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Multiple pulsar timing arrays (PTAs) have recently reported evidence for nHz stochastic gravitational
wave background (SGWB), stimulating intensive discussions about its physical origin. In principle, the
sources may be either supermassive black hole binaries (SMBHBs) or processes in the early Universe. One
key difference between the two lies in the statistics of the SGWB frequency power spectrum. In particular,
the often assumed Gaussian random SGWB does not accurately describe the distribution of the collective
SMBHB emission. This work presents a semianalytical framework for calculating the non-Gaussian
statistics of SGWB power expected from SMBHBs. We find that (a) wave interference between individual
SMBHBs with indistinguishable observed frequencies and (b) the Poisson fluctuation of the source
numbers, together shape the non-Gaussian statistics. Implementing the non-Gaussian statistics developed
in this work, we investigate the sensitivity of current and future PTA datasets in distinguishing the origin of
the SGWB through non-Gaussian information. Additionally, we find an interesting approximation of the
non-Gaussian statistics, which has implications for accurately and practically treating non-Gaussianity in
PTA Bayesian analyses.
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I. INTRODUCTION

The recent detection of nanohertz (nHz) stochastic gravi-
tational wave background (SGWB) by pulsar timing arrays
(PTAs) [1–8] has inspired intensive discussions of its
astrophysical implications. Supermassive black hole binaries
(SMBHBs) are a promising source of SGWB, from which
we may infer the abundance and evolution history of the
cosmic SMBHB population [9–16]. On the other hand,
various early-Universe processes have been speculated to be
alternative nHz SGWB sources (see [17] for a summary).
In principle, SMBHBs and early Universe sources can be

distinguished by the different statistical properties of the

SGWB they produce. SMBHBs at redshifts z < 1 contrib-
ute significantly to the SGWB at nanohertz frequencies,
characterized by strong signal strength due to their prox-
imity, and they emit mostly monochromatic gravitational
waves (GWs) over decades of observation. In contrast,
early Universe sources, produced at high redshift, are
heavily redshifted and contribute minimally due to their
larger distance. These sources usually emit over a broad
frequency range. A much larger number of sources would
be required for early Universe sources to contribute to the
same signal power as SMBHBs at the same observed
frequency. Thus, it is usually assumed that the latter
produces a Gaussian and isotropic SGWB, while the former
is certainly non-Gaussian due to Poissonian fluctuations of
a finite number of SMBHBs and may show random power
anisotropy if there are nearby loud SMBHBs. Along this
line, there have been some efforts towards measuring the
spectral variance beyond Gaussian fluctuations [18–24], or
anisotropies of the nHz SGWB [25–32]. In these analyses,
spectral variance is usually quantified or parametrized
based on SMBHB population synthesis. Specially,
Refs. [33,34] derived the probability distribution of the
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characteristic strain Pðh2cÞ given a SMBHB population
model, which enabled a quantitative constraint on SMBHB
population models using the PTA data [34]. For the study of
anisotropy, forecasts are made based on SMBHB popula-
tion simulations, and measurements from the PTA data are
performed under the simplifying assumption of a Gaussian
random SGWB. Spectral variance and anisotropy are two
different manifestations of Poisson fluctuations of a finite
number of SMBHBs, in the intrinsic (e.g., GW amplitude
and frequency) and extrinsic (e.g., sky localization) param-
eter spaces, respectively. Focusing on a different aspect,
Allen et al. [35,36] calculated the variance of the Hellings-
Downs correlation [37] for a simple population of
SMBHBs, taking into account interference between GW
sources of overlapping frequencies. They demonstrated two
sources of variance: one arising from the finite number of
pulsar pairs being used and another cosmic variance due to
interference effects.
As summarized above, different aspects of nHz SGWB

sourced by a finite number of SMBHBs are related. Both
spectral variance and anisotropy originate from Poissonian
fluctuation in the number of SMBHBs and are affected by
interference, and deviation from the Hellings-Downs cor-
relation can be result from interference [35,36,38,39] or
spatial anisotropy [40–42]. In previous works, each aspect
has only been investigated separately, assuming other
aspects are known or independent. Here, we consider a
unified framework for dealing with Poissonian fluctuations
in the number of SMBHBs and GW interference. The major
challenge is efficiently computing the non-Gaussian prob-
ability distribution PðδzÞ for general SMBHB population
models, where δz is observed photon redshift from a given
single pulsar in the network.
This work demonstrates an efficient method for comput-

ing PðδzÞ that accounts for the Poisson statistics and
interference. The key is to use the cumulant generating
function for δz (see Sec. II for details). As a result, we find
that interference is the major source of variance in jδzj2. At
the same time, the non-Gaussianity originates from the
Poisson fluctuation in the source number (see Fig. 4). With
the non-Gaussian statistics PðδzÞ developed in this work,
we estimate the likelihood ratio against the conventionally
used Gaussian statistics and find that the current PTA
dataset is capable of finding substantial evidence of non-
Gaussian statistics (Fig. 5). However, we find narrowing
down the population model parameters challenging due to
the significant statistical variance caused by interference
(Fig. 6) given the current PTA sensitivity. As we will see, a
more extended observation period and a lower timing noise
level expected from future PTA data will enable substan-
tially improved constraints on population model parame-
ters. Under current PTA sensitivity, we find the Gaussian
statistics are still a good approximation in inferring the
strain power spectrum h2cðfÞ of the SGWB from SMBHBs
(Fig. 7). As PTA data of lower timing noise accumulates in

the foreseeable future, we find the Gaussian statistics will
eventually bias the inference of h2cðfÞ (Fig. 7).
This paper is organized as follows. In Sec. II, we briefly

introduce compound Poisson statistics and the correspond-
ing cumulant generating function (CGF) are key to
computing the exact PTA signal distribution PðδzÞ for
SMBHB population models. In Sec. III, we introduce a
parametrized form of the SMBHB population model to be
considered in this work and provide details about calculat-
ing the redshift distribution PðδzÞ. Building on these,
we perform a likelihood ratio test comparing non-
Gaussian and Gaussian statistics. Concluding remarks will
be given in Sec. IV. Throughout this work, we adopt a flatΛ
cold dark matter cosmology with Ωm ¼ 0.3, ΩΛ ¼ 0.7,
H0 ¼ 70 km s−1Mpc−1.

II. COMPOUND POISSON STATISTICS

In this section, we develop the mathematical formalism
for computing the probability density function (PDF) of the
PTA observable, PðδzÞ. The basic idea was also explored
in Ref. [34]. Assuming that individual gravitational wave
sources are monochromatic over the observational period
of PTAs, each source can be characterized by its current
observed frequency fGW and another set of M parameters
collectively referred to as Θ. The following differential
distribution can describe a general source population:

d1þMN̄
dMΘd ln f

: ð1Þ

The average source number in a logarithmic frequency
interval Δ ln f and in a multidimensional parameter-space
volume element ΔMΘ is thus given by ΔN̄.
The actual source numberΔN is expected to be a random

number that fluctuates around its expectation value
hΔNi ¼ ΔN̄. It follows Poisson statistics, i.e.,

ΔN ∼ PoisðΔN̄Þ: ð2Þ

Source numbers in nonoverlapping volumes of the param-
eter space are independent random numbers.
For any signal sðΘ; fÞ that obeys the superposition

principle, the population-summed signal S is a weighted
sum over the entire source parameter space:

S ¼
X
n

snΔNn; ð3Þ

where we divide the source parameter space into individual
blocks indexed by n, and sn ¼ sðΘn; fnGWÞ is the corre-
sponding weight. Linearity of Eq. (3) suggests that the total
signal S is drawn from a compound Poisson distribution.
In the special case where the weight sðΘ; fÞ is a constant,
the total signal also follows a Poisson distribution.
Unfortunately, we are not aware of an analytical expression
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for the PDF of S, PðSÞ, for the case of general
weights sðΘ; fÞ.
Instead, we pursue a numerical method to evaluate the

PDF PðSÞ that makes use of the CGF for S, defined as

KSðtÞ ¼ ln hexpðiStÞi; ð4Þ

where t is the variable conjugate to S and is defined on the
real axis from −∞ to ∞, and the notation h� � �i stands for
the statistical average. Since ΔNn’s are statistically inde-
pendent of each other, Eq. (4) can be evaluated as follows:

KSðtÞ ¼
X
n

lnhexpðisnΔNntÞi ¼
X
n

ΔN̄nðeisnt− 1Þ; ð5Þ

where the last step follows from the CGF of Poisson
distribution. Equation (5) then allows us to numerically
evaluate the PDF of S through an inverse Fourier trans-
formation,

PðSjΘ; fÞ ¼ 1

2π

Z þ∞

−∞
dt exp ðiStþ ½KSðtÞ��Þ; ð6Þ

where ½� � ��� stands for complex conjugation. The PDF
evaluated in this way is correctly normalized.
If the source parameter space is continuously para-

metrized by ðΘ; fÞ, then Eq. (5) can be revised to the
appropriate continuous limit, where summation is replaced
by integration

X
n

ΔNn ⟶

Z
V
d ln fdMΘ

d1þMN̄
dMΘd ln f

: ð7Þ

The CGF converges in this limit, giving a unique answer for
the PDF of the signal S.
It is straightforward to generalize the above framework

to the case where a set of N different signals (N > 1),
collectively denoted asS, are measured. The corresponding
CGF depends on a set of N conjugate variables, which we
collectively refer to as t. The CGF is given by

KSðtÞ ¼
X
n

ln hexp ðisn · tΔNnÞi ¼
X
n

ΔN̄nðeisn·t − 1Þ;

ð8Þ

and the multivariate PDF, in principle, can be found from
the multidimensional Fourier transformation,

PðSjΘ; fÞ ¼ 1

ð2πÞN
Z

dN t exp ðiS · tþ ½KSðtÞ��Þ: ð9Þ

If an observableS is also contaminated by noise n, and if
the noise is statistically uncorrelated with the signal, then
the total measurement S þ n has a CGF

KSþnðtÞ ¼ KSðtÞ þ KnðtÞ; ð10Þ

where KnðtÞ is the CGF for the noise n. The corresponding
PDF is essentially the likelihood function for obtaining data
S þ n given a model with model parameters fΘ; ςg:

PðS þ njΘ; ςÞ; ð11Þ

where ς is a set of parameters that characterize the noise.
Based on the above general results following the proba-
bility theory, we will develop a framework to perform
Bayesian inference of GW source population parameters.

III. NON-GAUSSIAN STATISTICS

In Sec. III A, we will first introduce a convenient para-
metrized form for the SMBHB population following [11],

d3N̄
d ln fd log10Mdz

ðΘÞ: ð12Þ

This gives the SMBHB number density in the phase space
defined jointly by the GW frequency f, the binary chirp
mass M, and the cosmological redshift z. We then
introduce some basics of the PTA observable, redshift of
photons δz propagating from a pulsar to the earth under the
influence of GWs (Sec. III B), and the details for computing
the non-Gaussian redshift PDF, PðδzÞ, given a SMBHB
population model (Sec. III C). With the redshift PDF, we
compare the non-Gaussian statistics with the convention-
ally used Gaussian statistics in Sec. III D.

A. SMBHB population

Supermassive black holes (SMBHs) are commonly
found at the centers of their host galaxies. Galaxy mergers
inevitably bring multiple SMBHs into the same postmerger
galaxy. SMBHBs are the most promising sources for the
nHz SGWB observed at PTAs, though the detailed proc-
esses for the formation and mergers of SMBHBs still need
to be fully understood. The mass of the central SMBH is
empirically known to correlate strongly with the velocity
dispersion in the host galaxy bulge. This is the famous
MBH − σ relation [43–45]. We model the mean MBH − σ
relation, together with the expected scatter around it, with
the following log-normal probability distribution

Pðlog10MBHjσÞ ¼
1ffiffiffiffiffiffi
2π

p
ϵ0
exp

�
−

1

2ϵ20

�
log10

MBH

M⊙

− log10 10a•

�
σ

200 km s−1

�
b•
�
2
�
; ð13Þ

where a• and b• are constants, and ϵ0 quantifies the intrinsic
scatter. On the other hand, the velocity dispersion function
(VDF) of the galaxy bulge is parametrized as
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ϕðσÞ ¼ ϕ�β
σ�

�
σ

σ�

�
α−1 e−ðσ=σ�Þβ

Γðα=βÞ : ð14Þ

Here α, β are dimensionless constants, σ� characterizes the
turnover of the velocity dispersion, and ϕ� is a normali-
zation constant, which also sets the total number of the
galaxies per Mpc3. Taking these into account, the SMBH
mass function is

dn
d log10MBH

¼
Z

dσPðlog10MBHjσÞϕðσÞ; ð15Þ

where n is the total number of black holes per Mpc3.
We assume that all SMBHBs in the PTA band are

circular inspirals. This assumption is expected to be true
when GW radiation dominates the hardening of the binary
orbit, as GW emission tends to circularize the orbit. For
circular inspirals, the chirp mass M and source redshift z
determine the observed GW amplitude. Chirp mass M is
defined as

M ¼ η3=5MBH; η≡ q
ð1þ qÞ2 ; ð16Þ

where q < 1 is the binary mass ratio. We express the
population model as follows:

dn
dlog10M

¼
Z

1

qmin

dqpqðqÞ
dn

dlog10MBH
; ð17Þ

pqðqÞ ¼ N qqδ and N q are the normalization constants.
The above expression assumes one merger per galaxy.
Only SMBHBs located on our past light cone are

observed through the SGWB. The relevant comoving
volume is given by dVc=dt,

dVc

dtr
¼ dVc=dz

dtr=dz
¼ 4πcdLðzÞ2ð1þ zÞ; ð18Þ

where tr is the proper time of a comoving observer
in Friedmann-Robertson-Walker cosmology, and dLðzÞ ¼
ðcð1þ zÞ=H0Þ

R
z
0 dz

0=Eðz0Þ is the luminosity distance to

redshift z, where EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ zÞ3Ωm þ ΩΛ

p
. Assuming

the redshift dependence is separable, the SMBHB popu-
lation can be written as [46]

d3N̄
d log10Mdzd ln fr

¼ pzðzÞ
dn

d log10M
dtr

d ln fr

dVc

dtr
; ð19Þ

where fr ¼ ð1þ zÞf is GW frequency in the rest frame of
the SMBHB barycenter, pzðzÞ ¼ N zzγe−z=z� , dtr=d ln fr is
determined by the binary orbital hardening rate, z� is the
turnover redshift, and N z is a normalization constant. We
adopt the simplifying assumption that the spectral shape of
the mass function is independent of redshift z. We introduce

ξ to the frequency dependence

dtr
d ln fr

¼ 5

96ðGM=c3Þ5=3ðπfyrÞ8=3ðfr=fyrÞ8=3−ξ
; ð20Þ

especially ξ ¼ 0 if the hardening is driven by GWemission
only. To summarize, in our parametrized SMBHB pop-
ulation model, fϵ0; a•; b•g characterize the MBH − σ rela-
tion, fϕ�; σ�;α; βg characterize the VDF, and fδ; γ; z�; ξg
characterize the SMBHB distribution with respect to binary
mass ratio, redshift, and frequency.
Following Ref. [11], we set fiducial values for the popula-

tion parameters: σ� ¼159.6 kms−1, fα;β; ;a•;b•;γ;z�;δ;ξg¼
f0.41;2.59;8.32;5.64;0.3;0.5;−1;0g. We leave ϕ� and ϵ0 as
free parameters. These choices are justified by studies on the
velocity distribution function [47], on theM − σ relation [45],
and SMBHB population simulations [48]. Furthermore, in
this work, we consider an expanded population model that
accounts for source dependence on extra binary parameters in
addition to M and z,

Λ ¼ flog10 M; zg ∪ fcos θ;ϕ; cos ι;ψ ;φg; ð21Þ

where ι is the binary orbit inclination, ψ is the polarization
angle, θ and ϕ parametrize the source’s sky location, and φ
is a binary orbital phase constant. It is reasonable to assume
that binaries have no preference regarding spatial location
and orbital orientation. Therefore, the extended population
model is

d8N̄
d ln frd7Λ

¼ 1

32π3
d3N̄

d ln frd log10Mdz
: ð22Þ

Next, we will look into the intensity of GWs from the
circular SMBHBs. For a slowly-evolving binary with chirp
mass M and redshift z, the GW tensor at the observer
x ¼ 0 can be written as

habðt; 0Þ ¼ hþðt; 0Þϵþab þ h×ðt; 0Þϵ×ab; ð23Þ

where the polarization tensor ϵþ;×
ab ðθ;ϕ;ψÞ depends on the

source sky location ðθ;ϕÞ and the source polarization angle
ψ [49]. The two polarization states have amplitudes

hþðt; 0Þ ¼ h0
1þ cos2ι

2
cosð2πftþ φÞ;

h×ðt; 0Þ ¼ h0 cos ι sinð2πftþ φÞ; ð24Þ

where the dimensionless amplitude is

h0ðf;M; zÞ ¼ 4cðπfyrÞ2=3ðfr=fyrÞ2=3ðGM=c3Þ5=3
dLðzÞ

: ð25Þ

A commonly used quantity is the characteristic strain of
the GWs, the expected value of which from a SMBHB
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population can be written as [46,50]

h2cðfÞ ¼
Z þ∞

0

dz
Z þ∞

−∞
d log10 Mhh2þ þ h2×icos ι;φ

×
d3N̄

d log10Mdzd ln fr
; ð26Þ

where

hh2þ þ h2×icos ι;φ ¼ 2

5
h20 ð27Þ

is the GWamplitude squared averaged over random binary
orbital inclination and phase constant. In Fig. 1, we show
contours of hcðfyrÞ on the ϕ�–ϵ0 plane, as well as the
specific contour that corresponds to the best-fit value from
the 15-year NANOGrav data [1], hcðfyrÞ ¼ 2.4 × 10−15.

B. Pulsar redshift

As radio photons travel from a pulsar to the Earth, the
arrival time is perturbed by the SGWB. For a planar GW
propagating in the direction Ω̂ (with −Ω̂ being the direction
pointing from the Earth to the GW source), the GW tensor
is generally written as

habðt; xÞ ¼ hþðt − x · Ω̂Þϵþab þ h×ðt − x · Ω̂Þϵ×ab: ð28Þ

Considering a pulsar with a sky location p̂ and at a distance
L from the earth, the observed photon redshift (or the
fractional change in apparent pulsar spin period) for the
observer at the coordinate origin x ¼ 0 is [37]

δzðtÞ ¼ δzE − δzP

¼ 1

2

p̂ap̂b

1þ Ω̂ · p̂
½habðt; 0Þ − habðt − L;Lp̂Þ�: ð29Þ

Here, the subscripts E and P stand for the Earth and the
pulsar terms. For a slowly evolving SMBHBwhere the GW
frequency evolution during the PTA observational period T
is negligible (with 2πḟT < T−1), the two polarization
components in the Earth term are in the form

hþðt; 0Þ ¼ h0
1þ cos2ι

2
cosð2πfEtþ φÞ;

h×ðt; 0Þ ¼ h0 cos ι sinð2πfEtþ φÞ; ð30Þ

where the GWamplitude and the frequency fE are taken as
a constant during the observational period ð0; TÞ. Similarly,
we have for the pulsar term,

hþðt − L;Lp̂Þ ¼ h0
1þ cos2ι

2
cosð2πfPtþ φ − ΔÞ;

h×ðt − L;Lp̂Þ ¼ h0 cos ι sinð2πfPtþ φ − ΔÞ; ð31Þ

where the phase differenceΔ¼c−1
R
L
0 2πfðtÞdtð1þΩ̂ · p̂Þ≈

πðfEþfPÞLð1þΩ̂ · p̂Þ=c, and fP is also taken as a constant
during the observational period ð0; TÞ. We note that for a
given pulsar, the frequency difference between the Earth
term and the pulsar term, fE − fP, can be significant and
measurable if 2πḟL=c > T−1. For SMBHB at nHz fre-
quency, fE and fP are indistinguishable.
In practice, the PTA data analysis is more straight-

forward in the frequency domain, where the redshifts δzðfÞ
in different frequency bins are statistically uncorrelated.
We first divide the relevant frequency range into bins,
with central frequencies fn (n ¼ 1;…; nmax) and equal bin
sizes T−1. The GW amplitude from a SMBHB in a
frequency bin of central frequency fn is

habðfn; f;ΘÞ ¼ TWðf − fnÞh0ðf;M; zÞeiφ

×

�
i
1þ cos2ι

2
ϵþab þ cos ιϵ×ab

�
; ð32Þ

where f is the observed GW frequency from the binary, and
W is the top-hat window function,

Wðf − fnÞ ¼
�
1; fn − 1=2T < f < fn þ 1=2T

0; otherwise:
ð33Þ

As Eq. (29) shows, two terms contribute to the redshift of
a photon emitted from a pulsar and received on the Earth.
However, it is widely accepted that only the Earth term
exhibits interpulsar correlation, namely the Hellings-
Downs curve [51]. Here, we assume that we successfully
subtracted the Earth term. Taking the Earth term,

FIG. 1. The contours of log10ðhcÞðfyrÞ on ϕ� − ϵ0 plane. The
parameters consistent with the 15-year NANOGrav data are
marked as the black dashed line. We fix all the other parameters at
their fiducial values (given in the text).
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δzEðfÞ ¼ −
1

2T
pahabðxE; fÞpb

1þ Ω̂ · p̂
: ð34Þ

The expression above is dimensionless by introducing
the prefactor T−1. Without loss of generality, we take
p̂ ¼ ð0; 0; 1Þ for simplicity, then the real and imaginary
components of δzE are

δzcircE;Re ¼ h0λzðθ; ι;ψ ;φÞ;
δzcircE;Im ¼ h0λzðθ; ι;ψ ;φþ π=2Þ; ð35Þ

where

λzðθ; ι;ψ ;φÞ ¼ sin2
θ

2

��
1þ cos ι2

2

�
cosð2ψÞ sinφ

− cos ι sinð2ψÞ cosφ
�
: ð36Þ

For a population of SMBHBs, the total redshift is therefore

δzE ¼
X
n

ΔNnðδzcircE Þn; ð37Þ

where we divide the source parameter space into individual
blocks indexed by n. The distribution PðλzÞ is evaluated
using the Monte Carlo method by uniformly sampling
cos θ, cos ι, ψ , and φ, and we store numerical values for
further use. The mean value of any arbitrary function FðλzÞ
is equivalent to the following integration:

hFðλzÞi ≔
Z

dλzPðλzÞFðλzÞ

¼ 1

32π3

Z
1

−1
d cos θ

Z
1

−1
d cos ι

Z
2π

0

dϕ
Z

2π

0

dψ

×
Z

2π

0

dφF
	
λzðθ; ι;ψ ;φÞ



: ð38Þ

Then it is straightforward to find hλzi ¼ 0 and hλ2zi ¼ 1=15.
If a SMBHB is slowly evolving, with the Earth term and

the pulsar term contributing to the same frequency bin, then
we find

δzcirc ¼ δzcircE − δzcircP

¼ h0
�
λ̃zðθ; ι;ψ ;φ;ΔÞ þ iλ̃zðθ; ι;ψ ;φþ π=2;ΔÞ�;

ð39Þ

where

λ̃zðθ; ι;ψ ;φ;ΔÞ ¼ 2 sin ðΔ=2Þλzðθ; ι;ψ ;φ − Δ=2Þ: ð40Þ

It is clear that the pulsar term further increases the variance
of the redshift. The calculation of the redshift distribution,
in this case, is completely parallel to the previous case with

the replacement λzðθ; ι;ψ ;φÞ → λ̃zðθ; ι;ψ ;φ;ΔÞ. In the
next subsection, we will focus on the PDF of the red-
shift PðδzEðfÞÞ.

C. Distribution of pulsar redshift

Using the method developed in Sec. II, we can now
calculate the PDF of the redshift PðδzEðfÞÞ given a
SMBHB population model. We first assemble the real
and imaginary parts into a vector s ¼ ðδzcircE;Re; δz

circ
E;ImÞ. The

total signal is a superposition of many individual sources
and the conjugate variables also into a vector t ¼ ðtRe; tImÞ,
then

s · t¼ δzcircE;RetRe þ δzcircE;ImtIm ¼ tρh0λzðθ; ι;ψ ;φ− tφÞ; ð41Þ

where tRe and tIm are real variables conjugate to δzcircE;Re and

δzcircE;Im, tφ ¼ arctanðtIm=tReÞ, tρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2Re þ t2Im

p
. Because of

the uniform distribution of φ, the CGF does not depend
on the variable tφ. The two-dimensional (2D) CGF turns
out to be

KδzðtρÞ ¼ Δ ln f
ZZZ

dlog10MdzdλzPðλzÞ

× ½cos ðtρh0λzÞ − 1� d3N̄
dlog10Mdzd ln fr

: ð42Þ

We find that KδzðtRe; tImÞ ¼ KδzðtρÞ is a real function
because PðλzÞ is even, and KδzðtRe; tImÞ only depends on
the magnitude of the conjugate vector tρ.
The cumulants of the redshift can be inferred from the

CGF Kδz. First, it is easy to verify that all odd order of
cumulants vanish because PðλzÞ is even, and the higher
and even order of cumulants, namely hδz2kE;Rei with k > 1,
do not exist because of the divergence at the nearby end
(cosmology redshift z → 0) of the SMBHB population,
which implies that the corresponding PDF of δz is a heavy-
tailed distribution. The only nonzero and finite cumulant
equals the variance of the redshift δzE;Re and δzE;Im, with

hδz2E;Rei ¼ hδz2E;Imi ¼ −K00
δzð0Þ: ð43Þ

In particular, K00
δzðtρÞ is free of divergence at the nearby

end of the SMBHB population:

K00
δzðtρÞ ¼ −Δ ln f

ZZZ
dlog10MdzdλzPðλzÞ

× h20λ
2
z cos ðtρh0λzÞ

d3N̄
dlog10Mdzd ln fr

; ð44Þ

where it is straightforward to find 0 ≤ jK00
δzðtρÞ=K00

δzð0Þj ≤ 1

using Cauchy-Schwarz inequality, and K00ðtρ → þ∞Þ ¼ 0

due to the fast oscillatory integrand.
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In comparison, in the Gaussian limit KGaus
δz ðtρÞ ∝ −t2ρ=2,

meaning KGaus00
δz ðtρÞ equals a constant. To recover the

Gaussian limit, we can artificially rescale dN̄ → xdN̄
and h2 → h2=x and take the limit of x → þ∞, which
corresponds to the limit of an infinite number of arbitrarily
weak GW sources. That is to say,

KGaus00
δz ðtρÞ ¼ K00

δzð0Þ ¼ −
1

6
h2cΔ ln f; ð45Þ

where we have used Eqs. (26), (27), and (38).
In the left panel of Fig. 2, we show the numerical

results of K00ðtρÞ for a range of SMBHB populations
with different population parameters ðϕ�; ϵ0Þ that are
consistent with 15-year NANOGrav data (see the black-
dashed line in Fig. 1), all having the same variance −K00

δzð0Þ

[Eqs. (43) and (45)]. As expected, K00ðtρÞ is closer to
the Gaussian limit for a larger number of GW sources
(higher ϕ�). The comparison demonstrates the origin of the
non-Gaussian nature of the SGWB from SMBHBs.
The 2D probability distribution, properly normalized,

can be expressed in terms of an integral

PðδzE;Re; δzE;ImÞ ¼
1

ð2πÞ2
Z

∞

−∞
dtRe

×
Z

∞

−∞
dtIme½KδzðtρÞ��þitReδzE;ReþitImδzE;Im

¼ 1

2π

Z þ∞

0

dtρtρe½KδzðtρÞ��J0ðtρjδzEjÞ

≔ fðjδzEjÞ: ð46Þ

In practice, we define tρ ¼ eτ and numerically imple-
ment the integral using the τ variable instead. It is important
to notice that δzE;Re and δzE;Im are generally not statistically
independent, i.e., PðδzE;Re; δzE;ImÞ ≠ PðδzE;ReÞPðδzE;ImÞ.
The marginalized distribution of δzE;Re is

PðδzE;ReÞ ¼ 2

Z þ∞

0

fðjδzEjÞd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jδzEj2 − δz2E;Re

q
: ð47Þ

On the right panel of Fig. 2, we show PðδzE;ReÞ for several
ϕ� − ϵ0 pairs (same as those in the left panel). We note that
the true distribution PðδzE;ReÞ is both heavy tailed and
strong peaked.
The PDF of jδzEj2 is

PðjδzEj2Þ ¼ πfðjδzEjÞ; ð48Þ

and is shown in Fig. 3.
So far, the calculation in this section is based on Eq. (37),

which includes interference between individual sources.
Here, we consider another commonly studied quantity—
the signal power summed incoherently over sources:

jδzEj2NI ≡
X
n

ΔNnhjδzcircE j2nicos θ;ϕ;cos ι;ψ ;φ; ð49Þ

where the source parameter space is defined only by M, z,
and fr, and hjδzcircE j2nicos θ;ϕ;cos ι;ψ ;φ ¼ 2

15
h0ðfn;Mn; znÞ2,

the subscript “NI” stands for “No Interference.” It is easy
to prove that hjδzEj2NIi ¼ hjδzEj2i. However, comparing to
the true jδzEj2, cross terms such as ðδzcircE ÞnðδzcircE Þn0 with
n ≠ n0, which correspond to interference between sources,
are absent in the NI counterpart. The corresponding CGF is

K̃jδzj2ðtÞ≡ Δ ln f
ZZ

dlog10Mdz

�
exp

�
2

15
ith20

�
− 1

�

×
d3N̄

dlog10Mdzd ln fr
; ð50Þ

1 × 10
–31

1 × 10
–15

FIG. 2. Top: the second derivative of the CGF. Bottom: the PDF
of the observed redshift δzE;Re. Note that all PDFs in this plot
share the same variance, hδz2E;Rei. We consider f ¼ 10 nHz with a
bandwidth Δf ¼ 2 nHz. Curves of lighter colors correspond to
SMBHB populations with more SMBHBs but lower black hole
masses. As the number of individual SMBHB increases, the CGF
and the PDF approach the Gaussian limit.
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and the PDF is

P̃ðjδzEj2NIÞ ¼
1

2π

Z þ∞

−∞
dte½K̃jδzj2 ðtÞ��þitjδzEj2NI : ð51Þ

In Fig. 3, we find that the tails of PðjδzEj2Þ and
P̃ðjδzEj2NIÞ can be very well approximated by power law
distributions. This result is in agreement with the findings
of Refs. [12,24,33]. The major difference is that in the no
interference case, P̃ðjδzEj2NIÞ, is strong peaked at some
positive value while the peak is smeared and always located
at zero in the presence of interference.
In Fig. 4, we show the PDF of log10 jδzEj2,

Pðlog10 jδzEj2Þ ¼ ln 10jδzEj2PðjδzEj2Þ; ð52Þ

and the no interference counterpart P̃ðlog10 jδzEj2NIÞ at
different frequency bins for two SMBHB populations and
three total observation times. The true PDF is much more
diffused than the no interference case. The comparison
shows that interference dominates the variance in jδzEj2,
while Poisson fluctuations play a minor role. In the no
interference case, the expectation value of jδzEj2NI is con-
sistently higher than the median of jδzEj2NI, especially at
higher frequencies. This is because P̃ðlog10 jδzEj2NIÞ is a
skewed distribution that decreases to zero rather slowly at
large jδzEj2NI, contrary to rapid falloff of the low jδzEj2NI end
(Fig. 3). This observation is consistent with the Monte Carlo
results by Refs. [46,48]. The difference between the median
and mean values is more prominent for combinations
between smaller ϕ� with larger ϵ0, which correspond to
stronger non-Gaussianity. We also find that the true PDF
with the interference effect is well approximated by a
Gaussian convolution of the no interference PDF,

P̃ðδzE;Re; δzE;ImÞ ¼
Z þ∞

0

djδzEj2NIP̃ðjδzEj2NIÞ

×
e−ðδz

2
E;Reþδz2E;ImÞ=jδzEj2NI

πjδzEj2NI
; ð53Þ

where the numerical comparison between PðδzE;Re; δzE;ImÞ
and P̃ðδzE;Re; δzE;ImÞ is shown in Fig. 4. Numerically, the
two distributions are nearly indistinguishable from the
realistic SMBHB population models we consider. How-
ever, in the Appendix, we demonstrate that they are not
mathematically identical.
Equation (53) as an excellent approximate PDF implies

that non-Gaussianity originates from the Poisson fluc-
tuation of the source numbers. The interference effect is
well approximated by randomly drawing the real and
imaginary parts of δzE from a 2D Gaussian distribution.
It justifies the population inference done in [34] at the
practical level in the following sense: NANOGrav had
first derived the likelihoods for the frequency-binned
power jδzEj2NI from the redshift residuals of individual
pulsars under the assumption that the SGWB is a Gaussian
random field [9]. Reference [34] then used these like-
lihoods as summary data and performed Bayesian pop-
ulation inference using the correct non-Gaussian PDF
P̃ðjδzEj2NIÞ for the total power (hence without inference).
These two analyses combined are equivalent to using
Eq. (53) to perform Bayesian inference at the redshift
observable level.
In principle, one would like to perform Bayesian

inference for SMBHB population models by applying a

multivariate non-Gaussian PDF PðfδzðIÞE;Re; δz
ðIÞ
E;ImgÞ for

the redshifts of all Np pulsars δzðIÞE ; I ¼ 1; 2;…; Np to
direct PTA observables. Unfortunately, writing down an

FIG. 3. The PDF of jδzEj2 and jδzEj2NI. We consider f ¼ 10 nHz in both subplots, with a bandwidth Δf ¼ 2 nHz. Curves of lighter
colors correspond to SMBHB populations with more SMBHBs but lighter black hole masses. Note that on the left panel, the “Gaussian
Limit” corresponds to the χ2k distribution with k ¼ 2, which is also an exponential distribution.
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exact expression for this PDF seems prohibitive,1 as red-
shift signals in different pulsars are correlated in the
Earth term.
However, the numerical success of the approximate PDF

in Eq. (53) guides us to conjecture that if one convolves
P̃ðjδzEj2NIÞ with a multivariate Gaussian distribution for the
redshifts of all pulsars, with the correct covariance set up
between pulsars,

P̃

n

δzðIÞE;Re; δz
ðIÞ
E;Im

o�
¼

Z þ∞

0

djδzEj2NIP̃ðjδzEj2NIÞ

×
e−δz

†
EC

−1ðjδzEj2NIÞδzE

πNp detCðjδzEj2NIÞ
; ð54Þ

then the result may very well approximate the exact joint
PDF. In Eq. (54), the vector δzE collectively represents
redshifts of all pulsars, and CðjδzEj2NIÞ stands for the
multipulsar covariance matrix that would result from an
isotropic Gaussian SGWB with a given full-sky average
power jδzEj2NI. We note that applying Eq. (54) to Bayesian
inference at the level of individual pulsar redshifts will be
mathematically equivalent to the combination of two steps:

FIG. 4. Violin plot for Pðlog10 jδzEj2Þ and P̃ðlog10 jδzEj2NIÞ in discrete frequencies binned at a width Δf ¼ 1=T. All violins at the same
frequency in each panel share the same expectation value of hjδzEj2i, which equals to hjδzEj2NIi, shown by the black curve.

1Even though a straightforward generalization of the formal-
ism we present in this work will allow the calculation for the
corresponding multivariate characteristic function, inverse Fou-
rier transform in high dimensions would be impractical.
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first deriving the likelihoods for the mean frequency-binned
powers assuming a Gaussian random SGWB, and then
inferring the SMBHB population by applying P̃ðjδzEj2NIÞ to
the derived likelihoods as summary data.
If true, such an approach will be a practical path toward

full Bayesian treatment, including non-Gaussianity and at
the level of pulsar redshifts. However, how this idea may be
quantitatively validated is an open question.

D. Sensitivity estimation

With the non-Gaussian statistics developed above, we
are in a position to estimate the PTA sensitivities in
measuring the non-Gaussianity in the nHz SGWB and
constraining the SMBHB population parameters and to test
possible bias in inferring the population properties if the
Gaussian statistics are applied instead.

1. Likelihood ratio between non-Gaussian
and Gaussian model

We first implement a simple likelihood ratio test by
applying both the non-Gaussian and the Gaussian statistics
to mock data generated from a SMBHB population model.
We assume that measurement noises for δzRe and δzIm
follow a Gaussian distribution with the variance of ς. In
the presence of noise, the new PDF PðδzE;Re; δzE;ImjςÞ is
calculated in the similar way, see Eq. (46), with the CGF
modified as

KδzðtρjςÞ ¼ KδzðtρÞ −
ς2t2ρ
2

: ð55Þ

For comparison, the CGF for a Gaussian PDF
PGausðδzE;Re; δzE;ImjςÞ with the same variance is

KGaus
δz ðtρjςÞ ¼

t2ρK00
δzð0jςÞ
2

: ð56Þ

We benchmark two observational noise levels: one with a
noise level ςk ¼ 7 × 10−15 over T ¼ 15 years, and another
with a noise level ςk ¼ 1 × 10−15 over T ¼ 30 years, where
k labels the kth frequency bin. The first benchmark case is
consistent with the current PTA sensitivity, where the
SGWB signal stands out of noise in five frequency bins.
We define the likelihood ratio test statistic as follows:

λLR ¼ 2 ln
PðδzE;Re; δzE;ImjςÞ

PGausðδzE;Re; δzE;ImjςÞ
; ð57Þ

where PðδzE;Re; δzE;ImjςÞ ¼
Qkmax

k¼1 PðδzkE;Re; δzkE;ImjςkÞ and
δzkE;Re and δzkE;Im are the real and imaginary components
of the redshift data in the kth frequency bin. We ensure
that the Gaussian distribution, PGausðδzkE;Re; δzkE;ImjςkÞ,
has the same variance as the non-Gaussian distribution

PðδzkE;Re; δzkE;ImjςkÞ. We then evaluate the expectation value
hλLRi using the following formula:

hλLRi ¼
Z

dδzE;RedδzE;ImPðδzE;Re; δzE;ImjςÞλLR: ð58Þ

We choose kmax ¼ 14 and kmax ¼ 28 for the two bench-
mark cases described above. The integral can be simplified
using the fact that all frequency bins are independent of
each other and that at each bin the PDFs only have
dependence on the modulus of δzkE.
The results are shown in Fig. 5. With current PTA

sensitivity (which has five frequency bins above the noise
floor), we expect to find hλLRi > 2 for ϵ0 > 0.6. This may
increase to hλLRi > 15 for the same parameter range in the
more optimistic situation.

FIG. 5. The contours of the expectation value of λLR, hλLRi, on
the ϕ� − ϵ0 plane. The top panel corresponds to the current PTA
sensitivity. The statistics λLR, defined in Eq. (57), characterize the
likelihood ratio between a non-Gaussian PDF and the Gaussian
PDF, assuming the data is drawn from the non-Gaussian PDF.
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2. Parameter estimation of the SMBHB
population model

We also perform a Monte Carlo simulation, in which
we generate random data points drawing from the non-
Gaussian PDF for a given combination of ϕ� and ϵ0.
We then define the likelihood function as follows:

L
	
log10ϕ�; ϵ0jδzmock

E;Re ;δz
mock
E;Im


¼ P
	
δzmock

E;Re ;δz
mock
E;Im jς;ϕ�;ϵ0



;

ð59Þ
where Pðδzmock

E;Re ; δz
mock
E;Im jς;ϕ�; ϵ0Þ is the calculated with the

population model parameters ϕ�, ϵ0, while other parameters
are fixed at their fiducial values.
Next, we choose the second benchmark and use the

population model parameters ðϕ�; ϵ0Þ ¼ ð0.032; 0.61Þ to
generate mock data (δzmock

E;Re ; δz
mock
E;Im ) 10,000 times. Then for

each realization, we calculate the likelihood values on the
ϕ�–ϵ0 plane and find the maximal-likelihood value points.
We then collect the best-fit points and investigate their
distribution. The results are shown in Fig. 6.

3. Strain power spectrum inference

PTA data have been used in inferring the strain power
spectrum of the nHz SGWB, assuming the strain is a
Gaussian random field with a power-law frequency
dependence,

h2cðfÞ ¼ h2cðfyrÞðf=fyrÞ2α: ð60Þ
In this subsection, we apply the Gaussian statistics to mock
data generated from a SMBHB population model and

quantify the resulted bias. We construct the log-likelihood
function as follows:

lnL
	
δzmock

E;Re ; δz
mock
E;Im jlog10hcðfyrÞ; γ



¼

X
k

½−jδzkEj2=hjδzkEj2i − ln πhjδzkEj2i�; ð61Þ

where

hjδzkEj2i ¼
1

3
h2cðfkÞΔ ln fk þ 2ðςkÞ2: ð62Þ

In accordance with the convention of PTA community, we
have introduced the notation γ, which is the power index
of the time delay power spectrum and is related to α by
α ¼ ð3 − γÞ=2. Similarly, we choose the earlier defined two
benchmarks and simulate 200,000 random realizations for
given population model parameters, then collect the best-fit

FIG. 6. The contour of the best-fit parameters using the non-
Gaussian PDF we derived in this work. We choose one pair of the
population model parameters ðϕ�; ϵ0Þ and simulate 10,000
realizations of mock data. The true parameters are marked as
the red point. We then calculate the likelihood values for each
realization using the non-Gaussian PDF and investigate the
distributions of the best-fit points. The solid and dashed contours
indicate 1σ and 2σ confidence regions, respectively.

FIG. 7. The contours of the best-fit parameters using the
classical power-law model. We assume two different population
model parameters and simulate 200,000 realizations of mock data
for each. We then calculate the likelihood values for each
realization using the power-law model and investigate the
distributions of the best-fit points. The solid and dashed contours
indicate 1σ and 2σ confidence regions, respectively.
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ðlog10 hcðfyrÞ; γÞ points, and plot the distribution. We show
the results in Fig. 7. Comparing the blue and red contours,
we find that as the non-Gaussianity increases, the character-
istic strain hcðfyrÞ tends to be underestimated. At the same
time, the power-law index γ is overestimated, consistent
with what is implied in Fig. 4. This observation is in
agreement with findings in [52]. The Gaussian statistics are
still a good approximation in inferring the strain power
spectrum with current PTA sensitivity and will bias the
inference in the foreseeable future.
In conclusion, with the current sensitivity, PTAs cannot

determine SMBHB population model parameters with a
decent precision. This is fundamentally limited by the large
variance arising from interference and the limited number
of frequency bins above the noise level. However, as the
observation period increases and pulsar timing quality
improves, it will become possible to constrain these para-
meters more precisely in the foreseeable future.

IV. CONCLUSIONS

Since the PTA collaborations dropped the first evidence
for the nanohertz SGWB, there has been an ongoing debate
over whether it originates from astrophysical sources, such
as SMBHBs, or has a primordial origin. These two broad
hypotheses suggest different models for constructing the
SGWB observed today: fewer sources with stronger indi-
vidual signals or more sources with weaker individual
signals. In this work, we have developed a semianalytic
mathematical framework for computing the non-Gaussian
PDF of the redshift PðδzÞ for a SMBHB population model,
where we have accounted for both Poissonian fluctuations
in the number of SMBHBs and GW interference.
To quantify the significance of this distinction, we have

numerically calculated the exact PDF of the GW strain
power in the frequency domain as a function of population
model parameters. With current PTA sensitivities, evidence
of non-Gaussianity may be detected in some areas of the
population parameter space with fewer and individually
louder SMBHBs. As PTA sensitivity improves over time,
we expect more robust evidence for non-Gaussianity. We
also find the Gaussian statistics are still a good approxi-
mation in inferring the strain power spectrum h2cðfÞ with
current PTA sensitivity, though it will bias the inference as
PTA data of lower noise accumulates in the foreseeable
future.
We have proposed an approximated formula to calculate

the PDF incorporating data from many pulsars across
the sky. We have shed light on why the approximation is
numerically very close to the exact answer while math-
ematically not the same. The correction of the approxi-
mated PDF will naturally lead to modifications in two-point
correlation functions [21,36,38,42,53,54]. Additionally,
developing a numerically efficient method to calculate
the analytical PDFs for data analysis will be beneficial.
These topics will be addressed in future work.
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APPENDIX: TOY MODEL

To see if the approximation in Eq. (53) works, we perform
Fourier transform of P̃ðδzE;Re; δzE;ImÞ defined in Eq. (53) to
obtain the conjugate of the characteristic function (CF),

Φ̃�ðtρÞ ¼
Z þ∞

−∞
dδzRe

Z þ∞

−∞
dδzIm

× P̃
	
δzE;Re; δzE;Im



e−itReδzRe−itImδzIm

¼
Z þ∞

0

djδzEj2P̃
	jδzEj2NI
 exp 	−t2ρjδzEj2NI=4
;

ðA1Þ
where CGF is the logarithm of the CF

Φ̃ðtρÞ≡ exp K̃δzðtρÞ; K̃δzðtρÞ≡ ln Φ̃ðtρÞ: ðA2Þ

As a simple example, we consider a binary population
where the binary number density is a delta function of
log10M, z and ln fr,

d3N̄
dlog10Mdzd ln fr

¼ N̄δðlog10M − log10M0Þδðz − z0Þ

× δðln fr − ln fr;0Þ: ðA3Þ

Inserting the above population model into Eqs. (50)
and (51) we find the PDF as follows:

P̃ðjδzEj2NIÞ ¼ e−N̄
Xþ∞

k¼0

N̄k

k!
δ

�
jδzEj2NI −

2

15
kh20

�
; ðA4Þ

here k are integers, h0 ¼ h0ðf0;M0; z0Þ, and f0 ¼
fr;0=ð1þ z0Þ. Inserting the above expression in Eq. (A1),
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we easily find the result for the CF,

Φ̃�ðtρÞ ¼ e−N̄
Xþ∞

k¼0

N̄k

k!
exp

�
−

1

30
kt2ρh20

�

¼ exp

��
exp

�
−

1

30
t2ρh20

�
− 1

�
N̄

�
: ðA5Þ

The CGF of the approximated PDF is

K̃δzðtρÞ ¼ ln Φ̃ðtρÞ ¼
�
exp

�
−

1

30
t2ρh20

�
− 1

�
N̄: ðA6Þ

In comparison, the CGF of the exact PDF is

KδzðtρÞ ¼
Z

dλzPðλzÞ½cos ðtρh0λzÞ − 1�N̄: ðA7Þ

Using Eq. (38), we easily find

K00
δzð0Þ ¼ K̃00

δzð0Þ ¼ −
h20N̄
15

: ðA8Þ

The difference emerges at the fourth-order cumulant
(Kurtosis),

Kð4Þ
δz ð0Þ ¼

3h40N̄
175

; K̃ð4Þ
δz ð0Þ ¼

h40N̄
75

: ðA9Þ

In Fig. 8, we compare K̃δzðtρÞ and KδzðtρÞ in Eqs. (A6)
and (A7) with the CDF of the Gaussian distribution,
KGaus

δz ðtρÞ ¼ −t2ρh20N̄=30. The “No interferenceþ Gaussian
convolution” approximation correctly captures the asymp-
totic behavior of the true CGF at tρ → 0 and tρ → þ∞.
However, in the intermediate region, the approximation
deviates from the true PDF and underestimates the non-
Gaussianity since it is closer to the Gaussian limit.
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