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We propose a numerical method to estimate one-point functions and the free-energy density of

conformal field theories at finite temperature by solving the Kubo-Martin-Schwinger condition for the two-

point functions of identical scalars. We apply the method for the critical OðNÞ model for N ¼ 1, 2, 3 in

3 ≤ d ≤ 4. We find agreement with known results from Monte Carlo simulations and previous results for

the 3D Ising model, and we provide new predictions for N ¼ 2, 3.
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Introduction and summary—Finite-temperature phe-

nomena in conformal field theories (CFTs) can be studied

by placing the theory on the geometry S1β ×R
d−1, where

β ¼ 1=T is the inverse temperature. Thermal dynamics

plays a crucial role, as quantum critical points in exper-

imental systems occur at nonzero temperatures [1,2].

Additionally, it is essential to study CFTs at finite temper-

ature to gain insights on anti–de Sitter black holes in the

quantum regime [3].

The success of the conformal bootstrap in constraining

zero-temperature CFT data (see, e.g., the reviews [4–6]),

namely, conformal dimensions and structure constants,

naturally raises the question of whether similar techniques

can be applied to thermal CFTs [7,8]. Since the operator

product expansion (OPE) of the original CFT remains valid

locally [9], thermal correlation functions can be expressed in

terms of zero-temperature CFT data and thermal one-point

functions. The goal of the thermal bootstrap program is to

compute these observables employing the zero-temperature

data as an input, and the Kubo-Martin-Schwinger (KMS)

condition [10,11], namely, the periodicity along the thermal

circle, as a consistency constraint. Among all the operators, a

special role is played by the stress-energy tensor, since its

thermal one-point function is closely related to the free-

energy density of the system [8,12].

In this Letter, we introduce a new efficient method

to numerically estimate thermal one-point functions.

We impose the KMS condition on a thermal two-point

function of identical scalars near the KMS fixed point [13].

This generates an infinite set of equations with an infinite

number of unknowns. The novelty of this work is to

analytically approximate the contribution of heavy oper-

ators using an improved version of the Tauberian asymp-

totics proposed in [14], reducing the system to a finite set of

unknowns.

The method can be tested in 4D free scalar theory, 2D

Ising model and in the large N limit of the OðNÞ model,

where numerical estimations can be compared with ana-

lytical results [15]. In the following, we apply it in the

strongly coupled regimes of the critical OðNÞ models for

N ¼ 1, 2, 3. These correspond to the critical Ising model

(N ¼ 1), the XY model (N ¼ 2), and the Heisenberg model

(N ¼ 3), which are relevant for understanding ferromag-

netism and other physical phenomena [16–19]. Our key

results are the free-energy density in 3 ≤ d ≤ 4 (Fig. 1), the

two-point function of the lightest scalar in the critical 3D

Ising model (Fig. 2), and the one-point functions of several

operators in the critical O(1), O(2), and O(3) models

FIG. 1. Free-energy density of the critical OðNÞ models for

N ¼ 1, 2, 3 in 3 ≤ d ≤ 4 (i.e., 0 ≤ ε ≤ 1).
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(Figs. 3 and 4). In the case of the 3D Ising model, our

results can be compared with previous numerical estimates

[20] and Monte Carlo (MC) simulations [21–23], confirm-

ing the validity of our method [24]. The predictions for

N ¼ 2, 3 are new and could, in principle, be tested through

further Monte Carlo simulations or experiments [25].

Thermal bootstrap—The starting point of our analysis is

the KMS condition. For the two-point function of identical

scalar operators gðτÞ ¼ hϕðτÞϕð0Þiβ, where the spatial

distance between the two operators is set to zero, the

KMS condition results into a tower of constraints that take

the form

0 ¼
∂
m

∂τm

�

g

�

β

2
þ τ

�

− g

�

β

2
− τ

��

τ¼0

; ð1Þ

where m∈ 2Nþ 1. These constraints can be expressed as a

set of sum rules [14]

X

Δ

aΔFðΔ;Δϕ; mÞ ¼ 0; ð2Þ

where the sum is performed over all the operators in the

OPE between the two operators ϕ. The kernel F, defined in

Eq. (9) in [14], depends solely on zero-temperature CFT

data, which we treat as input. Meanwhile, the coefficients

aΔ encode the thermal dynamical information

aΔ ¼
X

OΔ

bOfϕϕO

cO

J!

2JðνÞJ
Cν
Jð1Þ; ð3Þ

where ν ¼ ðd − 2Þ=2, C
ðνÞ
J is a Gegenbauer polynomial

and the sum is performed over operators sharing the same

scaling dimension, but with different spins. Here, the

coefficients fϕϕO and cO correspond, respectively, to the

structure constants and to the two-point function normali-

zation of the operator O at zero temperature. bO is the

thermal one-point function coefficient defined via [8,26]

hOμ1…μJ
Δ

iβ ¼
bO

βΔ
ðeμ1…eμJ − tracesÞ: ð4Þ

The ultimate goal of the thermal bootstrap program is to

compute these observables completing the set of thermal

CFT data.

In order to solve the constraints (2), a naive approach

consists in truncating the sum at a cutoff dimension Δmax.

However, this approach fails, as the contribution of the

heavy operators cannot be discarded [27]. This issue can be

circumvented by approximating the tail of heavy operators

using the asymptotic behavior of the coefficients aΔ [14]

a
heavy
Δ

¼
Δ

2Δϕ−1

Γð2Δϕ þ 1Þ
δΔ

�

1þ
c1

Δ
þ…

�

: ð5Þ

Here, δΔ represents the gap between the scaling dimension

Δ and the scaling dimension of the operator below it in the

OPE spectrum. The coefficient c1 is theory dependent and

corresponds to the first correction to the leading behavior.

Let us comment that, in order to derive (5), it is necessary to

add an analyticity assumption on aΔ, since the Tauberian

theorem fixes only the leading term [14]. Moreover, note

that the power of Δ in the first correction is universal, but

those of the subleading terms are theory dependent and

currently unknown. Determining them is an important next

FIG. 2. The thermal two-point function gðτÞ is shown alongside
its KMS equivalent gðβ − τÞ in the Ising model. The second plot

shows the difference between the two curves in the main plot. We

observe an excellent agreement in the region around the KMS

fixed point (τ=β ¼ 1=2).

FIG. 3. OPE coefficients for the lightest operators of the critical

3D Ising model. The points with no error bar associated

correspond to analytical Tauberian predictions, whose error is

not the object of study of this Letter.
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goal. The constraints of Eq. (2) can be split into two terms

fðmÞ ¼
X

Δ≤Δmax

aΔFðΔ;Δϕ; mÞ þ
X

Δ>Δmax

a
heavy
Δ

FðΔ;Δϕ; mÞ:

ð6Þ

We do not have access to the spectrum in the heavy sector,

and for this reason, a further approximation is required. In

this Letter, we restrict our consideration to the leading

trajectories of operators ½ϕϕ�n;l in the second term of

Eq. (6), which, by channel duality, correspond to the

identity [34]. These operators take the classical form

ϕ∂l□nϕ, and their conformal dimensions can be approxi-

mated by the mean-field theory result Δn;l ¼ 2Δϕ þ
2nþ l. Thus, there are two sources of error: one arises

from the omission of subleading trajectories, the other from

the anomalous dimensions of these operators. The former

is negligible with respect to the latter: we estimate both

in [15]. In this approximation, only a finite number of

unknown coefficients are left: the coefficients aΔ associated

with the light operators Δ ≤ Δmax, and the corrections to

the leading behavior (5), namely c1;…. The constraints (2)

can be formulated as the minimization of the cost function

ηðfωigÞ ¼
X

m≤mmax

ωmfðmÞ2; ð7Þ

where mmax determines the maximum number of deriva-

tives considered and ωi ∈ ð0; 1Þ is a set of random number

weights, which allows us to test the numerical stability of

the algorithm as previously done, e.g., in [31]. The minimi-

zation process results in estimations for the unknown

parameters, which are affected by numerical errors stem-

ming from two contributions: (i) a statistical error, esti-

mated by the square root of the variance over multiple runs

of the minimization of (7); (ii) a systematic error, due to the

approximation of the contribution of the heavy operators

using (5), estimated in [15].

The uncertainties in the zero-temperature input data

propagate into the thermal one-point functions. When

using the 3D bootstrap results as input, these errors remain

negligible. However, when the zero-temperature conformal

data comes from the ε expansion, the associated error

increases with ε. This effect is estimated in [15] and

illustrated in Fig. 1 for 0 ≤ ε ≤ 1. The errors presented

in this Letter should be regarded as estimations rather than

rigorous error bounds, adopting the terminology of [38].

The free-energy density of the system is determined by

the one-point function coefficient of the stress-energy

tensor through f ¼ bT=d, with d the number of spacetime

dimensions [8]. The structure constant fϕϕT , appearing in

(3), is fixed by the Ward identity [39], and therefore,

f ¼ −ad
Γðd=2Þ

2πd=2ðd − 1ÞΔϕ

cT

cT;free
; ð8Þ

where cT;free ¼ dΓðd=2Þ2=½4πdðd − 1Þ�. The method pre-

sented here can be tested on simple examples and is found

to produce accurate results for the free scalar field in 4D,

the 2D Ising model, and the OðNÞ model at large N [15].

More details and illustrative examples can be found in [40].

Ising, XY, and Heisenberg models—The method pre-

sented above can be used to study the OðNÞ model in

3 ≤ d ≤ 4. We consider, in (2), the lightest scalar ϕi

(i ¼ 1;…; N) as external operator. We use two distinct

sets of zero-temperature input: the results obtained from the

ε expansion [41] and gathered in [42], and the results from

the (zero-temperature) 3D bootstrap, given in [43–48] for

N ¼ 1, 2, 3. To approximate the tail of heavy operators, we

consider only the operators ½ϕϕ�n;l in the second term of

Eq. (6), corresponding to the identity by channel duality.

We consider the contribution of the identity operator and

of the three lightest operators in the spectrum, and one

(b)(a)

FIG. 4. The two plots present the results for the OPE coefficients associated to the lightest operators of the OPE spectrum for the

O(2) (a) and O(3) (b) models. The points with no error bar associated correspond to analytical Tauberian predictions, whose error is not

the object of study of this Letter.
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correction to the Tauberian approximation [15]. This results

in four unknowns: the three nontrivial one-point functions

and the correction to the Tauberian approximation c1. All
our calculations are performed by setting mmax ¼ 7 in (7),

which corresponds to having four constraints of the

type (2). Increasing mmax would result in an increased

error from the Tauberian approximation, which would, in

turn, require the inclusion of additional corrections in (5).

We gather our results for the 3D Ising model (N ¼ 1) in

Table I and compare them to the Monte Carlo values and

the previous results, which relied on a different thermal

bootstrap approach. All our results are consistent with

previous bootstrap findings [8]. Both our results and those

of [8] align with Monte Carlo predictions, with the sole

exception of the thermal OPE coefficient of the stress-

energy tensor. [49] As already observed in [8], the value of

the stress-energy tensor contribution is close to the large N
approximation, where bT ∼ −0.459N and aT ∼ 1.923

[51,52]. The results obtained with the ε expansion and

the 3D conformal bootstrap as an input are shown in Fig. 1

for the free energy density. Notice that the error estimated

on the coefficient ad propagates nontrivially on the free

energy; in particular, it is multiplied by N. We also

estimated the thermal two-point function gðτÞ by inputting

the numerical results in the OPE: Fig. 2 shows a compari-

son between the two KMS-dual channels. The results for

the OPE coefficients are presented in Fig. 3.

Also, for the XY model (N ¼ 2), many zero-temperature

results have been obtained through the ε expansion and the

conformal bootstrap. We find the following predictions for

the OPE coefficients in 3D:

aϕ2

S
¼ 0.73ð14Þ; ðΔϕ2

S
¼ 1.51136ð22ÞÞ; ð9Þ

aT ¼ 1.90ð8Þ; ðΔT ¼ 3Þ; ð10Þ

aϕ4

S
¼ 0.20ð7Þ; ðΔϕ4

S
¼ 3.794ð8ÞÞ: ð11Þ

The value for the Tauberian correction is c1 ∼ −0.0539, for

which the error is negligible. The free-energy density can

be calculated using Eq. (8), and the results are shown

in Fig. 1.

We performed the same calculations for the Heisenberg

model (N ¼ 3), using the input from the ε expansion and

the conformal bootstrap. We obtain the following results for

the OPE coefficients in 3D:

aϕ2

S
¼ 0.76ð14Þ; ðΔϕ2

S
¼ 1.59489ð59ÞÞ; ð12Þ

aT ¼ 1.81ð8Þ; ðΔT ¼ 3Þ; ð13Þ

aϕ4

S
¼ 0.21ð7Þ; ðΔϕ4

S
¼ 3.7668ð100ÞÞ: ð14Þ

The value for the Tauberian correction is c1 ∼ −0.0471, for

which the error is negligible. As for the other cases, we

show the free-energy density in Fig. 1. The results for the

OPE coefficients of the XY and the Heisenberg models are

presented in Fig. 4. Note, again, that the values of aT for

these models closely follow the large N prediction. The

asymptotic behavior is not strictly monotonic, nonetheless,

the qualitative dependence of aT on N aligns with the

findings of [50].

Discussion—In this Letter, we propose a numerical

method for computing thermal OPE coefficients, which

we apply to the critical OðNÞ models for N ¼ 1, 2, 3. In

particular, we extract the free-energy density of the system

in 3 ≤ d ≤ 4 as well as the OPE coefficients of the lightest

operators. In the case of the 3D Ising model (N ¼ 1), our

results can be compared with previous studies, while for

N ¼ 2, 3, we produce new predictions.

There are several directions to explore following this

work. The methods presented here can be applied to

different models. Motivated by recent progress in the

context of holographic black holes [54–58], it would

be interesting to study the thermal N ¼ 4 super Yang-

Mills and ABJM theories, for which a plethora of zero-

temperature CFT data is available in the literature [59–63].

Moreover, it was shown in [12] that the bootstrap problem

in the presence of a temporal line defect is very similar

to the one discussed in this Letter. The exploration of

this direction is crucial because of low-energy applications

[64–66] and holographic interpretations [3]. In the case of

the Maldacena-Wilson line [67], a great amount of CFT

data has been extracted recently [68,69]. Furthermore, we

are currently working on improving the precision on the

numerical results in tandem with developing an analytical

approach which will provide the next corrections in the

Tauberian approximation [70].

The strategy of this Letter could be adapted to all these

configurations, which also provide a good stage for

improving the precision on the numerical results.

Finally, recently, many different directions to study finite

temperature effects in CFTs were proposed [71–79]. It

would be interesting to compare and possibly incorporate

these techniques with the method proposed in this Letter.
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[42] J. Henriksson, The critical O(N) CFT: Methods and con-

formal data, Phys. Rep. 1002, 1 (2023).

[43] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D.

Simmons-Duffin, and A. Vichi, Solving the 3D Ising model

with the conformal bootstrap, Phys. Rev. D 86, 025022

(2012).

[44] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi,

Precision Islands in the Ising and OðNÞ models, J. High

Energy Phys. 08 (2016) 036.

[45] M. Reehorst, Rigorous bounds on irrelevant operators

in the 3d Ising model CFT, J. High Energy Phys. 09

(2022) 177.

[46] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-

Duffin, N. Su, and A. Vichi, Carving out OPE space and

preciseOð2Þmodel critical exponents, J. High Energy Phys.

06 (2020) 142.

[47] J. Liu, D. Meltzer, D. Poland, and D. Simmons-Duffin,

The Lorentzian inversion formula and the spectrum of the

3d O(2) CFT, J. High Energy Phys. 09 (2020) 115; 01

(2021) 206(E).

[48] S. M. Chester, W. Landry, J. Liu, D. Poland, D. Simmons-

Duffin, N. Su, and A. Vichi, Bootstrapping Heisenberg

magnets and their cubic instability, Phys. Rev. D 104,

105013 (2021).

[49] Recently, we became aware of new, yet unpublished, high-

precision Monte Carlo results for the free energy in the

OðNÞ model for 1 ≤ N ≤ 6 [50]. It would be interesting to

compare these results with our predictions.

[50] A. Bulgarelli, M. Caselle, and A. Nada (to be published).

[51] S. Sachdev and J. Ye, Universal quantum critical dynamics

of two-dimensional antiferromagnets, Phys. Rev. Lett. 69,

2411 (1992).

[52] The matching with large N could also be accidental: in fact,

if one includes a subleading correction to the large N

expansion [53], the results seems to not match, as expected

for small N results.

[53] E. Katz, S. Sachdev, E. S. Sørensen, and W. Witczak-

Krempa, Conformal field theories at nonzero temperature:

Operator product expansions, Monte Carlo, and holography,

Phys. Rev. B 90, 245109 (2014).

[54] C. Esper, K.-W. Huang, R. Karlsson, A. Parnachev, and S.

Valach, Thermal stress tensor correlators near lightcone and

holography, J. High Energy Phys. 11 (2023) 107.

[55] M. Dodelson, C. Iossa, R. Karlsson, and A. Zhiboedov, A

thermal product formula, J. High Energy Phys. 01 (2024) 036.

[56] N. Bobev, J. Hong, and V. Reys, Holographic thermal

observables and M2-branes, J. High Energy Phys. 12

(2023) 054.

[57] M. Dodelson, C. Iossa, R. Karlsson, A. Lupsasca, and A.

Zhiboedov, Black hole bulk-cone singularities, J. High

Energy Phys. 07 (2024) 046.

[58] N. Čeplak, H. Liu, A. Parnachev, and S. Valach, Black hole

singularity from OPE, J. High Energy Phys. 10 (2024) 105.

[59] N. Gromov, F. Levkovich-Maslyuk, and G. Sizov,

Quantum spectral curve and the numerical solution of the

spectral problem in AdS5=CFT4, J. High Energy Phys. 06

(2016) 036.

[60] N. Gromov, A. Hegedus, J. Julius, and N. Sokolova, Fast

QSC solver: Tool for systematic study of N ¼ 4 Super-

Yang-Mills spectrum, J. High Energy Phys. 05 (2024) 185.

[61] S. M. Chester, R. Dempsey, and S. S. Pufu, Level repulsion

in N ¼ 4 super-Yang-Mills via integrability, holography,

and the bootstrap, J. High Energy Phys. 07 (2024) 059.

[62] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena,

N ¼ 6 superconformal Chern-Simons-matter theories,

M2-branes and their gravity duals, J. High Energy Phys.

10 (2008) 091.

[63] N. Bobev, J. Hong, and V. Reys, Large N partition functions

of the ABJM theory, J. High Energy Phys. 02 (2023) 020.

[64] I. Affleck, Conformal field theory approach to the Kondo

effect, Acta Phys. Pol. B 26, 1869 (1995).

[65] S. Sachdev, Strange metals and the AdS/CFT correspon-

dence, J. Stat. Mech. (2010) P11022.

[66] S. Sachdev, Lectures on the quantum phase transitions of

metals, arXiv:2407.15919.

[67] J. M. Maldacena, Wilson loops in large N field theories,

Phys. Rev. Lett. 80, 4859 (1998).
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