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Abstract In this article, we examine the validity range of
the Effective Field Theory (EFT) description of high-energy
Drell–Yan processes at the LHC. To this purpose, we con-
sider explicit mediators that contribute to these processes in
the s- and t-channels, comparing their effects in Drell–Yan
distributions with the ones obtained by matching onto the cor-
responding EFT. We determine the conditions for the EFT
results to accurately describe these scenarios. In particular,
we explore the impact of including dimension-eight (d = 8)

operators in the faster convergence of the EFT series, at the
analytical and numerical level, considering contributions to
the cross section up to the square of d = 8 EFT operator
insertions. Moreover, we discuss the possible implications of
clipping LHC data and illustrate results for a specific New-
Physics scenario motivated by low-energy flavor data.

1 Introduction

The absence of signals in direct searches for new particles at
the Large Hadron Collider (LHC) indicates that there may be
a separation between the electroweak scale and the unknown
scale of New Physics. With this assumption, the most conve-
nient approach to describe LHC data becomes Effective Field
Theories (EFTs), and the main target of LHC searches are
deviations from the Standard Model (SM) expectations in the
high-energy tails of the kinematical distributions. Such non-
resonant analyses have been performed for many channels,
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including the Drell–Yan processes pp → ℓℓ and pp → ℓν

(ℓ = e, µ, τ), which are efficient probes of semileptonic
four-fermion operators.

The importance of the high-pT tails of the Drell–Yan dis-
tributions can be understood considering the naive EFT pre-
dictions from contact interactions to high-energy amplitudes,
which can scale as (E/�)n for E ≪ �, with n > 0, where
� denotes the EFT cutoff and E is the typical energy scale of
these processes. Therefore, if the EFT description is valid, the
energy enhancement of the Drell–Yan cross section allows us
to derive stringent constraints on the corresponding Wilson
coefficients, which can be competitive, e.g., to electroweak
observables [1–4], as well as to low-energy flavor bounds, if
we exploit the flavor content of the proton [5–27].

The main caveat of EFT analyses at colliders is that
the experimental sensitivity on C/�2 is not always suf-
ficient to consistently probe EFTs, i.e., with E ≪ �,

while having Wilson coefficients C within the perturbative
regime [28]. The applicability range of an EFT and the impact
of d = 8 operators can be estimated in various manners [28–
32]. For instance, by defining the so-called maximal cutoff
scale (�max) that can be consistently probed for a perturba-
tive scenario. The value of �max is defined by the require-
ment that the 2 → 2 scattering amplitude does not exceed the
16π2 limit arising from perturbativity [1], giving a first indi-
cation of the limits of the EFT description. Another approach
often used is to provide constraints as a function of a mass
scale Mcut in some kinematical variable relevant to the pro-
cess considered, above which all data are discarded [1,30].
In this way, it is possible to extract weaker, but potentially
more robust, EFT limits, even though the phase-space migra-
tion of events in the detector simulation can be a potential
problem [28,33].
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The approaches described above are helpful for naively
assessing the limits of applicability of the constraints derived
by the EFT. However, the definite answer to whether EFT
results can be applied to a given scenario will depend on
its ultraviolet (UV) properties, in particular, if there is a
small separation between E and �, as it is often the case
in collider studies. For instance, tree-level contributions in
the s- or t-channels will deform the EFT bounds differently
when E approaches the EFT cutoff. While non-resonant t-
channel contributions to Drell–Yan processes by leptoquark
states [34,35] can reproduce the EFT results even for val-
ues of E in the vicinity of �, it is well-known that the
EFT description fails for resonant colorless s-channel medi-
ators already for E much below � [1].1 The comparison of
the direct limits on these concrete scenarios with the ones
derived through the EFT approach allows us to precisely
determine which mediator masses are well-described by the
EFT. This will depend on several factors: (i) the topology of
the diagram, (ii) the flavor of the initial quarks and the corre-
sponding Parton-Distribution-Function (PDF) suppression,
and (iii) the sensitivity of the experimental search, which
depends on the flavor of all the particles considered.

The purpose of this paper is to assess the range of
validity of Drell–Yan constraints on EFTs by directly com-

paring limits on selected concrete UV scenarios with the
results derived through EFT analyses. We will consider two
tree-level benchmark scenarios, classified in terms of their
(SU (3)c, SU (2)L , U (1)Y ) quantum numbers: (i) a vector
leptoquark U1 ∼ (3, 1, 2/3) and (ii) a colorless Z ′ ∼
(1, 1, 0) boson; which contribute to these processes in the
t- and s-channel, respectively. We will consider the neutral-
current dilepton searches made available by CMS [37] and
ATLAS [38], which have been recast in Refs. [5,6], and we
will perform this comparison for different flavors of the initial
and final states. Our main goal is to establish a clear prescrip-
tion for the situations where the EFT results can be applied to
concrete UV scenarios by simply matching the models to the
EFT Lagrangian, thus avoiding costly and model-dependent
numerical simulations of the mediator’s propagation. The
impact of dimension-eight operators in our analysis will also
be explored at the amplitude and cross-section level (see also
Refs. [5,39–41]).

The remainder of this article is organized as follows. In
Sect. 2, we introduce our framework and describe the Drell–
Yan probes of flavor at high-pT . In Sect. 3, we consider a few
concrete UV scenarios that are matched onto the SMEFT at
tree level. We then study in Sect. 4 the convergence of the
EFT expansion and in Sect. 5 the impact of clipping data.
In Sect. 6, we illustrate our results for a specific realization

1 The situation is even less intuitive for loop-level contributions, as
shown, e.g., in Ref. [36] for probes of effective dipole operators in a
high-energy lepton collider.

of the U1 leptoquark model, which has been proposed to
accommodate anomalies in B-physics data. We summarize
our main findings in Sect. 7.

2 EFT approach

We start by defining our framework. We consider the SMEFT
Lagrangian [42,43], which is invariant under the SU (3)c ×
SU (2)L × U (1)Y gauge symmetry, and we keep operators
up to dimension d = 8,

LSMEFT ⊃
∑

a

C
(6)
a

�2 O
(6)
a +

∑

a

C
(8)
a

�4 O
(8)
a + · · · , (1)

where � denotes the EFT cutoff. The effective coefficients
are generically denoted by C

(d)
a and the effective opera-

tors O
(d)
a can be of several types and with different flavor

content, which are labeled by the index a. We will consider
the Warsaw basis for the d = 6 operators [43] and its exten-
sion to d = 8 from Ref. [44] (see also Ref. [45]), which are
both implemented in the HighPT package [6]. For conve-
nience, the operators appearing in the benchmark scenarios
that will be discussed in the following are collected in Table 1.

Amplitude decomposition The most general decomposition
of the four-point scattering amplitude for the q̄i q j → ℓ−

α ℓ+
β

process (with q = u, d), which is Lorentz invariant and
consistent with the SU (3)c ×U (1)em gauge symmetry, reads

A(q̄i q j → ℓ−
α ℓ+

β ) = 1

v2

∑

Ŵ⊗Ŵ′
F

αβi j

Ŵ,Ŵ′
(

ℓ̄αŴℓβ

)(

q̄iŴ
′q j

)

, (2)

which is weighted by the Higgs vacuum expectation value
v = (

√
2G F )−1/2, and quark and lepton flavor indices

are denoted by Latin letters (i, j = 1, 2, 3) and Greek
letters (α, β = 1, 2, 3), respectively. The form factors
F

αβi j

Ŵ,Ŵ′ ≡ F
αβi j

Ŵ,Ŵ′ (ŝ, t̂) are functions of the partonic Mandel-
stam variables ŝ = (pq j

+ pq̄i
)2 and t̂ = (pq j

− pℓα )
2,

which describe the effects of EFT operators and/or concrete
mediators, in addition to the SM contributions [5]. The viable
Lorentz structures are given by

Ŵ ⊗ Ŵ′ ∈ {PX ⊗ PY , γµ PX ⊗ γ µ PY , σµν PX ⊗ σµν PX },
(3)

where PX/Y are the chirality projectors with X, Y ∈
{L , R}, in addition to dipoles that induce a milder energy-
enhancement, cf. Ref. [5]. In the SM, the only non-vanishing
form factors are

F
αβi j
VX ,VY

≡ δαβδi j F
SM
XY (4)

123
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where we use the subscript VX for the vector current (γµ PX ),

and2

F
SM
XY = v2

ŝ
e2 QℓQq + v2

ŝ − m2
Z + im ZŴZ

gX
ℓ gY

q , (5)

where m Z and ŴZ are the Z -boson mass and width, gX
ψ =

(g2/cW ) (t3
ψX

−s2
W Qψ ) denotes the Z couplings to fermions

ψ ∈ {u, d, ℓ}, Qψ stands for their electric charge, t3
ψX

is the
third component of the weak isospin, and cW ≡ cos θW and
sW ≡ sin θW , where θW denotes the weak mixing angle. In
the high-energy limit ŝ ≫ m Z , the SM form factor behaves
as FSM

XY ∝ v2/ŝ. The matching between the form factors
defined in Eq. (2) and the d ≤ 8 operators in the SMEFT
as well as concrete mediators is given in Ref. [5]. Notice, in
particular, that the new mediators will induce poles in ŝ, t̂ or
û = −ŝ − t̂, depending on the topology of the diagrams.

Drell–Yan processes The general amplitude defined in
Eq. (2) can be used to compute the partonic cross section
for q̄i q j → ℓ−

α ℓ+
β [5],

σ̂ (q̄i q j → ℓ−
α ℓ+

β ) = 1

48πv4

∑

Ŵ⊗Ŵ′

∫ 0

−ŝ

dt̂ MŴ,Ŵ′
∣
∣
∣F

αβi j

Ŵ,Ŵ′

∣
∣
∣

2
,

(6)

where Ŵ⊗Ŵ′ can be the allowed Lorentz structures in Eq. (3)
and the weights MŴ,Ŵ′ ≡ MŴ,Ŵ′(ω) are functions of ω =
t̂/ŝ,

MVX ,VY
(ω) ≡ (1 + 2ω) δXY + ω2,

MSX ,SY
(ω) ≡ 1/4,

MTX ,TX
(ω) ≡ 4(1 + 2ω)2, (7)

where fermion masses are neglected.3 The contributions of
d = 6 operators in the SMEFT are such that the correspond-
ing form factors F (d=6) are independent of t̂ . Therefore, the
integral over t̂ ∈ (−ŝ, 0) can be explicitly performed in this
case,

σ̂ (q̄i q j → ℓ−
α ℓ+

β )EFT
(d=6)= ŝ

48πv4

∑

Ŵ⊗Ŵ′
MŴ,Ŵ′

∣
∣
∣F

αβi j

Ŵ,Ŵ′

∣
∣
∣

2
,

(8)

where the integrated weight-factors now read

MVX ,VY
= 1/3, MSX ,SY

= 1/4,

MTX ,TX
= 4/3. (9)

2 Similarly, we will denote the scalar (PX ) and tensor (σµν PX ) currents
by SX and TX , respectively.
3 Notice that there are, in principle, off-diagonal terms between scalar
and tensor form factors, but these vanish upon the integration over t̂ ∈
(−ŝ, 0), if the form-factor dependence on t̂ is neglected. See Ref. [5]
for the full expressions.

The energy enhancement of the cross section is now explicit
in the overall ŝ/v4 pre-factors, since the F (d=6) form-factors
converge to a constant value at large ŝ for contact interac-
tions [5].

The LHC cross section can be generally written as a sum
over all possible combinations of incoming quark flavors,

σ(pp → ℓ−
α ℓ+

β ) =
∑

i, j

∫
dŝ

s
Lq̄i q j

σ̂ (q̄i q j → ℓ−
α ℓ+

β ),

(10)

with

Lq̄i q j
(ŝ) ≡

∫ 1

ŝ/s

dx

x

[

fq̄i
(x, µF ) fq j

( ŝ

sx
, µF

)

+ (q̄i ↔ q j )

]

,

(11)

where
√

s = 13 TeV, fq j
and fq̄i

denote the PDFs of q j

and q̄i quarks, and µF stands for the factorization scale. In
our calculations, we set µF =

√
ŝ to the scale of the hard

scattering process.

LHC limits We consider the neutral-current Drell–Yan con-
straints on the SMEFT provided by the HighPT pack-
age � [5,6]. These results have been obtained through an
appropriate recast of the relevant CMS [37] and ATLAS [38]
searches. More specifically, the event samples were gener-
ated with MadGraph5 [46], showered and hadronized by
Pythia8 [47], and the final-state object reconstruction and
detector simulations were performed usingDelphes3 [48],
tuned to match the experimental searches. The
PDF4LHC15_nnlo_mc PDF set [49] has been used in
these reinterpretations. The final results are combined in a
χ2-distribution, with the background estimates taken from
the experimental papers (which include higher-order QCD
corrections) and the New-Physics contributions calculated
at tree level following the pipeline described above, see
Refs. [5,6] for more details.

3 Benchmark scenarios

In this section, we introduce the two benchmark scenarios
that will be used for the comparison between the EFT and
concrete models. These scenarios will be classified in terms
of their SM quantum numbers (SU (3)c, SU (2)L , U (1)Y ):

Z′
∼(1, 1, 0): The first scenario that we consider is a gauge-

singlet vector field that couples to the SM particles via the
following Lagrangian

LZ ′ = −1

4
Z ′

µν Z ′µν +
m2

Z ′

2
Z ′

µZ ′µ + JµZ ′
µ, (12)

123
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where Z ′
µν = DµZ ′

ν − Dν Z ′
µ. For the Z ′ model considered

here, we have DµZ ′ = ∂µZ ′.4 For simplicity, we assume
that the Z ′ only couples to left-handed fermions,

Jµ = g
(q)

i j q̄iγµq j + g
(l)
αβ l̄αγµlβ , (14)

where q and l are SM quark and lepton doublets, with flavor
indices denoted again by Latin and Greek symbols, respec-
tively.5 Notice, in particular, that Z ′ couplings to fermions
satisfy g

(q)

i j = g
(q) ∗
j i and g

(l)
αβ = g

(l) ∗
βα due to Hermiticity.

By integrating out the heavy Z ′ from Eq. (12) at tree level,
we obtain the following effective Lagrangian with operators
up to dimension d = 8,

L
Z ′
eff ⊃ − Jµ Jµ

2m2
Z ′

− 1

2m4
Z ′

(

Dµ Jν

) (

Dµ J ν
)

, (15)

where we have neglected the fermion masses. From this
Lagrangian, we find the d = 6 coefficient,

[

C
(1)
lq

]

αβi j

�2 = −
g

(l)
αβ g

(q)

i j

m2
Z ′

, (16)

in addition to the d = 8 ones,

[

C
(1)

l2q2 D2

]

2211

�4 = −
g

(l)
αβ g

(q)

i j

m4
Z ′

. (17)

The corresponding operators are collected in Table 1. The
d = 8 contributions given above correspond simply to the
higher-order terms in the expansion of the Z ′ propagator in
the s-channel.

U1∼(3, 1, 2/3): The second scenario that we consider is a
U1 leptoquark with Lagrangian,6

LU1 ⊃ −1

2
U

†
1µνU

µν
1 + m2

U U
µ †
1 U1 µ + (J †

µU
µ
1 + H.c.),

(18)

4 The covariant derivative of the SM gauge group acting on a generic
field η reads

Dµη =
(

∂µ − ig3G A
µT A − ig2W I

µt I − ig1 Bµy
)

η, (13)

where g3,2,1 are the gauge couplings of SU (3)c, SU (2)L , and U (1)Y ,

the corresponding generators are labeled T A, t I , and y, and the asso-
ciated gauge fields are denoted G A

µ, W I
µ, and Bµ.

5 We adopt the convention with diagonal down-quark Yukawas, so
that the CKM matrix appears in the upper component of qi =
[(V † uL )i , dLi ].
6 Similarly to the Z ′ scenario, this model is non-renormalizable due
to the presence of a massive vector boson. It is possible to extend this
model to generate the U1 mass following, e.g., Refs. [50,51].

Table 1 Dimension d = 6 and d = 8 operators appearing in the
matching to the concrete models in Sect. 3 and which induce energy-
enhanced contributions to the Drell–Yan cross section. Quark and lepton
doublets are denoted by q and l, with flavor indices represented by Latin
and Greek letters, respectively. The Pauli matrices are denoted by τ I

with I ∈ {1, 2, 3}. We follow the conventions and notations of Ref. [5]

Dim. ψ4 Operator

d = 6 O
(1)
lq

(

l̄αγ µlβ
)(

q̄i γµq j

)

O
(3)
lq

(

l̄αγ µτ I lβ
)(

q̄i γµτ I q j

)

d = 8 O
(1)

l2q2 D2 Dν(l̄αγ µlβ)Dν(q̄i γµq j )

O
(2)

l2q2 D2 (l̄αγ µ←→
D ν lβ)(q̄i γµ

←→
D νq j )

O
(3)

l2q2 D2 Dν(l̄αγ µτ I lβ )Dν(q̄i γµτ I q j )

O
(4)

l2q2 D2 (l̄αγ µ←→
D Iνlβ)(q̄i γµ

←→
D I

νq j )

where U1µν = DµU1ν − DνU1µ and, for simplicity, we
consider only couplings to left-handed fermions

J †
µ = x iα

L q̄iγµlα. (19)

By integrating out the U1 leptoquark at tree level, we find
that the d ≤ 8 Lagrangian is given by

L
U1
eff ⊃ −

J †
µ Jµ

m2
U1

− 1

m4
U1

(

Dµ Jν

)† (

Dµ J ν
)

+ 1

m4
U1

(

Dµ Jν

)† (

Dν Jµ
)

. (20)

We apply SU (2)L and Dirac Fierz relations to reduce the
above Lagrangian to the Warsaw basis of d = 6 operators,
where the only non-vanishing coefficients are

[

C
(1)
lq

]

αβi j

�2 =

[

C
(3)
lq

]

αβi j

�2 = −
x

iβ
L x

jα ∗
L

2m2
U1

. (21)

Moreover, we find that several operators appear at d =
8, including those that are not energy enhanced and thus
neglected here. The only operators that induce the maximal
energy scaling of the amplitudes (i.e., ∝ E4/�4) contain two
additional derivatives with respect to the d = 6 terms. Their
coefficients read

[

C
(n)

l2q2 D2

]

αβi j

�4 = (−1)n+1 x
iβ
L x

jα ∗
L

4m4
U1

, (22)

for n ∈ {1, 2, 3, 4}, with flavor indices denoted as above, cf.
Table 1. Note, in particular, that the same combinations of
leptoquark couplings appear in the numerators of the d = 6
and d = 8 coefficients.

123
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4 EFT vs. concrete models

In this section, we compare the full predictions from the con-
crete models introduced in Sect. 3 with the ones obtained
employing the EFT Lagrangian, which has been matched to
these models at a given order in the 1/� expansion. This
comparison will first be made at the parton level using the
analytical expressions in Sect. 4.1, which will then be convo-
luted with the PDFs for a numerical comparison in Sect. 4.2.

4.1 Partonic description

Z′
∼(1, 1, 0) Firstly, we consider the Z ′ model introduced

in Eq. (12) and we compute the partonic cross section for
qi q̄ j → ℓ−

α ℓ+
α by using the expressions of Sect. 2 for both

the EFT, which is matched to the Z ′ model, as well as the
full-model calculation. For definiteness, we consider down-
quark transitions (i.e., q = d), but our expressions can be
extended mutatis mutandis to q = u. The full cross section
normalized by the SM one reads7

σ̂ Z ′

σ̂ SM = 1 + 2aL δi j Re




g

(q)

i j g
(l)
αα

1 − x−1
V



 + bL

∣
∣
∣
∣
∣
∣

g
(q)

i j g
(l)
αα

1 − x−1
V

∣
∣
∣
∣
∣
∣

2

,

(23)

where xV ≡ ŝ/�Z ′, �Z ′ = m2
Z ′ − im Z ′ŴZ ′, and ŴZ ′ is the

Z ′ width, and we have factored out the following pre-factors

aL ≡
FSM

L L v2/ŝ
∑

X,Y |FSM
XY |2

, bL ≡ v4/ŝ2

∑

X,Y |FSM
XY |2

, (24)

as they become constant in the limit v2/ŝ → 0 [cf.
Eq. (5)]. Assuming the couplings to be real and neglecting
the Z ′ width, the fractions in Eq. (23) are a geometric series
in ŝ/m2

Z ′ and its square, which can be expanded for xV < 1
(i.e., ŝ < m2

Z ′)

1

1 − x−1
V

= −
∞
∑

n=1

xn
V ,

1
(

1 − x−1
V

)2 =
∞
∑

n=1

n xn+1
V , (25)

leading to

σ̂ Z ′

σ̂ SM = 1 − 2 aL δi j g
(q)

i j g
(ℓ)
αβ

ŝ

m2
Z ′

+
[

bL |g(q)

i j g
(ℓ)
αβ |2−2aL δi j g

(q)

i j g
(ℓ)
αβ

] ŝ2

m4
Z ′

+O(m−6
Z ′ ),

(26)

7 This expression can be easily extended to the lepton flavor violating
case by removing the interference term.

from which the energy enhancement of the cross sec-
tion becomes clear. Most importantly, the expansion of
the Z ′ propagator in Eq. (23) is slowly convergent as ŝ

approaches m2
Z ′, since all the terms in the geometric series

contribute with the same sign. This is expected from the res-
onant nature of this process.

U1∼(3, 1, 2/3) We turn now our attention to the U1 lep-
toquark model defined in Eq. (18). The ratio of the full
di d̄ j → ℓ−

α ℓ+
α cross section with respect to the SM one can

be written in a similar way after integration over t̂ ∈ (−ŝ, 0).

Neglecting the leptoquark width, we can write [18,52–54]

σ̂U1

σ̂ SM = 1 + 2aL δi j ϕ1(xV ) Re
[

x iα
L x

jα ∗
L

]

+ bL ϕ2(xV )
∣
∣x iα

L x
jα ∗
L

∣
∣
2
, (27)

where xV ≡ ŝ/m2
U1

, and the same pre-factors defined in
Eq. (24) are factored out. The phase-space functions ϕk (k =
1, 2) now involve the integral over the t-channel leptoquark
propagator,

ϕk(xV ) ≡
∫ 0

−1
dω

3(1 + ω)2

(ω − x−1
V )k

, (28)

where ω ≡ t̂/ŝ. The full expressions for these integrals are
given in Appendix A, while here we express them as power
series for xV < 1,

ϕ1(xV ) = 6
∞
∑

n=1

(−1)n xn
V

n(n + 1)(n + 2)
,

ϕ2(xV ) = 6
∞
∑

n=2

(−1)n xn
V

n(n + 1)
. (29)

Notice, in particular, that this series converges faster than
the Z ′-model one in Eq. (25), due to the alternating signs of
the sub-leading corrections, which are attributed to higher-
dimensional operators in the EFT formalism. Similarly to the
above calculation, we assume the couplings to be real and we
keep the first terms of the xV expansion,

σ̂U1

σ̂ SM = 1 − 2 aL δi j Re
[

x iα
L x

jα ∗
L

] ŝ

m2
U1

+
[

bL

∣
∣x iα

L x
jα ∗
L

∣
∣
2+ aL

2
δi j x iα

L x
jα ∗
L

] ŝ2

m4
U1

+ O(m−6
U1

), (30)

Although we focused on a specific leptoquark scenario, we
stress that the above conclusions are valid for any tree-level
mediator in u- or t-channels.
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Fig. 1 The ratio of the differential cross section in the EFT approach
(dσ̂EFT/dm2

ℓℓ) and the Z ′ ∼ (1, 1, 0) model (dσ̂Z ′/dm2
ℓℓ) are plotted

as a function of m2
ℓℓ/m2

Z ′ , where mℓℓ =
√

ŝ is the invariant mass of
the dilepton system. The mediator mass is fixed to m Z ′ = 2 TeV and
the couplings to g

(l)
ℓℓ g

(q)

i i = 1 (upper row) and g
(l)
ℓℓ g

(q)

i i = (0.3)2 (lower
row), for fixed lepton flavors and different quark flavors in the columns

of this plot. The EFT cross section is computed at different orders in the
EFT expansion, with contributions up to interference of d = 6 terms
with the SM (dashed green), squared d = 6 terms (solid green), inter-
ference of d = 8 terms with the SM (dashed purple), and squared d = 8
terms (solid purple)

4.2 Cross sections and quark flavor dependence

Next, we consider the effects on the previous conclusions
from convoluting the partonic cross sections with the dif-
ferent quark PDFs. The main expected impact is a differ-
ence between scenarios with mediators coupled to light or
heavy fermions, for which the EFT convergence can be stud-
ied numerically.

In Fig. 1, we compare the EFT cross sections to the predic-
tions of the full Z ′ model, as a function of the ratio m2

ℓℓ/m2
Z ′ ,

for a fixed mass m Z ′ = 2 TeV and fixed lepton flavor ℓ,

where mℓℓ =
√

ŝ is the dilepton invariant mass.8 Specifi-
cally, the ratio of the differential EFT cross section, com-
puted up to different truncation orders, to that obtained in the
full model is plotted. The dashed green line is determined
only taking into account the interference of d = 6 EFT oper-
ators with the SM amplitude, while the solid green, dashed

8 The full cross sections have been computed at tree level using the
HighPT package, not relying on the expansions shown in Eqs. (26)
and (30).

purple, and solid purple lines sequentially add contributions
from the square of d = 6 terms, the interference of d = 8
operators with the SM, and the square of the d = 8 terms,
respectively. Notice that the dashed lines correspond to trun-
cating the EFT series on cross-section level at Oσ (�−2) and
Oσ (�−4) for the green and purple lines, respectively. The
solid lines, on the other hand, represent a truncation on ampli-
tude level at OA(�−2) and OA(�−4) again for the green and
purple lines, respectively. Here, we have introduced the nota-
tion Oσ (�−n) and OA(�−n) to indicate a truncation of the
EFT series on the cross-section and amplitude level, respec-
tively. A further discussion of the two truncation approaches
is presented in Sect. 4.4. To obtain the EFT cross section,
the matching conditions in Eqs. (16) and (17) are employed.
The light gray dashed line indicates the cross section of the
full model. The couplings are fixed to g(ℓ)g(q) = 1 (upper
row) and g(ℓ)g(q) = (0.3)2 (lower row), with flavor-diagonal
couplings to quarks and leptons. The flavor of the quarks to
which the Z ′ is coupled is varied from the first (left col-
umn) to the second (center column) and third (right column)
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Fig. 2 Comparison between EFT and full-model cross section for the U1 ∼ (3, 1, 2/3) leptoquark with fixed mass mU1 = 2 TeV and couplings
x iα

L = 1 (upper row) and x iα
L = 0.3 (lower row). See caption of Fig. 1 for details

generation. A similar comparison is made in Fig. 2 for the
U1 leptoquark model, again considering two fixed values of
the couplings x

qℓ

L and different quark flavors.

4.3 Discussion

Several comments can be made by comparing the EFT and
the full model predictions in Figs. 1 and 2:

(i) In all cases, we retrieve the EFT regime for m2
ℓℓ/m2

V →
0, that is, at low center-of-mass energies relative to the
mediator mass mV , the cross section of the full model
is well approximated by the interference of d = 6 EFT
amplitude with the SM (dashed green line).

(ii) As soon as m2
ℓℓ/m2

V increases, it is necessary to include
contributions beyond the d = 6 interference with the
SM to correctly describe the full model cross sections.
The square of d = 6 operators (solid green), which
we denote by (d = 6)2, are necessary in most cases
to obtain accurate predictions, whereas d = 8 terms
can improve the accuracy of the predictions. However,
notice that including only the linear d = 8 terms
interfering with the SM (dashed purple) offers only

marginally better limits, whereas a significant improve-
ment can be observed when including the (d = 8)2

contributions (solid purple).
(iii) In all considered cases, the EFT description appears

to converge better toward the full model when trun-
cating the EFT series on amplitude level OA(�−n)

(solid lines), rather than on cross-section level Oσ (�−n)

(dashed lines), i.e., when including New-Physics squared
contributions at both d = 6 and d = 8 rather than just
the corresponding interference terms with the SM. For
a more detailed discussion, see Sect. 4.4.

(iv) The EFT description provides a more accurate descrip-
tion of these processes for much larger values of
m2

ℓℓ/m2
V for the leptoquark model than for the Z ′ one, as

expected from the resonant nature of the latter scenario.
This can be understood in terms of the power series
for the cross sections, which has terms with alternating
and same signs, respectively [cf. Eqs. (29) and (25)].
Notably, when including (d = 8)2 contributions (solid
purple) for the leptoquark model, the discrepancy of
the EFT approximation and the full model is below the
� 10 % level even for m2

ℓℓ/m2
V ∼ 1 and O(1) cou-

plings. In contrast, we find that the EFT series is con-
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verging at a significantly slower rate for the Z ′ scenario,
when including higher-order terms, which only gradu-
ally improve the accuracy of the EFT approximation.

(v) Finally, the EFT convergence depends on the size of
the New-Physics couplings convoluted with the quark
PDFs. The EFT terms converge better for small cou-
plings and/or small PDFs (i.e., heavy flavors) since the
New-Physics contributions to the hadronic cross section
are smaller in this case.

Note also that we neglect Renormalization Group (RG)
evolution effects between the different energy scales probed
by the Drell–Yan data. Heavy new physics scenarios are
mostly sensitive to the high-pT tails of these distributions
where RG effects are small. Moreover, the RG effects are sim-
ilar between a UV theory and its corresponding low-energy
EFT. Therefore, when the ratio of the cross sections is taken,
we expect these effects to largely cancel out and not affect
the study of the EFT validity. However, for a broader phe-
nomenological analysis (which is beyond the scope of the
present work), these effects should be considered [55].

4.4 EFT series truncation: amplitude vs. cross-section level

In this section, we briefly elaborate on the different approaches
for truncating the EFT series that have been used in Figs. 1
and 2. In particular, we will contrast the truncation on
cross-section level, i.e., for physical observables, denoted
by Oσ (�−n) in our notation, against the truncation on ampli-
tude level represented by OA(�−n). Schematically, we can
express the amplitude A and partonic cross section σ̂ in terms
of the individual EFT-order contributions as

σ̂ ∝
∣
∣
∣
∣
ASM + A6

�2
+ A6×6 + A8

�4
+ OA(�−6)

∣
∣
∣
∣

2

= |ASM|2 +
2Re

(

A∗
SMA6

)

�2
+ |A6|2

�4
︸ ︷︷ ︸

OA(�−2)

+
2Re

(

A∗
SMA6×6 + A∗

SMA8
)

�4
+

2Re
(

A∗
6A6×6 + A∗

6A8
)

�6
+

∣
∣A6×6

∣
∣2 + |A8|2

�8

︸ ︷︷ ︸

OA(�−4)

+ · · · ,

(31)

where ASM, A6, A6×6, and A8 represent the amplitudes of
the SM, the EFT with a single d = 6 operator insertion,
with a double d = 6 operator insertion, and a single d = 8
operator insertion, respectively. The EFT power counting is
made explicit here by factoring out the appropriate powers
of the EFT cutoff scale �. The ellipsis indicate terms of
order OA(�−6) in the EFT expansion of the amplitude. For
low-energy measurements (e.g., in the flavor sector) consid-

ering only the linear d = 6 interference terms of Oσ (�−2)

suffices and the (d = 6)2 contributions of OA(�−2) can be
neglected due to the large scale suppression. Investigating
the EFT truncation for high-energy observables, such as the
Drell–Yan tails, is more subtle. The shapes of distributions
for high-pT observables are determined by the high-energy
properties of the corresponding amplitudes, which in turn
are governed by their analytical structure and the principle
of unitarity [56], even though the latter is lost for the EFT
at very high energies E > � above the cutoff.9 Here, how-
ever, we consider energies where the unitarity is not yet lost.
When truncating the EFT series on amplitude level OA(�−n)

for a given n ∈ N, these properties are retained below the
cutoff E < �. However, when truncating on cross-section
level Oσ (�−n) these properties are upset since this does not
correspond to a consistent truncation of the amplitude. In
the latter case, even negative values for cross sections are, in
principle, possible.

Furthermore, we notice that the EFT series is unphysical.
This can be understood through the LSZ formula [59] which
permits the freedom to perform field redefinitions for a the-
ory without changing its S matrix, that is, physical observ-
ables. However, in the case of an EFT, these field redefini-
tions generally shift contributions between different orders
in the EFT expansions, rendering the expansion unphysical.
Therefore, it appears that requiring a consistent EFT trun-
cation for physical observables is unwarranted. Instead, it is
useful to adopt a top-down perspective to determine a consis-
tent EFT truncation prescription for high-energy observables.
While the EFT is useful for studying experimental data in a
model-independent framework, it should ultimately always
be matched onto concrete underlying UV models of interest.
When this is done, the EFT is constructed (or in other words,

its coefficients are adjusted) in such a way that the resulting
EFT amplitudes are mimicking the corresponding UV ampli-
tude to a given accuracy in the EFT power counting, see e.g.

9 Notice, in particular, that the Wilson coefficients of d = 8 operators of
the considered class Oψ4 D2 are also subject to positivity constraints [57]
(see also Ref. [58]).
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Ref. [60].10 This naturally suggests that also in a bottom-
up scenarios, the EFT series should be truncated on ampli-
tude rather than cross-section level, at least if the bottom-up
analysis is intended to be linked to realistic UV scenarios at
a later stage.11 Only the former truncation method guaran-
tees that the EFT properly reproduces the behavior of UV
models. We therefore suggest truncating the EFT series on
amplitude level OA(�−n) for some n ∈ N. As explicitly
verified for Drell–Yan processes in Figs. 1 and 2 with n = 2
and 4 the OA(�−n) truncations (solid lines) provide better
convergence toward the full model prediction than the cross-
section truncation Oσ (�−n) (dashed lines). According to this
prescription, the leading order OA(�−2) EFT contributions
contain both interference of d = 6 EFT operators with the
SM and the (d = 6)2 contributions to the cross section, which
can also be seen in Eq. (31). As discussed in Ref. [28], this
provides a well-defined, unambiguous, and gauge-invariant
setup. At the first subleading order OA(�−4) interference of
d = 8 operators with the SM, (d = 8)2 contributions, as
well as the interference of (d = 6) with (d = 8) operators
are included. In addition to dimension-eight operators con-
tributing to the amplitude, the corresponding contributions
from double insertion of two d = 6 operators into the same
amplitude are taken into account at this order as well, cf.
Eq. (31), although this is not relevant for the present discus-
sion of Drell–Yan tails at tree level.

5 Clipped limits

Notice that the flavor of leptons is indifferent for the predic-
tions in Figs. 1 and 2. However, it affects the interpretation
of experimental measurements and, as a consequence, the
robustness of the EFT description, since the data sets col-
lected for ℓ = e, µ include events at higher energies (i.e. with
larger mℓℓ values) compared to the data for ℓ = τ, and since
the latter is also affected by uncertainties from the recon-
struction of the hadronic τ decays. Therefore, higher energy
scales are probed for light leptons, typically in the O(10 TeV)

range, whereas O(1 TeV) scales are accessible for τ leptons,
as shown e.g. in Ref. [5].

The comparison between our EFT and full model predic-
tions with the LHC data is made for the U1 leptoquark in
Fig. 3. The expected upper limits on the coupling-over-mass
ratio |x iα

L |/mU1 are shown as a function of the clipping vari-
able Mcut. More precisely, the constraints are determined
only taking into account the experimental data below the

10 This is the case for both off-shell and on-shell matching, where the
corresponding EFT amplitudes are equated with the ones of the full
UV model in order to determine the matching conditions.
11 In a pure bottom-up setup, where there is no intention of linking to
UV theories, this strategy is, of course, less compelling.

threshold scale given by Mcut. For light leptons ℓ = e, µ,

the clipping is performed for the reconstructed invariant mass
of the dilepton system mrec

ℓℓ , i.e., considering only data with
mrec

ℓℓ < Mcut, while for third-generation leptons ℓ = τ, we
clip the total traverse mass mtot

T of the ditau system, which is
used as experimental observable in this case [38].

We have also verified that clipping the New-Physics signal
prediction on the partonic center-of-mass energy

√
ŝ = mℓℓ,

rather than clipping on experimental observable level, yields
comparable results. For light leptons ℓ = e, µ we find good
agreement, since we have mrec

ℓℓ ≃ mℓℓ. For τ leptons, we find
some differences due to the mismatch between mtot

T and mℓℓ.

We actually have mtot
T ≤ mℓℓ and thus events with higher

center-of-mass energies can migrate down to lower values of
the observed energy variable mtot

T . It is hence not obvious how
a consistent signal clipping prescription can be introduced in
this case. For a discussion of the problems when clipping the
signal rather than the data see e.g. Refs. [28,33]. However,
the patterns of the EFT convergence observed in the present
example are similar for clipping data and signal.

For definiteness, we consider the leptoquark coupled to
first-, second-, and third-generation quarks (top, center, and
bottom row, respectively), with different lepton flavors that
are constrained by LHC data on pp → ℓℓ with ℓ = e, µ [37]
(left and center column) and ℓ = τ [38] (right column).
These searches have been reinterpreted in the HighPT pack-
age [6], which we employ to determine the limits presented
here.12 The dotted and dashed lines represent the 2σ con-
straints obtained using the EFT approach and taking into
account only the d = 6 interference with the SM, or addi-
tionally also the (d = 6)2 contribution. We also show the
corresponding limits determined in the full model with lep-
toquark masses mU1 of 1, 2, and 3 TeV in red, yellow, and
blue, respectively.

First of all, we notice that the constraints obtained in the
full model converge well for all leptoquark masses toward
the EFT limits, computed considering (d = 6)2 contribu-
tions (dashed line), in the limit Mcut → 0, i.e., when only
considering low-energy data. On the contrary, the EFT lim-
its, calculated taking into account only the d = 6 interfer-
ence with the SM (dotted line), do not converge in this limit.
This can be understood by realizing that the larger the cou-
plings, the more important the (d = 6)2 terms become rela-
tive to the linear d = 6 interference contribution. However,
when clipping at low values of Mcut, most of the data is dis-
carded and we are hence obtaining weaker constraints in the

12 For the pp → ττ channel, we use an updated version ofHighPT [6]
in which the selections cuts are improved to better reproduce the exper-
imental search, which is highly sensitive to the pT cut for the leading
τh jet. These improved constraints will soon be publicly available in a
forthcoming updated version of HighPT.
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Fig. 3 Expected limits on the U1 leptoquark coupling defined in
Eq. (18) from pp → ℓℓ data for ℓ = e, µ (left and center col-
umn) [37] and ℓ = τ (right column) [38] are plotted against the clip-
ping variable Mcut, with bins above Mcut being discarded. For ℓ = e, µ

we remove events with mrec
ℓℓ > Mcut, while we discard events with

mtot
T > Mcut for ℓ = τ. The top, center, and bottom row show the case

of couplings to first-, second-, and third-generation quarks, respectively.

The dotted and dashed lines correspond to the EFT constraints matched
to the leptoquark model with contributions up to (d = 6) interference
and (d = 6)2 terms, i.e., Oσ (�−2) and OA(�−2) truncations, respec-
tively. The leptoquark mass is fixed to different values to illustrate the
EFT convergence, namely mU1 = 1 TeV (red), mU1 = 2 TeV (orange)
and mU1 = 3 TeV (blue)

large coupling regime.13 Thus, the leading contribution in

13 This is the case at least when coupling to second- and third-
generation quarks. For first-generation quarks (top row in Fig. 3) the
valence-quark PDF enhancement still allows to probe relatively small

the Mcut → 0 limit is given by the (d = 6)2 terms (at least
for sea quarks) and the linear d = 6 interference terms can-

values for the coupling, where the d = 6 interference term dominates
and thus converges to the full model.
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not approximate the full model well. Also for larger values
of Mcut, we find that the models always converge toward the
(d = 6)2 EFT limits, when increasing the leptoquark mass.
Therefore, we conclude with this concrete example that using
only the linear d = 6 interference terms does not provide an
accurate description for the Drell–Yan tails and that (d = 6)2

contributions should always be included.
In addition, we find in Fig. 3, as expected, that the heavier

the leptoquark mass, the better the (d = 6)2 EFT approxima-
tion. Even for large values of Mcut, the EFT provides accurate
limits, at least for leptoquark masses � 2 TeV. Moreover, we
see that the (d = 6)2 EFT approximation tends to overesti-
mate the constraints on the coupling-over-mass ratio. While
the New-Physics scales probed by the data mostly depend
on the considered quark generations, and the energy range
where data are collected depends on the flavor of the lep-
tonic final state, we find similar overall patterns for the EFT
convergence for all flavor combinations.

6 Illustration: b → cτν

In this section, we consider the discrepancies in exclusive
B-meson decays with an underlying b → cτν transition as a
concrete example to quantitatively assess the validity of the
EFT description of pp → ττ at the LHC. Drell–Yan pro-
cesses provide helpful constraints on the New-Physics sce-
narios proposed to accommodate these discrepancies [5,9],
since these low-energy processes occur at tree level in the SM,
being only sensitive to scales � at most at the O(TeV) range
with current precision [61].

Our goal is to directly compare the EFT results with the
constraints obtained in the full model, for different values of
the mediator mass, as in the previous sections, and to study
the convergence of the two approaches for large � values,
this time also comparing Drell–Yan bounds to other comple-
mentary data sets in the flavor and electroweak sectors. To do
so, we focus again on the U1 vector leptoquark as a bench-
mark model, which is known to provide a good solution to
the b → cℓν discrepancies14 [62–66].

The observables determined at low energies are the ratios
RD(∗) = B(B → D(∗)τ ν̄)/B(B → D(∗)lν̄) (with l = e, µ),

which have been measured at LHCb and the B-factories [68]

R
exp
D = 0.342 ± 0.026, R

exp
D∗ = 0.287 ± 0.012 (32)

with a combined value that is about 3σ above the average of
SM predictions [68]15

14 See Refs. [27,67] for other viable leptoquark scenarios.
15 See also Refs. [69–71] for recent determinations of B → D∗ form-
factors of the lattice, which have been combined to predict RD∗ , e.g., in
Refs. [72,73].

RSM
D = 0.298 ± 0.004, RSM

D∗ = 0.254 ± 0.005. (33)

The leptoquark effect in these observables can be schemati-
cally parametrized as

RD(∗)

RSM
D(∗)

≃ 1 − v2

�2 Re

(
1

V ∗
cb

[C3
lq ]3323 + [C3

lq ]3333

)

= 1 + v2

2m2
U1

Re

(

x23
L x33∗

L

V ∗
cb

+ |x33
L |2

)

, (34)

where we have again assumed down alignment for the left-
handed quark doublet, and kept couplings to the τ lepton,
and the second- and third-generation quarks. Other relevant
constraints on this scenario are posed by the modifications of
Z and W couplings to leptons induced by the RG evolution,
which are sizable as they are proportional to the top Yukawa
coupling yt in this case [74–78]. In our case, the biggest effect
comes from Zνν̄ vertex corrections, parametrized by [79–81]

δgν
L ∝ [C(1−3)

Hl ]33(m Z ) ≃ 6|yt |2
16π2 log

m Z

�
[C(1+3)

lq ]3333. (35)

For the Electroweak Precision Observables (EWPOs), we use
the inputs from Ref. [82]. The running for flavor observables,
on the other hand, is negligible for operators with vector
structure. The favored regions from flavor and EWPOs are
shown in Fig. 4 as blue and gray regions, respectively, as
a function of the coupling/mass ratio, for three benchmark
masses, namely mU1 = 1.5 TeV (left panel), 2 TeV (center
panel) and 3 TeV (right panel). For each case, the matching
scale is taken to be the leptoquark mass mU1 , performing the
RG evolution from this value down to µew ≈ m Z (hence
the slightly different shapes of the electroweak regions for
different mU1 values) [79–81].

Turning our attention back to the Drell–Yan constraints
shown in red, we observe a good convergence of the EFT
(dashed line) toward the leptoquark model (filled red region),
with an O(10%) difference between them for mU1 =
1.5 TeV. Notice that the d = 6 EFT constraints do not change
between the three cases, since the only relevant quantity that
can be probed is the coupling/mass ratio. The EFT description
can be further improved by including d = 8 operators, with
a consistent truncation at OA(�−4) (dot-dashed red line),
which are more important for low mU1 values, to accurately
describe the full model. Already for low leptoquark masses
of mU1 = 1.5 TeV, this truncation order offers an excellent
approximation of the full model. For masses � 1.5 TeV, we
have noticed that the cross section for the last bin of the
experimental search [38] becomes negative when truncating
the EFT series at Oσ (�−6) on cross-section level, i.e., con-
sidering the interference of d = 6 with d = 8 operators. This
highlights the issues associated to cross-section level trunca-
tions and further reinforces our statement that it is necessary
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Fig. 4 Limits on coupling/mass for a U1 leptoquark. The filled red
regions are 2σ regions coming from Drell–Yan at the LHC using the
explicit mediator propagation in HighPT [6], while the dotted, dashed,
and dot-dashed lines indicate the 2σ contours in the SMEFT case with

d = 6 linear, d = 6 quadratic terms, and d = 8 quadratic terms,
respectively. RG evolution for the flavor and electroweak likelihood is
performed taking mU1 as the high scale, i.e., it is different for the three
plots

to truncate the EFT series on amplitude level. Finally, we
note that already at mU1 = 3 TeV the differences between
the various approaches are completely negligible, in line with
the findings of the previous sections.

On the other hand, it appears clear from all three plots that
keeping only the linear terms in SMEFT coefficients (dotted
line) when computing the cross section never yields accurate
results. In fact, stopping the expansion at Oσ (�−2) leads to
overly pessimistic bounds. This should be compared with the
middle and right plots in the bottom of Fig. 3, where the same
pattern is found. While one could regard these as conservative
bounds, it is worth noticing that this is not always the case,
and in most cases the linear dimension-six terms seem to lead
to a too restrictive constraint (cf. again Fig. 3).

In summary, we find that EFTs can reliably describe
Drell–Yan tails for t- and u-channel mediators with masses
above 1.5 TeV, including the models proposed to address the
RD(∗) anomalies. We have shown that the EFT description at
OA(�−2) is rather accurate for these masses and it can be
systematically improved by including the OA(�−4) contri-
butions.

7 Summary

In this article, we have explored the validity range of the
EFT description of Drell–Yan processes and the uncertain-
ties associated with the EFT truncation through a direct com-
parison between concrete models and their respective EFTs
at low energies. We have considered two representative sce-
narios, namely a heavy Z ′ ∼ (1, 1, 0) boson and a vector
leptoquark U1 ∼ (3, 1, 2/3), which contribute to these pro-

cesses via the s- and t-channels, respectively, and which are
matched onto the SMEFT with operators up to dimension
d = 8.

Firstly, we have computed the analytical expression for
the partonic cross section in each of the scenarios, account-
ing for the propagation of the new mediators. By perform-
ing an expansion of the cross section in the ratio xV =
m2

ℓℓ/m2
V < 1, between the dilepton invariant-mass squared

and the squared mass of the mediators, we have shown that
the series obtained for the t-channel mediator has a faster
convergence at low energies than the one obtained for the
s-channel. This is expected from the resonant nature of the
contributions in the former scenario and can be traced back to
the coefficients in the power series of the cross section, which
appear with the same signs for the s-channel propagator, but
with alternating signs for the t-channel one. These subleading
corrections are associated with higher-dimensional operators
(i.e., beyond d = 6), which can improve the description of
the partonic cross sections as shown in Figs. 1 and 2.

We reiterate that only considering the interference between
the SM and d = 6 operators [i.e., Oσ (�−2) truncation in
our notation] leads to a poor EFT description in most cases,
making the inclusion of (d = 6)2 terms [OA(�−2)] neces-
sary. Furthermore, while the interference term of the d = 8
operators with the SM amplitude [Oσ (�−4)] only marginally
improves the EFT description, we found that d = 8 squared
contributions [OA(�−4)] can have a sizable impact on the
cross section if E/� is not small. In other words, it is prefer-
able to perform the truncation at the amplitude level instead
of the cross-section level. This feature is potentially con-
nected to the well-defined properties of high-energy scatter-
ing amplitudes, which are governed by analyticity and uni-
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tarity (in our case, below the EFT cutoff E < �), which may
be lost with an inconsistent truncation on cross-section level.
Studying d = 8 effects this way is, of course, only possible
if a concrete UV model is considered. Assessing the impact
of d = 8 terms in a model-agnostic manner is less obvi-
ous. An option would be to fit the d = 6 Wilson coefficients
while marginalizing over the corresponding coefficients of
the d = 8 operators as done in Ref. [5]. However, as shown
in that reference, the complete decorrelation of the d = 6 and
d = 8 effects obtained through the marginalization leads to a
significant relaxation of the constraints. Although this can be
interpreted as a conservative limit, a considerable improve-
ment can be achieved once a specific model is considered [5].

By comparing the different panels of Figs. 1 and 2, we
have also shown that the EFT convergence depends on the
couplings convoluted with the initial quark PDFs, providing
a better description of the full-model results for small New-
Physics couplings and/or small PDFs (i.e., heavier quarks).
In practice, the range of couplings that are probed by real
data depends on the experimental sensitivity, which is usu-
ally better for ℓ = e, µ [37] than for ℓ = τ [38], as the
experimental searches usually cover higher energies in the
former case. These features are illustrated in Fig. 3 for the
U1 leptoquark, where the EFT description with d = 6 opera-
tors is more accurate and provides better limits for the lighter
flavors of quarks and leptons.

Finally, we have also made this explicit comparison for
a concrete example motivated by discrepancies between the
SM predictions and the experimental determinations of the
low-energy b → cτν transition. We have considered the
vector leptoquark model that was proposed to accommodate
this discrepancy, and we have compared the EFT and full-
model Drell–Yan bounds on the couplings that are fixed by
flavor and electroweak data. We have shown that the EFT
bounds based on d = 6 operators lead to bounds that are
O(10 %) stronger than the correct ones for a leptoquark of
mass mU1 = 1.5 TeV, which is currently allowed by direct
searches at the LHC [83,84]. We have demonstrated that the
EFT truncated at OA(�−2), i.e., including d = 6 operators
and truncating on amplitude level, provides a fairly good
description of this scenario for masses above 1.5 TeV, which
can be further improved by considering d = 8 operators with
a consistent OA(�−4) truncation.

While verifying the validity of the EFT approach in gen-
eral is a delicate problem as it depends on several factors:
the specific UV scenario (resonant or non-resonant), the fla-
vors of all involved particles (particularly in light of PDF-
suppression effects and τ -reconstruction issues), the pro-
cesses considered (kind of process, tree or loop level), etc.,
the central results of the present work can be succinctly sum-
marized by: (i) for high-energy observables one should trun-
cate the EFT series on amplitude level, since only this can
guaranty the proper analytical structure of amplitudes at high

energies, whereas a truncation on cross-section level can lead,
for example, to negative cross sections in the high-energy
bins; (ii) while the applicability of EFTs for resonant UV sce-
narios is limited to cases of large scale hierarchies E ≪ �,

EFTs can offer good approximations for non-resonant sce-
narios even if the considered energies are not far below the
cutoff scale. In many cases truncating at OA(�−2) already
provides good approximations in this case, whereas going
to OA(�−4) can offer excellent approximations even for
E ∼ �.
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Appendix A: Phase-space functions

In this appendix, we provide the explicit expressions for the
phase-space functions defined in Eq. (28) through the integral
on t̂ ∈ (−ŝ, 0),
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ϕ1(x) = 3(2 + 3x)

2x
− 3(1 + x)2

x2 log(1 + x), (A1)

ϕ2(x) = 6 + 3x − 6(1 + x)

x
log(1 + x). (A2)

These expressions can be expanded for 0 < x < 1, leading
to the expressions in Eq. (29).
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