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Multiple pulsar timing arrays (PTAs) have recently reported evidence for nHz stochastic gravitational
wave background (SGWB), stimulating intensive discussions about its physical origin. In principle, the
sources may be either supermassive black hole binaries (SMBHBs) or processes in the early Universe. One
key difference between the two lies in the statistics of the SGWB frequency power spectrum. In particular,
the often assumed Gaussian random SGWB does not accurately describe the distribution of the collective
SMBHB emission. This work presents a semianalytical framework for calculating the non-Gaussian
statistics of SGWB power expected from SMBHBs. We find that (a) wave interference between individual
SMBHBs with indistinguishable observed frequencies and (b) the Poisson fluctuation of the source
numbers, together shape the non-Gaussian statistics. Implementing the non-Gaussian statistics developed
in this work, we investigate the sensitivity of current and future PTA datasets in distinguishing the origin of
the SGWB through non-Gaussian information. Additionally, we find an interesting approximation of the
non-Gaussian statistics, which has implications for accurately and practically treating non-Gaussianity in

PTA Bayesian analyses.
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I. INTRODUCTION

The recent detection of nanohertz (nHz) stochastic gravi-
tational wave background (SGWB) by pulsar timing arrays
(PTAs) [1-8] has inspired intensive discussions of its
astrophysical implications. Supermassive black hole binaries
(SMBHBS) are a promising source of SGWB, from which
we may infer the abundance and evolution history of the
cosmic SMBHB population [9-16]. On the other hand,
various early-Universe processes have been speculated to be
alternative nHz SGWB sources (see [17] for a summary).

In principle, SMBHBs and early Universe sources can be
distinguished by the different statistical properties of the
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SGWB they produce. SMBHBs at redshifts z < 1 contrib-
ute significantly to the SGWB at nanohertz frequencies,
characterized by strong signal strength due to their prox-
imity, and they emit mostly monochromatic gravitational
waves (GWSs) over decades of observation. In contrast,
early Universe sources, produced at high redshift, are
heavily redshifted and contribute minimally due to their
larger distance. These sources usually emit over a broad
frequency range. A much larger number of sources would
be required for early Universe sources to contribute to the
same signal power as SMBHBs at the same observed
frequency. Thus, it is usually assumed that the Ilatter
produces a Gaussian and isotropic SGWB, while the former
is certainly non-Gaussian due to Poissonian fluctuations of
a finite number of SMBHBs and may show random power
anisotropy if there are nearby loud SMBHBs. Along this
line, there have been some efforts towards measuring the
spectral variance beyond Gaussian fluctuations [18-24], or
anisotropies of the nHz SGWB [25-32]. In these analyses,
spectral variance is usually quantified or parametrized
based on SMBHB population synthesis. Specially,
Refs. [33,34] derived the probability distribution of the
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characteristic strain P(h?) given a SMBHB population
model, which enabled a quantitative constraint on SMBHB
population models using the PTA data [34]. For the study of
anisotropy, forecasts are made based on SMBHB popula-
tion simulations, and measurements from the PTA data are
performed under the simplifying assumption of a Gaussian
random SGWB. Spectral variance and anisotropy are two
different manifestations of Poisson fluctuations of a finite
number of SMBHBs, in the intrinsic (e.g., GW amplitude
and frequency) and extrinsic (e.g., sky localization) param-
eter spaces, respectively. Focusing on a different aspect,
Allen et al. [35,36] calculated the variance of the Hellings-
Downs correlation [37] for a simple population of
SMBHBs, taking into account interference between GW
sources of overlapping frequencies. They demonstrated two
sources of variance: one arising from the finite number of
pulsar pairs being used and another cosmic variance due to
interference effects.

As summarized above, different aspects of nHz SGWB
sourced by a finite number of SMBHBs are related. Both
spectral variance and anisotropy originate from Poissonian
fluctuation in the number of SMBHBs and are affected by
interference, and deviation from the Hellings-Downs cor-
relation can be result from interference [35,36,38,39] or
spatial anisotropy [40-42]. In previous works, each aspect
has only been investigated separately, assuming other
aspects are known or independent. Here, we consider a
unified framework for dealing with Poissonian fluctuations
in the number of SMBHBs and GW interference. The major
challenge is efficiently computing the non-Gaussian prob-
ability distribution P(6z) for general SMBHB population
models, where 6z is observed photon redshift from a given
single pulsar in the network.

This work demonstrates an efficient method for comput-
ing P(6z) that accounts for the Poisson statistics and
interference. The key is to use the cumulant generating
function for 6z (see Sec. II for details). As a result, we find
that interference is the major source of variance in |5z|%. At
the same time, the non-Gaussianity originates from the
Poisson fluctuation in the source number (see Fig. 4). With
the non-Gaussian statistics P(6z) developed in this work,
we estimate the likelihood ratio against the conventionally
used Gaussian statistics and find that the current PTA
dataset is capable of finding substantial evidence of non-
Gaussian statistics (Fig. 5). However, we find narrowing
down the population model parameters challenging due to
the significant statistical variance caused by interference
(Fig. 6) given the current PTA sensitivity. As we will see, a
more extended observation period and a lower timing noise
level expected from future PTA data will enable substan-
tially improved constraints on population model parame-
ters. Under current PTA sensitivity, we find the Gaussian
statistics are still a good approximation in inferring the
strain power spectrum h2(f) of the SGWB from SMBHBs
(Fig. 7). As PTA data of lower timing noise accumulates in

the foreseeable future, we find the Gaussian statistics will
eventually bias the inference of h2(f) (Fig. 7).

This paper is organized as follows. In Sec. II, we briefly
introduce compound Poisson statistics and the correspond-
ing cumulant generating function (CGF) are key to
computing the exact PTA signal distribution P(5z) for
SMBHB population models. In Sec. III, we introduce a
parametrized form of the SMBHB population model to be
considered in this work and provide details about calculat-
ing the redshift distribution P(5z). Building on these,
we perform a likelihood ratio test comparing non-
Gaussian and Gaussian statistics. Concluding remarks will
be given in Sec. I'V. Throughout this work, we adopt a flat A
cold dark matter cosmology with Q, =0.3, Q, = 0.7,
Hy =70 kms~! Mpc~!.

II. COMPOUND POISSON STATISTICS

In this section, we develop the mathematical formalism
for computing the probability density function (PDF) of the
PTA observable, P(6z). The basic idea was also explored
in Ref. [34]. Assuming that individual gravitational wave
sources are monochromatic over the observational period
of PTAs, each source can be characterized by its current
observed frequency fgw and another set of M parameters
collectively referred to as ®. The following differential
distribution can describe a general source population:

d1+MN
YT (1)
dM@d1n f

The average source number in a logarithmic frequency
interval Aln f and in a multidimensional parameter-space
volume element AM@ is thus given by AN.

The actual source number AN is expected to be a random
number that fluctuates around its expectation value
(AN) = AN. Tt follows Poisson statistics, i.e.,

AN ~ Pois(AN). (2)

Source numbers in nonoverlapping volumes of the param-
eter space are independent random numbers.

For any signal s(@, f) that obeys the superposition
principle, the population-summed signal S is a weighted
sum over the entire source parameter space:

S=> s,AN,. (3)

where we divide the source parameter space into individual
blocks indexed by n, and s, = s(0,, f&w) is the corre-
sponding weight. Linearity of Eq. (3) suggests that the total
signal S is drawn from a compound Poisson distribution.
In the special case where the weight s(@, f) is a constant,
the total signal also follows a Poisson distribution.
Unfortunately, we are not aware of an analytical expression
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for the PDF of S, P(S), for the case of general
weights 5(0, f).
Instead, we pursue a numerical method to evaluate the
PDF P(S) that makes use of the CGF for S, defined as
Ks(t) = In (exp(iSt)), (4)
where 7 is the variable conjugate to & and is defined on the
real axis from —oo to oo, and the notation (- - -) stands for
the statistical average. Since AN,’s are statistically inde-
pendent of each other, Eq. (4) can be evaluated as follows:

Ks(t)=> In(exp(is,AN,1)) =Y AN, (e~ 1), (5)

where the last step follows from the CGF of Poisson
distribution. Equation (5) then allows us to numerically
evaluate the PDF of S through an inverse Fourier trans-
formation,

P(sI0.f) =5 [ arexp(isi-+ [Ks()). ()

where [---]* stands for complex conjugation. The PDF
evaluated in this way is correctly normalized.

If the source parameter space is continuously para-
metrized by (@, f), then Eq. (5) can be revised to the
appropriate continuous limit, where summation is replaced
by integration

u d1+MN
A dl d 7

The CGF converges in this limit, giving a unique answer for
the PDF of the signal S.

It is straightforward to generalize the above framework
to the case where a set of N different signals (N > 1),
collectively denoted as S, are measured. The corresponding
CGF depends on a set of A/ conjugate variables, which we
collectively refer to as £. The CGF is given by

Ks(t) = Zln (exp (is, - tAN,)) = ZANn(eis,,f —1),

(8)

and the multivariate PDF, in principle, can be found from
the multidimensional Fourier transformation,

P(S|O. f) :;N/djvtexp (iS-t+ [Ks@). (9

(27)

If an observable S is also contaminated by noise n, and if
the noise is statistically uncorrelated with the signal, then
the total measurement & + r has a CGF

Ksin(t) = Ks(t) + Ky (0). (10)

where K, () is the CGF for the noise n. The corresponding
PDF is essentially the likelihood function for obtaining data
S +n given a model with model parameters {@, ¢}:

P(S8+n|0,¢), (11)

where ¢ is a set of parameters that characterize the noise.
Based on the above general results following the proba-
bility theory, we will develop a framework to perform
Bayesian inference of GW source population parameters.

ITI. NON-GAUSSIAN STATISTICS
In Sec. IIT A, we will first introduce a convenient para-
metrized form for the SMBHB population following [11],
&N
dIn fdlog;, Mdz

(©). (12)

This gives the SMBHB number density in the phase space
defined jointly by the GW frequency f, the binary chirp
mass M, and the cosmological redshift z. We then
introduce some basics of the PTA observable, redshift of
photons 6z propagating from a pulsar to the earth under the
influence of GWs (Sec. I1I B), and the details for computing
the non-Gaussian redshift PDF, P(5z), given a SMBHB
population model (Sec. III C). With the redshift PDF, we
compare the non-Gaussian statistics with the convention-
ally used Gaussian statistics in Sec. III D.

A. SMBHB population

Supermassive black holes (SMBHs) are commonly
found at the centers of their host galaxies. Galaxy mergers
inevitably bring multiple SMBHs into the same postmerger
galaxy. SMBHBSs are the most promising sources for the
nHz SGWB observed at PTAs, though the detailed proc-
esses for the formation and mergers of SMBHBs still need
to be fully understood. The mass of the central SMBH is
empirically known to correlate strongly with the velocity
dispersion in the host galaxy bulge. This is the famous
Mgy — o relation [43—-45]. We model the mean Mgy —
relation, together with the expected scatter around it, with
the following log-normal probability distribution

M
P(log,oMgylo) = \/_e CXP{ MBH
0 o)

log, 107 ? HRNE
— 1010 (m) } } (13)

where a. and b. are constants, and €, quantifies the intrinsic
scatter. On the other hand, the velocity dispersion function
(VDF) of the galaxy bulge is parametrized as

{logw
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$(o) =

a-1 g=(c/0.)f
¢.b [ﬁ] te (14)

o.] T(a/p)

Here a, f are dimensionless constants, o, characterizes the
turnover of the velocity dispersion, and ¢, is a normali-
zation constant, which also sets the total number of the
galaxies per Mpc®. Taking these into account, the SMBH
mass function is

dn

T = [ daPlogi Muslo)pe). (19
where n is the total number of black holes per Mpc?.

We assume that all SMBHBs in the PTA band are
circular inspirals. This assumption is expected to be true
when GW radiation dominates the hardening of the binary
orbit, as GW emission tends to circularize the orbit. For
circular inspirals, the chirp mass M and source redshift z
determine the observed GW amplitude. Chirp mass M is
defined as

1 (16)

M = 5 Mgy, 7

=1

where g < 1 is the binary mass ratio. We express the
population model as follows:

dn 1 dn

- d 17
Sog i~ ), 41P@ (17)

dlog;oMpy

py(q) =N,q° and N, are the normalization constants.
The above expression assumes one merger per galaxy.

Only SMBHBs located on our past light cone are
observed through the SGWB. The relevant comoving
volume is given by dV_./dz,

dv, dv,/dz

— = 4zed, (2)2(1 + 2), 18
TR TAE medp (2)*(1 + 2) (18)

where ¢, is the proper time of a comoving observer
in Friedmann-Robertson-Walker cosmology, and d; (z) =
(c(142z)/Hy) J§dZ'/E(Z) is the luminosity distance to
redshift z, where E(z) = /(1 + 2)3Q, + Q4. Assuming
the redshift dependence is separable, the SMBHB popu-
lation can be written as [46]

d*N () dn dt, dv,
dlogyo Mdzdlnf, 7= dlog,o MdIn £, dr, ’

(19)

where f, = (1 + z)f is GW frequency in the rest frame of
the SMBHB barycenter, p.(z) = N.z7e"/%*, dt,/dIn f, is
determined by the binary orbital hardening rate, z, is the
turnover redshift, and A/, is a normalization constant. We
adopt the simplifying assumption that the spectral shape of
the mass function is independent of redshift z. We introduce

£ to the frequency dependence

dl‘r B 5
Ainf, = 96(GM] TP /1,

(20)

especially & = 0 if the hardening is driven by GW emission
only. To summarize, in our parametrized SMBHB pop-
ulation model, {ey, a., b.} characterize the Mpy — o rela-
tion, {¢,,0,,a,p} characterize the VDF, and {6,7,z,, &}
characterize the SMBHB distribution with respect to binary
mass ratio, redshift, and frequency.

Following Ref. [11], we set fiducial values for the popula-
tion parameters: o, = 159.6 kms™!, {a,,;a.,b.;y,2,;6;E} =
{0.41,2.59;8.32,5.64;0.3,0.5;—1;0}. We leave ¢, and ¢, as
free parameters. These choices are justified by studies on the
velocity distribution function [47], on the M — o relation [45],
and SMBHB population simulations [48]. Furthermore, in
this work, we consider an expanded population model that
accounts for source dependence on extra binary parameters in
addition to M and z,

A = {logig M, z} U {cos 0, p;cost,y; 0}, (21)

where 1 is the binary orbit inclination, y is the polarization
angle, 0 and ¢ parametrize the source’s sky location, and ¢
is a binary orbital phase constant. It is reasonable to assume
that binaries have no preference regarding spatial location
and orbital orientation. Therefore, the extended population
model is

&é¢N 1 >N
dinf,d’A  32z°dInf,dlog;o Mdz"

(22)

Next, we will look into the intensity of GWs from the
circular SMBHBs. For a slowly-evolving binary with chirp
mass M and redshift z, the GW tensor at the observer
x = 0 can be written as

hap(2,0) = h(2,0)e), + h, (2,0)€%,, (23)

where the polarization tensor €/ (6, ¢, ) depends on the
source sky location (6, ¢) and the source polarization angle
y [49]. The two polarization states have amplitudes

1 + cos?t

h(1,0) = hy cos(2zft + @),

hy(1,0) = hycosisin(2zft + @), (24)

where the dimensionless amplitude is

de(mfy)?3(fr/ fy)P(GM/ )13
d;(z)

A commonly used quantity is the characteristic strain of
the GWs, the expected value of which from a SMBHB

ho(f. M. z) = . (25)
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FIG. 1. The contours of log,o(%.)(fy:) on ¢. — ¢ plane. The

parameters consistent with the 15-year NANOGrav data are
marked as the black dashed line. We fix all the other parameters at
their fiducial values (given in the text).

population can be written as [46,50]

R0 = | “de [ dlogig MR + 2
c(f) 0 Z 0g10 <++ ><>cosz.(p

" d*N
dlogo MdzdIn f,’

(26)

where

2

<h3- + h3<>COSl,(/I = 3

h3 (27)

is the GW amplitude squared averaged over random binary
orbital inclination and phase constant. In Fig. 1, we show
contours of A.(fy:) on the ¢,—, plane, as well as the
specific contour that corresponds to the best-fit value from
the 15-year NANOGrav data [1], . (fy,) = 2.4 x 1075,

B. Pulsar redshift

As radio photons travel from a pulsar to the Earth, the
arrival time is perturbed by the SGWB. For a planar GW
propagating in the direction Q (with —Q being the direction
pointing from the Earth to the GW source), the GW tensor
is generally written as

hop(t,X) = hy (t —x - Q)el, + b (t—x-Q)eX,.  (28)

Considering a pulsar with a sky location p and at a distance
L from the earth, the observed photon redshift (or the
fractional change in apparent pulsar spin period) for the
observer at the coordinate origin x = 0 is [37]

52(1‘) = 0zg — 02p

1 pepb N
=————|hu,(1,0) = h,,(t = L, Lp)]. 29
21+Q-ﬁ[ »(2,0) »( P (29)

Here, the subscripts £ and P stand for the Earth and the
pulsar terms. For a slowly evolving SMBHB where the GW
frequency evolution during the PTA observational period T
is negligible (with 2zfT < T~'), the two polarization
components in the Earth term are in the form

1 4 cos?t

hy(1,0) = hy cos(2zfet + @),

h,(2,0) = hycosisin(2zfgt + @), (30)

where the GW amplitude and the frequency ff are taken as
a constant during the observational period (0, 7'). Similarly,
we have for the pulsar term,

1 + cos?

ho(t—L.Lp) = hy cos(2zfpt + @ — A),

hy(t—L,Lp) = hycosisin(2zfpt + ¢ — A), (31)

where the phase difference A = c~! [F2zf(1)dr(1+Q-p)~

7(fp+fp)L(1+Q-p)/c, and fp is also taken as a constant
during the observational period (0, 7). We note that for a
given pulsar, the frequency difference between the Earth
term and the pulsar term, fr — fp, can be significant and
measurable if 2zfL/c > T~'. For SMBHB at nHz fre-
quency, fg and fp are indistinguishable.

In practice, the PTA data analysis is more straight-
forward in the frequency domain, where the redshifts 6z(f)
in different frequency bins are statistically uncorrelated.
We first divide the relevant frequency range into bins,
with central frequencies f, (n = 1, ..., n,,) and equal bin
sizes T-'. The GW amplitude from a SMBHB in a
frequency bin of central frequency f, is

hap (a3 f.©) = TW(f = fu)ho(f, M, 2)e™

1 + cos?
x [i%e% +coswer, |, (32)

where f is the observed GW frequency from the binary, and
W is the top-hat window function,

W(f_f”)_{l, f,—1/2T < f < f, +1/2T 33)

0, otherwise.

As Eq. (29) shows, two terms contribute to the redshift of
a photon emitted from a pulsar and received on the Earth.
However, it is widely accepted that only the Earth term
exhibits interpulsar correlation, namely the Hellings-
Downs curve [51]. Here, we assume that we successfully
subtracted the Earth term. Taking the Earth term,
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_Lpuhab(xEv f)pb

(34)

The expression above is dimensionless by introducing
the prefactor T-!. Without loss of generality, we take
p =1(0,0,1) for simplicity, then the real and imaginary
components of dzg are

&Eiﬁge = ho.(0,1,y, @),

5ZIC31rlcm = hol (0. 1.y, ¢ + 7/2), (35)

where

01/1 2
2.(0,1,y, ) = sin’ 3 K%) cos(2y) sin @

— cossin(2y) cos (p] . (36)

For a population of SMBHBEs, the total redshift is therefore

B = 3 AN, (5*) . (37)

where we divide the source parameter space into individual
blocks indexed by n. The distribution P(/,) is evaluated
using the Monte Carlo method by uniformly sampling
cos @, cost, y, and ¢, and we store numerical values for
further use. The mean value of any arbitrary function F(4,)
is equivalent to the following integration:

(F(1,)) = / 42.P()F ()

1 1 1 27 2z
:@/_ldcose/_ldcoszl dqﬁ[) dy

X /02” doF (2,(0,1,w.9)). (38)

Then it is straightforward to find (1,) = 0 and (A2) = 1/15.

If a SMBHB is slowly evolving, with the Earth term and
the pulsar term contributing to the same frequency bin, then
we find

5Zcirc _ 5ZcEirc _ 5Zf)irc
= hy [:11(9, Ly, @, A) + il (0, Ly, @+ 1/2, A)],
(39)

where

.0, L, w, 0, A) =2sin (A/2)2,(0,,w, 9 — A/2).  (40)

It is clear that the pulsar term further increases the variance
of the redshift. The calculation of the redshift distribution,
in this case, is completely parallel to the previous case with

the replacement A_(0,1,y, @) —>/~11(9, Ly, p,A). In the
next subsection, we will focus on the PDF of the red-
shift P(6zg(f)).

C. Distribution of pulsar redshift

Using the method developed in Sec. II, we can now
calculate the PDF of the redshift P(6zg(f)) given a
SMBHB population model. We first assemble the real
and imaginary parts into a vector s = (6z8's,., 525, ). The
total signal is a superposition of many individual sources
and the conjugate variables also into a vector t = (tge, 1),
then

§-t= (Szfii,r]getRe + 6Z]CEi,rI(;ntIm = Iphﬂlz(ef LY,p— t(p)9 (41)

where g, and ty,, are real variables conjugate to 6z5', and

sz, t, = arctan(fyy,/tge), 1, = \/ ke + . Because of
the uniform distribution of ¢, the CGF does not depend
on the variable 7,,. The two-dimensional (2D) CGF turns
out to be

Kﬁz(l/)) = Alnf///\dloglonZdiZP(lz)

>N

x [cos (t,hoA,) — 1] dlog;gpMdzdIn f,”

(42)

We find that K (tge,tm) = Ks,(f,) is a real function
because P(4,) is even, and K, (fge, 1) Only depends on
the magnitude of the conjugate vector 7,,.

The cumulants of the redshift can be inferred from the
CGF Kg,. First, it is easy to verify that all odd order of
cumulants vanish because P(1.) is even, and the higher
and even order of cumulants, namely (5z%%.) with k > 1,
do not exist because of the divergence at the nearby end
(cosmology redshift z — 0) of the SMBHB population,
which implies that the corresponding PDF of 6z is a heavy-
tailed distribution. The only nonzero and finite cumulant
equals the variance of the redshift 6zg g, and 6zg 1, With

<5Z%,Rc> = <5Z}23,Im> = _ng (O) (43)

In particular, K7 (¢,) is free of divergence at the nearby
end of the SMBHB population:

Ki(1,) = —Alnf /// dlog,pMdzdA, P(4,)

&N
dlog;pMdzdIn f,’

x h§A2 cos (t,hoA;) (44)
where it is straightforward to find 0 < |K7,(¢,) /K5, (0)| < 1
using Cauchy-Schwarz inequality, and K"(t, — +c0) = 0
due to the fast oscillatory integrand.
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FIG. 2. Top: the second derivative of the CGF. Bottom: the PDF
of the observed redshift dzg .. Note that all PDFs in this plot
share the same variance, (SzéRe). We consider f = 10 nHz with a
bandwidth Af = 2 nHz. Curves of lighter colors correspond to
SMBHB populations with more SMBHBs but lower black hole
masses. As the number of individual SMBHB increases, the CGF
and the PDF approach the Gaussian limit.

In comparison, in the Gaussian limit K§**(z,) « —13/2,
meaning K§*
Gaussian limit, we can artificially rescale dN — xdN
and h? — hz/x and take the limit of x — +o00, which
corresponds to the limit of an infinite number of arbitrarily

weak GW sources. That is to say,

(t,) equals a constant. To recover the

1
ngaus//(tp) — ng(()) = —gl’l%Alnf, (45)

where we have used Eqgs. (26), (27), and (38).

In the left panel of Fig. 2, we show the numerical
results of K”(t,) for a range of SMBHB populations
with different population parameters (¢,,¢) that are
consistent with 15-year NANOGrav data (see the black-
dashed line in Fig. 1), all having the same variance —K7_(0)

[Egs. (43) and (45)]. As expected, K”(z,) is closer to
the Gaussian limit for a larger number of GW sources
(higher ¢,). The comparison demonstrates the origin of the
non-Gaussian nature of the SGWB from SMBHBs.

The 2D probability distribution, properly normalized,
can be expressed in terms of an integral

1 0
— dr
(2”)2 /_oo Re

(9] . .
X / dl’lme[Kzfz(l/))]*+ltRcézE.Rc+ltlm52E.lm

[Se]

P(62g e 6Z5.1m) =

1
_27[0

= f(|6zg)). (46)

e (K5 (1,))
dz,t,etfo)l g (1,]6z5|)

In practice, we define ¢, = e* and numerically imple-
ment the integral using the 7 variable instead. It is important
to notice that 0zg . and dzg 1, are generally not statistically
independent, i.e., P(6zZgRre,0ZE1m) # P(62ZgRre)P(6ZE1m)-
The marginalized distribution of 8z g, is

—+00
P(5zpxe) =2 / (1620 dy /626 — 6o (47)

On the right panel of Fig. 2, we show P(8zg ge) for several
¢, — €q pairs (same as those in the left panel). We note that
the true distribution P(6zgg.) is both heavy tailed and
strong peaked.

The PDF of |dzg|” is

P(|6zg]*) = mf(|6zg)). (48)

and is shown in Fig. 3.

So far, the calculation in this section is based on Eq. (37),
which includes interference between individual sources.
Here, we consider another commonly studied quantity—
the signal power summed incoherently over sources:

|5ZE|12\II = ZANH<|5Z]C51rC }%>COS€,¢,COS[,I[/,(/}’ (49)
n

where the source parameter space is defined only by M, z,
i 2
and fr’ and <|5Z]CEHC‘%)cosﬁ,d}.eosz.w.zp = EhO(fnv an Zn)2’
the subscript “NI” stands for “No Interference.” It is easy
to prove that (|6zg|%;) = (|6zg|?). However, comparing to
the true |5zg|?, cross terms such as (8z5™), (5z8),, with
n # n’, which correspond to interference between sources,
are absent in the NI counterpart. The corresponding CGF is

K 2
K\(sdz(t) = Alnf// dlog;yMdz {exp (E ith%) - 1}

" &N
dlog;gpMdzdIn f,’

(50)
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FIG. 3. The PDF of |6zz|* and |5z5|%;. We consider f = 10 nHz in both subplots, with a bandwidth Af = 2 nHz. Curves of lighter
colors correspond to SMBHB populations with more SMBHBs but lighter black hole masses. Note that on the left panel, the “Gaussian
Limit” corresponds to the y? distribution with k = 2, which is also an exponential distribution.

and the PDF is

P(02Re) =5

i/*“ drelKsr OV it (51
In Fig. 3, we find that the tails of P(|6zg|?) and
P(|6zg|%;) can be very well approximated by power law
distributions. This result is in agreement with the findings
of Refs. [12,24,33]. The major difference is that in the no
interference case, P(|0zg|%;), is strong peaked at some
positive value while the peak is smeared and always located
at zero in the presence of interference.
In Fig. 4, we show the PDF of log, |6zg|%,
P(logg |6z5*) = In 10|82 *P(|6ze).  (52)
and the no interference counterpart P(log;, |dzg|%;) at
different frequency bins for two SMBHB populations and
three total observation times. The true PDF is much more
diffused than the no interference case. The comparison
shows that interference dominates the variance in |5zg|?
while Poisson fluctuations play a minor role. In the no
interference case, the expectation value of |5zg[%; is con-
sistently higher than the median of |5zg|%;, especially at
higher frequencies. This is because P(logj |6zg|Z;) is a
skewed distribution that decreases to zero rather slowly at
large |5zg|%;, contrary to rapid falloff of the low |6zg %, end
(Fig. 3). This observation is consistent with the Monte Carlo
results by Refs. [46,48]. The difference between the median
and mean values is more prominent for combinations
between smaller ¢, with larger €,, which correspond to
stronger non-Gaussianity. We also find that the true PDF
with the interference effect is well approximated by a
Gaussian convolution of the no interference PDEF,

k]

~ +o0 -
P(S25res 5751m) = / 41625 2P (1525 )

e_ (5Z’é,Re +(szlzi.lm)/ ‘6ZE ‘12\11

, 53
ol 53)

where the numerical comparison between P(6zg re, 6ZE 1m)
and P(8zg re> 82g1m) is shown in Fig. 4. Numerically, the
two distributions are nearly indistinguishable from the
realistic SMBHB population models we consider. How-
ever, in the Appendix, we demonstrate that they are not
mathematically identical.

Equation (53) as an excellent approximate PDF implies
that non-Gaussianity originates from the Poisson fluc-
tuation of the source numbers. The interference effect is
well approximated by randomly drawing the real and
imaginary parts of dozg from a 2D Gaussian distribution.
It justifies the population inference done in [34] at the
practical level in the following sense: NANOGrav had
first derived the likelihoods for the frequency-binned
power [5zg|§; from the redshift residuals of individual
pulsars under the assumption that the SGWB is a Gaussian
random field [9]. Reference [34] then used these like-
lihoods as summary data and performed Bayesian pop-
ulation inference using the correct non-Gaussian PDF
P(|6z5|%;) for the total power (hence without inference).
These two analyses combined are equivalent to using
Eq. (53) to perform Bayesian inference at the redshift
observable level.

In principle, one would like to perform Bayesian
inference for SMBHB population models by applying a

multivariate non-Gaussian PDF P({&}(zl,ize’&](sl,)lm}) for

the redshifts of all N, pulsars 5z]<5]),1 =1,2,...,N, to
direct PTA observables. Unfortunately, writing down an
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FIG. 4. Violin plot for P(log,, |6zg|*) and P(log, |6z [%;) in discrete frequencies binned at a width Af = 1/T. All violins at the same
frequency in each panel share the same expectation value of (|6zg|?), which equals to (|6zg|%;), shown by the black curve.

exact expression for this PDF seems prohibitive,1 as red-
shift signals in different pulsars are correlated in the
Earth term.

However, the numerical success of the approximate PDF
in Eq. (53) guides us to conjecture that if one convolves
P(|67g|%;) with a multivariate Gaussian distribution for the

redshifts of all pulsars, with the correct covariance set up
between pulsars,

'Even though a straightforward generalization of the formal-
ism we present in this work will allow the calculation for the
corresponding multivariate characteristic function, inverse Fou-
rier transform in high dimensions would be impractical.

= I 1 too =
P({‘SZ](E.)Re"SZ(E,}m}) —A d|5ZE|12\IIP(|5ZE‘IZ\H>

e—02:C7" (152 %)z

T det C(lozg )

(54)

then the result may very well approximate the exact joint
PDFE. In Eq. (54), the vector dzg collectively represents
redshifts of all pulsars, and C(|5zg|%;) stands for the
multipulsar covariance matrix that would result from an
isotropic Gaussian SGWB with a given full-sky average
power |6zg|%;. We note that applying Eq. (54) to Bayesian
inference at the level of individual pulsar redshifts will be
mathematically equivalent to the combination of two steps:
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first deriving the likelihoods for the mean frequency-binned
powers assuming a Gaussian random SGWB, and then
inferring the SMBHB population by applying P(|6zg|3;) to
the derived likelihoods as summary data.

If true, such an approach will be a practical path toward
full Bayesian treatment, including non-Gaussianity and at
the level of pulsar redshifts. However, how this idea may be
quantitatively validated is an open question.

D. Sensitivity estimation

With the non-Gaussian statistics developed above, we
are in a position to estimate the PTA sensitivities in
measuring the non-Gaussianity in the nHz SGWB and
constraining the SMBHB population parameters and to test
possible bias in inferring the population properties if the
Gaussian statistics are applied instead.

1. Likelihood ratio between non-Gaussian
and Gaussian model

We first implement a simple likelihood ratio test by
applying both the non-Gaussian and the Gaussian statistics
to mock data generated from a SMBHB population model.
We assume that measurement noises for dzg. and Ozyy,
follow a Gaussian distribution with the variance of ¢. In
the presence of noise, the new PDF P(6zgRre. 6zg1mlc) is
calculated in the similar way, see Eq. (46), with the CGF
modified as

2
K&(tp|g) = K&z(tp) - Tp (55)
For comparison, the CGF for a Gaussian PDF

PGaus(6ZE Re» 0ZE1m|¢) With the same variance is

2

K1) = 2Ee09) (56)
We benchmark two observational noise levels: one with a
noise level ¢k = 7 x 10715 over T = 15 years, and another
with a noise level ¢ = 1 x 10715 over T = 30 years, where
k labels the kth frequency bin. The first benchmark case is
consistent with the current PTA sensitivity, where the
SGWRB signal stands out of noise in five frequency bins.
We define the likelihood ratio test statistic as follows:

P(02Zg Re» OZE 1m|S)
PGaus (6ZE,RC7 6ZE,lm |§) ’

/ILR - 21n (57)

where P(8zg re» 025 1m|S) = ],z"jf P(62f ger 024 1m|c*) and
82§ e and 8zf ;, are the real and imaginary components
of the redshift data in the kth frequency bin. We ensure
that the Gaussian distribution, Pgays(07K es 078 1mlc)s
has the same variance as the non-Gaussian distribution

(ALR)

E[T: 15 years, ¢= 7.0 x 10716]

0.2 0.4 0.6 0.8
€0

\

I [T: 30 years, ¢= 1.0 x 10’161

1 1\
0.2 0.4 0.6 0.8
€0

FIG. 5. The contours of the expectation value of A; g, (4 ), on
the ¢, — ¢, plane. The top panel corresponds to the current PTA
sensitivity. The statistics 4; g, defined in Eq. (57), characterize the
likelihood ratio between a non-Gaussian PDF and the Gaussian
PDF, assuming the data is drawn from the non-Gaussian PDF.

P(82f ge- 025 1m|¢*). We then evaluate the expectation value
(A1r) using the following formula:

</1LR> = / dazE,RedazE.ImP (6ZE.Re’5ZE,Im|Q)}“LR' (58)

We choose k., = 14 and k,,, = 28 for the two bench-
mark cases described above. The integral can be simplified
using the fact that all frequency bins are independent of
each other and that at each bin the PDFs only have
dependence on the modulus of §z%.

The results are shown in Fig. 5. With current PTA
sensitivity (which has five frequency bins above the noise
floor), we expect to find (4 r) > 2 for ¢y > 0.6. This may
increase to (A g) > 15 for the same parameter range in the
more optimistic situation.

043022-10



NON-GAUSSIAN STATISTICS OF NANOHERTZ STOCHASTIC ...

PHYS. REV. D 111, 043022 (2025)

2. Parameter estimation of the SMBHB
population model

We also perform a Monte Carlo simulation, in which
we generate random data points drawing from the non-
Gaussian PDF for a given combination of ¢, and ¢.

We then define the likelihood function as follows:

L(10g1q b... 9|02 6255%) = P(8ap. 622 ... eo).

(59)

where P(6z0%K, 6289 |, ¢.. €9) is the calculated with the
population model parameters ¢, €, while other parameters
are fixed at their fiducial values.

Next, we choose the second benchmark and use the
population model parameters (¢,,€p) = (0.032,0.61) to
generate mock data (6z0%X, 6z79<%) 10,000 times. Then for
each realization, we calculate the likelihood values on the
¢.—€, plane and find the maximal-likelihood value points.
We then collect the best-fit points and investigate their
distribution. The results are shown in Fig. 6.

3. Strain power spectrum inference

PTA data have been used in inferring the strain power
spectrum of the nHz SGWB, assuming the strain is a
Gaussian random field with a power-law frequency
dependence,

he(f) = he(fyo) (f/ fye)* (60)

In this subsection, we apply the Gaussian statistics to mock
data generated from a SMBHB population model and

N
\_\Jl
10}
lQ
(=8
=
s
10°F

;[T=3O years, ¢= 1.0 x 10716]

0.3 0.6

€0

FIG. 6. The contour of the best-fit parameters using the non-
Gaussian PDF we derived in this work. We choose one pair of the
population model parameters (¢,,¢ey) and simulate 10,000
realizations of mock data. The true parameters are marked as
the red point. We then calculate the likelihood values for each
realization using the non-Gaussian PDF and investigate the
distributions of the best-fit points. The solid and dashed contours
indicate 1o and 26 confidence regions, respectively.

quantify the resulted bias. We construct the log-likelihood
function as follows:

In £ (8285, 6229 log 0h (fyr). 7)

= > [-I6z?/{I52?) — Ina(lzg )], (61)

where

(6F) = 3 B(FAIf 427 (62)

In accordance with the convention of PTA community, we
have introduced the notation y, which is the power index
of the time delay power spectrum and is related to a by
a = (3 —y)/2. Similarly, we choose the earlier defined two
benchmarks and simulate 200,000 random realizations for
given population model parameters, then collect the best-fit

_ L : — _ —16
14.0 e ;[T— 15 years, ¢= 7.0 x 10 ]
IPPIENS helfy) =24 107
—_ Y lannnan - L T O Y L R R L LR NN T
= ,
= —-15.0 5
= : \\~ "\\,‘\
g —155} o AN
— ol \ ~
— =N N
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1 1 : 1 1 i\
3 4 5 6 7
=3-2a
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TS R e fen st
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S ~15.0F S
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FIG. 7. The contours of the best-fit parameters using the
classical power-law model. We assume two different population
model parameters and simulate 200,000 realizations of mock data
for each. We then calculate the likelihood values for each
realization using the power-law model and investigate the
distributions of the best-fit points. The solid and dashed contours
indicate 1o and 20 confidence regions, respectively.

043022-11



XIAO XUE, ZHEN PAN, and LIANG DAI

PHYS. REV. D 111, 043022 (2025)

(logyo A.(fyr). 7) points, and plot the distribution. We show
the results in Fig. 7. Comparing the blue and red contours,
we find that as the non-Gaussianity increases, the character-
istic strain A (fy,) tends to be underestimated. At the same
time, the power-law index y is overestimated, consistent
with what is implied in Fig. 4. This observation is in
agreement with findings in [52]. The Gaussian statistics are
still a good approximation in inferring the strain power
spectrum with current PTA sensitivity and will bias the
inference in the foreseeable future.

In conclusion, with the current sensitivity, PTAs cannot
determine SMBHB population model parameters with a
decent precision. This is fundamentally limited by the large
variance arising from interference and the limited number
of frequency bins above the noise level. However, as the
observation period increases and pulsar timing quality
improves, it will become possible to constrain these para-
meters more precisely in the foreseeable future.

IV. CONCLUSIONS

Since the PTA collaborations dropped the first evidence
for the nanohertz SGWB, there has been an ongoing debate
over whether it originates from astrophysical sources, such
as SMBHBs, or has a primordial origin. These two broad
hypotheses suggest different models for constructing the
SGWB observed today: fewer sources with stronger indi-
vidual signals or more sources with weaker individual
signals. In this work, we have developed a semianalytic
mathematical framework for computing the non-Gaussian
PDF of the redshift P(6z) for a SMBHB population model,
where we have accounted for both Poissonian fluctuations
in the number of SMBHBs and GW interference.

To quantify the significance of this distinction, we have
numerically calculated the exact PDF of the GW strain
power in the frequency domain as a function of population
model parameters. With current PTA sensitivities, evidence
of non-Gaussianity may be detected in some areas of the
population parameter space with fewer and individually
louder SMBHBs. As PTA sensitivity improves over time,
we expect more robust evidence for non-Gaussianity. We
also find the Gaussian statistics are still a good approxi-
mation in inferring the strain power spectrum h2(f) with
current PTA sensitivity, though it will bias the inference as
PTA data of lower noise accumulates in the foreseeable
future.

We have proposed an approximated formula to calculate
the PDF incorporating data from many pulsars across
the sky. We have shed light on why the approximation is
numerically very close to the exact answer while math-
ematically not the same. The correction of the approxi-
mated PDF will naturally lead to modifications in two-point
correlation functions [21,36,38,42,53,54]. Additionally,
developing a numerically efficient method to calculate
the analytical PDFs for data analysis will be beneficial.
These topics will be addressed in future work.

ACKNOWLEDGMENTS

We thank Reginald Christian Bernardo, Luke Zoltan
Kelley, Thomas Konstandin, Enrico Perboni, Gabriela
Sato-Polito, Ye-Fei Yuan, and Matias Zaldarriaga for useful
discussions. IFAE is partially funded by the CERCA
program of the Generalitat de Catalunya. X. X. is partly
funded by the Grants No. CNS2023-143767 and
No. CNS2023-143767 funded by MICIU/AEL/10.13039/
501100011033 and by European Union
NextGenerationEU/PRTR. X. X. is  supported by
Deutsche  Forschungsgemeinschaft under Germany’s
Excellence Strategy EXC2121 “Quantum Universe”—
390833306. L.D. acknowledges research grant support
from the Alfred P. Sloan Foundation (Award No. FG-2021-
16495) and support of Frank and Karen Dabby STEM
Fund in the Society of Hellman Fellows.

DATA AVAILABILITY

No data were created or analyzed in this study.

APPENDIX: TOY MODEL

To see if the approximation in Eq. (53) works, we perform
Fourier transform of P(ézE,Re, 8zg1m) defined in Eq. (53) to
obtain the conjugate of the characteristic function (CF),

~ +o00 +00
(I)*(l‘p) —/ d5ZRe/ dézlm

X i) (5ZE,RC7 5ZE,Im) e_itRe(SZRe_itIm‘SZIm
+o0 -
= [ oz P (ozulie) exp (~Hioze Rl 4)
(A1)
where CGF is the logarithm of the CF

q)(tp) = expkéz(tp)’ K&z(tp)

Ind(1,). (A2)

As a simple example, we consider a binary population
where the binary number density is a delta function of
log;o M, z and In £,

&N -
dlog,gpMdzdIn f,

N5(10g10M —log o M)é(z — zp)
X 5(lnfr - lnfr,O)' (A3)

Inserting the above population model into Egs. (50)
and (51) we find the PDF as follows:

. o X Nk 2
Pscelo) = > Tro(I0ceho — ki3 ). (a4
k=0 "

here k are integers, hg = ho(fo, Mo, z0), and fo=
fro/(1+2p). Inserting the above expression in Eq. (Al),
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we easily find the result for the CF,

(1) = e‘Nka exp ( ! kt2h2>
Pl T “3p "0
25l 30

1 _
=exp< |exp | —==2h3 )| —1|N;.  (AS)
30
The CGF of the approximated PDF is
- o 1 _
Ks.(1,) =Ind(1,) = [exp (—3()%%1%) - 1} N. (A6)
In comparison, the CGF of the exact PDF is
K, (t,) = /d/IZP(/lz)[cos (t,hod,) —1]N. (A7)
Using Eq. (38), we easily find
U _ ! _ h%N
K&z(o) - K&z(o) - _F' (AS)

The difference emerges at the fourth-order cumulant
(Kurtosis),

4 3N (4 hiN
KO =" KO =75

(A9)

0.00 — Ks(t,)/N
-—= Ks(t,)IN
025} il
KSus(z,)/N
~0.50
~0.75F
~1.00} s
10" 10° 10' 107 10°

t,ho(fo, Mo, z0)

FIG. 8. We compare K;,(,)/N, Ks,(1,)/N and K§*(t,)/N.
We calculate the CGFs by assuming all sources have the same
chirp mass M and located at the same redshift z,.

In Fig. 8, we compare K, (z,) and Ks,(1,) in Eqgs. (A6)
and (A7) with the CDF of the Gaussian distribution,
K§25(1,) = —13h3N /30. The “No interference + Gaussian
convolution” approximation correctly captures the asymp-
totic behavior of the true CGF at 7, - 0 and 7, - +oc0.
However, in the intermediate region, the approximation
deviates from the true PDF and underestimates the non-
Gaussianity since it is closer to the Gaussian limit.
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