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Abstract We compute differential distributions for Drell–
Yan processes at the LHC and the Tevatron colliders at next-
to-next-to-leading order in perturbative QCD, including fidu-
cial cuts on the decay leptons in the final state. The compar-
ison of predictions obtained with four different codes shows
excellent agreement, once linear power corrections from the
fiducial cuts are included in those codes that rely on phase-
space slicing subtraction schemes. For Z -boson production
we perform a detailed study of the symmetric cuts on the
transverse momenta of the decay leptons. Predictions at fixed
order in perturbative QCD for those symmetric cuts, typically
imposed in experiments, suffer from an instability. We show
how this can be remedied by an all-order resummation of the
fiducial transverse momentum spectrum, and we comment
on the choice of cuts for future experimental analyses.

1 Introduction

Drell–Yan lepton pair production processes are among the
most important hard scattering events at the LHC. The mea-
sured final state contains only leptons. As a result, the corre-
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sponding cross sections are known experimentally very pre-
cisely. For example, the transverse momentum distribution
of Drell–Yan lepton pairs reaches a precision of 0.2 % for the
normalized spectra at low values of p(��)

T [1,2]. The impor-
tance of the process is shown by its frequent use in precision
extraction of the parameters in the Standard Model, such
as parton distribution functions (PDFs) and the strong cou-
pling constant [3–5]. It is also used in the determination of
the mass of the W±-boson [6,7]. All these measurements
require a reduction of the theoretical uncertainties to match
the experimental ones. The current state of the art in the the-
ory description has advanced significantly in recent years.
It has reached next-to-next-to-next-to-leading order (N3LO)
accuracy at fixed order in quantum chromodynamics (QCD)
perturbation theory [8,9] at the inclusive level. Transverse
momentum resummation is known at the next-to-next-to-
next-to-leading logarithmic (N3LL) level [10–13] and even
at approximate N4LL [14,15] accuracy for differential dis-
tributions in perturbation theory. At present, the fully dif-
ferential calculations at N3LO accuracy employ transverse
momentum subtractions [16] that neglect power corrections
and necessarily rely on predictions for vector boson + jet
production at the N2LO accuracy. Hence, the reliable com-
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putation of cross sections at N2LO in QCD is a prerequisite
for further developments in the field.

In Ref. [17] a subset of the present authors published a
detailed comparison of the publicly available codes [16,18–
20] for W±- and Z -boson production, including their decay.
They found differences among the predictions at the NNLO
level, whose size depended on the observable. The differ-
ences were estimated as similar to and sometimes even larger
than the sizes of the NNLO QCD corrections themselves.
This observation suggested that the neglected power correc-
tions in transverse momentum subtraction, and other methods
that rely upon phase-space slicing to regulate real emissions,
could be the source of the differences. Depending on the fidu-
cial cuts, those power corrections become linear, and hence
not negligible.

The publication triggered discussions among the authors
of the relevant codes, which resulted in a better understand-
ing of the neglected terms and improvements in the computa-
tions. In this paper we provide an update of the comparisons
carried out in Ref. [17]. The authors of the codes have pro-
vided new predictions for the benchmark calculations that we
present in Sect. 2, now showing excellent agreement. Based
on this validation of fixed-order perturbative QCD calcula-
tions through NNLO we then study the impact of fiducial
cuts on the decay leptons. To that end, we focus on the case
of symmetric cuts on the transverse momenta of the leptons,
as they are routinely imposed in experimental analyses but
display certain unphysical features [21]. In Sect. 3, we study
cuts on the transverse momenta staggered in a range from a
few tens of MeV to a few GeV in perturbative QCD, both
at fixed order and applying all-orders resummation of large
lepton-pair transverse momentum logarithms. We comment
on proposed modifications of the fiducial cuts put forward
recently [22]. Since the pathology observed in fixed-order
perturbation theory arises from the region of small lepton-
pair transverse momentum we can cure it with resumma-
tion of the small pT region. We do so in Sect. 4 and find
only small differences between the resummed results and
the available fixed-order codes. We provide a short discus-
sion of the experimental resolution to gauge the impact of
our findings on current analyses in Sect. 5. We summarize
in Sect. 6 and conclude with our comments on the choice
of cuts for experimental Drell–Yan analyses. Cross sections
and information on the set-up and input parameters for some
of the codes used for the benchmark comparisons are listed
in the Appendices A–E.

2 Benchmark computations

2.1 Set-up and code validation

The set-up and validation for benchmarking theory predic-
tions for W±- and Z -boson hadro-production cross sections

up to NNLO in QCD were described in Ref. [17]. In order
to study the effect of cuts on the fiducial phase space in the
experimental measurement two sets of data on W±- and Z -
boson production have been chosen, collected at the LHC
by the ATLAS experiment and at the Tevatron by the DØ
experiment, respectively.

• (Pseudo-)rapidity distributions for the decay leptons for
the W±- and Z/γ ∗-production cross sections [23] mea-
sured by the ATLAS experiment at a center-of-mass
energy of

√
s = 7 TeV, where the leptonic transverse

momenta p�
T and pseudo-rapidities are subject to fidu-

cial cuts.
• Distributions in the electron pseudo-rapidity for the elec-

tron charge asymmetry measured by the DØ experiment
in W±-boson production at

√
s = 1.96 TeV at the Teva-

tron [24]. The DØ data is taken with fiducial cuts on the
transverse momenta pe,νeT of the electron and the missing
energy, both symmetric as well as staggered, and on their
pseudo-rapidities.

The above choices are representative of the numerous data
sets collected at the LHC and the Tevatron in which symmet-
ric cuts on the final-state lepton phase space are imposed.
In our theoretical predictions we use the Gμ scheme with
input values GF , MZ , MW . The QED coupling α(MZ ) and
sin2(θW ) are then output values, which minimizes the impact
of NLO electroweak corrections, see e.g. Ref. [25]. The SM
input parameters are [26]

Gμ = 1.16637 × 10−5 GeV−2,

MZ = 91.1876 GeV, �Z = 2.4952 GeV,

MW = 80.379 GeV, �W = 2.085 GeV,

(1)

and the relevant CKM parameters are

|Vud | = 0.97401, |Vus | = 0.2265 ,

|Vcd | = 0.2265 , |Vcs | = 0.97320,

|Vub| = 0.00361, |Vcb| = 0.04053. (2)

The computations are performed in the MS factorization
scheme with n f = 5 light flavors with the n f = 5 fla-
vor PDFs of ABMP16 [3,27] as an input and the value of

the strong coupling, α
(n f =5)
s (MZ ) = 0.1147. The renormal-

ization and factorization scales μR and μF are taken to be
μR = μF = MV , with MV being the mass of the gauge
boson V = W±, Z . We note that the main results of our
study are insensitive to these parameter choices.

The following codes for the computation of the fully dif-
ferential NNLO QCD predictions for the lepton rapidity dis-
tributions are considered:
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• DYTURBO (version 1.2) [28]1

• FEWZ (version 3.1) [19,29]2

• MATRIX (version 2.1) [30];3 MATRIX uses the scattering
amplitudes from OpenLoops [31]. This version super-
sedes the previous one (version 1.0.4) [32].

• NNLOJET [33]4

These codes differ by the subtraction schemes used, which
are either fully local or based on final-state phase space slic-
ing in a resolution variable. FEWZ and NNLOJET employ
fully local subtraction schemes, with FEWZ using sector
decomposition [34] and NNLOJET using antenna subtrac-
tion [35]. NNLOJET is a Monte Carlo parton-level event
generator, providing fully differential QCD predictions at
NNLO for a number of LHC observables [36]. Codes based
on phase space slicing methods are DYTurbo and MATRIX.
DYTurbo features an improved reimplementation of the
DYNNLO code [16,18]5 for fast predictions for Drell–Yan
processes [28]. It also includes the resummation of large log-
arithmic corrections. DYTurbo and MATRIX both use qT -
subtraction [16] at NNLO. The slicing parameters are qT,cut

for DYTurbo and rcut = qT,cut/M for MATRIX where M is
the mass of the two-body final state.

Subtraction schemes based on phase space slicing are
susceptible to power corrections in qT . While these power
corrections for vector-boson mediated process are known to
be quadratic in the absence of fiducial cuts [37–41], they
become linear in the presence of cuts applied on the trans-
verse momenta of the two final state particles [17,22,32,42].
The appearance of linear power corrections in the fiducial
phase space is a purely kinematic effect, which allows for
their efficient computation via a suitable recoil prescription
[43–45].

DYTurbo (version 1.2) [28] and the new releaseMATRIX
(version 2.1) [30] include the computation of linear power
corrections in qT for 2 → 2 processes mediated by a vec-
tor boson. This reduces significantly the dependence of the
predictions on the parameter for the qT cut-off. Additionally,
MATRIX (version 2.1) also includes a bin-wise rcut extrap-
olation, which allows the user to obtain a yet more robust
prediction than the one obtained with a finite value of rcut.
All the predictions shown below and obtained with MATRIX
(version 2.1) include both the inclusion of linear power cor-
rections as well as the new bin-wise extrapolation feature.

The initial benchmark [17] also consideredMCFM (version
9.0) [46] and found large effects from linear power correc-

1 Code available from https://dyturbo.hepforge.org/.
2 Code available from https://www.hep.anl.gov/fpetriello/FEWZ.html.
3 Code available from https://matrix.hepforge.org/.
4 Private code. Results provided from the authors upon request.
5 The DYNNLO program, considered in the previous comparison [17],
is a legacy code now superseded by DYTurbo.

tions in comparison to FEWZ results (local subtraction). The
MCFM code6 implements the NNLO computation of Ref. [47]
and applies N -jettiness subtraction [20,48] with τcut as the
jettiness slicing parameter. Since the recoil prescription [43–
45] to remove the linear power corrections cannot be easily
adapted to N -jettiness slicing we refer to Ref. [17] for predic-
tions with this version of the code. As ofMCFM (version 10.0)
[14] the code also allows for all NNLO calculations imple-
mented (as well as for the N3LO calculations for charged-
and neutral-current Drell–Yan) to be performed using qT -
subtraction, also accounting for fiducial power corrections,
see, e.g. Refs. [49,50].

2.2 NNLO benchmark predictions

We computed the QCD predictions at NNLO accuracy for
W±- and Z/γ ∗-production cross sections at

√
s = 7 TeV

with the cuts imposed by ATLAS [23] using the ABMP16
PDFs [3]. The conclusions do not depend on this choice.
The ATLAS data were not included in the ABMP16 PDFs fit
and are shown to illustrate the accuracy of the experimental
measurements. Following the set-up of the previous study
[17] the predictions from FEWZ are chosen as the baseline,
to which other predictions are compared.

We begin by comparing the two codes based on a local
subtraction scheme, FEWZ and NNLOJET, with the 7 TeV
ATLAS data. The comparison of both codes with the data
as a function of lepton pT is shown in Fig. 1. We note that
both codes are in excellent agreement with each other, with
relative deviations between them at the per-mille level. Both
codes are in reasonable agreement with theW±- and Z -boson
data, with the largest differences of 3–4% occurring for Z -
boson production with central leptons.

Having established agreement between both codes based
on local subtraction schemes, as well as their agreement with
the 7 TeV data, we now compare them to codes dependent
on the qT slicing parameter. Figure 2 illustrates the agree-
ment with DYTURBO (version 1.2), which accounts for lin-
ear power corrections as discussed earlier in the text. All
DYTURBO predictions agree with those of FEWZ at the level
of a few per-mille. The DYTURBO predictions labeled “no
fpc” in Fig. 2 reproduce the DYNNLO predictions obtained
previously [17], and differ from FEWZ by up to 2% for W±-
boson production, and by more than 5% for Z -boson produc-
tion with forward leptons. This comparison clearly demon-
strates the quality of the improvements achieved with the new
version 1.2 of DYTURBO.

In Fig. 3 we show predictions for two versions of the
MATRIX code normalized to the FEWZ predictions. The new
MATRIX version 2.1 is distinguished by its inclusion of lin-
ear power corrections. As evident from Fig. 3 the accounting

6 Code available from https://mcfm.fnal.gov/.
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Fig. 1 Relative deviation of ATLAS data measured in inclusive pp →
W± + X → l±ν + X and pp → Z/γ ∗ + X → l+l− + X produc-
tion at

√
s = 7 TeV [23] with the statistical (inner bar) and the total

uncertainties, including the systematic ones. The fiducial cuts on the

decay leptons in the final state are indicated in the figure. The ABMP16
central predictions at NNLO are obtained with FEWZ and the deviations
of the predictions from NNLOJET are shown (dashed) for comparison

Fig. 2 Same as Fig. 1 using predictions by the DYTURBO code with (dashed) and without (dashed-dotted) the linear power corrections labeled
“(no fpc)” for comparison

of these power corrections has a significant impact, improv-
ing the agreement with FEWZ, see also Ref. [30]. MATRIX
(v2.1) agrees at the level of a few per-mille with FEWZ,
with the largest deviation for Z production with forward lep-
tons still significantly below 1%. The older version 1.0.4 of
MATRIXwithout linear power corrections, considered previ-
ously [17], differs from FEWZ by 1% for W±-boson produc-

tion, and by up to 5% for Z -boson production with forward
leptons.

The findings of this benchmark study are summarized
Fig. 4, which compares in each case the best predictions
of DYTURBO, MATRIX (v2.1) and NNLOJET. The pre-
dictions of MATRIX (v2.1) and NNLOJET are in excel-
lent agreement, with deviations being often less than one
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Fig. 3 Same as Fig. 1 using predictions by the MATRIX code with version 1.0.4 (dashed-dotted) and a value for the qT -slicing cut rmin
cut = 0.15%

as well as predictions with the improvements for the linear power corrections in version 2.1 (dashed) using rmin
cut = 0.5%

Fig. 4 Zoom on the per-mille level agreement of the predictions from the codes DYTURBO (dashed-dotted) MATRIX (v2.1) (solid) and
NNLOJET (dashed) relative to the central predictions at NNLO with FEWZ for the fiducial cuts and the bins of the ATLAS at

√
s = 7 TeV [23]

per-mille, i.e. the target uncertainty from the numerical inte-
gration. Also the DYTURBO predictions agree very well,
typically within two per-mille with the NNLOJET ones,
except for the Z -boson production with forward leptons,
where agreement is at the level of a few per-mille. Figure 4
also shows, that the predictions from DYTURBO, MATRIX
(v2.1) and NNLOJET are all aligned, especially for the
case of W±-boson production. The normalization to the
FEWZ predictions introduces some fluctuations, which are
due to the numerical integration uncertainties in the FEWZ

results, being at the level of a few per-mille. The predictions
obtained with NNLOJET are listed in Appendix A.

The DØ data on the electron charge asymmetry distri-
bution Ae has been obtained as a function of the elec-
tron pseudo-rapidity from W±-boson production at

√
s =

1.96 TeV at the Tevatron [24]. Theoretical predictions for
the benchmark studies are numerically challenging due to
large cancellations in the asymmetry. With predictions from
NNLOJET and the update of MATRIX (version 2.1) we are
in a position to check the FEWZ results, already presented
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in Ref. [17]. This is illustrated in Fig. 5, where we plot the
NNLO predictions obtained with those codes. The numbers
obtained with NNLOJET and MATRIX (version 2.1) are in
excellent agreement and are also compatible with the FEWZ
predictions within the substantially larger uncertainties from
the numerical integration of the latter. The numerical inte-
gration uncertainties of theNNLOJET andMATRIX numbers
are negligible on the scale of Fig. 5, while those of FEWZ are
indicated in the plot. All numbers computed with NNLOJET
are also given in Appendix A.

3 Theoretical formalism for lepton fiducial cuts

To further investigate the role of lepton fiducial cuts, which
lead to discrepancies between the local-subtraction codes and
the slicing ones if not properly accounted for theoretically,
we consider Z -boson production with central leptons. We
stagger the pT cuts on the two leptons by a small parameter
	pT . We review here the expected form of the cross section
both in fixed-order perturbation theory and when including
all-orders resummation.

3.1 Definition of linear asymmetric fiducial cuts

Experimental analyses commonly use linear cuts on final
transverse momenta. Let p�1

T and p�2
T be the leading and

subleading lepton transverse momenta. We consider the fol-
lowing linear asymmetric fiducial cuts parametrized by 	pT
(which can take either sign) and staggered on the leading and
subleading leptons:

p�1
T ≥

{
20 GeV, 	pT < 0,

20 GeV + |	pT |, 	pT > 0,

p�2
T ≥

{
20 GeV − |	pT |, 	pT < 0,

20 GeV, 	pT > 0.
(3)

We note that in the literature so-called staggered cuts have
also been defined by applying cuts on identified leptons (elec-
tron and positron in neutral-current Drell–Yan or lepton and
neutrino in charged current Drell–Yan). In this case it can be
shown [17,30,32] that the performance of slicing methods
are much improved compared to symmetric cuts or to stag-
gered cuts imposed on leading and subleading leptons, as
they lead to a quadratic sensitivity in the region qT < 	pT .
However, we expect a similar behavior of the fixed-order
cross section as a function of 	pT as that discussed for our
definition of linear asymmetric cuts.

The phase space available in the final state decreases with
increasing 	pT , hence the cross section should monotoni-
cally decrease with this cut. We see in Figs. 6 and 7 that this
occurs only at LO. A kink appears for 	pT = 0 at higher
orders. The effect leading to this unphysical result was first

explained in the context of photo-production of jets at HERA
[21], and can be explained with the simple one-loop exam-
ple presented there. Real-emission corrections collinear to
the initial-state partons in the hard scattering process con-
tain physical singularities that can be regulated with a cutoff
δ. Taking 	pT ≥ 0 at first, the NLO real-emission cross
section σR and its derivative have the following functional
dependence on 	pT and the collinear cutoff δ:

σR(	pT , δ) = A(	pT , δ) + B ln
δ

mZ

+C(	pT + δ) ln
	pT + δ

mZ
,

dσR(	pT , δ)

dδ
= d A

dδ
+ B

δ
+ C

[
1 + ln

	pT + δ

mZ

]
. (4)

Here, B and C are coefficients with no dependence on either
δ or 	pT , while both A and its derivative are regular for
all parameter values. We learn two things from the above
formulae. First, in the final cross section, the B log δ term
cancels against the NLO virtual diagram at this order, but still
leaves behind theC term which is a purely real effect. Second,
setting the collinear cutoff δ = 0 we can see that the first
derivative is singular (specifically, logarithmically divergent)
when 	pT → 0 even after adding the virtual contribution.
More generally, allowing for either sign of 	pT , including
the virtual and higher-order corrections, and taking δ → 0,
the fixed-order cross section at fixed μR , μF and small x =
	pT /mZ takes the form

σ(x) =
∞∑
n=0

αn
s

{
cn + xθ(−x)

2n∑
m=0

an,m lnm(−x)

+ xθ(x)
2n∑

m=0

bn,m lnm x + O(x2)

}
. (5)

As in the one-loop example above, the logarithmic terms are
expected to arise from real emissions close to the Born con-
figuration, i.e., a residual mis-cancellation against the corre-
sponding virtual parts. We will make this expectation more
precise in Sect. 4.

To investigate the impact of these considerations on the
cross section for Z production at

√
s = 7 TeV with a cut

on the lepton pseudorapidities |η�1,�2 | ≤ 2.5 as a function
of 	pT , we present the fixed-order predictions of NNLOJET
in Fig. 6 and MATRIX in Fig. 7. Results at LO, NLO and
NNLO in perturbative QCD for the linear asymmetric lepton
decay cuts defined in Eq. (3) are shown. Excellent agree-
ment between the NNLOJET and the MATRIX (v2.1)
numbers is observed for all values of 	pT . The latter have
been obtained accounting for the linear power corrections in
the qT -subtraction and bin-wise rcut extrapolation, as dis-
cussed previously. The logarithmic divergences described
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Fig. 5 The DØ data on the electron charge asymmetry distribution Ae
in W±-boson production at

√
s = 1.96 TeV with the statistical (inner

bar) and the total uncertainties, including the systematic ones. The dif-
ference of Ae to the ABMP16 central predictions at NNLO obtained
with FEWZ is shown together with the numerical integration uncertain-

ties (black vertical solid lines) of the FEWZ predictions. The symmetric
pe,νT -cuts of the decay leptons are indicated in the figure. The NNLO
predictions by the NNLOJET code (dashed lines, left plot) and by the
versions of the MATRIX code (dashed and dashed-dotted, right plot)
are displayed for comparison

Fig. 6 The cross sections for pp → Z/γ ∗ + X → l+l− + X produc-
tion at

√
s = 7 TeV at LO (dotted), NLO (dashed) and NNLO (solid)

in QCD with ABMP16 PDFs and yll ≤ 2.5 computed with NNLOJET

as a function of 	pT ∈ [− 5, 5] GeV defined in Eq. (3) for the linear
asymmetric fiducial cuts on the decay leptons in the final state (left plot)
and zoom on the range 	pT ∈ [− 0.3, 0.3] GeV (right plot)

above lead to the kink at 	pT = 0 and the resulting non-
monotonic behavior as 	pT is varied in these plots. This
result is a pathology of fixed-order perturbation theory when
symmetric cuts are applied.

3.2 Structure of the physical cross section

It is useful to discuss the general form that the physical cross
section should take as a function of x = 	pT /mZ , ignoring
QED and weak corrections (but assuming that Nature exactly
solved QCD for us). In this case we expect that the distri-

123



  406 Page 8 of 31 Eur. Phys. J. C           (2025) 85:406 

Fig. 7 Same as Fig. 6, now showing the predictions obtained with MATRIX (v2.1)

bution dσ/d
�� ≡ d6σ/(d3 
p�+ d3 
p�−) in the lab frame
is non-negative and smooth in all limits, unlike the fixed-
order cross section with its singular ridge along the surface

pT,�+ = − 
pT,�− . However, even in the case of the phys-
ical cross section we still generically find a discontinuous
derivative as x → 0 from above vs. from below. Letting
pcut
T = 20 GeV, this can be seen as follows:

1

mZ

dσ(x > 0)

dx

= −
∫
d
��

dσ

d
��
δ
(
p�1
T − pcut

T − xmZ

)
�

(
p�2
T − pcut

T

)

= −
∫
d
��

dσ

d
��
δ
(
p�1
T − pcut

T

)
�

(
p�2
T − pcut

T

)
+ O(x),

(6)
1

mZ

dσ(x < 0)

dx

= −
∫
d
��

dσ

d
��
�

(
p�1
T − pcut

T

)
δ
(
p�2
T − pcut

T − xmZ

)

= −
∫
d
��

dσ

d
��
�

(
p�1
T − pcut

T

)
δ
(
p�2
T − pcut

T

)
+ O(x),

(7)

where p�1
T = max

{
p�+
T , p�−

T

}
and p�2

T = min
{
p�+
T , p�−

T

}
are functions of 
��. We see that the derivatives cannot be
positive in either case, since in each case the integrand is
non-negative. However, the cross sections in Eqs. (6) and (7)
do not coincide. For x > 0 we have

δ(p�1
T − pcut

T

)
�

(
p�2
T − pcut

T

)
= �

(
p�−
T − p�+

T

)
δ
(
p�−
T − pcut

T

)
�

(
p�+
T − pcut

T

)

+ �
(
p�+
T − p�−

T

)
δ
(
p�+
T − pcut

T

)
�

(
p�−
T − pcut

T

)
= �

(
pcut
T − p�+

T

)
δ
(
p�−
T − pcut

T

)
�

(
p�+
T − pcut

T

)
+ �

(
pcut
T − p�−

T

)
δ
(
p�+
T − pcut

T

)
�

(
p�−
T − pcut

T ) = 0,

(8)

which implies

1

mZ

dσ(x > 0)

dx
= 0 + O(x), (9)

because the integration region is a lower-dimensional man-
ifold (assuming some precise limit-taking treatment of
θ(y)θ(−y)), whereas the physical cross section is free of
distributional terms and bounded on every subdomain such
that we can drop this null set. By contrast, for x < 0 we find a
genuinely 5-dimensional integration region that is not a null
set,

�
(
p�1
T − pcut

T

)
δ
(
p�2
T − pcut

T

)
= �

(
p�−
T − p�+

T

)
�

(
p�−
T − pcut

T

)
δ
(
p�+
T − pcut

T

)
+ �

(
p�+
T − p�−

T

)
�

(
p�+
T − pcut

T

)
δ
(
p�−
T − pcut

T

)
= �

(
p�−
T − pcut

T

)
δ
(
p�+
T − pcut

T

)
+ �

(
p�+
T − pcut

T

)
δ
(
p�−
T − pcut

T

)
. (10)

Thus, we find a non-vanishing derivative at x < 0,
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1

mZ

dσ(x < 0)

dx
= −

[
dσfid

dp�−
T

+ dσfid

dp�+
T

]
pT =pcut

T

+ O(x),

(11)

which we can identify as the sum over the lepton pT spectra
evaluated at pT = pcut

T , applying a fiducial pT ≥ pcut
T on

the respective other one. Importantly, the derivative is ≤ 0,
as expected because the physical fiducial cross section must
decrease with 	pT .

It is useful to note how a fixed-order calculation of
dσ/d
�� modifies the above conclusions. Specifically, unlike
the physical cross section,

1. the fixed-order calculation is not guaranteed to be positive,
so the unphysical scenario of a cross section increasing
with 	pT (as the phase space is being constrained further)
is possible; and

2. the fixed-order calculation generically contains terms
with a finite integral but supported on a null set, which
is easiest to see from the tree-level δ(2)( 
p �−

T − 
p �+
T ), and

thus the derivative in the limit x → 0+ need not vanish.

Both of these properties are addressed by resummation at the
level of the hadronic structure functions, and we thus expect
matched predictions to have the physical properties derived
above, which will be addressed in Sect. 4.

3.3 Definition of product cuts

Several resolutions to the problem of symmetric cuts have
been suggested in the literature. In Ref. [22], the origin of this
behavior was traced back to terms in the perturbative expan-
sion of the cross section linear in the transverse momentum
pT of the decaying Z -boson that produces the lepton pair. It
was suggested there to replace the cuts on the separate lep-
tons with a cut on the product of the transverse momenta of
the leptons, which we implement as follows:

√
p�1
T p�2

T ≥
{

20 GeV, 	pT < 0,

20 GeV + |	pT |, 	pT > 0,

p�2
T ≥

{
20 GeV − |	pT |, 	pT < 0,

20 GeV, 	pT > 0.
(12)

The perturbative expansion for the cross section in this
case depends only quadratically on the Z -boson transverse
momentum, and it is interesting to study whether the unphys-
ical behavior as 	pT → 0 improves in this case. We show the
predictions for these product cuts using NNLOJET in Fig. 8.
A comparison of the relative difference between the regular
cuts and the product cuts at NLO and NNLO is shown in
Fig. 9. While the unphysical dependence on 	pT is lessened
by switching to product cuts it is still clearly visible on the

plots. We note that both the fixed-order and all-orders struc-
ture of the cross section with product cuts defined in Eq. (12)
are analogous to those discussed in the previous subsections,
including the possibility of a mismatch between linear slopes
due to the way 	pT is defined here.

3.4 Rapidity distributions

It is instructive to revisit the study of the 	pT dependence of
the cross section for Z -boson production with central leptons,
which directly relates to the numerical studies presented in
Sect. 2. For selected fixed values of 	pT we display in Fig. 10
the K -factor σNNLO/σNLO relative to the inclusive case for
asymmetric cuts (left) and product cuts (right) as a function
of the Z -boson rapidity. In both figures we also display the
K -factor with symmetric cuts in black.

For the selected values of 	pT , we observe a difference
at the 2% level across the whole range in rapidity between
the asymmetric case and the inclusive case. There is a turning
point halfway through the rapidity range considered, with the
ratio moving from � − 2% at central rapidity to � + 2% at
|y��| = 2.2, with an abrupt change in slope starting around
|y��| � 1. The symmetric cuts case displays a similar trend
at large |y��|, while it is closer to the inclusive case at central
rapidities. Also in this case, we observe sudden changes in
slope at central rapidities, even though the overall deviation
with respect to the inclusive case is between [−0.5%, + 0.5%]
for |y��| below 1.5.

On the other hand, the product cut curves in Figs. 11, 12
display a smoother behaviour, and they are almost indistin-
guishable from the inclusive result for |y��| below 1.2. Above
this value, the K -factors start to depart from the inclusive case
with a slope similar to the one observed in the asymmetric
and the symmetric case, with differences up to � +2%. For
the kinematics under consideration (pp → Z/γ ∗ + X →
l+l− + X production at

√
s = 7 TeV with cuts on the decay

leptons p�
T ≥ 20 GeV), linear power corrections in 	pT

appear for central rapidities, yll � 1.0, due to the fiducial
cuts breaking the azimuthal symmetry in the integral over the
lepton decay phase space, as discussed in Refs. [42,45]. For
larger rapidities yll � 1.5 the rapidity constraints dominate
the integral over the lepton phase space and azimuthal sym-
metry is restored, resulting in quadratic power corrections in
	pT . This leads to only small deviations of all predictions
from the case of symmetric cuts. The impact of the cuts on the
lepton decay phase space has been illustrated in our previous
study [17], including the region around around yll � 1.2,
where the transition occurs.7

7 The impact of the fiducial cuts applied to Z/γ ∗-boson production
for different values of the gauge-boson rapidity yll on the real emission
phase space of the decay leptons has been illustrated in Fig. 15 of Ref.
[17].
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Fig. 8 Same as in Fig. 6, now with product cuts on the transverse momenta of the decay leptons in the final state. The product cuts are defined in
Eq. (12) and ranges 	pT ∈ [− 5, 5] GeV (left plot) and 	pT ∈ [−0.3, 0.3] GeV (right plot) are shown

Fig. 9 The ratio of cross sections for pp → Z/γ ∗ + X → l+l− + X
production from Fig. 8 with the product cuts of Eq. (12) over those from
Fig. 6 with linear asymmetric cuts of Eq. (3) as a function of 	pT at

NLO (dashed) and NNLO (solid) in QCD. The ranges 	pT ∈ [− 5, 5]
GeV (left plot) and 	pT ∈ [−0.3, 0.3] GeV (right plot) are shown

The fact that the product cut K -factors display a better
behaviour at central rapidities shows that, also at the dif-
ferential level, product cuts are free of linear power correc-
tions, which are instead responsible for the larger differences
observed in the asymmetric case and, to some extent, in the
symmetric case. The effect observed are, however, limited
to a few percent, and do not display the much larger differ-
ences observed in the Higgs case when asymmetric cuts are

enforced [51]. Moreover, our analysis is performed at NNLO,
while larger shape distortions were observed in the Higgs
case at N3LO. A better assessment of the impact of linear
power corrections associated with the choice of cuts requires
to consider resummation effects at NNLL and beyond, which
we will discuss in the next section.
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Fig. 10 Deviation of the rapidity distribution for pp → Z/γ ∗ + X →
l+l− + X production at

√
s = 7 TeV as a function of 	pT relative to

the results for 	pT = 0 at NNLO in QCD computed with NNLOJET.
Shown are selected 	pT values (indicated by color) using the defi-

nition in Eq. (3) for linear asymmetric cuts (left plot) and the one of
Eq. (12) for product cuts (right plot). Solid lines denote negative values
of 	pT as indicated in the plots, dotted lines of the same color display
the corresponding 	pT values with positive sign

Fig. 11 The cross sections for pp → Z/γ ∗ +X → l+l− +X produc-
tion at

√
s = 7 TeV at LO (dotted), NLO (dashed) and NNLO (solid)

in QCD with ABMP16 PDFs computed with NNLOJET as a function

of 	pT ∈ [− 5, 5] GeV defined in Eq. (3) for the linear asymmetric
fiducial cuts on the decay leptons in the final state. The rapidity bins
|yll | ∈ [0.4, 0.6] (left plot) and |yll | ∈ [1.4, 1.6] (right plot) are shown

4 Resummation

Using resummation techniques, e.g. in the framework of soft-
collinear effective theory (SCET), we can quantify the struc-
ture of the cross section further. We produce matched pre-
dictions of the form

σmatch = σFO +
∫ qoff

T

0
dqT

[
dσres

dqT
− dσsing

dqT

]
, (13)

where σFO is the fixed-order result, dσres/dqT is the all-
orders resummed fiducial qT spectrum, and dσsing/dqT is its

fixed-order expansion. The latter spectra can be computed
by SCETlib using the settings of Ref. [45]. The upper limit
qoff
T of the integral is chosen high enough such that all pro-

file scale functions (and thus the resummation) are turned off
exactly at qT > qoff

T , and the resummed and singular cross
sections cancel exactly beyond that point. In practice we pick
qoff
T = 150 GeV such that this criterion is fulfilled even for

the highestm�� ≤ 150 GeV values that we keep. For our cen-
tral choice of profile scale transition points, the resummation
is actually fully off already for qT ≥ 0.9m��. For most of the
Z resonance the cancellation is therefore exact much earlier.
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Fig. 12 Fiducial NNLO to NLO K -factor as a function of |y��| for linear asymmetric cuts (left) and product cuts (right) for different values of
	pT , normalised to the inclusive NNLO to NLO K -factor

It is useful to further define the non-singular cross section

σnons ≡ σFO −
∫ qoff

T

0
dqT

dσsing

dqT
. (14)

The relevant physical settings and cuts on Q ≡ m�� and
Y ≡ Y�� are given by the input file in Appendix D. Note that
we always cut on the lepton pseudorapidities |η�1,�2 | ≤ 2.5
in addition. The cuts on the lepton transverse momenta are
given in Eqs. (3) and (12) for linear asymmetric and product
cuts, respectively.

4.1 Structure of the fixed-order cross section and terms
captured by resummation

Returning to the general all-orders form of the fixed-order
cross section in Eq. (5), it is important to ask which terms
are actually being captured and resummed by the singular
cross section dσsing when dividing up the fixed-order cross
section as in Eq. (14). In general, we expect that logarithms
(m > 0 for lnm(±x) in Eq. (5)) arise from corresponding
logarithmic terms in the expansion of the hadronic structure
functions Wi to some (high) power in qT /Q,

2πqT Wi (q
μ) =

∞∑
n=0

αn
s

{
Ai,n,0(Q, Y ) δ(qT )

+
2n∑

m>0

Ai,n,m(Q, Y )
1

Q

[
lnm−1(qT /Q)

qT /Q

]
+

+
∞∑
k=0

(qT /Q)k
2n∑

m=0

B(k)
i,n,m(Q, Y ) lnm(qT /Q)

}
.

(15)

Here we work in the notation of Ref. [45], where the inclu-
sive cross section dσ/d4q is proportional to W−1 + W0/2,
while for i ≥ 0 the Wi ∝ Ai dσ/d4q are in direct corre-
spondence to the standard angular coefficients Ai up to lep-
tonic prefactors like electroweak charges and electroweak
gauge boson propagators. The limit qT 
 Q is the only
relevant source of large logarithms as a function of qμ, i.e.,
the momentum transfer between the hadronic and leptonic
systems, because other large (threshold) logarithms present
in the partonic structure functions are cut off by PDF sup-
pression and the proton–proton kinematics at the hadronic
level.

It is easy to verify that for the observable at hand, only the
hadronic structure functions i = −1, 0, 2 contribute. The
leptonic phase space integral vanishes for i = 3 . . . 7, while
for i = 1 it is an odd function of Y and thus vanishes when
integrated against the even structure function. For these we
have

Ai,n,m = 0, i = 0, 2,

B(0)
i,n,m = 0, i = −1, 0, 2, (16)

where the latter relation holds exactly for i = −1, 0 and
within twist-two collinear factorization for i = 2. All the
relevant hadronic power corrections to the leading-power
factorization predicting the A−1,n,m are thus suppressed
by at least two relative powers of (qT /Q)2 and scale as
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(qT /Q) lnm(qT /Q). Since we expect the leptonic phase
space integral to lower the degree of divergence by at least
one power, cf. the leading-power and tree-level δ(qT ) ∼ q−1

T
being mapped onto the coefficients c0 ∼ x0, b0,0 x ∼ x1, and
a0,0 = 0 in Eq. (5), we conclude that these at most contribute
to the terms of O(x2), while all coefficients an,m and bn,m

for m > 0 are predicted in terms of the A−1,n,m . These are
fully captured by the leading-power (LP) factorized singular
cross section,

dσsing

dQ2 dY dqT
∝ 2πqTW

LP−1(qμ)

=
∞∑
n=0

αn
s

{
A−1,n,0(Q,Y ) δ(qT )

+
2n∑

m>0

A−1,n,m(Q,Y )
1

Q

[
lnm−1(qT /Q)

qT /Q

]
+

}
, (17)

where the proportionality again means up to leptonic pref-
actors. The fiducial singular qT spectrum entering Eqs. (13)
and (14), is then obtained by integrating Eq. (17) over Q2,
Y , and the leptonic decay phase space, while weighting by
1+cos2 θ and the fiducial acceptance. In the resummed case,
the second line of Eq. (17) is evaluated using the all-orders
resummation instead, which we perform as described in Ref.
[45].

Importantly, the total offset cn and the remaining linear
slope terms an,0 and bn,0 on either side of Eq. (5) are not pre-
dicted by this argument because they can arise from rational
integrals over contributions from the cross section at any qT .
They do not have to arise from integrals over the 1/qT singu-
larity at small qT 
 Q because they are not transcendental.
This is analogous to the case of Ref. [52], where resummation
predicted the second derivative of the spectrum of interest,
meaning that a constant and a slope term had to be obtained
as boundary conditions in a double integral through fixed-
order matching. (The discussion in Sect. 3.2 implies that in
the case at hand, an,0 and bn,0 are not actually connected to
each other due to the definition of 	pT .) For fiducial Drell–
Yan production, the more complicated double integral func-
tional acting on the underlying hadronic structure functions
predicted by resummation is instead given by the qT inte-
gral and the constrained leptonic phase-space integral. As in
Ref. [52], a natural consequence of this double integral is
the presence of “non-singular” terms that feature the same or
even higher power counting as the singular terms predicted
by factorization, the only distinction being whether they are
enhanced by logarithms as x → 0, i.e., whether their deriva-
tive is bounded (non-singular) or logarithmically divergent
(singular).

In conclusion, we predict that

σsing(x) =
∞∑
n=0

αns

{
c

sing
n + xθ(−x) a

sing
n,0 + xθ(x) b

sing
n,0

+ xθ(−x)
2n∑

m=1

an,m lnm (−x) + xθ(x)
2n∑

m=1

bn,m lnm x + O(x2)

}
,

σnons(x) =
∞∑
n=0

αns

{
cnons
n + xθ(−x) anons

n,0 + xθ(x) bnons
n,0 + O(x2)

}
.

(18)

Here we have moved the unique prediction of LP factoriza-
tion (an,m and bn,m with m > 0) to the second line for the
singular cross section. In contrast, the precise breakdown of
an,0, bn,0, and cn between singular and non-singular cross
section at fixed order depends on qoff

T , the dependence on
which cancels between the two terms. Once the singular cross
section is resummed, the associated ambiguity is quantified
by profile scale variations quoted as 	match in Ref. [45] and
below, because they determine down to which values of qT
the resummed singular cross section is equal to its fixed-order
counterpart.

In summary, the logarithmic terms an,m and bn,m for
m ≥ 1 which lead to the unphysical non-monotonic behavior
of the fixed-order cross section for 	pT �= 0 appear in the
singular cross section. This behavior is therefore cured by
resummation. The discontinuity of the cross section deriva-
tive for 	pT = 0 as encoded in the coefficients an,0, bn,0

remains present even after the resummation, in agreement
with the general argument of Sect. 3.2. Here the two con-
tributions to the cross section separately obey monotonicity,
i.e., asing

n,0 < 0, anons
n,0 < 0 and bsing

n,0 = bnons
n,0 = 0.

4.2 Numerical results for the non-singular cross section

In Fig. 13 we show the fixed-order perturbative coefficients
of the non-singular cross section including the respective fac-
tors of αn

s in the case of the linear asymmetric cuts in Eq. (3).
Within the numerical uncertainty, which is indicated by the
blue band and driven by the SCETlib beam function inter-
polation uncertainty, these are all compatible with an asymp-
totic behavior of two straight lines approaching a constant
as 	pT → 0 with different slopes. The LO non-singular
cross section is compatible with zero within a relative accu-
racy of 10−5, validating the SCETlib physics inputs against
those used at fixed order (in NNLOJET here). We stress that
the nonsingular cross section in Eq. (14) is independent of
the resummation formalism used. This is because the sin-
gular spectrum, whose integral is subtracted from the total
fixed-order cross section in Eq. (14), is specified by eval-
uating the underlying hadronic structure functions in fixed-
order perturbation theory and expanding them to leading
power in qT /Q, while keeping the exact dependence on qT

123



  406 Page 14 of 31 Eur. Phys. J. C           (2025) 85:406 

Fig. 13 The non-singular cross section with linear asymmetric cuts according to Eq. (3) as a function of 	pT on a wide (left) and zoomed-in scale
(right). The blue band indicates the numerical uncertainty, which is predominantly due to the SCETlib integration

in the leptonic phase space integral. The choice to evaluate
the structure functions in the Collins–Soper frame and the
choice to expand in 1/Q (instead of the inverse of the trans-
verse mass) amount to quadratic power corrections. Due to
their lower degree of divergence at the level of the qT spec-
trum, these cannot induce logarithmic dependence on 	pT ,
and thus these choices (like the choice of qoff

T ) only affect
the constant terms and linear slopes in Eq. (14). For the case
of product cuts defined in Eq. (12) the non-singular cross
sections at LO, NLO and NNLO are plotted in Fig. 14. The
only notable feature compared to Fig. 13 is a faster (possibly

quadratic) rise of the α2
s coefficient towards large positive

values of 	pT , but this is at the scale of a few tenths of a
picobarn.

4.3 Matched predictions

In Fig. 15 we show predictions for the fiducial cross section
at different fixed (top) and resummed and matched orders
(bottom). It is clear that the fixed-order predictions are nei-
ther monotonic, nor do they have a vanishing derivative as
	pT → 0+. Both of these physical properties are restored
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Fig. 14 Same as Fig. 13 with product cuts according to Eq. (12)

by the resummation. The resummed and matched cross sec-
tion still feature a discontinuous derivative at 	pT = 0, but
this is in fact a physical feature and a consequence of the def-
inition of 	pT as discussed previously. The resummed and
matched predictions are also monotonically decreasing and
have vanishing derivative as 	pT → 0+.

The resummation is under good theoretical control, as evi-
denced by the matching uncertainty 	match, which we plot
together with the matched predictions in the left column of
Fig. 15. Here 	match is estimated by profile scale variations
using the formalism and default settings introduced in Ref.
[45], and features excellent perturbative convergence and

coverage. For later reference, we briefly describe the salient
features of this default matching formalism. Reference [45]
employs a hybrid profile scale technique [53], where up to a
value of qT = x1Q the resummation is fully turned on. In
this first region, the spectrum is obtained from a numerical
Fourier transform of the resummed bT -space cross section.
The beam and soft functions are evaluated at the so-called
canonical boundary values for their virtuality and rapidity
scales,

μS(bT ) = μB(bT ) = νS(bT ) = b0

bT
, νB = Q,
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Fig. 15 Results for the total fiducial cross section with linear asymmetric cuts according to Eq. (3) as a function of 	pT on a wide (left) and
zoomed-in scale (right). The bottom row shows the ratio to the NNLO prediction

where b0 = 2e−γE and γE is the Euler–Mascheroni con-
stant. An identical result for the resummed bT -space cross
section is obtained when choosing canonical μ and Collins–
Soper scales ζ in TMD factorization. For qT ≥ x1Q, the
resummation is slowly turned off by promoting the scales in
Eq. (19) to be functions of qT that continuously and mono-
tonically approach the fixed-order value μR = μF = Q for
all values of bT as qT → Q. Specifically, one picks another
point qT = x3Q > x1Q beyond which all scales are equal
to Q, the resummation is fully off, and the fixed-order result
for the spectrum is recovered exactly. A third intermediate
point qT = x2Q with x1 < x2 < x3 relates to the precise

functional form of the transition and governs how quickly it
departs from the canonical resummation region. The default
settings for these parameters from Ref. [45], which were
determined quantitatively by comparing the size of leading-
power singular and the nonsingular terms in the qT spectrum,
are given by

(x1, x2, x3) = (0.3, 0.6, 0.9). (19)

The matching uncertainty	match is then estimated by varying
them as

(x1, x2, x3) ∈ Vmatch = {(0.4, 0.75, 1.1),
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Fig. 16 Same as Fig. 15 with product cuts according to Eq. (12)

(0.2, 0.45, 0.7), (0.4, 0.55, 0.7), (0.2, 0.65, 1.1)}, (20)

i.e., one either shifts the transition region up, shifts it down,
condenses it, or stretches it out. Notably, the relative size
of singular and nonsingular contributions from which these
default choices were determined was assessed at the level of
the qT spectrum in Ref. [45] in order to obtain an optimal
prediction for its shape. By contrast, neither the central value
of the xi nor their variations were tuned to exactly preserve
the fixed-order prediction for the integral of the inclusive qT
spectrum, i.e., the total inclusive cross section. As an impor-
tant cross check, we have therefore explicitly verified that the

above default resummation and matching setup nevertheless
leads to a net resummation effect compatible with zero when
applied to the inclusive cross section within the ATLAS Q2

and Y bins. Explicitly, we find

σ incl
res,NLL − σ incl

sing,LO = (−12.5 ±match 42.7) pb,

σ incl
res,NNLL − σ incl

sing,NLO = (−5.6 ±match 25.5) pb,

σ incl
res,N3LL

− σ incl
sing,NNLO = (−5.2 ±match 15.1) pb, (21)

where ±match indicates the matching uncertainty 	match at
the given order.
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As an alternative to the default spectrum-level setup from
Ref. [45], one may instead consider profile scales that are
chosen such that the matching exactly preserves the total
inclusive cross section as computed at a given fixed order in
perturbation theory. We stress that because the default match-
ing is implemented through profile scales, the nonzero resum-
mation effects in Eq. (21) are by construction also beyond
the order at which the fixed-order calculation is truncated. To
do so we maintain the original functional form of the tran-
sition as given in Ref. [45], but choose the transition points
xi under the constraint that for the central prediction (which
uses Eq. (19) in the canonical region qT ≤ x1Q), the integral
of the matched cross section up to qT = x3Q exactly recov-
ers the fixed-order value. We further choose to hold x1 = 0.3
fixed for the central prediction such that the size of the canon-
ical region coincides with the default settings. By manually
scanning the dependence on the other two parameters, we
then find that

(x1, x2, x3)constr. = (0.3, 0.9, 1.2) (22)

exactly recovers (for the settings used in this paper, and in
particular the PDF set at hand) the NNLO total inclusive cross
section from the integral of the N3LL+NNLO inclusive qT
spectrum.

It is interesting to ask how an uncertainty estimate based
on scale variations can still be obtained for the qT spectrum
in this case, as well as for derived quantities like fiducial
cross sections that feature sensitivity to resummation effects,
since the matching uncertainty has largely become trivial by
imposing the above constraint. In particular, these additional
variations should probe possible changes of the shape of the
spectrum in the canonical region itself, which can also serve
as a proxy for the difference between different resummation
formalisms. To test this we adapt another, separate compo-
nent of the total uncertainty estimate for theqT spectrum from
Ref. [45], specifically, the so-called resummation uncertainty
	res. Conventionally, 	res is estimated by performing a large
set of variations where the four canonical scales in Eq. (19)
are varied independently or jointly by factors of 2 around their
central values [54]. Taking an envelope of these variations
then provides one of the most detailed estimates of the resid-
ual uncertainty on the spectrum in resummed perturbation
theory available within the scale variation paradigm. While
these variations are smoothly turned off as qT increases such
that the fixed-order prediction in the tail of the spectrum is
unaffected by them, they again do not necessarily preserve
the total integral. While they probe variations from the canon-
ical Sudakov shape in depth, they are not necessarily a pure
shape variation of the spectrum. To complete our uncertainty
estimate in the case where the xi are constrained, we also
subject the variations entering 	res to the integral constraint
by adjusting the xi for each variation. Restricting to a sub-

set of representative variations to keep the complexity of the
problem manageable, we find

V constr.
res = {

(μdown
B , μdown

S , 0.55, 1.0, 1.2),

(μ
up
B , μ

up
S , 0.25, 0.65, 1.2),

(νdown
B , 0.35, 0.9, 1.2), (ν

up
B , 0.4, 0.8, 1.2)

}
,

(23)

where μ
up,down
X indicates a soft or beam function scale varia-

tion as described in Ref. [45], and the three values quoted are
the respective xi . Note that in this case, we have held x3 fixed
at the central value determined earlier to ensure that all varia-
tions in V constr.

res collapse onto the fixed-order spectrum at the
same point, and instead compensated the changes by mainly
varying x1, i.e., the size of the purely canonical region.

The results of the above exercise are shown in the right
column of Fig. 15. Compared to the left column, the central
values of the matched predictions are shifted up, largely com-
pensating – now at the fiducial level – the small offsets we
reported in Eq. (21). Note that since we are mainly interested
in the behavior at the highest order in perturbation theory,
we have used the same constrained variations from above at
all three orders shown in Fig. 15 for expediency. This is the
reason for the much larger uncertainty bands at lower orders.
Nevertheless, as can be seen from the bottom right panel, we
still find a small net resummation effect on the central value at
N3LL+NNLO that is mainly compatible with zero, but just
outside the refined uncertainty estimate for some values of
	pT . While a complete study of this effect at the next higher
order is beyond the scope of this paper, we anticipate that the
effect will become more significant at higher orders since
the estimate for 	constr.

res will be reduced as the residual scale
dependence decreases in the resummed cross section, while
the baseline fixed-order prediction picks up two additional
logarithms of 	pT /Q at each order according to Eq. (18).

Another uncertainty intrinsic to the resummed prediction
is given by the impact of non-perturbative transverse momen-
tum dependent (TMD) physics and the Landau pole in the
inverse Fourier transform, which is estimated by variations
of a cutoff parameter �fr defined in Ref. [45]. We find that
the resulting 	NP is not even resolved at the current relative
numerical uncertainty, which is O(10−4). This is expected
because for typical qT ∼ 25 GeV in the baseline symmetric
cuts (which dominate the total fiducial cross section here),
the effect of non-perturbative TMD physics is suppressed by
(�QCD/qT )2 ∼ (500 MeV/25 GeV)2 ∼ 4 × 10−4.

Figure 16 shows our results for the matched cross sections
for the case of the product cuts defined in Eq. (12), also com-
pared to the NNLOJET fixed-order results. They are again
almost identical to their counterparts for linear asymmetric
cuts in Fig. 15. A few comments on the product cuts are in
order. Reference [22] focused on constructing 1 → 2 fiducial
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cuts that would be free of O(qT ) linear power corrections at
the level of the differential spectrum as qT → 0, which were
found to reduce ambiguities in the perturbative series for the
case of Higgs production with 	pT ∼ 10 GeV. Furthermore,
the absence of linear power corrections in the acceptance is
beneficial for mitigating bias in fixed-order subtraction meth-
ods. However, the sensitivity of the total fiducial cross sec-
tion to resummation effects remains present through terms
of the form x lnn x for x = 	pT /MZ 
 1. This is evident
from our numerical results in Fig. 8, where the unphysical
behavior for 	pT → 0 of the fixed-order cross section per-
sists also for product cuts. We note that this observation does
not straightforwardly follow from the definition of product
cuts. Although they trivially coincide with the symmetric
cuts for 	pT → 0, they might have displayed a different
asymptotic behavior approaching that limit. In the language
of Ref. [45], there are two classes of fiducial power correc-
tions, either “linear” or “leptonic”, which do not have to coin-
cide. “Leptonic” power corrections in qT /	pT = xqT /MZ

are in general present and lead to sensitivity to low values
of qT at any power in qT /	pT . Ultimately, the only way to
cure the pathological behavior in the 	pT = 0 limit is to
resort to resummation, due to the presence of x ln x power
corrections for qT /MZ � x , as already observed in [21].

4.4 Rapidity distributions

We are now in a position to assess the size of resummation
effects on the fiducial rapidity distributions studied at fixed
order in Sect. 3.4. As a baseline, we first assess the impact of
the resummation on the inclusive rapidity spectra using the
two approaches described in Sect. 4.3 to perform the match-
ing. The results at N3LL+NNLO are shown in Fig. 17. For
the default matching setup of Ref. [45], results from which are
shown in the left panel, we find that the integral is compatible
with the fixed-order value within the matching uncertainty for
all rapidities, providing us with a rapidity-differential version
of the check in Eq. (21). The results using the constrained
profile scales and the constrained resummation uncertainty
introduced in Sect. 4.3 are shown in the right panel. Note that
the constraint on the transition points xi was applied at the
level of the total inclusive cross section in the ATLAS Q and
central Y bin, and not point by point in rapidity. This leads to
the finite value of 	constr.

res /σLO ≈ 0.4% at 1.5 ≤ |yZ | < 2.5,
where the effect of the beam function μB variation changes
due to the changing behavior of the underlying PDFs. While
it would in principle be possible to apply the constraint point
by point in yZ (and Q), developing the required automated
numerical framework, e.g. along the lines of Ref. [55], is
beyond the scope of this exercise here. Here we simply point
out that for all yZ , the integral of the constrained matched
prediction is indeed compatible with the fixed-order result
within the residual 	constr.

res .

Turning to the fiducial Z rapidity spectrum, we first show
the effect of resummation for representative values of 	pT
as a function of yZ in Fig. 18. Our results for 	pT = 0
confirm the observations of Ref. [56]: the resummation has
a small negative net effect of − 0.4% at central rapidities,
then starts to rise at the transition point |yZ | ∼ 1.2 identified
in Sect. 3.4, and eventually contributes a small positive net
effect of +0.2% at |yZ | = 2.5. (Note that in order to read this
behavior off from the respective figure in Ref. [56], one must
compare the resummation to the unbiased fixed-order result
using a recoil prescription.) The fiducial rapidity spectra for
	pT = ±5 GeV feature a very similar trend. We note, how-
ever, that the resummation effect at this order is still compat-
ible with zero for most values of 	pT and yZ within 	constr.

res .
To further corroborate these findings, we also compute the net
resummation effect on the fiducial yZ spectrum for different
	pT using the RadISH resummation code [11] and the set-
tings of Ref. [13]. We find excellent agreement with Fig. 18.
This result complements and extends the fixed-order analysis
performed in Sect. 3.4, showing that when NNLO is used as
the baseline, the resummation of linear power corrections has
a small effect. This suggests that beyond NNLO, the choice
of cuts has an effect at the subpercent level, independently
of the presence or absence of linear power corrections, and
is likely smaller than the N3LO correction, which has been
found to be around − 2% for different choices of cuts in [13].

In Fig. 19 we show the effect of the resummation on
the fiducial rapidity spectrum in the two representative bins
0.4 ≤ |yZ | ≤ 0.6 and 1.4 ≤ |yZ | ≤ 1.6 considered ear-
lier in Sect. 3.4. In this case we also show results from the
default matching setup for comparison. We find that in the
more forward bin (gray), which lies past the transition point
at |yZ | ≈ 1.2, the asymmetric and product cuts both show a
very similar behavior as a function of 	pT , with a net resum-
mation effect of − 0.2% (assuming the constrained match-
ing setup) that is compatible with zero within 	constr.

res . This
is expected since for these values of |yZ |, linear power cor-
rections are absent in either case because the lepton pseudo-
rapidity cuts dominate. The picture is different for the cen-
tral rapidity bin (orange), where the net resummation effect
closely resembles that of the total cross section shown ear-
lier in Figs. 15 and 16. In this case, albeit being tiny, the net
resummation effect of ≈ − 0.3% in the central |yZ | bin is
not compatible with zero within uncertainties for both sets
of cuts in the region of 	pT between − 5 and − 2 GeV.

5 Experimental resolution

From the previous discussions and numerical results we see
that fixed-order codes exhibit an unphysical behavior for
symmetric cuts that is remedied by resummation. These find-
ings need to be put in perspective of the resolution in the
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Fig. 17 Net resummation effect on the inclusive rapidity spectrum, using either the default matching setup of Ref. [45] with its associated matching
uncertainty 	match (left) or the integral-preserving matching setup described in Sect. 4.3 featuring a constrained resummation uncertainty 	constr.

res
(right)

Fig. 18 Net resummation effect on the fiducial Z rapidity spectrum
using asymmetric cuts (left) or product cuts (right) as a function of |yZ |
for representative values of 	pT . For clarity, we only show results for

the constrained matching setup. (The results from the default matching
setup are not very instructive at this resolution.)

collider experiments, in particular at the LHC. To quantify
this we refer to Fig. 15 (bottom row), where the ratios of
the resummed result to the NNLO predictions are shown
for the observable under study, i.e. the cross sections for
pp → Z/γ ∗ + X → �+�− + X production at

√
s = 7 TeV

integrated over rapidity in the range y�� ≤ 2.5, and with fidu-
cial cuts on the decay leptons staggered by 	pT . For large
	pT the difference between the resummed and fixed-order
asymptotes to approximately 0.4%. At values for 	pT of a
few hundred MeV the difference is 0.2%. Given the good per-
turbative convergence, we note that this effect is small upon
inclusion of the NNLO fixed-order corrections and that the
differences between fixed-order and resummed predictions
are significantly smaller than the residual theoretical uncer-
tainties from scale variations, cf. Fig. 15 (center row). The
observed differences are also smaller than other theoretical
uncertainties such as those coming from PDFs, see, e.g. Ref.
[3].

On the experimental side, the sensitivity to the QCD
effects due to symmetric cuts is related to the lepton energy
and momentum calibration, and the detector performance.
The ATLAS collaboration reports an experimental resolu-
tion on the lepton transverse momenta in the range around
20–30 GeV of a few percent (3–4% for electrons [57] and 2 to
3% for muons [58]) together with a systematic uncertainty in
the lepton energy scale calibration in the range between 0.03
to 0.2% around the Z -boson peak (electrons with transverse
momentum close to 45 GeV) [57,58], cf. [59] for related
studies of the CMS collaboration.

In comparison to the current overall experimental preci-
sion reported for the inclusive Drell–Yan cross section, for
which systematic uncertainties approaching 2% are reported
[60,61], the differences from symmetric cuts treated at fixed-
order in perturbative QCD or resummed to all orders are also
small. For inclusive cross sections the experimental preci-
sion is limited by the uncertainties in the luminosity deter-
mination, which are typically around 1.5–2.5%. The latest
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Fig. 19 Net resummation effect on the fiducial Z rapidity spectrum using asymmetric cuts (top) or product cuts (bottom) as a function of 	pT for
two representative bins in |yZ |. We show results using the default matching setup (left) and the integral-constrained matching setup (right)

ATLAS luminosity calibration [62] has been able to achieve
1% accuracy on the luminosity in Run 3, which is expected to
be a lower limit on the luminosity uncertainty for Run 3 and
the high-luminosity runs. Our NNLO analysis indicates that
the all-order resummation of the logarithms in the fiducial
transverse momentum spectrum and the unphysical behav-
ior of fixed-order perturbation theory are unlikely to have
an impact on experimental studies of inclusive Drell–Yan
cross sections. The findings of this study should eventually
be corroborated by a N3LO analysis, although the impact of
resummation seems to remain moderate at higher orders (see
e.g. Ref. [13]).

For differential distributions or normalized cross sections
the situation is different, because the effect of the luminos-
ity uncertainty cancels or leads to a coherent shift, and the
precision on the shape or ratio of distributions can be much
higher. In fact, already for the ATLAS measurement [23]
considered in the benchmark study in Sect. 2 a precision on
the Z -boson rapidity distribution in the central region at the
level of a few per-mille is reported, excluding the luminosity
uncertainty. Thus, for shapes or ratios of differential distri-
butions qT -resummation can have an impact on the theoreti-
cal predictions, cf. [56]. As the dominant uncertainties from
the lepton calibrations (Z -boson) and from backgrounds and

recoil calibration (W -boson) are reduced in future measure-
ments of differential distributions for Drell–Yan processes,
the differences between fixed-order perturbative QCD and
resummed predictions for symmetric fiducial cuts should be
revisited.

6 Conclusions and discussion

Fixed-order QCD perturbation theory for the Drell–Yan pro-
cess suffers from an instability for symmetric cuts on the
transverse momenta of the final-state leptons. This pathology
originates from a logarithmically enhanced power correction
present for small lepton-pair transverse momentum. It leads
to unphysical non-monotonic behavior for the cross section
as the difference 	pT between the cuts on the lepton and
anti-lepton is varied. Available public codes that compute
the fixed-order NNLO QCD corrections to Drell–Yan treat
this instability in different ways due to the underlying sub-
traction scheme in the codes, potentially leading to different
theoretical predictions for the cross section and hindering the
analysis of experimental data.

In this paper we have performed a detailed analysis of
this issue, involving both the careful study of available fixed-
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order codes, the resummation of QCD perturbation theory to
solve this issue, and the consideration of product cuts that
have been suggested as a resolution of this issue. We have
considered the following codes that compute the NNLO QCD
corrections to the Drell–Yan process:

• DYTURBO (version 1.2), based on the non-local qT sub-
traction scheme;

• FEWZ (version 3.1), based on the local sector decompo-
sition subtraction scheme;

• MATRIX (version 2.1), based on the non-local qT sub-
traction scheme;

• NNLOJET, based on the local antenna subtraction scheme.

All codes, whether based on local or non-local subtraction
schemes, give consistent results for the case of symmetric
cuts. This is a non-trivial result since these techniques treat
the pT = 0 region very differently. Obtaining the correct
fixed-order result with non-local schemes requires a careful
treatment of power corrections for small transverse momen-
tum. The agreement between these codes is a testament to the
community effort exerted for a proper theoretical treatment
of this process, with DYTURBO, FEWZ and MATRIX being
readily available to the public.

We also considered product cuts [22], which replace the
separate linear asymmetric cuts on the leading and sub-
leading lepton transverse momenta with cuts on their product
and the sub-leading lepton instead. For values of 	pT ∼ 10
GeV these cuts mitigate the ambiguities of the perturbative
series present with (a)symmetric cuts, which can be par-
ticularly relevant for processes with Casimir enhancement,
notably Higgs production [63]. As expected, we find that their
introduction does not address the pathological behavior for
	pT → 0, which can only be addressed by resummation. We
found that resummation indeed removes this effect, although
a kink in the cross section is still present for 	pT = 0,
essentially due to the way we defined the observable for this
study. At NNLO the differences induced by resummation are
small for all the values of 	pT considered, ranging from 0
to a few GeV, shifting the fixed-order result by sub-percent
values that are well below the current experimental uncer-
tainties. An analogous consideration holds also at the level
of the rapidity spectra, in agreement with the findings of
Ref. [56]. It remains to be seen whether such conclusion still
holds beyond NNLO, although recent studies [13,22] indi-
cate that the effect of resummation of linear power correc-
tions remains moderate also at N3LO. Given the excellent job
done by the available fixed-order codes in reproducing the
results of resummation and the substantial effort needed to
implement the relevant modifications when modeling signal
and background in experimental analyses, we foresee only
a marginal improvement in adopting a different set of cuts

in the Drell–Yan case for the measurement of fiducial cross
sections.

Note added in proofs: The NNLOJET code has been pub-
lished now in Ref. [64] and is available from https://nnlojet.
hepforge.org/.
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Appendix A: Cross section predictions

We present here the benchmark predictions discussed in
Sect. 2 for the (pseudo-)rapidity distributions of the decay
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Table 1 Cross sections at LO, NLO and NNLO in QCD in fb for inclu-
sive pp → W+ + X → l+ν + X production at

√
s = 7 TeV, subject to

the fiducial cuts applied by measured by the ATLAS experiment [23].

See also Sect. 2 for the settings. Numbers in round brackets indicate
the statistical uncertainty from the Monte Carlo evaluation on the last
digits

min |yl | cntr |yl | max |yl | σLO [fb] σNLO [fb] σNNLO [fb]

0 0.105 0.21 1,144,924 (22) 1,131,302 (49) 1,132,372 (218)

0.21 0.315 0.42 1,147,528 (23) 1,133,998 (58) 1,135,481 (300)

0.42 0.525 0.63 1,152,891 (23) 1,139,771 (59) 1,141,365 (307)

0.63 0.735 0.84 1,160,339 (23) 1,147,812 (59) 1,149,361 (327)

0.84 0.945 1.05 1,169,448 (23) 1,157,995 (60) 1,159,151 (331)

1.05 1.21 1.37 1,181,246 (19) 1,172,429 (44) 1,173,206 (228)

1.37 1.445 1.52 1,189,295 (29) 1,184,195 (80) 1,183,306 (473)

1.52 1.63 1.74 1,190,632 (24) 1,190,271 (59) 1,186,759 (319)

1.74 1.845 1.95 1,182,394 (25) 1,189,693 (61) 1,183,688 (353)

1.95 2.065 2.18 1,155,801 (24) 1,173,921 (57) 1,163,509 (326)

2.18 2.34 2.5 1,082,093 (22) 1,117,404 (46) 1,102,564 (225)

Table 2 Same as Table 1 for inclusive pp → W− + X → l−ν + X production at
√
s = 7 TeV

min |yl | cntr |yl | max |yl | σLO [fb] σNLO [fb] σNNLO [fb]

0 0.105 0.21 848,830 (14) 862,143 (28) 855,642 (122)

0.21 0.315 0.42 844,251 (14) 857,976 (32) 851,304 (174)

0.42 0.525 0.63 835,145 (14) 849,539 (32) 843,000 (173)

0.63 0.735 0.84 821,844 (14) 837,206 (32) 830,928 (165)

0.84 0.945 1.05 804,614 (14) 821,162 (32) 815,662 (161)

1.05 1.21 1.37 777,824 (11) 795,869 (23) 790,738 (112)

1.37 1.445 1.52 750,484 (16) 769,521 (43) 764,996 (221)

1.52 1.63 1.74 726,685 (14) 745,954 (32) 741,848 (162)

1.74 1.845 1.95 697,056 (14) 716,004 (32) 712,404 (173)

1.95 2.065 2.18 664,666 (14) 682,198 (32) 678,928 (156)

2.18 2.34 2.5 620,643 (13) 634,655 (27) 631,338 (118)

Table 3 Same as Table 1 for central inclusive pp → Z + X → l+l− + X production at
√
s = 7 TeV

min |yll | cntr |yll | max |yll | σLO [fb] σNLO [fb] σNNLO [fb]

0 0.1 0.2 242,501 (4) 260,269 (6) 260,299 (11)

0.2 0.3 0.4 241,885 (4) 259,761 (6) 259,821 (12)

0.4 0.5 0.6 240,596 (4) 258,581 (5) 258,698 (11)

0.6 0.7 0.8 238,771 (4) 256,990 (6) 257,210 (11)

0.8 0.9 1.0 236,249 (4) 254,824 (6) 255,082 (11)

1.0 1.1 1.2 227,905 (4) 251,037 (6) 249,373 (11)

1.2 1.3 1.4 207,158 (4) 234,939 (5) 233,888 (12)

1.4 1.5 1.6 179,949 (4) 208,041 (5) 208,362 (13)

1.6 1.7 1.8 147,438 (3) 173,199 (5) 174,566 (13)

1.8 1.9 2.0 110,916 (3) 132,203 (5) 134005 (14)

2.0 2.1 2.2 72,370 (3) 87,305 (5) 88,905 (13)

2.2 2.3 2.4 34,732 (3) 42,185 (4) 43,064 (11)
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Table 4 Same as Table 1 for forward inclusive pp → Z + X → l+l− + X production at
√
s = 7 TeV

min |yll | cntr |yll | max |yll | σLO [fb] σNLO [fb] σNNLO [fb]

1.2 1.3 1.4 22,646 (1) 13,899 (3) 15,537 (15)

1.4 1.5 1.6 45,488 (2) 36,627 (4) 36,949 (16)

1.6 1.7 1.8 72,941 (2) 66,461 (4) 65,760 (15)

1.8 1.9 2.0 103,456 (2) 101,449 (4) 100,231 (15)

2.0 2.1 2.2 134,086 (2) 13,815 (4) 13,692 (15)

2.2 2.3 2.4 161,961 (2) 17,286 (4) 17,205 (13)

2.4 2.6 2.8 157,264 (2) 17,023 (3) 16,929 (9)

2.8 3.0 3.2 77,063 (1) 80,140 (2) 78,526 (8)

3.2 3.4 3.6 20,432 (1) 20,227 (1) 19,374 (6)

Table 5 Cross sections at LO, NLO and NNLO in QCD in fb for inclu-
sive p p̄ → W+ + X → l+ν + X production at

√
s = 1.96 TeV,

subject to the fiducial cuts applied by the DØ experiment [24]. See also

Sect. 2 for the settings. Numbers in round brackets indicate the statistical
uncertainty from the Monte Carlo evaluation on the last digits

min yl cntr yl max yl σLO [fb] σNLO [fb] σNNLO [fb]

− 3.2 − 2.95 − 2.7 20,546 (1) 20,997 (3) 20,789 (7)

− 2.7 − 2.55 − 2.4 47,756 (1) 50,253 (5) 50,219 (17)

− 2.4 − 2.3 − 2.2 68,277 (3) 72,825 (8) 73,124 (29)

− 2.2 − 2.1 − 2.0 84,664 (3) 91,041 (9) 91,660 (30)

− 2.0 − 1.9 − 1.8 100,108 (3) 108,305 (9) 109,294 (33)

− 1.8 − 1.7 − 1.6 114,218 (3) 124,151 (10) 125,558 (33)

− 1.6 − 1.4 − 1.2 132,796 (2) 144,935 (6) 146,797 (18)

− 1.2 − 1.1 − 1.0 149,451 (3) 163,439 (11) 165,639 (35)

− 1.0 − 0.9 − 0.8 159,754 (4) 174,717 (11) 177,081 (36)

− 0.8 − 0.7 − 0.6 169,663 (4) 185,463 (12) 187,936 (38)

− 0.6 − 0.5 − 0.4 179,264 (4) 195,794 (12) 198,292 (38)

− 0.4 − 0.3 − 0.2 188,493 (4) 205,663 (12) 208,161 (40)

− 0.2 − 0.1 0.0 197,178 (4) 215,042 (13) 217,563 (42)

0.0 0.1 0.2 204,955 (5) 223,597 (13) 225,922 (44)

0.2 0.3 0.4 211,345 (5) 230,892 (13) 233,051 (44)

0.4 0.5 0.6 215,610 (5) 236,284 (14) 238,207 (47)

0.6 0.7 0.8 216,713 (5) 238,739 (14) 240,426 (48)

0.8 0.9 1.0 213,411 (5) 236,982 (14) 238,314 (48)

1.0 1.1 1.2 204,339 (5) 229,334 (14) 230,561 (46)

1.2 1.4 1.6 176,867 (3) 202,614 (7) 203,859 (22)

1.6 1.7 1.8 136,734 (4) 160,146 (11) 161,689 (37)

1.8 1.9 2.0 105,594 (3) 125,021 (9) 126,689 (30)

2.0 2.1 2.2 75,804 (3) 90,298 (8) 91,681 (23)

2.2 2.3 2.4 50,319 (2) 60,105 (5) 61,155 (17)

2.4 2.55 2.7 26,925 (1) 32,183 (3) 32,744 (7)

2.7 2.95 3.2 7572 (0) 9011 (1) 9178 (2)
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Table 6 Same as Table 6 for inclusive p p̄ → W− + X → l−ν + X production at
√
s = 1.96 TeV

min yl cntr yl max yl σLO [fb] σNLO [fb] σNNLO [fb]

− 3.2 − 2.95 − 2.7 7572 (0) 9013 (1) 9177 (2)

− 2.7 − 2.55 − 2.4 26,923 (1) 32,179 (3) 32,767 (6)

− 2.4 − 2.3 − 2.2 50,319 (2) 60,117 (5) 61,104 (16)

− 2.2 − 2.1 − 2.0 75,806 (3) 90,296 (6) 91,699 (22)

− 2.0 − 1.9 − 1.8 105,591 (3) 125,011 (7) 126,677 (29)

− 1.8 − 1.7 − 1.6 136,730 (3) 160,142 (9) 161,692 (35)

− 1.6 − 1.4 − 1.2 176,866 (3) 202,613 (6) 203,843 (22)

− 1.2 − 1.1 − 1.0 204,318 (4) 229,345 (11) 230,505 (47)

− 1.0 − 0.9 − 0.8 213,404 (4) 236,976 (11) 238,445 (47)

− 0.8 − 0.7 − 0.6 216,709 (4) 238,721 (11) 240,343 (45)

− 0.6 − 0.5 − 0.4 215,604 (4) 236,278 (11) 238,212 (44)

− 0.4 − 0.3 − 0.2 211,355 (4) 230,888 (10) 233,115 (45)

− 0.2 − 0.1 0.0 204,953 (4) 223,595 (10) 225,952 (44)

0.0 0.1 0.2 197,181 (4) 215,043 (10) 217,516 (42)

0.2 0.3 0.4 188,503 (4) 205,688 (9) 208,133 (39)

0.4 0.5 0.6 179,268 (4) 195,782 (9) 198,264 (37)

0.6 0.7 0.8 169,669 (4) 185,482 (9) 187,997 (37)

0.8 0.9 1.0 159,752 (3) 174,711 (8) 177,061 (36)

1.0 1.1 1.2 149,455 (3) 163,430 (8) 165,686 (35)

1.2 1.4 1.6 132,819 (2) 144,938 (5) 146,791 (17)

1.6 1.7 1.8 114,222 (3) 124,137 (7) 125,506 (34)

1.8 1.9 2.0 100,112 (3) 125,021 (7) 109,334 (30)

2.0 2.1 2.2 84,665 (3) 90,292 (7) 91,686 (29)

2.2 2.3 2.4 68,282 (2) 72,826 (7) 73,109 (28)

2.4 2.55 2.7 47,758 (1) 50,315 (4) 50,373 (17)

2.7 2.95 3.2 20,544 (1) 20,947 (2) 20,778 (7)

leptons for W±- and Z/γ ∗-production at a center-of-mass
energy of

√
s = 7 TeV, corresponding to the fiducial cuts of

the ATLAS experiment. The predictions listed here are all
computed with NNLOJET and results are provided for each
perturbative order (LO, NLO, NNLO). Note that all predic-
tions use the same NNLO PDF set from ABMP16 [3].

We provide predictions for the differential distributions;
the cross sections in columns 4, 5 and 6 of Tables 1, 2, 3
and 4 are already divided by the bin widths. Note also that
we bin in the absolute value of the rapidities. This means the
normalization is different by a factor of two compared to a
calculation that bins the signed value of rapidity.

The predictions for the distributions in the electron
pseudo-rapidity for the electron charge asymmetry measured
by the DØ experiment inW±-boson production at

√
s = 1.96

TeV at the Tevatron [24]. The fiducial cuts and the settings
are listed in Sect. 2. The predictions are computed with
NNLOJET, use the same NNLO PDF set from ABMP16 [3]
for each perturbative order (LO, NLO, NNLO) and are again
provided for the differential distributions, i.e., the cross sec-

tions (columns 4, 5 and 6 in Tables 5, 6) are already divided
by the bin widths.

Appendix B: DYTURBO inputs

The input values used for the computations with DYTURBO
for Z -boson production with central leptons at

√
s = 7 TeV

in Sect. 2.
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# Process settings
sroot = 7e3 # Center-of-mass energy
ih1 = 1 # Hadron 1: 1 for proton, -1 for antiproton
ih2 = 1 # Hadron 2: 1 for proton, -1 for antiproton
nproc = 3 # Process: 1) W+; 2) W-; 3) Z/gamma*

# Perturbative order
fixedorder_only = true
order = 2 # QCD order: 0) LO(+LL), 1) NLO(+NLL), 2) NNLO(+NNLL), 3) N3LO(+N3LL)

#PDF settings
LHAPDFset = ABMP16_5_nnlo # PDF set from LHAPDF
LHAPDFmember = 0 # PDF member

# Functional form of QCD scales
fmuren = 0 # Functional form of the renormalisation scale
fmufac = 0 # Functional form of the factorisation scale
fmures = 0 # Functional form of the resummation scale

# QCD scale settings
kmuren = 1 # Scale factor for the renormalisation scale
kmufac = 1 # Scale factor for the factorisation scale
kmures = 1 # Scale factor for the resummation scale

# EW scheme
ewscheme = 1 #1: Input: Gf, wmass, zmass;
conv2fixw = true # Convert Z and W masses and widths from running to fixed width

# CKM matrix
Vud = 0.97427
Vus = 0.2253
Vub = 0.00351
Vcd = 0.2252
Vcs = 0.97344
Vcb = 0.0412

# qt-subtraction cut-off.
xqtcut = 0.008 # cutoff on qt/m
qtcut = 0. # cutoff on qt

qtfpc = 1e-4 # FPC cutoff on qt/m

#cut off on invariant mass between emitted and radiator in V+jet
mcutoff = 1e-3

# Lepton cuts
makecuts = true

# charged leptons cuts
lptcut = 20
lycut = 2.5 # absolute rapidity cut

# integration types and settings for costh phi_lep phase space
cubaint = false # integration with Cuba Suave
trapezint = false # trapezoidal rule for the phi_lep integration and semi-analytical for costh
quadint = true # quadrature rule for the phi_lep integration and semi-analytical for costh

suavepoints = 1000000 # number of points for suave integration, newpoints is set to suavepoints/10;
nphitrape = 1000 # number of steps for trapezoidal rule of phi_lep integration
phirule = 4 # quadrature rule of phi_lep integration
phiintervals = 40 # number of segments for quadrature rule of phi_lep integration
ncstart = 200 # starting sampling for the costh semi-analytical integration

# (common settings for the trapezoidal and quadrature rules)

# Output settings
output_filename = results_zypeakcc_FEWZ # output filename
texttable = true # dump result table to text file (including pdf variations)
redirect = false # redirect stdout and stderr to log file (except for gridverbose output)
unicode = true # use unicode characters for the table formatting
silent = false # no output on screen (except for gridverbose output)
makehistos = true # fill histograms
gridverbose = false # printout number of events to keep job alive when running on grid

# normalise cross sections by bin width
ptbinwidth = false
ybinwidth = false
mbinwidth = false

# qt, y, m bins
qt_bins = [ 0 7000 ]
y_bins = [ 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 ]
m_bins = [ 66 116 ]
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Appendix C: FEWZ runcard

The runcard used for the computations with FEWZ (version
3.1) for Z -boson production with central leptons at

√
s = 7

TeV in Sect. 2.

=============================================
’CMS collision energy (GeV) = ’ 7000d0
=============================================
’Factorization scale (GeV) = ’ 91.1876d0
’Renormalization scale (GeV) = ’ 91.1876d0
=============================================
’Z production (pp=1,ppbar=2) = ’ 1
=============================================
Alpha QED (0) is for photon-induced channels

(which use photon PDFs); set to zero to turn off
these channels

’Alpha QED (0) = ’ 0.007297352568d0
’Alpha QED (Mz) = ’ 0.007756146746d0
’Fermi constant (1/Gevˆ2) = ’ 1.16637d-5
=============================================
’Lepton mass (GeV) = ’ 1.05d-1
’W mass (GeV) = ’ 80.403d0
’W width (GeV) = ’ 2.141d0
’Z mass (GeV) = ’ 91.1876d0
’Z width (GeV) = ’ 2.4952d0
’Top mass (GeV) = ’ 170.4d0
’Higgs mass (GeV) = ’ 125d0
=============================================
Only QED corrections is on if the input scheme is manual
Input scheme: 0. Manual input; 1. Gmu scheme; 2.

AlphaMz scheme
’Which input scheme: = ’ 1
’sinˆ2(theta_w) = ’ 0.22255d0
’up quark charge = ’ 0.6666667d0
’down quark charge = ’ -0.3333333d0
’lepton charge = ’ -1d0
’up quark vector coupling = ’ 0.4091d0
’down quark vector coupling = ’ -0.7045d0
’lepton vector coupling = ’ -0.11360d0
’up quark axial coupling = ’ -1d0
’down quark axial coupling = ’ 1d0
’lepton axial coupling = ’ 1d0
=============================================
Vegas Parameters
’Relative accuracy (in
’Absolute accuracy = ’ 0d0
’Number of calls per iteration = ’ 1000000
’Number of increase calls per iter. = ’ 500000
’Maximum number of evaluations = ’ 1000000000
’Random number seed for Vegas = ’ 211
=============================================
’QCD Perturb. Order (0=LO, 1=NLO, 2=NNLO) = ’ 2
’EW Perturb. Order (0=LO, 1=NLO) = ’ 0
’Z pole focus (1=Yes, 0=No) = ’ 1
’EW control (leave 0 to keep all on) = ’ 0
’Turn off photon (1=Yes, 0=No, disabled if weak corr.

is on) = ’ 0
=============================================
’Lepton-pair invariant mass minimum = ’ 66d0
’Lepton-pair invariant mass maximum = ’ 116d0
’Transverse mass minimum = ’ 0d0
’Transverse mass maximum = ’ 7000d0
’Z pT minimum = ’ 0d0
’Z pT maximum = ’ 7000d0
’Z rapidity minimum = ’ -2.4d0
’Z rapidity maximum = ’ 2.4d0
’Lepton pT minimum = ’ 20d0
’Lepton pT maximum = ’ 7000d0
’Anti-lepton pT minimum = ’ 20d0
’Anti-lepton pT maximum = ’ 7000d0
’pT min for softer lepton = ’ 0d0
’pT max for softer lepton = ’ 7000d0
’pT min for harder lepton = ’ 0d0
’pT max for harder lepton = ’ 7000d0
Taking absolute value of lepton pseudorapidity?
’(yes = 1, no = 0) = ’ 1
’Lepton pseudorapidity minimum = ’ 0d0
’Lepton pseudorapidity maximum = ’ 2.5d0

Taking absolute value of anti-lepton pseudorapidity?
’(yes = 1, no = 0) = ’ 1
’Anti-lepton pseudorapidity minimum = ’ 0d0
’Anti-lepton pseudorapidity maximum = ’ 2.5d0
Taking absolute value of soft lepton pseudorapidity?
’(yes = 1, no = 0) = ’ 1
’Softer lepton pseudorapidity min = ’ 0d0
’Softer Lepton pseudorapidity max = ’ 10000d0
Taking absolute value of hard lepton pseudorapidity?
’(yes = 1, no = 0) = ’ 1
’Harder lepton pseudorapidity min = ’ 0d0
’Harder Lepton pseudorapidity max = ’ 10000d0
PHOTON RECOMBINATION-----------------------------
’DeltaR sep. for photon recomb. = ’ 0d0
’Minimum pT for observable photon = ’ 10d0
’Maximum eta for observable photon = ’ 2.5d0
PHOTON CUTS--------------------------------------
’Minimum Number of Photon = ’ 0
’Maximum Number of Photon = ’ 1
JET DEFINITION-------------------------------
Jet Algorithm & Cone Size (’ktal’=kT algorithm,

’aktal’=anti-kT algorithm, ’cone’=cone)
’ktal, aktal or cone = ’ ktal
’Jet algorithm cone size (deltaR) = ’ 0.4d0
’DeltaR separation for cone algo = ’ 1.3
’Minimum pT for observable jets = ’ 20d0
’Maximum eta for observable jets = ’ 4.5d0
JET CUTS--------------------------------------
’Minimum Number of Jets = ’ 0
’Maximum Number of Jets = ’ 2
’Min. leading jet pT = ’ 0d0
ISOLATION CUTS-------------------------------
’Lep-Anti-lep deltaR minimum = ’ 0.0d0
’Lep-Anti-lep deltaPhi min = ’ 0.0d0
’Lep-Anti-lep deltaPhi max = ’ 4.0d0
’Lep-Jet deltaR minimum = ’ 0.0d0
’Lep-Photon deltaR minimum = ’ 0.0d0
=============================================
Cut on Z rapidity for well-defined Collins--Soper

Angles at pp Collider
’Z rapidity cutoff for CS frame = ’ 0.0d0
=============================================
(See manual for complete listing)
’PDF set = ’ ’ABMP16_5_nnlo’
’Turn off PDF error (1=Yes, 0=No) = ’ 0
(Active for MSTW2008 only, if PDF error is on:)
(Compute PDF+as errors: 1; just PDF errors: 0)
’Which alphaS = ’ 0
(Active for MSTW2008 only; 0: 90 CL for PDFs+alphas,

1: 68 CL)
’PDF+alphas confidence level = ’ 1
=============================================
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Appendix D: MATRIX runcard

The runcard used for the computations with MATRIX (ver-
sion 2.1) for Z -boson production with central leptons at√
s = 7 TeV in Sect. 2.

##########################
# MATRIX input parameter #
##########################

#----------------------\
# General run settings |
#----------------------/
process_class = pp-emep+X # process id
E = 3500. # energy per beam
coll_choice = 1 # (1) PP collider; (2) PPbar collider
photon_induced = 0 # switch to turn on (1) and off (0) photon-induced contributions
enhance_tails = 1 # switch to improve statistics in tail of distributions (a factor of two slower)

#----------------\
# Scale settings |
#----------------/
scale_ren = 91.1876 # renormalization (muR) scale
scale_fact = 91.1876 # factorization (muF) scale
dynamic_scale = 0 # dynamic ren./fac. scale

# 0: fixed scale above
# 1: invariant mass (Q) of system (of the colourless final states)
# 2: transverse mass (mTˆ2=Qˆ2+pTˆ2) of system (of the colourless final states)

factor_central_scale = 1 # relative factor for central scale (important for dynamic scales)
scale_variation = 1 # switch for muR/muF uncertainties (0) off; (1) 7-point (default); (2) 9-point variation
variation_factor = 2 # symmetric variation factor; usually a factor of 2 up and down (default)

#------------------------------\
# Order-dependent run settings |
#------------------------------/
# LO-run
run_LO = 1 # switch for LO cross section (1) on; (0) off
LHAPDF_LO = ABMP16_5_nnlo # LO LHAPDF set
PDFsubset_LO = 0 # member of LO PDF set
precision_LO = 1.e-4 # precision of LO cross section

# NLO-run
run_NLO_QCD = 1 # switch for NLO QCD cross section (1) on; (0) off
run_NLO_EW = 0 # switch for NLO EW cross section (1) on; (0) off
LHAPDF_NLO = ABMP16_5_nnlo # NLO LHAPDF set
PDFsubset_NLO = 0 # member of NLO PDF set
precision_NLO_QCD = 3.e-4 # precision of NLO QCD cross section
precision_NLO_EW = 3.e-4 # precision of NLO EW correction
NLO_subtraction_method = 1 # switch to use (2) qT subtraction (1) Catani-Seymour at NLO

# NNLO-run
run_NNLO_QCD = 1 # switch for NNLO QCD cross section (1) on; (0) off
add_NLO_EW = 0 # switch to add NLO EW cross section to NNLO run (1) on; (0) off

# note: can be added only if also running NNLO
LHAPDF_NNLO = ABMP16_5_nnlo # NNLO LHAPDF set
PDFsubset_NNLO = 0 # member of NNLO PDF set
precision_NNLO_QCD = 1.5e-4 # precision of NNLO QCD cross section
precision_added_EW = 3.e-4 # precision of NLO EW correction in NNLO run
switch_qT_accuracy = 1 # switch to improve qT-subtraction accuracy (slower numerical convergence)

# 0: lowest value of r_cut = 0.0015 varied up to 0.01 (default)
# 1: lowest value of r_cut = 0.0005 varied up to 0.01
# 2: lowest value of r_cut = 0.0001 varied up to 0.01 (only if extrapolate_binwise=1;
# output of fixed-r_cut result remains 0.0005, while 0.0001 used for extrapolation)
# for Drell--Yan it is recommended to turn on power_corrections
# rather than use switch_qT_accuracy

power_corrections = 1 # switch to include leading power corrections in qT-subtraction through recoil
# (not recommended for processes involving photons and heavy quarks)

power_corrections_pT0 = 20. # characteristic transverse momentum pT0 used to optimise the generation
# of the phase space for the integration of the power corrections. It should be set
# to the minimum requirement on the transverse momentum of the 2-body final state
# (for Drell--Yan for instance this should be the minimum transverse momentum
# of the leptons)

extrapolate_binwise = 1 # switch for bin-wise r_cut extrapolation of distributions
# (note: increases written output for distributions by factor of 8)

#----------------------------\
# Settings for fiducial cuts |
#----------------------------/
# Jet algorithm
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jet_algorithm = 3 # (1) Cambridge-Aachen (2) kT (3) anti-kT
jet_R_definition = 0 # (0) pseudo-rapidity (1) rapidity
jet_R = 0.4 # DeltaR

# Photon recombination (lepton dressing)
photon_recombination = 1 # switch for photon recombination (1) on; (0) off; must be on for EW runs
photon_R_definition = 1 # (0) pseudorap; (1) rapidity
photon_R = 0.1 # DeltaR: photon combined with charged particle when inside this radius

# Jet cuts
define_pT jet = 25. # requirement on jet transverse momentum (lower cut)
define_eta jet = 4.5 # requirement on jet pseudo-rapidity (upper cut)
define_y jet = 1.e99 # requirement on jet rapidity (upper cut)
n_observed_min jet = 0 # minimal number of observed jets (with cuts above)
n_observed_max jet = 99 # maximal number of observed jets (with cuts above)

# Lepton cuts
define_pT lep = 20. # requirement on lepton transverse momentum (lower cut)
define_eta lep = 2.5 # requirement on lepton pseudo-rapidity (upper cut)
define_y lep = 1.e99 # requirement on lepton rapidity (upper cut)
n_observed_min lep = 2 # minimal number of observed leptons (with cuts above)
n_observed_max lep = 99 # maximal number of observed leptons (with cuts above)

# Negatively-charged lepton cuts
define_pT lm = 0. # requirement on negatively-charged lepton transverse momentum (lower cut)
define_eta lm = 1.e99 # requirement on negatively-charged lepton pseudo-rapidity (upper cut)
define_y lm = 1.e99 # requirement on negatively-charged lepton rapidity (upper cut)
n_observed_min lm = 0 # minimal number of observed negatively-charged leptons (with cuts above)
n_observed_max lm = 99 # maximal number of observed negatively-charged leptons (with cuts above)

# Positively-charged lepton cuts
define_pT lp = 0. # requirement on positively-charged lepton transverse momentum (lower cut)
define_eta lp = 1.e99 # requirement on positively-charged lepton pseudo-rapidity (upper cut)
define_y lp = 1.e99 # requirement on positively-charged lepton rapidity (upper cut)
n_observed_min lp = 0 # minimal number of observed positively-charged leptons (with cuts above)
n_observed_max lp = 99 # maximal number of observed positively-charged leptons (with cuts above)

####################
# User-defined cuts
# (only used if defined in ’MATRIX/prc/$process/user/specify.cuts.cxx’)
#
user_switch M_leplep = 1 # switch to turn on (1) and off (0) cuts on lepton-lepton invariant mass
user_cut min_M_leplep = 66. # requirement on lepton-lepton invariant mass (lower cut)
user_cut max_M_leplep = 116. # requirement on lepton-lepton invariant mass (upper cut)

user_switch R_leplep = 0 # switch to turn on (1) and off (0) cuts on lepton-lepton separation
user_cut min_R_leplep = 0. # requirement on lepton-lepton separation in y-phi-plane (lower cut)

user_switch lepton_cuts = 0 # switch to turn on (1) and off (0) cuts on leptons
user_cut min_pT_lep_1st = 25. # requirement on hardest lepton transverse momentum (lower cut)
user_cut min_eta_lep_1st = 0. # requirement on hardest lepton pseudo-rapidity (lower cut)
user_cut max_eta_lep_1st = 1.e99 # requirement on hardest lepton pseudo-rapidity (upper cut)
user_cut min_pT_lep_2nd = 15. # requirement on second-hardest lepton transverse momentum (lower cut)
user_cut min_eta_lep_2nd = 0. # requirement on second-hardest lepton pseudo-rapidity (lower cut)
user_cut max_eta_lep_2nd = 1.e99 # requirement on second-hardest lepton pseudo-rapidity (upper cut)
user_cut min_eta_one_lep = 0. # requirement on one of the two leptons (lower cut)
user_cut max_eta_one_lep = 1.e99 # requirement on one of the two leptons (upper cut)
user_cut min_eta_other_lep = 0. # requirement on the other lepton (lower cut)
user_cut max_eta_other_lep = 1.e99 # requirement on the other lepton (upper cut)

####################
# Fiducial cuts
# (defined via general interface)
#

#-----------------\
# MATRIX behavior |
#-----------------/
max_time_per_job = 24 # very rough time(hours) one main run job shall take (default: 24h)

# unreliable when < 1h, use as tuning parameter for degree of parallelization
# note: becomes ineffective when job number > max_nr_parallel_jobs
# which is set in MATRIX_configuration file

switch_distribution = 1 # switch to turn on (1) and off (0) distributions
save_previous_result = 1 # switch to save previous result of this run (in result/"run"/saved_result_$i)
save_previous_log = 0 # switch to save previous log of this run (in log/"run"/saved_result_$i)
#include_pre_in_results = 0 # switch to (0) only include main run in results; (1) also all extrapolation (pre) runs;

# crucial to set to 0 if re-running main with different inputs (apart from precision)
# note: if missing (default) pre runs used if important for precision
# (separately for each contribution)

reduce_workload = 0 # switch to keep full job output (0), reduce (1) or minimize (2) workload
# on slow clusters

random_seed = 0 # specify integer value (grid-/pre-run reproducible)
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Appendix E: Set-up for SCETlib

The relevant physical settings and cuts on Q ≡ mll and Y ≡ Yll used for the matched
predictions in Sect. 4 are given by the SCETlib input file below. The cuts on the
lepton transverse momenta are described in the main text. Note that we always cut on
the lepton pseudorapidities ηl1,l2 ≤ 2.5 in addition.

[Calculation_settings]
recoil_scheme = collins_soper
profile_functional_form = slope
muf_max = 7000.
lambda = 1.
transition_points: [0.3, 0.6, 0.9]
muFO_fixed = 91.1876

[QCD]
nf = 5
alphas_mu0 = 0.1147
mu0 = 91.1876
alphas_order = n3ll
pdf_set = ABMP16_5_nnlo
pdf_member = 0
Ecm = 7000.

[Electroweak]
alphaem = 0.007565201876112782
# = 1./0.13218417913704487887E+03
sin2_thw = 0.22301322532678335975
mZ = 91.1876
GammaZ = 2.4952

[Process]
boson = Z

[Grid_Q]
min = 46
max = 150
steps = 1
bins = yes

[Grid_Y]
min = -2.5
max = 2.5
steps = 1
bins = yes

[Grid_qT]
min = 0.
max = 150.
steps = 1
bins = yes
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