case where the weight sðΘ; fÞ is a constant,
the total signal also follows a Poisson distribution.

Unfortunately, we are not aware of an analytical expression
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for the PDF of S, PðSÞ, for the case of general

weights sðΘ; fÞ.
Instead, we pursue a numerical method to evaluate the

PDF PðSÞ that makes use of the CGF for S, defined as

KSðtÞ ¼ ln hexpðiStÞi; ð4Þ

where t is the variable conjugate to S and is defined on the

real axis from −∞ to ∞, and the notation h� � �i stands for
the statistical average. Since ΔNn’s are statistically inde-

pendent of each other, Eq. (4) can be evaluated as follows:

KSðtÞ ¼
X

n

ln hexpðisnΔNntÞi ¼
X

n

ΔN̄nðeisnt− 1Þ; ð5Þ

where the last step follows from the CGF of Poisson

distribution. Equation (5) then allows us to numerically

evaluate the PDF of S through an inverse Fourier trans-

formation,

PðSjΘ; fÞ ¼ 1

2π

Z þ∞

−∞

dt exp ðiStþ ½KSðtÞ��Þ; ð6Þ

where ½� � ��� stands for complex conjugation. The PDF

evaluated in this way is correctly normalized.

If the source parameter space is continuously para-

metrized by ðΘ; fÞ, then Eq. (5) can be revised to the

appropriate continuous limit, where summation is replaced

by integration

X

n

ΔNn ⟶

Z

V

d ln fdMΘ
d1þMN̄

dMΘd ln f
: ð7Þ

The CGF converges in this limit, giving a unique answer for

the PDF of the signal S.

It is straightforward to generalize the above framework

to the case where a set of N different signals (N > 1),

collectively denoted asS, are measured. The corresponding

CGF depends on a set of N conjugate variables, which we

collectively refer to as t. The CGF is given by

KSðtÞ ¼
X

n

ln hexp ðisn · tΔNnÞi ¼
X

n

ΔN̄nðeisn·t − 1Þ;

ð8Þ

and the multivariate PDF, in principle, can be found from

the multidimensional Fourier transformation,

PðSjΘ; fÞ ¼ 1

ð2πÞN
Z

dN t exp ðiS · tþ ½KSðtÞ��Þ: ð9Þ

If an observableS is also contaminated by noise n, and if

the noise is statistically uncorrelated with the signal, then

the total measurement S þ n has a CGF

KSþnðtÞ ¼ KSðtÞ þ KnðtÞ; ð10Þ

where KnðtÞ is the CGF for the noise n. The corresponding

PDF is essentially the likelihood function for obtaining data

S þ n given a model with model parameters fΘ; ςg:

PðS þ njΘ; ςÞ; ð11Þ

where ς is a set of parameters that characterize the noise.

Based on the above general results following the proba-

bility theory, we will develop a framework to perform

Bayesian inference of GW source population parameters.

III. NON-GAUSSIAN STATISTICS

In Sec. III A, we will first introduce a convenient para-

metrized form for the SMBHB population following [11],

d3N̄

d ln fd log10Mdz
ðΘÞ: ð12Þ

This gives the SMBHB number density in the phase space

defined jointly by the GW frequency f, the binary chirp

mass M, and the cosmological redshift z. We then

introduce some basics of the PTA observable, redshift of

photons δz propagating from a pulsar to the earth under the

influence of GWs (Sec. III B), and the details for computing

the non-Gaussian redshift PDF, PðδzÞ, given a SMBHB

population model (Sec. III C). With the redshift PDF, we

compare the non-Gaussian statistics with the convention-

ally used Gaussian statistics in Sec. III D.

A. SMBHB population

Supermassive black holes (SMBHs) are commonly

found at the centers of their host galaxies. Galaxy mergers

inevitably bring multiple SMBHs into the same postmerger

galaxy. SMBHBs are the most promising sources for the

nHz SGWB observed at PTAs, though the detailed proc-

esses for the formation and mergers of SMBHBs still need

to be fully understood. The mass of the central SMBH is

empirically known to correlate strongly with the velocity

dispersion in the host galaxy bulge. This is the famous

MBH − σ relation [43–45]. We model the mean MBH − σ

relation, together with the expected scatter around it, with

the following log-normal probability distribution

Pðlog10MBHjσÞ ¼
1
ffiffiffiffiffiffi

2π
p

ϵ0
exp

�

−
1

2ϵ20

�

log10
MBH

M⊙

− log10 10a•

�

σ

200 km s−1

�

b•
�

2
�

; ð13Þ

where a• and b• are constants, and ϵ0 quantifies the intrinsic
scatter. On the other hand, the velocity dispersion function

(VDF) of the galaxy bulge is parametrized as
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ϕðσÞ ¼ ϕ�β

σ�

�

σ

σ�

�

α−1 e−ðσ=σ�Þ
β

Γðα=βÞ : ð14Þ

Here α, β are dimensionless constants, σ� characterizes the
turnover of the velocity dispersion, and ϕ� is a normali-

zation constant, which also sets the total number of the

galaxies per Mpc3. Taking these into account, the SMBH

mass function is

dn

d log10MBH

¼
Z

dσPðlog10MBHjσÞϕðσÞ; ð15Þ

where n is the total number of black holes per Mpc3.

We assume that all SMBHBs in the PTA band are

circular inspirals. This assumption is expected to be true

when GW radiation dominates the hardening of the binary

orbit, as GW emission tends to circularize the orbit. For

circular inspirals, the chirp mass M and source redshift z
determine the observed GW amplitude. Chirp mass M is

defined as

M ¼ η3=5MBH; η≡
q

ð1þ qÞ2 ; ð16Þ

where q < 1 is the binary mass ratio. We express the

population model as follows:

dn

dlog10M
¼

Z

1

qmin

dqpqðqÞ
dn

dlog10MBH

; ð17Þ

pqðqÞ ¼ N qq
δ and N q are the normalization constants.

The above expression assumes one merger per galaxy.

Only SMBHBs located on our past light cone are

observed through the SGWB. The relevant comoving

volume is given by dVc=dt,

dVc

dtr
¼ dVc=dz

dtr=dz
¼ 4πcdLðzÞ2ð1þ zÞ; ð18Þ

where tr is the proper time of a comoving observer

in Friedmann-Robertson-Walker cosmology, and dLðzÞ ¼
ðcð1þ zÞ=H0Þ

R

z
0 dz

0=Eðz0Þ is the luminosity distance to

redshift z, where EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ zÞ3Ωm þ ΩΛ

p

. Assuming

the redshift dependence is separable, the SMBHB popu-

lation can be written as [46]

d3N̄

d log10Mdzd ln fr
¼ pzðzÞ

dn

d log10M

dtr

d ln fr

dVc

dtr
; ð19Þ

where fr ¼ ð1þ zÞf is GW frequency in the rest frame of

the SMBHB barycenter, pzðzÞ ¼ N zz
γe−z=z� , dtr=d ln fr is

determined by the binary orbital hardening rate, z� is the

turnover redshift, and N z is a normalization constant. We

adopt the simplifying assumption that the spectral shape of

the mass function is independent of redshift z. We introduce

ξ to the frequency dependence

dtr

d ln fr
¼ 5

96ðGM=c3Þ5=3ðπfyrÞ8=3ðfr=fyrÞ8=3−ξ
; ð20Þ

especially ξ ¼ 0 if the hardening is driven by GWemission

only. To summarize, in our parametrized SMBHB pop-

ulation model, fϵ0; a•; b•g characterize the MBH − σ rela-

tion, fϕ�; σ�;α; βg characterize the VDF, and fδ; γ; z�; ξg
characterize the SMBHB distribution with respect to binary

mass ratio, redshift, and frequency.

Following Ref. [11], we set fiducial values for the popula-

tion parameters: σ�¼159.6 kms−1, fα;β; ;a•;b•;γ;z�;δ;ξg¼
f0.41;2.59;8.32;5.64;0.3;0.5;−1;0g. We leave ϕ� and ϵ0 as
free parameters. These choices are justified by studies on the

velocity distribution function [47], on theM − σ relation [45],

and SMBHB population simulations [48]. Furthermore, in

this work, we consider an expanded population model that

accounts for source dependence on extra binary parameters in

addition to M and z,

Λ ¼ flog10 M; zg ∪ fcos θ;ϕ; cos ι;ψ ;φg; ð21Þ

where ι is the binary orbit inclination, ψ is the polarization

angle, θ and ϕ parametrize the source’s sky location, and φ

is a binary orbital phase constant. It is reasonable to assume

that binaries have no preference regarding spatial location

and orbital orientation. Therefore, the extended population

model is

d8N̄

d ln frd
7Λ

¼ 1

32π3
d3N̄

d ln frd log10Mdz
: ð22Þ

Next, we will look into the intensity of GWs from the

circular SMBHBs. For a slowly-evolving binary with chirp

mass M and redshift z, the GW tensor at the observer

x ¼ 0 can be written as

habðt; 0Þ ¼ hþðt; 0Þϵþab þ h×ðt; 0Þϵ×ab; ð23Þ

where the polarization tensor ϵþ;×
ab ðθ;ϕ;ψÞ depends on the

source sky location ðθ;ϕÞ and the source polarization angle
ψ [49]. The two polarization states have amplitudes

hþðt; 0Þ ¼ h0
1þ cos2ι

2
cosð2πftþ φÞ;

h×ðt; 0Þ ¼ h0 cos ι sinð2πftþ φÞ; ð24Þ

where the dimensionless amplitude is

h0ðf;M; zÞ ¼ 4cðπfyrÞ2=3ðfr=fyrÞ2=3ðGM=c3Þ5=3
dLðzÞ

: ð25Þ

A commonly used quantity is the characteristic strain of

the GWs, the expected value of which from a SMBHB
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population can be written as [46,50]

h2cðfÞ ¼
Z þ∞

0

dz

Z þ∞

−∞

d log10 Mhh2þ þ h2×icos ι;φ

×
d3N̄

d log10Mdzd ln fr
; ð26Þ

where

hh2þ þ h2×icos ι;φ ¼ 2

5
h20 ð27Þ

is the GWamplitude squared averaged over random binary

orbital inclination and phase constant. In Fig. 1, we show

contours of hcðfyrÞ on the ϕ�–ϵ0 plane, as well as the

specific contour that corresponds to the best-fit value from

the 15-year NANOGrav data [1], hcðfyrÞ ¼ 2.4 × 10−15.

B. Pulsar redshift

As radio photons travel from a pulsar to the Earth, the

arrival time is perturbed by the SGWB. For a planar GW

propagating in the direction Ω̂ (with −Ω̂ being the direction

pointing from the Earth to the GW source), the GW tensor

is generally written as

habðt; xÞ ¼ hþðt − x · Ω̂Þϵþab þ h×ðt − x · Ω̂Þϵ×ab: ð28Þ

Considering a pulsar with a sky location p̂ and at a distance

L from the earth, the observed photon redshift (or the

fractional change in apparent pulsar spin period) for the

observer at the coordinate origin x ¼ 0 is [37]

δzðtÞ ¼ δzE − δzP

¼ 1

2

p̂ap̂b

1þ Ω̂ · p̂
½habðt; 0Þ − habðt − L;Lp̂Þ�: ð29Þ

Here, the subscripts E and P stand for the Earth and the

pulsar terms. For a slowly evolving SMBHBwhere the GW

frequency evolution during the PTA observational period T

is negligible (with 2πḟT < T−1), the two polarization

components in the Earth term are in the form

hþðt; 0Þ ¼ h0
1þ cos2ι

2
cosð2πfEtþ φÞ;

h×ðt; 0Þ ¼ h0 cos ι sinð2πfEtþ φÞ; ð30Þ

where the GWamplitude and the frequency fE are taken as

a constant during the observational period ð0; TÞ. Similarly,

we have for the pulsar term,

hþðt − L;Lp̂Þ ¼ h0
1þ cos2ι

2
cosð2πfPtþ φ − ΔÞ;

h×ðt − L;Lp̂Þ ¼ h0 cos ι sinð2πfPtþ φ − ΔÞ; ð31Þ

where the phase differenceΔ¼c−1
R

L
0
2πfðtÞdtð1þΩ̂ · p̂Þ≈

πðfEþfPÞLð1þΩ̂ · p̂Þ=c, and fP is also taken as a constant
during the observational period ð0; TÞ. We note that for a

given pulsar, the frequency difference between the Earth

term and the pulsar term, fE − fP, can be significant and

measurable if 2πḟL=c > T−1. For SMBHB at nHz fre-

quency, fE and fP are indistinguishable.

In practice, the PTA data analysis is more straight-

forward in the frequency domain, where the redshifts δzðfÞ
in different frequency bins are statistically uncorrelated.

We first divide the relevant frequency range into bins,

with central frequencies fn (n ¼ 1;…; nmax) and equal bin

sizes T−1. The GW amplitude from a SMBHB in a

frequency bin of central frequency fn is

habðfn; f;ΘÞ ¼ TWðf − fnÞh0ðf;M; zÞeiφ

×

�

i
1þ cos2ι

2
ϵþab þ cos ιϵ×ab

�

; ð32Þ

where f is the observed GW frequency from the binary, and

W is the top-hat window function,

Wðf − fnÞ ¼
�

1; fn − 1=2T < f < fn þ 1=2T

0; otherwise:
ð33Þ

As Eq. (29) shows, two terms contribute to the redshift of

a photon emitted from a pulsar and received on the Earth.

However, it is widely accepted that only the Earth term

exhibits interpulsar correlation, namely the Hellings-

Downs curve [51]. Here, we assume that we successfully

subtracted the Earth term. Taking the Earth term,

FIG. 1. The contours of log10ðhcÞðfyrÞ on ϕ� − ϵ0 plane. The

parameters consistent with the 15-year NANOGrav data are

marked as the black dashed line. We fix all the other parameters at

their fiducial values (given in the text).
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δzEðfÞ ¼ −
1

2T

pahabðxE; fÞpb

1þ Ω̂ · p̂
: ð34Þ

The expression above is dimensionless by introducing

the prefactor T−1. Without loss of generality, we take

p̂ ¼ ð0; 0; 1Þ for simplicity, then the real and imaginary

components of δzE are

δzcircE;Re ¼ h0λzðθ; ι;ψ ;φÞ;
δzcircE;Im ¼ h0λzðθ; ι;ψ ;φþ π=2Þ; ð35Þ

where

λzðθ; ι;ψ ;φÞ ¼ sin2
θ

2

��

1þ cos ι2

2

�

cosð2ψÞ sinφ

− cos ι sinð2ψÞ cosφ
�

: ð36Þ

For a population of SMBHBs, the total redshift is therefore

δzE ¼
X

n

ΔNnðδzcircE Þn; ð37Þ

where we divide the source parameter space into individual

blocks indexed by n. The distribution PðλzÞ is evaluated

using the Monte Carlo method by uniformly sampling

cos θ, cos ι, ψ , and φ, and we store numerical values for

further use. The mean value of any arbitrary function FðλzÞ
is equivalent to the following integration:

hFðλzÞi ≔
Z

dλzPðλzÞFðλzÞ

¼ 1

32π3

Z

1

−1

d cos θ

Z

1

−1

d cos ι

Z

2π

0

dϕ

Z

2π

0

dψ

×

Z

2π

0

dφF
	

λzðθ; ι;ψ ;φÞ



: ð38Þ

Then it is straightforward to find hλzi ¼ 0 and hλ2zi ¼ 1=15.
If a SMBHB is slowly evolving, with the Earth term and

the pulsar term contributing to the same frequency bin, then

we find

δzcirc ¼ δzcircE − δzcircP

¼ h0
�

λ̃zðθ; ι;ψ ;φ;ΔÞ þ iλ̃zðθ; ι;ψ ;φþ π=2;ΔÞ
�

;

ð39Þ

where

λ̃zðθ; ι;ψ ;φ;ΔÞ ¼ 2 sin ðΔ=2Þλzðθ; ι;ψ ;φ − Δ=2Þ: ð40Þ

It is clear that the pulsar term further increases the variance

of the redshift. The calculation of the redshift distribution,

in this case, is completely parallel to the previous case with

the replacement λzðθ; ι;ψ ;φÞ→ λ̃zðθ; ι;ψ ;φ;ΔÞ. In the

next subsection, we will focus on the PDF of the red-

shift PðδzEðfÞÞ.

C. Distribution of pulsar redshift

Using the method developed in Sec. II, we can now

calculate the PDF of the redshift PðδzEðfÞÞ given a

SMBHB population model. We first assemble the real

and imaginary parts into a vector s ¼ ðδzcircE;Re; δz
circ
E;ImÞ. The

total signal is a superposition of many individual sources

and the conjugate variables also into a vector t ¼ ðtRe; tImÞ,
then

s · t¼ δzcircE;RetRe þ δzcircE;ImtIm ¼ tρh0λzðθ; ι;ψ ;φ− tφÞ; ð41Þ

where tRe and tIm are real variables conjugate to δzcircE;Re and

δzcircE;Im, tφ ¼ arctanðtIm=tReÞ, tρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2Re þ t2Im
p

. Because of

the uniform distribution of φ, the CGF does not depend

on the variable tφ. The two-dimensional (2D) CGF turns

out to be

KδzðtρÞ ¼ Δ ln f

ZZZ

dlog10MdzdλzPðλzÞ

× ½cos ðtρh0λzÞ − 1� d3N̄

dlog10Mdzd ln fr
: ð42Þ

We find that KδzðtRe; tImÞ ¼ KδzðtρÞ is a real function

because PðλzÞ is even, and KδzðtRe; tImÞ only depends on

the magnitude of the conjugate vector tρ.

The cumulants of the redshift can be inferred from the

CGF Kδz. First, it is easy to verify that all odd order of

cumulants vanish because PðλzÞ is even, and the higher

and even order of cumulants, namely hδz2kE;Rei with k > 1,

do not exist because of the divergence at the nearby end

(cosmology redshift z → 0) of the SMBHB population,

which implies that the corresponding PDF of δz is a heavy-
tailed distribution. The only nonzero and finite cumulant

equals the variance of the redshift δzE;Re and δzE;Im, with

hδz2E;Rei ¼ hδz2E;Imi ¼ −K00
δzð0Þ: ð43Þ

In particular, K00
δzðtρÞ is free of divergence at the nearby

end of the SMBHB population:

K00
δzðtρÞ ¼ −Δ ln f

ZZZ

dlog10MdzdλzPðλzÞ

× h20λ
2
z cos ðtρh0λzÞ

d3N̄

dlog10Mdzd ln fr
; ð44Þ

where it is straightforward to find 0 ≤ jK00
δzðtρÞ=K00

δzð0Þj ≤ 1

using Cauchy-Schwarz inequality, and K00ðtρ → þ∞Þ ¼ 0

due to the fast oscillatory integrand.
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In comparison, in the Gaussian limit KGaus
δz ðtρÞ ∝ −t2ρ=2,

meaning KGaus00
δz ðtρÞ equals a constant. To recover the

Gaussian limit, we can artificially rescale dN̄ → xdN̄

and h2 → h2=x and take the limit of x → þ∞, which

corresponds to the limit of an infinite number of arbitrarily

weak GW sources. That is to say,

KGaus00
δz ðtρÞ ¼ K00

δzð0Þ ¼ −
1

6
h2cΔ ln f; ð45Þ

where we have used Eqs. (26), (27), and (38).

In the left panel of Fig. 2, we show the numerical

results of K00ðtρÞ for a range of SMBHB populations

with different population parameters ðϕ�; ϵ0Þ that are

consistent with 15-year NANOGrav data (see the black-

dashed line in Fig. 1), all having the same variance −K00
δzð0Þ

[Eqs. (43) and (45)]. As expected, K00ðtρÞ is closer to

the Gaussian limit for a larger number of GW sources

(higher ϕ�). The comparison demonstrates the origin of the

non-Gaussian nature of the SGWB from SMBHBs.

The 2D probability distribution, properly normalized,

can be expressed in terms of an integral

PðδzE;Re; δzE;ImÞ ¼
1

ð2πÞ2
Z

∞

−∞

dtRe

×

Z

∞

−∞

dtIme
½KδzðtρÞ��þitReδzE;ReþitImδzE;Im

¼ 1

2π

Z þ∞

0

dtρtρe
½KδzðtρÞ��J0ðtρjδzEjÞ

≔ fðjδzEjÞ: ð46Þ

In practice, we define tρ ¼ eτ and numerically imple-

ment the integral using the τ variable instead. It is important

to notice that δzE;Re and δzE;Im are generally not statistically

independent, i.e., PðδzE;Re; δzE;ImÞ ≠ PðδzE;ReÞPðδzE;ImÞ.
The marginalized distribution of δzE;Re is

PðδzE;ReÞ ¼ 2

Z þ∞

0

fðjδzEjÞd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jδzEj2 − δz2E;Re

q

: ð47Þ

On the right panel of Fig. 2, we show PðδzE;ReÞ for several
ϕ� − ϵ0 pairs (same as those in the left panel). We note that

the true distribution PðδzE;ReÞ is both heavy tailed and

strong peaked.

The PDF of jδzEj2 is

PðjδzEj2Þ ¼ πfðjδzEjÞ; ð48Þ

and is shown in Fig. 3.

So far, the calculation in this section is based on Eq. (37),

which includes interference between individual sources.

Here, we consider another commonly studied quantity—

the signal power summed incoherently over sources:

jδzEj2NI ≡
X

n

ΔNnhjδzcircE j2nicos θ;ϕ;cos ι;ψ ;φ; ð49Þ

where the source parameter space is defined only by M, z,

and fr, and hjδzcircE j2nicos θ;ϕ;cos ι;ψ ;φ ¼ 2
15
h0ðfn;Mn; znÞ2,

the subscript “NI” stands for “No Interference.” It is easy

to prove that hjδzEj2NIi ¼ hjδzEj2i. However, comparing to

the true jδzEj2, cross terms such as ðδzcircE ÞnðδzcircE Þn0 with
n ≠ n0, which correspond to interference between sources,

are absent in the NI counterpart. The corresponding CGF is

K̃jδzj2ðtÞ≡ Δ ln f

ZZ

dlog10Mdz

�

exp

�

2

15
ith20

�

− 1

�

×
d3N̄

dlog10Mdzd ln fr
; ð50Þ

1 × 10–31

1 × 10–15

FIG. 2. Top: the second derivative of the CGF. Bottom: the PDF

of the observed redshift δzE;Re. Note that all PDFs in this plot

share the same variance, hδz2E;Rei. We consider f ¼ 10 nHz with a

bandwidth Δf ¼ 2 nHz. Curves of lighter colors correspond to

SMBHB populations with more SMBHBs but lower black hole

masses. As the number of individual SMBHB increases, the CGF

and the PDF approach the Gaussian limit.
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and the PDF is

P̃ðjδzEj2NIÞ ¼
1

2π

Z þ∞

−∞

dte
½K̃jδzj2 ðtÞ��þitjδzEj2NI : ð51Þ

In Fig. 3, we find that the tails of PðjδzEj2Þ and

P̃ðjδzEj2NIÞ can be very well approximated by power law

distributions. This result is in agreement with the findings

of Refs. [12,24,33]. The major difference is that in the no

interference case, P̃ðjδzEj2NIÞ, is strong peaked at some

positive value while the peak is smeared and always located

at zero in the presence of interference.

In Fig. 4, we show the PDF of log10 jδzEj2,

Pðlog10 jδzEj2Þ ¼ ln 10jδzEj2PðjδzEj2Þ; ð52Þ

and the no interference counterpart P̃ðlog10 jδzEj2NIÞ at

different frequency bins for two SMBHB populations and

three total observation times. The true PDF is much more

diffused than the no interference case. The comparison

shows that interference dominates the variance in jδzEj2,
while Poisson fluctuations play a minor role. In the no

interference case, the expectation value of jδzEj2NI is con-

sistently higher than the median of jδzEj2NI, especially at

higher frequencies. This is because P̃ðlog10 jδzEj2NIÞ is a

skewed distribution that decreases to zero rather slowly at

large jδzEj2NI, contrary to rapid falloff of the low jδzEj2NI end
(Fig. 3). This observation is consistent with the Monte Carlo

results by Refs. [46,48]. The difference between the median

and mean values is more prominent for combinations

between smaller ϕ� with larger ϵ0, which correspond to

stronger non-Gaussianity. We also find that the true PDF

with the interference effect is well approximated by a

Gaussian convolution of the no interference PDF,

P̃ðδzE;Re; δzE;ImÞ ¼
Z þ∞

0

djδzEj2NIP̃ðjδzEj2NIÞ

×
e−ðδz

2
E;Re

þδz2
E;Im

Þ=jδzEj2NI

πjδzEj2NI
; ð53Þ

where the numerical comparison between PðδzE;Re; δzE;ImÞ
and P̃ðδzE;Re; δzE;ImÞ is shown in Fig. 4. Numerically, the

two distributions are nearly indistinguishable from the

realistic SMBHB population models we consider. How-

ever, in the Appendix, we demonstrate that they are not

mathematically identical.

Equation (53) as an excellent approximate PDF implies

that non-Gaussianity originates from the Poisson fluc-

tuation of the source numbers. The interference effect is

well approximated by randomly drawing the real and

imaginary parts of δzE from a 2D Gaussian distribution.

It justifies the population inference done in [34] at the

practical level in the following sense: NANOGrav had

first derived the likelihoods for the frequency-binned

power jδzEj2NI from the redshift residuals of individual

pulsars under the assumption that the SGWB is a Gaussian

random field [9]. Reference [34] then used these like-

lihoods as summary data and performed Bayesian pop-

ulation inference using the correct non-Gaussian PDF

P̃ðjδzEj2NIÞ for the total power (hence without inference).

These two analyses combined are equivalent to using

Eq. (53) to perform Bayesian inference at the redshift

observable level.

In principle, one would like to perform Bayesian

inference for SMBHB population models by applying a

multivariate non-Gaussian PDF PðfδzðIÞE;Re; δz
ðIÞ
E;ImgÞ for

the redshifts of all Np pulsars δz
ðIÞ
E ; I ¼ 1; 2;…; Np to

direct PTA observables. Unfortunately, writing down an

FIG. 3. The PDF of jδzEj2 and jδzEj2NI. We consider f ¼ 10 nHz in both subplots, with a bandwidth Δf ¼ 2 nHz. Curves of lighter

colors correspond to SMBHB populations with more SMBHBs but lighter black hole masses. Note that on the left panel, the “Gaussian

Limit” corresponds to the χ2k distribution with k ¼ 2, which is also an exponential distribution.

XIAO XUE, ZHEN PAN, and LIANG DAI PHYS. REV. D 111, 043022 (2025)

043022-8



exact expression for this PDF seems prohibitive,
1
as red-

shift signals in different pulsars are correlated in the

Earth term.

However, the numerical success of the approximate PDF

in Eq. (53) guides us to conjecture that if one convolves

P̃ðjδzEj2NIÞ with a multivariate Gaussian distribution for the

redshifts of all pulsars, with the correct covariance set up

between pulsars,

P̃

n

δz
ðIÞ
E;Re; δz

ðIÞ
E;Im

o�

¼
Z þ∞

0

djδzEj2NIP̃ðjδzEj2NIÞ

×
e−δz

†

E
C−1ðjδzEj2NIÞδzE

πNp detCðjδzEj2NIÞ
; ð54Þ

then the result may very well approximate the exact joint

PDF. In Eq. (54), the vector δzE collectively represents

redshifts of all pulsars, and CðjδzEj2NIÞ stands for the

multipulsar covariance matrix that would result from an

isotropic Gaussian SGWB with a given full-sky average

power jδzEj2NI. We note that applying Eq. (54) to Bayesian

inference at the level of individual pulsar redshifts will be

mathematically equivalent to the combination of two steps:

FIG. 4. Violin plot for Pðlog10 jδzEj2Þ and P̃ðlog10 jδzEj2NIÞ in discrete frequencies binned at a width Δf ¼ 1=T. All violins at the same

frequency in each panel share the same expectation value of hjδzEj2i, which equals to hjδzEj2NIi, shown by the black curve.

1
Even though a straightforward generalization of the formal-

ism we present in this work will allow the calculation for the
corresponding multivariate characteristic function, inverse Fou-
rier transform in high dimensions would be impractical.
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first deriving the likelihoods for the mean frequency-binned

powers assuming a Gaussian random SGWB, and then

inferring the SMBHB population by applying P̃ðjδzEj2NIÞ to
the derived likelihoods as summary data.

If true, such an approach will be a practical path toward

full Bayesian treatment, including non-Gaussianity and at

the level of pulsar redshifts. However, how this idea may be

quantitatively validated is an open question.

D. Sensitivity estimation

With the non-Gaussian statistics developed above, we

are in a position to estimate the PTA sensitivities in

measuring the non-Gaussianity in the nHz SGWB and

constraining the SMBHB population parameters and to test

possible bias in inferring the population properties if the

Gaussian statistics are applied instead.

1. Likelihood ratio between non-Gaussian

and Gaussian model

We first implement a simple likelihood ratio test by

applying both the non-Gaussian and the Gaussian statistics

to mock data generated from a SMBHB population model.

We assume that measurement noises for δzRe and δzIm
follow a Gaussian distribution with the variance of ς. In

the presence of noise, the new PDF PðδzE;Re; δzE;ImjςÞ is

calculated in the similar way, see Eq. (46), with the CGF

modified as

KδzðtρjςÞ ¼ KδzðtρÞ −
ς2t2ρ

2
: ð55Þ

For comparison, the CGF for a Gaussian PDF

PGausðδzE;Re; δzE;ImjςÞ with the same variance is

KGaus
δz ðtρjςÞ ¼

t2ρK
00
δzð0jςÞ
2

: ð56Þ

We benchmark two observational noise levels: one with a

noise level ςk ¼ 7 × 10−15 over T ¼ 15 years, and another

with a noise level ςk ¼ 1 × 10−15 over T ¼ 30 years, where

k labels the kth frequency bin. The first benchmark case is

consistent with the current PTA sensitivity, where the

SGWB signal stands out of noise in five frequency bins.

We define the likelihood ratio test statistic as follows:

λLR ¼ 2 ln
PðδzE;Re; δzE;ImjςÞ

PGausðδzE;Re; δzE;ImjςÞ
; ð57Þ

where PðδzE;Re; δzE;ImjςÞ ¼
Qkmax

k¼1
PðδzkE;Re; δzkE;ImjςkÞ and

δzkE;Re and δzkE;Im are the real and imaginary components

of the redshift data in the kth frequency bin. We ensure

that the Gaussian distribution, PGausðδzkE;Re; δzkE;ImjςkÞ,
has the same variance as the non-Gaussian distribution

PðδzkE;Re; δzkE;ImjςkÞ. We then evaluate the expectation value

hλLRi using the following formula:

hλLRi ¼
Z

dδzE;RedδzE;ImPðδzE;Re; δzE;ImjςÞλLR: ð58Þ

We choose kmax ¼ 14 and kmax ¼ 28 for the two bench-

mark cases described above. The integral can be simplified

using the fact that all frequency bins are independent of

each other and that at each bin the PDFs only have

dependence on the modulus of δzkE.

The results are shown in Fig. 5. With current PTA

sensitivity (which has five frequency bins above the noise

floor), we expect to find hλLRi > 2 for ϵ0 > 0.6. This may

increase to hλLRi > 15 for the same parameter range in the

more optimistic situation.

FIG. 5. The contours of the expectation value of λLR, hλLRi, on
the ϕ� − ϵ0 plane. The top panel corresponds to the current PTA

sensitivity. The statistics λLR, defined in Eq. (57), characterize the

likelihood ratio between a non-Gaussian PDF and the Gaussian

PDF, assuming the data is drawn from the non-Gaussian PDF.
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2. Parameter estimation of the SMBHB

population model

We also perform a Monte Carlo simulation, in which

we generate random data points drawing from the non-

Gaussian PDF for a given combination of ϕ� and ϵ0.

We then define the likelihood function as follows:

L
	

log10ϕ�; ϵ0jδzmock
E;Re ;δz

mock
E;Im




¼ P
	

δzmock
E;Re ;δz

mock
E;Im jς;ϕ�;ϵ0




;

ð59Þ

where Pðδzmock
E;Re ; δz

mock
E;Im jς;ϕ�; ϵ0Þ is the calculated with the

population model parameters ϕ�, ϵ0, while other parameters

are fixed at their fiducial values.

Next, we choose the second benchmark and use the

population model parameters ðϕ�; ϵ0Þ ¼ ð0.032; 0.61Þ to

generate mock data (δzmock
E;Re ; δz

mock
E;Im ) 10,000 times. Then for

each realization, we calculate the likelihood values on the

ϕ�–ϵ0 plane and find the maximal-likelihood value points.

We then collect the best-fit points and investigate their

distribution. The results are shown in Fig. 6.

3. Strain power spectrum inference

PTA data have been used in inferring the strain power

spectrum of the nHz SGWB, assuming the strain is a

Gaussian random field with a power-law frequency

dependence,

h2cðfÞ ¼ h2cðfyrÞðf=fyrÞ2α: ð60Þ

In this subsection, we apply the Gaussian statistics to mock

data generated from a SMBHB population model and

quantify the resulted bias. We construct the log-likelihood

function as follows:

lnL
	

δzmock
E;Re ; δz

mock
E;Im jlog10hcðfyrÞ; γ




¼
X

k

½−jδzkEj2=hjδzkEj2i − ln πhjδzkEj2i�; ð61Þ

where

hjδzkEj2i ¼
1

3
h2cðfkÞΔ ln fk þ 2ðςkÞ2: ð62Þ

In accordance with the convention of PTA community, we

have introduced the notation γ, which is the power index

of the time delay power spectrum and is related to α by

α ¼ ð3 − γÞ=2. Similarly, we choose the earlier defined two

benchmarks and simulate 200,000 random realizations for

given population model parameters, then collect the best-fit

FIG. 6. The contour of the best-fit parameters using the non-

Gaussian PDF we derived in this work. We choose one pair of the

population model parameters ðϕ�; ϵ0Þ and simulate 10,000

realizations of mock data. The true parameters are marked as

the red point. We then calculate the likelihood values for each

realization using the non-Gaussian PDF and investigate the

distributions of the best-fit points. The solid and dashed contours

indicate 1σ and 2σ confidence regions, respectively.

FIG. 7. The contours of the best-fit parameters using the

classical power-law model. We assume two different population

model parameters and simulate 200,000 realizations of mock data

for each. We then calculate the likelihood values for each

realization using the power-law model and investigate the

distributions of the best-fit points. The solid and dashed contours

indicate 1σ and 2σ confidence regions, respectively.
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ðlog10 hcðfyrÞ; γÞ points, and plot the distribution. We show

the results in Fig. 7. Comparing the blue and red contours,

we find that as the non-Gaussianity increases, the character-

istic strain hcðfyrÞ tends to be underestimated. At the same

time, the power-law index γ is overestimated, consistent

with what is implied in Fig. 4. This observation is in

agreement with findings in [52]. The Gaussian statistics are

still a good approximation in inferring the strain power

spectrum with current PTA sensitivity and will bias the

inference in the foreseeable future.

In conclusion, with the current sensitivity, PTAs cannot

determine SMBHB population model parameters with a

decent precision. This is fundamentally limited by the large

variance arising from interference and the limited number

of frequency bins above the noise level. However, as the

observation period increases and pulsar timing quality

improves, it will become possible to constrain these para-

meters more precisely in the foreseeable future.

IV. CONCLUSIONS

Since the PTA collaborations dropped the first evidence

for the nanohertz SGWB, there has been an ongoing debate

over whether it originates from astrophysical sources, such

as SMBHBs, or has a primordial origin. These two broad

hypotheses suggest different models for constructing the

SGWB observed today: fewer sources with stronger indi-

vidual signals or more sources with weaker individual

signals. In this work, we have developed a semianalytic

mathematical framework for computing the non-Gaussian

PDF of the redshift PðδzÞ for a SMBHB population model,

where we have accounted for both Poissonian fluctuations

in the number of SMBHBs and GW interference.

To quantify the significance of this distinction, we have

numerically calculated the exact PDF of the GW strain

power in the frequency domain as a function of population

model parameters. With current PTA sensitivities, evidence

of non-Gaussianity may be detected in some areas of the

population parameter space with fewer and individually

louder SMBHBs. As PTA sensitivity improves over time,

we expect more robust evidence for non-Gaussianity. We

also find the Gaussian statistics are still a good approxi-

mation in inferring the strain power spectrum h2cðfÞ with

current PTA sensitivity, though it will bias the inference as

PTA data of lower noise accumulates in the foreseeable

future.

We have proposed an approximated formula to calculate

the PDF incorporating data from many pulsars across

the sky. We have shed light on why the approximation is

numerically very close to the exact answer while math-

ematically not the same. The correction of the approxi-

mated PDF will naturally lead to modifications in two-point

correlation functions [21,36,38,42,53,54]. Additionally,

developing a numerically efficient method to calculate

the analytical PDFs for data analysis will be beneficial.

These topics will be addressed in future work.
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APPENDIX: TOY MODEL

To see if the approximation in Eq. (53) works, we perform

Fourier transform of P̃ðδzE;Re; δzE;ImÞ defined in Eq. (53) to

obtain the conjugate of the characteristic function (CF),

Φ̃
�ðtρÞ ¼

Z þ∞

−∞

dδzRe

Z þ∞

−∞

dδzIm

× P̃
	

δzE;Re; δzE;Im



e−itReδzRe−itImδzIm

¼
Z þ∞

0

djδzEj2P̃
	

jδzEj2NI



exp
	

−t2ρjδzEj2NI=4



;

ðA1Þ

where CGF is the logarithm of the CF

Φ̃ðtρÞ≡ exp K̃δzðtρÞ; K̃δzðtρÞ≡ ln Φ̃ðtρÞ: ðA2Þ

As a simple example, we consider a binary population

where the binary number density is a delta function of

log10M, z and ln fr,

d3N̄

dlog10Mdzd ln fr
¼ N̄δðlog10M − log10M0Þδðz − z0Þ

× δðln fr − ln fr;0Þ: ðA3Þ

Inserting the above population model into Eqs. (50)

and (51) we find the PDF as follows:

P̃ðjδzEj2NIÞ ¼ e−N̄
X

þ∞

k¼0

N̄k

k!
δ

�

jδzEj2NI −
2

15
kh20

�

; ðA4Þ

here k are integers, h0 ¼ h0ðf0;M0; z0Þ, and f0 ¼
fr;0=ð1þ z0Þ. Inserting the above expression in Eq. (A1),
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we easily find the result for the CF,

Φ̃
�ðtρÞ ¼ e−N̄

X

þ∞

k¼0

N̄k

k!
exp

�

−
1

30
kt2ρh

2
0

�

¼ exp

��

exp

�

−
1

30
t2ρh

2
0

�

− 1

�

N̄

�

: ðA5Þ

The CGF of the approximated PDF is

K̃δzðtρÞ ¼ ln Φ̃ðtρÞ ¼
�

exp

�

−
1

30
t2ρh

2
0

�

− 1

�

N̄: ðA6Þ

In comparison, the CGF of the exact PDF is

KδzðtρÞ ¼
Z

dλzPðλzÞ½cos ðtρh0λzÞ − 1�N̄: ðA7Þ

Using Eq. (38), we easily find

K00
δzð0Þ ¼ K̃00

δzð0Þ ¼ −
h20N̄

15
: ðA8Þ

The difference emerges at the fourth-order cumulant

(Kurtosis),

K
ð4Þ
δz ð0Þ ¼

3h40N̄

175
; K̃

ð4Þ
δz ð0Þ ¼

h40N̄

75
: ðA9Þ

In Fig. 8, we compare K̃δzðtρÞ and KδzðtρÞ in Eqs. (A6)

and (A7) with the CDF of the Gaussian distribution,

KGaus
δz ðtρÞ ¼ −t2ρh

2
0N̄=30. The “No interferenceþ Gaussian

convolution” approximation correctly captures the asymp-

totic behavior of the true CGF at tρ → 0 and tρ → þ∞.

However, in the intermediate region, the approximation

deviates from the true PDF and underestimates the non-

Gaussianity since it is closer to the Gaussian limit.
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Spolaor, Bence Bécsy, J. Andrew Casey-Clyde, Maria

Charisi et al., The NANOGrav 12.5 yr data set: Bayesian

limits on gravitational waves from individual supermassive

black hole binaries, Astrophys. J. Lett. 951, L28 (2023).

[50] E. S. Phinney, A practical theorem on gravitational wave

backgrounds, arXiv:astro-ph/0108028.

[51] R. W. Hellings and G. S. Downs, Upper limits on the

isotropic gravitational radiation background from pulsar

timing analysis, Astrophys. J. Lett. 265, L39 (1983).
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