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Protein—nucleic acid interactions are vital to gene regulation
and disease, yet have long been considered “undruggable.”
Recent advances are reshaping this paradigm, enabling
therapeutic targeting of DNA- and RNA-binding proteins. In
this review, we highlight four major strategies: (1) direct
disruption of protein-nucleic acid binding, (2) stabilization of
specific complexes or conformations, (3) targeted degradation
of interaction partners, and (4) allosteric modulation. We
explore key examples across transcription factors, RNA-
binding proteins, and DNA repair proteins, and emphasize
emerging chemical, structural, and computational techniques
that are accelerating discovery. Together, by intervening
directly in the gene regulatory machinery, these approaches
expand the druggable genome and open new avenues for
treating cancer, genetic disorders, and viral infections.
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Introduction

Protein—nucleic acid complexes are central to gene
regulation and disease, yet many of the proteins that
bind DNA or RNA (e.g., transcription factors and RNA-
binding proteins) have traditionally been considered
“undruggable” due to their lack of binding pockets for
small molecules and dynamic binding modes [1,2].
However, recent advances are overcoming this barrier
by developing inventive strategies to modulate
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protein—DNA and protein—RNA complexes. In this
review, we examine four major drug discovery strategies
for modulating protein—DNA and protein—RNA in-
teractions: (1) direct disruption of binding, (2) stabili-
zation of specific complexes or conformations, (3)
targeted degradation of one of the interaction partners,
and (4) indirect targeting through allosteric modulation.
We highlight examples and elaborate on the techniques
enabling these strategies.

Disruption of protein—nucleic acid binding
One straightforward approach is to directly inhibit the
protein-nucleic acid interaction, preventing the forma-
tion of a complex (Figure 1a). Many transcription factors
(TFs) and RNA-binding proteins (RBPs) rely on
defined nucleic-acid binding domains [3,4], and com-
pounds that target these domains can inhibit their reg-
ulatory activity.

Several small molecules have recently been identified
that disrupt DNA—protein interactions in transcription
factors (TFs) and DNA repair proteins. For instance,
Lin et al. (2023) showed that Eltrombopag inhibits the
autophagy regulator TFEB by blocking its DNA binding
and suppressing downstream gene expression [5].
Similarly, z vitro assays integrated with computational
studies suggested that naphthoquinone analogs inter-
fere with the TF TCF4, which disrupts its interaction
with DNA, inhibits Wnt signaling, and promotes TCF4
degradation [6]. Radaeva et al. (2023) used ultra-large
virtual screening to identify novel mode of action in-
hibitors that bind the androgen receptor (AR) DNA-
binding domain, blocking its transcriptional activity [7].

Moreover, targeting oncogenic TF—DNA interactions
has emerged as a promising therapeutic strategy. Using
computer-aided drug design (CADD), Ton et al. (2022)
identified the small molecule VPC-70619 that blocks
the function of the TF N-Myc in prostate cancer [8]. Xu
et al. (2025) expanded this strategy using arsenic
trioxide, which interrupts the N-Myc—DNA interaction
and developed a high-throughput cellular screen to
identify similar inhibitors [9]. Additionally, Manguinhas
et al. (2024) reported inhibitors of the endonuclease
XPG, which target its DNA-binding domain to enhance
cisplatin efficacy in lung cancer cells [10]. Bhat et al.
(2023) identified a small molecule inhibitor of the
DNA-repair protein RAD52, disrupting RAD52-ssDNA
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Figure 1
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Strategies for modulating protein—nucleic acid interactions with small molecules. In schematic representations, proteins are shown in green, nucleic
acids (DNA or RNA) in blue or cyan, and small molecules (including PROTACs and peptides) in orange. Representative structural models at right are
adapted from primary literature sources as cited. (a) Interface disruption: Small molecules (and peptides, not shown in the figure) competitively inhibit
nucleic acid—protein interactions by binding to the corresponding interfaces as demonstrated in the case of the RBP HuR [22] (Section Disruption of
protein—nucleic acid binding). (b) Interface stabilization: Small molecules stabilize nucleic acid—protein complexes, e.g. by promoting interactions with
structured DNA elements, such as G-quadruplexes [35]. (¢) Interactor degradation: PROTACs direct nucleic acid-binding proteins for ubiquitin-mediated
proteasomal degradation via recruitment of E3 ligases, as shown for ERa [40]. (d) Allosteric inhibition: Small molecules bind allosterically to either the
protein (or DNA/RNA, not shown in the figure), altering conformation and reducing binding affinity as demonstrated for Polf [56].
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binding and inhibiting the cellular activities of the
protein [11].

Synthetic DNA-binding agents have also shown prom-
ise in modulating transcription. Pyrrole-imidazole
polyamides (PIPs) bind sequence-specifically to the
minor groove of double-stranded DNA and have been
used to target disease-relevant genes such as FXN,
hepatocyte growth factor (HGF), and RUNX [12—15].
However, challenges related to off-target effects remain
[16]. Meanwhile, “stapled peptides” have emerged as
potent inhibitors that mimic o-helical domains to block
protein—DNA interactions in TFs like NF-Yand AR-V7,
along with DNA repair proteins and RBPs [17—20].
Covalent inhibitors provide another route by irrevers-
ibly altering key nucleophilic residues at the
protein—DNA interface, as shown for TFs such as
FOXAT1 [21].

RNA—protein interactions are equally attractive tar-
gets, particularly in RNA-binding proteins (RBPs) that
drive cancer progression [2]. For instance, the RBP
HuR (Hu antigen R) has been identified as a potential
target in multiple cancers. Wu et al. (2023) identified
inhibitors of HuR that block its RNA-binding pocket
and suppress tumor growth in breast cancer models
(Figure 1a) [22]. They used a structure-guided
approach combining molecular docking, molecular dy-
namics simulation, and a free energy decomposition
method to find subpockets within the RNA-binding site
of HuR. This suppression aligns with other studies
showing that HuR inhibitors, such as KH-3 and CMLD-
2, sensitize tumors to chemotherapy [23,24]. Qiu et al.
(2025) showed that phenylpyrazoles inhibit another
RBP, the m6A “reader” YI'HDF2, by binding its YT'H
domain, leading to apoptosis and cell cycle arrest in
cancer cells [25]. Similarly, Takayama et al. (2023) re-
ported small molecules that block the splicing factor
PSF from binding RNA, inhibiting tumor growth and
AR expression [26]. Small molecules targeting RNA-
binding interfaces have also been discovered using a
high-throughput, fluorescence-based assay that detects
disruption in hnRNPAZ2B1—RNA binding, reducing the
vesicular enrichment of the pro-inflammatory micro-
RNA [27].

Recent screening campaigns have further expanded this
approach. Dunnett et al. used molecular dynamics
(MD) and fragment-based crystallography to identify
small molecules that bind the RNA-binding domain of
the RBP hnRNPA1 [28]. A high-throughput fluores-
cence-polarization screen was used to identify an in-
hibitor of the RBP Igf2bp1, which significantly reduced
KRAS mRNA levels in cancer cells [29]. Finally, Matias-
Barrios et al. used CADD, in combination with quanti-
tative biochemical and biological assays, to discover a
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small molecule that inhibits the binding of the RBP
Lin28 to RNA and suppresses Lin28-driven cancer cell
proliferation [30].

Stabilization of nucleic acid—protein
complexes

In contrast to inhibition, some drugs stabilize protein-
nucleic acid complexes (which are often referred to as
“molecular glues”) (Figure 1b). This strategy can either
enhance or impair downstream biological outcomes
depending on the functional role of the complex, of-
fering an alternative therapeutic approach [31]. For
example, Kathman et al. (2023) provided a strategy
targeting NONO, an RBP that modulates AR expression
at the RNA level. Their study revealed that electro-
philic small molecules can stabilize NONO—RNA in-
teractions, impair transcript processing, and selectively
downregulate AR isoforms [32].

Another approach involves stabilizing non-canonical
DNA structures. G-quadruplexes (G4s) are stable sec-
ondary DNA configurations found in telomeres and
promoters of genes like "TERT and VEGF [33]. Small
molecules that bind and stabilize G4s can block tran-
scription and replication by hindering protein—DNA
interactions. As a result, it induces replication stress,
DNA damage, and cell fate outcomes such as apoptosis
or ferroptosis. G4 ligands have shown therapeutic po-
tential in cancers, such as triple-negative breast and liver
cancer [34,35]. Huang et al. (2025) identified a selec-
tive inhibitor of liver cancer cells that binds and stabi-
lizes VEGF G4 DNA structures via T-T¢ stacking using
molecular docking and molecular dynamics combined
with i vitro and in vivo studies [35] (Figure 1b). It
decreased VEGF release, inhibited angiogenesis, and
induced apoptosis.

Therapeutic modulation of RNA splicing has also
benefited from stabilization-based strategies. White
et al. demonstrated that the small molecule Branaplam
selectively stabilizes the Ul snRNP-5' splice site com-
plex, exemplifying precise targeting of an RNA—protein
interface [36].

Collectively, these studies reveal how stabilizing
protein-nucleic acid interactions can reshape regulatory
pathways and enable therapeutic outcomes that are
difficult to achieve through inhibition alone.

Targeted degradation of interaction
partners

Because many nucleic acid—binding proteins lack
pockets considered classically druggable, induced-
proximity degradation strategies have emerged as
powerful alternatives (Figure 1c) [37]. Application of
PROteolysis-TArgeting Chimeras (PROTACs) has
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proven to be an attractive method of targeting DNA and
RNA-binding proteins by taking advantage of the
ubiquitin—proteasome pathway in order to drive selec-
tive protein degradation [38]. PROTACs are two-part
molecules that bring a disease-causing protein and the
cell’s degradation machinery together, causing the un-
wanted protein to be tagged and proteolyzed.

Some examples are PROTACs against the Androgen
Receptor (AR), the Estrogen Receptor oo DNA-binding
domain (ERo-DBD), and BRD4 [39—41]. Naganuma
et al. used a structure-based approach to develop decoy
oligonucleotide PROTAC:S targeting ERa., incorporating
a phosphorothioate backbone and a T4 hairpin loop to
enhance structural stability, nuclease resistance, and
ERo degradation activity in breast cancer cells [40]
(Figure 1c). Notably, the selective PROTAC degrader
Vepdegestrant (ARV-471) of ERa is currently in clinical
trials, showing superior degradation of both wild-type
and mutant ER and improved tumor growth inhibition
compared to standard endocrine therapies [42].

Most recently, a recognition-based covalent PROTAC
was developed that uses a DNA aptamer to selectively
degrade the Z-DNA binding protein 1 (ZBP1) as a po-
tential therapy for infection-induced inflammation [43].
Kashkush et al. (2024) demonstrated the selective
degradation of Lin28, a repressor of the tumor sup-
pressor microRNA let-7, using PROTACs and small
molecule molecular glues [44]. Similarly, Lin28A-
miRNA-based PROTACs were developed to degrade
Lin28A selectively, restoring tumor-suppressive let-7
miRNA levels. This approach inhibited cancer cell
proliferation and migration, enhanced chemotherapy
sensitivity, and reduced tumor growth [45]. Wang et al.
(2023) designed a methylated cytosine-containing
oligonucleotide  conjugate  (methyl-PROTAC) to
degrade the DNA methylation reader MeCP2. The
compound induced apoptosis and selectively eliminated
MeCP2Z-overexpressing cancer cells, illustrating a novel
epigenetic degradation strategy [46].

Further demonstrating the versatility of nucleotide-
guided degradation, Li et al. (2023) developed a
PROTAC using a threose nucleic acid (TNA) and a
DNA aptamer targeting and degrading the TF c-Myc in
breast cancer [47]. Another study by Wang et al. (2023)
introduced prototype telomere-targeting chimeras
(TeloTACs) that degrade the telomeric repeat-binding
factors 1 and 2 (TRF1/2). TeloTACs induce telomere
shortening and proliferation inhibition in cancer cells
[48]. Notably, the splicing factor RBM39 is being
targeted in a completed phase II clinical trial using the
sulfonamide E7820 for degradation in Leukemia pa-
tients [49], demonstrating the clinical translation of
degradation strategies for RNA-binding proteins.

Computational structural modeling of the PROTACs
has also led to insights for their optimization and rational
design, for example, by integrating protein—protein
docking, structural alignment, and atomistic MD simu-
lations [50,51]. Resources like PROTAC-DB 2.0, which
now includes predicted ternary complex structures for
degraders with high efficacy, are accelerating structure-
guided development of next-generation PROTAGCs [52].
Recently, PRODE, a novel  siico framework for
PROTAG S, has been developed to model ternary com-
plexes, predict binding thermodynamics, assess complex
stability, and design degraders for challenging targets [53].

Together, these advances underscore how induced-
proximity degradation is reshaping the landscape of
therapeutic targeting, enabling the pharmacological
elimination of nucleic acid—binding proteins that lack
classical ligandable pockets.

Allosteric modulation of interactions

A related strategy is allosteric modulation, where small
molecules bind to a site on the protein or on the RNA/
DNA separate from the protein-nucleic acid interface
and trigger a conformational change that affects binding
affinity (Figure 1d) [54]. In some instances, this in-
volves binding to a nearby region of the DNA or RNA to
alter its structure.

Allosteric strategies have emerged as effective means to
modulate DNA-binding enzymes by stabilizing inactive
conformations, bypassing direct active-site competition.
For example, the covalent inhibitor VVD-133214 targets
C727 in the WRN helicase, inducing a compact
conformation that blocks DNA unwinding and selec-
tively kills MSI-H cancer cells through DNA damage
[55]. Fried et al. (2024) identified a nanomolar allosteric
inhibitor that traps the DNA damage response protein
DNA Polymerase 6 (Polf) on B-form DNA via an
induced-fit mechanism (Figure 1d) [56]. Using X-ray
crystallography and biochemical assays, they showed
that the inhibitor stabilizes Polf in a closed conforma-
tion, selectively blocking its activity and overcoming
PARP inhibitor resistance in breast cancer cells. The TF
STAT3, a well-established oncotarget, has also been
subjected to allosteric modulation. While most efforts
have focused on its SH2 domain, Szalai et al. (2025)
identified a previously underexplored pocket at the
junction of the coiled-coil and DNA-binding domains.
They identified covalent ligands with virtual screening,
representing a promising scaffold for targeting this
allosteric site in future studies [57].

Notably, targeting the nucleic acids is another way to
achieve allosteric modulation. Recent studies on DNA-
binding heterocyclic diamidines demonstrated that
binding to one region of DNA can redistribute
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transcription factor occupancy elsewhere, exerting an
indirect yet potent influence on gene regulation [58].

Together, these diverse examples highlight the versa-
tility of allosteric strategies in expanding the druggable
space for protein—nucleic acid interactions.

Advances in structural and computational
techniques

Technological breakthroughs in structural biology and
computational modeling have significantly expanded
the landscape for targeting protein—nucleic acid in-
teractions. Recent Al-based approaches, such as Alpha-
Fold3 and RoseTTAFoldNA, enable modeling of
protein—protein (or peptide), DNA—protein, and
RNA—protein complexes with increasing accuracy,
supporting rational drug design for previously intrac-
table targets [59,60]. Similarlyy, DOCKGROUND pro-
vides a resource for the development and benchmarking
of structure-based modeling of protein-RNA in-
teractions [61]. However, despite the success of struc-
ture prediction softwares, they still fall short of their
protein-level accuracy with RNA structures, as
observed in the last two structure prediction competi-
tions, CASP15 and CASP16 [62].

Over the last decade, cryoEM has significantly expanded
the structural landscape of RNA/DNA-protein in-
teractions. Softwares like TEMPy-ReFF/RIBFIND2
[63] in combination with ERRASER2Z, a yet to be
published successor to ERRASER [64], can be used for
improving model refinement of complexes involving
nucleic acid structures [65]. This has been demon-
strated on many CASP15 targets, highlighting the value
of integrating computational methods with experi-
mental techniques to aid protein-nucleotide drug dis-
covery. Such advances will allow more accurate
identification of druggable pockets on traditionally
challenging RNA/DNA-protein targets.

A comprehensive design cycle might use the prediction
of a protein-RNA/DNA structure, or protein-stapled
peptide structure, to identify a binding site, dock the
small molecule (or peptide) to the target protein/RNA
or DNA using docking algorithms for evaluating small-
molecule interaction (e.g. NPDock [66], HADDOCK
[67] and SwissDock 2024 [68]), and then run MD
simulations (e.g. with GROMACS [69]). Other
computation methods have been developed for the
evaluation of small molecules/peptides [70]. For
example, recently, StaPep has enabled detailed charac-
terization of stapled peptide interactions by analyzing
their structure and molecular features, improving
rational design strategies [71].

For RNA-focused discovery, several structure-based and
deep-learning methods have emerged. DRLIiPS, a
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structure-based SVM  (Support Vector Machine)
framework, predicts druggable RNA-ligand binding
pockets with improved accuracy over prior models like
DrugPred RNA [72,73]. Recent attention has also
focused on molecular docking scores developed specif-
ically for RNA, with RLaffinity being introduced in 2024
as one of the first deep-learning methods for predicting
RNA-ligand affinity [74]. FingeRNAt utilizes a machine
learning model encoding covalent interactions as struc-
tural interaction fingerprints to predict key interactions
driving ligand binding to RNA [75]. Recently, RNAmi-
gos2 introduced a deep learning pipeline that allows the
representation of RNA binding sites as 2.5D graphs. The
model leveraged synthetic data to overcome the limited
number of RNA-ligand structures, achieving a high
speed up, which enables ultra-high throughput docking
[76]. In parallel, DRPScore, a deep learning model using
4D-CNN architecture, significantly improves the iden-
tification of native-like protein—RNA complexes from
docking decoys, outperforming existing methods.
However, its modest success rate on unbound—unbound
cases underscores the ongoing challenges in accurate
RNA—protein structural prediction [77].

A recent study reported an experimental technique for
large-scale analysis of RNA-small molecule interactions
[78,79]. This approach adapted the FOREST platform,
which was originally developed for RNA—protein
interaction profiling, for high-throughput mapping of
RNA-—small molecule interactions by combining barco-
ded RNA libraries with bead-based pull-down and
microarray readout.

Lastly, TRIBE-ID (Targets of RBPs Identified by
Editing induced through Dimerization) offers
transcriptome-wide z vivo mapping of RNA—protein
interactions using chemically induced A-to-I editing by
fusing an RNA-editing enzyme to an RBP. It can quan-
tify drug-induced changes in binding, as shown with the
RBP G3BP1 under oxidative stress [80].

Collectively, these advances are transforming our ability
to identify, predict, and manipulate protein-nucleic acid
interactions with precision.

Conclusion and outlook

Targeting protein-DNA and protein-RNA interactions
for drug discovery has made great progress in recent
years. For example, disrupting such interfaces with small
molecules has shown promise for inhibiting oncopro-
teins like the transcription factor N-Myc or the RBP
HuR. Conversely, stabilizing protein-nucleic acid com-
plexes demonstrates how enhancing instead of inhibit-
ing these interactions can reprogram regulatory
pathways and achieve therapeutic effects that tradi-
tional inhibition strategies often cannot. Additionally,
targeted degradation strategies like PROTACs have
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successfully eliminated “undruggable” transcription
factors and RBPs. Finally, allosteric approaches are also
emerging, providing new ways to influence binding.
These diverse strategies demonstrate that there is no
one-size-fits-all solution, but rather a toolkit of ap-
proaches to tackle different facets of these com-
plex targets.

Despite these advances, challenges remain. Specificity
is critical, as many DNA- or RNA-binding proteins have
similar motifs, and minimizing off-target DNA and RNA
interactions remains an essential goal. Designing ligands
that can distinguish between closely related binding
sites without affecting homologous proteins is particu-
larly difficult and requires high-resolution structural
data and careful optimization. Equally important is
optimizing pharmacokinetic properties, including cell
permeability, metabolic stability, and bioavailability,
particularly for emerging therapeutic modalities such as
PROTACS and stapled peptides. In addition, a deeper
understanding of potential resistance mechanisms and
the broader systemic consequences of perturbing
fundamental cellular processes is necessary to ensure
both efficacy and safety.

In the future, integrating structural biology, multi-
omics-based  approaches, and  high-throughput
screening will likely uncover new chemotypes for
targeting protein—nucleic acid complexes. The ability to
degrade, stabilize, or allosterically modulate these in-
teractions opens exciting opportunities to treat cancers,
as well as genetic and viral diseases by directly inter-
vening with the gene regulators. However, realizing the
full clinical potential of these approaches will require
addressing challenges related to scalability, drug stabil-
ity, and regulatory pathways. Alongside these, advances
in computational methods are expected to accelerate
this progress by improving the prediction of
protein—nucleic acid interactions and guiding the design
of selective ligands. Machine learning can identify key
interaction patterns and optimize molecules faster than
traditional approaches. While generative Al models offer
novel compound design beyond existing chemical space,
they are currently restricted due to the limited avail-
ability of structural data. Explainable Al, which makes
the behavior of Al systems understandable to humans,
will enhance mechanistic insights, helping to reduce off-
target effects and resistance. Together, these advances
promise to amplify the therapeutic toolkit for targeting
protein—nucleic acid interactions and are rapidly
changing what was once considered “undruggable”.
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