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We propose a numerical method to estimate one-point functions and the free-energy density of
conformal field theories at finite temperature by solving the Kubo-Martin-Schwinger condition for the two-
point functions of identical scalars. We apply the method for the critical O(N) model for N = 1, 2, 3 in
3 < d < 4. We find agreement with known results from Monte Carlo simulations and previous results for
the 3D Ising model, and we provide new predictions for N = 2, 3.
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Introduction and summary—TFinite-temperature phe-
nomena in conformal field theories (CFTs) can be studied
by placing the theory on the geometry Sj x R“~!, where
p =1/T is the inverse temperature. Thermal dynamics
plays a crucial role, as quantum critical points in exper-
imental systems occur at nonzero temperatures [l,2].
Additionally, it is essential to study CFTs at finite temper-
ature to gain insights on anti—de Sitter black holes in the
quantum regime [3].

The success of the conformal bootstrap in constraining
zero-temperature CFT data (see, e.g., the reviews [4-6]),
namely, conformal dimensions and structure constants,
naturally raises the question of whether similar techniques
can be applied to thermal CFTs [7,8]. Since the operator
product expansion (OPE) of the original CFT remains valid
locally [9], thermal correlation functions can be expressed in
terms of zero-temperature CFT data and thermal one-point
functions. The goal of the thermal bootstrap program is to
compute these observables employing the zero-temperature
data as an input, and the Kubo-Martin-Schwinger (KMS)
condition [10,11], namely, the periodicity along the thermal
circle, as a consistency constraint. Among all the operators, a
special role is played by the stress-energy tensor, since its
thermal one-point function is closely related to the free-
energy density of the system [8,12].

In this Letter, we introduce a new efficient method
to numerically estimate thermal one-point functions.
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We impose the KMS condition on a thermal two-point
function of identical scalars near the KMS fixed point [13].
This generates an infinite set of equations with an infinite
number of unknowns. The novelty of this work is to
analytically approximate the contribution of heavy oper-
ators using an improved version of the Tauberian asymp-
totics proposed in [ 14], reducing the system to a finite set of
unknowns.

The method can be tested in 4D free scalar theory, 2D
Ising model and in the large N limit of the O(N) model,
where numerical estimations can be compared with ana-
lytical results [15]. In the following, we apply it in the
strongly coupled regimes of the critical O(N) models for
N =1, 2, 3. These correspond to the critical Ising model
(N = 1), the XY model (N = 2), and the Heisenberg model
(N = 3), which are relevant for understanding ferromag-
netism and other physical phenomena [16—19]. Our key
results are the free-energy density in 3 < d < 4 (Fig. 1), the
two-point function of the lightest scalar in the critical 3D
Ising model (Fig. 2), and the one-point functions of several
operators in the critical O(1), O(2), and O(3) models
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FIG. 1. Free-energy density of the critical O(N) models for

N=123in3<d<4G(e,0<e<]).
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FIG.2. The thermal two-point function g(z) is shown alongside
its KMS equivalent g(f — 7) in the Ising model. The second plot
shows the difference between the two curves in the main plot. We
observe an excellent agreement in the region around the KMS
fixed point (z/f = 1/2).

(Figs. 3 and 4). In the case of the 3D Ising model, our
results can be compared with previous numerical estimates
[20] and Monte Carlo (MC) simulations [21-23], confirm-
ing the validity of our method [24]. The predictions for
N =2, 3 are new and could, in principle, be tested through
further Monte Carlo simulations or experiments [25].
Thermal bootstrap—The starting point of our analysis is
the KMS condition. For the two-point function of identical
scalar operators g(7) = (¢(z)¢(0))s, where the spatial
distance between the two operators is set to zero, the
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FIG. 3. OPE coefficients for the lightest operators of the critical

3D Ising model. The points with no error bar associated
correspond to analytical Tauberian predictions, whose error is
not the object of study of this Letter.

KMS condition results into a tower of constraints that take
the form

b)) o

where m € 2N + 1. These constraints can be expressed as a
set of sum rules [14]

D asF(A. Ay.m) =0, (2)

where the sum is performed over all the operators in the
OPE between the two operators ¢. The kernel F, defined in
Eq. (9) in [14], depends solely on zero-temperature CFT
data, which we treat as input. Meanwhile, the coefficients
ap encode the thermal dynamical information

_N~bofpgo IV,
aA*OZA co ZJ(D)JCJ(I)’ (3)

where v = (d—2)/2, c§”> is a Gegenbauer polynomial
and the sum is performed over operators sharing the same
scaling dimension, but with different spins. Here, the
coefficients f40 and co correspond, respectively, to the
structure constants and to the two-point function normali-
zation of the operator O at zero temperature. by is the
thermal one-point function coefficient defined via [8,26]

(Ot = ZCZ (et...eM — traces). (4)

The ultimate goal of the thermal bootstrap program is to
compute these observables completing the set of thermal
CFT data.

In order to solve the constraints (2), a naive approach
consists in truncating the sum at a cutoff dimension A, .
However, this approach fails, as the contribution of the
heavy operators cannot be discarded [27]. This issue can be
circumvented by approximating the tail of heavy operators
using the asymptotic behavior of the coefficients a, [14]

A28,-1 C
heay 2 0 sa(14+S4). (5
“ T TTrRa, ) ( At ) )

Here, §A represents the gap between the scaling dimension
A and the scaling dimension of the operator below it in the
OPE spectrum. The coefficient ¢, is theory dependent and
corresponds to the first correction to the leading behavior.
Let us comment that, in order to derive (5), it is necessary to
add an analyticity assumption on a,, since the Tauberian
theorem fixes only the leading term [14]. Moreover, note
that the power of A in the first correction is universal, but
those of the subleading terms are theory dependent and
currently unknown. Determining them is an important next
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FIG. 4. The two plots present the results for the OPE coefficients associated to the lightest operators of the OPE spectrum for the
0O(2) (a) and O(3) (b) models. The points with no error bar associated correspond to analytical Tauberian predictions, whose error is not

the object of study of this Letter.

goal. The constraints of Eq. (2) can be split into two terms

Fm) = > anF(AApm)+ Y d¥™F(A Aym).
ASAmax A>Amnx

(6)

We do not have access to the spectrum in the heavy sector,
and for this reason, a further approximation is required. In
this Letter, we restrict our consideration to the leading
trajectories of operators [¢¢], , in the second term of
Eq. (6), which, by channel duality, correspond to the
identity [34]. These operators take the classical form
¢0”[0"¢, and their conformal dimensions can be approxi-
mated by the mean-field theory result A, , =24, +
2n + £. Thus, there are two sources of error: one arises
from the omission of subleading trajectories, the other from
the anomalous dimensions of these operators. The former
is negligible with respect to the latter: we estimate both
in [15]. In this approximation, only a finite number of
unknown coefficients are left: the coefficients a, associated
with the light operators A < A .., and the corrections to
the leading behavior (5), namely ¢y, .... The constraints (2)
can be formulated as the minimization of the cost function

n({wi}) = Y wut(m)?, (7)

MMy

where m,,,, determines the maximum number of deriva-
tives considered and w; € (0, 1) is a set of random number
weights, which allows us to test the numerical stability of
the algorithm as previously done, e.g., in [31]. The minimi-
zation process results in estimations for the unknown
parameters, which are affected by numerical errors stem-
ming from two contributions: (i) a statistical error, esti-
mated by the square root of the variance over multiple runs
of the minimization of (7); (ii) a systematic error, due to the

approximation of the contribution of the heavy operators
using (5), estimated in [15].

The uncertainties in the zero-temperature input data
propagate into the thermal one-point functions. When
using the 3D bootstrap results as input, these errors remain
negligible. However, when the zero-temperature conformal
data comes from the & expansion, the associated error
increases with e. This effect is estimated in [15] and
illustrated in Fig. 1 for 0 < e < 1. The errors presented
in this Letter should be regarded as estimations rather than
rigorous error bounds, adopting the terminology of [38].

The free-energy density of the system is determined by
the one-point function coefficient of the stress-energy
tensor through f = by/d, with d the number of spacetime
dimensions [8]. The structure constant f 47, appearing in
(3), is fixed by the Ward identity [39], and therefore,

I'(d/2) cr

= —d s
U 422 (d - 1Ay €7 free

(8)

where ¢7 e = dU(d/2)?/[4n%(d — 1)]. The method pre-
sented here can be tested on simple examples and is found
to produce accurate results for the free scalar field in 4D,
the 2D Ising model, and the O(N) model at large N [15].
More details and illustrative examples can be found in [40].

Ising, XY, and Heisenberg models—The method pre-
sented above can be used to study the O(N) model in
3<d<4. We consider, in (2), the lightest scalar ¢;
(i=1,...,N) as external operator. We use two distinct
sets of zero-temperature input: the results obtained from the
€ expansion [41] and gathered in [42], and the results from
the (zero-temperature) 3D bootstrap, given in [43-48] for
N =1, 2, 3. To approximate the tail of heavy operators, we
consider only the operators [¢p¢], , in the second term of
Eq. (6), corresponding to the identity by channel duality.
We consider the contribution of the identity operator and
of the three lightest operators in the spectrum, and one
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TABLE 1. OPE coefficients a, of light operators in the 3D
Ising model, compared to Monte Carlo results (MC) and previous
results (PR). The value for the Tauberian correction is
¢y ~ —0.065, for which the error is negligible.

@) Ao [44.45] This Letter MC [21-23] PR [20]
€ 1.412 625(10) 0.75(15) 0.711(3) 0.672(74)
T, 3 1.97(7) 2.092(13) 1.96(2)

¢ 3.82951(61) 0.19(6) 0.17(2) 0.17(2)

correction to the Tauberian approximation [15]. This results
in four unknowns: the three nontrivial one-point functions
and the correction to the Tauberian approximation c¢;. All
our calculations are performed by setting m,,, = 7 in (7),
which corresponds to having four constraints of the
type (2). Increasing m,, would result in an increased
error from the Tauberian approximation, which would, in
turn, require the inclusion of additional corrections in (5).

We gather our results for the 3D Ising model (N = 1) in
Table I and compare them to the Monte Carlo values and
the previous results, which relied on a different thermal
bootstrap approach. All our results are consistent with
previous bootstrap findings [8]. Both our results and those
of [8] align with Monte Carlo predictions, with the sole
exception of the thermal OPE coefficient of the stress-
energy tensor. [49] As already observed in [8], the value of
the stress-energy tensor contribution is close to the large N
approximation, where by ~—0.459N and ar~1.923
[51,52]. The results obtained with the ¢ expansion and
the 3D conformal bootstrap as an input are shown in Fig. 1
for the free energy density. Notice that the error estimated
on the coefficient a,; propagates nontrivially on the free
energy; in particular, it is multiplied by N. We also
estimated the thermal two-point function g(z) by inputting
the numerical results in the OPE: Fig. 2 shows a compari-
son between the two KMS-dual channels. The results for
the OPE coefficients are presented in Fig. 3.

Also, for the XY model (N = 2), many zero-temperature
results have been obtained through the & expansion and the
conformal bootstrap. We find the following predictions for
the OPE coefficients in 3D:

ap =073(14),  (Ap =151136(22)), (9)

ar = 1.90(8), (Ar = 3), (10)

Ay = 0.20(7), (A(/)g_ =3.794(8)). (11)
The value for the Tauberian correction is ¢; ~ —0.0539, for
which the error is negligible. The free-energy density can
be calculated using Eq. (8), and the results are shown
in Fig. 1.

We performed the same calculations for the Heisenberg
model (N = 3), using the input from the ¢ expansion and

the conformal bootstrap. We obtain the following results for
the OPE coefficients in 3D:

ap =076(14),  (Ap =1.59489(59)). (12)

ar=181(8),  (Ay=3). (13)

ag = 0.21(7), (A¢§ =3.7668(100)). (14)
The value for the Tauberian correction is ¢; ~ —0.0471, for
which the error is negligible. As for the other cases, we
show the free-energy density in Fig. 1. The results for the
OPE coefficients of the XY and the Heisenberg models are
presented in Fig. 4. Note, again, that the values of ay for
these models closely follow the large N prediction. The
asymptotic behavior is not strictly monotonic, nonetheless,
the qualitative dependence of a; on N aligns with the
findings of [50].

Discussion—In this Letter, we propose a numerical
method for computing thermal OPE coefficients, which
we apply to the critical O(N) models for N = 1, 2, 3. In
particular, we extract the free-energy density of the system
in 3 < d < 4 as well as the OPE coefficients of the lightest
operators. In the case of the 3D Ising model (N = 1), our
results can be compared with previous studies, while for
N =2, 3, we produce new predictions.

There are several directions to explore following this
work. The methods presented here can be applied to
different models. Motivated by recent progress in the
context of holographic black holes [54-58], it would
be interesting to study the thermal N =4 super Yang-
Mills and ABJM theories, for which a plethora of zero-
temperature CFT data is available in the literature [59-63].
Moreover, it was shown in [12] that the bootstrap problem
in the presence of a temporal line defect is very similar
to the one discussed in this Letter. The exploration of
this direction is crucial because of low-energy applications
[64—66] and holographic interpretations [3]. In the case of
the Maldacena-Wilson line [67], a great amount of CFT
data has been extracted recently [68,69]. Furthermore, we
are currently working on improving the precision on the
numerical results in tandem with developing an analytical
approach which will provide the next corrections in the
Tauberian approximation [70].

The strategy of this Letter could be adapted to all these
configurations, which also provide a good stage for
improving the precision on the numerical results.

Finally, recently, many different directions to study finite
temperature effects in CFTs were proposed [71-79]. It
would be interesting to compare and possibly incorporate
these techniques with the method proposed in this Letter.
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