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Protein – nucleic acid interactions are vital to gene regulation 
and disease, yet have long been considered “undruggable.” 
Recent advances are reshaping this paradigm, enabling 
therapeutic targeting of DNA- and RNA-binding proteins. In 
this review, we highlight four major strategies: (1) direct 
disruption of protein-nucleic acid binding, (2) stabilization of 
specific complexes or conformations, (3) targeted degradation 
of interaction partners, and (4) allosteric modulation. We 
explore key examples across transcription factors, RNA- 
binding proteins, and DNA repair proteins, and emphasize 
emerging chemical, structural, and computational techniques 
that are accelerating discovery. Together, by intervening 
directly in the gene regulatory machinery, these approaches 
expand the druggable genome and open new avenues for 
treating cancer, genetic disorders, and viral infections.

Addresses
1 Research Department of Integrative Virology, Leibniz-Institut für 
Virologie (LIV), Hamburg, Germany
2 Department of Chemistry, Universität Hamburg, Hamburg, Germany
3 Centre for Structural Systems Biology (CSSB), Hamburg, Germany
4 Institute for Molecular Virology and Tumorvirology, Universitätskli
nikum Hamburg Eppendorf (UKE), Hamburg, Germany

Corresponding author: Topf, Maya (maya.topf@cssb-hamburg.de)

Current Opinion in Structural Biology 2025, 95:103165

This review comes from a themed issue on Protein Nucleic Acid In
teractions (2025)

Edited by Shandar Ahmad and Elodie Laine

For a complete overview see the Issue and the Editorial

Available online xxx

https://doi.org/10.1016/j.sbi.2025.103165

0959-440X/© 2025 The Authors. Published by Elsevier Ltd. This is an 
open access article under the CC BY license (http://creativecommons. 
org/licenses/by/4.0/).

Introduction
Protein—nucleic acid complexes are central to gene 

regulation and disease, yet many of the proteins that 

bind DNA or RNA (e.g., transcription factors and RNA- 

binding proteins) have traditionally been considered 

“undruggable” due to their lack of binding pockets for 

small molecules and dynamic binding modes [1,2]. 

However, recent advances are overcoming this barrier 

by developing inventive strategies to modulate 

protein—DNA and protein—RNA complexes. In this 

review, we examine four major drug discovery strategies 

for modulating protein—DNA and protein—RNA in

teractions: (1) direct disruption of binding, (2) stabili

zation of specific complexes or conformations, (3) 

targeted degradation of one of the interaction partners, 

and (4) indirect targeting through allosteric modulation. 

We highlight examples and elaborate on the techniques 

enabling these strategies.

Disruption of protein – nucleic acid binding
One straightforward approach is to directly inhibit the 

protein-nucleic acid interaction, preventing the forma

tion of a complex (Figure 1a). Many transcription factors 

(TFs) and RNA-binding proteins (RBPs) rely on 

defined nucleic-acid binding domains [3,4], and com

pounds that target these domains can inhibit their reg

ulatory activity.

Several small molecules have recently been identified 

that disrupt DNA—protein interactions in transcription 

factors (TFs) and DNA repair proteins. For instance, 

Lin et al. (2023) showed that Eltrombopag inhibits the 

autophagy regulator TFEB by blocking its DNA binding 

and suppressing downstream gene expression [5]. 

Similarly, in vitro assays integrated with computational 

studies suggested that naphthoquinone analogs inter

fere with the TF TCF4, which disrupts its interaction 

with DNA, inhibits Wnt signaling, and promotes TCF4 

degradation [6]. Radaeva et al. (2023) used ultra-large 

virtual screening to identify novel mode of action in

hibitors that bind the androgen receptor (AR) DNA- 

binding domain, blocking its transcriptional activity [7].

Moreover, targeting oncogenic TF—DNA interactions 

has emerged as a promising therapeutic strategy. Using 

computer-aided drug design (CADD), Ton et al. (2022) 

identified the small molecule VPC-70619 that blocks 

the function of the TF N-Myc in prostate cancer [8]. Xu 

et al. (2025) expanded this strategy using arsenic 

trioxide, which interrupts the N-Myc—DNA interaction 

and developed a high-throughput cellular screen to 

identify similar inhibitors [9]. Additionally, Manguinhas 

et al. (2024) reported inhibitors of the endonuclease 

XPG, which target its DNA-binding domain to enhance 

cisplatin efficacy in lung cancer cells [10]. Bhat et al. 

(2023) identified a small molecule inhibitor of the 

DNA-repair protein RAD52, disrupting RAD52-ssDNA 
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Figure 1 

Strategies for modulating protein – nucleic acid interactions with small molecules. In schematic representations, proteins are shown in green, nucleic 
acids (DNA or RNA) in blue or cyan, and small molecules (including PROTACs and peptides) in orange. Representative structural models at right are 
adapted from primary literature sources as cited. (a) Interface disruption: Small molecules (and peptides, not shown in the figure) competitively inhibit 
nucleic acid – protein interactions by binding to the corresponding interfaces as demonstrated in the case of the RBP HuR [22] (Section Disruption of 
protein – nucleic acid binding). (b) Interface stabilization: Small molecules stabilize nucleic acid – protein complexes, e.g. by promoting interactions with 
structured DNA elements, such as G-quadruplexes [35]. (c) Interactor degradation: PROTACs direct nucleic acid-binding proteins for ubiquitin-mediated 
proteasomal degradation via recruitment of E3 ligases, as shown for ERα [40]. (d) Allosteric inhibition: Small molecules bind allosterically to either the 
protein (or DNA/RNA, not shown in the figure), altering conformation and reducing binding affinity as demonstrated for Polθ [56].
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binding and inhibiting the cellular activities of the 

protein [11].

Synthetic DNA-binding agents have also shown prom

ise in modulating transcription. Pyrrole-imidazole 

polyamides (PIPs) bind sequence-specifically to the 

minor groove of double-stranded DNA and have been 

used to target disease-relevant genes such as FXN, 

hepatocyte growth factor (HGF), and RUNX [12—15]. 

However, challenges related to off-target effects remain 

[16]. Meanwhile, “stapled peptides” have emerged as 

potent inhibitors that mimic α-helical domains to block 

protein—DNA interactions in TFs like NF-Y and AR-V7, 

along with DNA repair proteins and RBPs [17—20]. 

Covalent inhibitors provide another route by irrevers

ibly altering key nucleophilic residues at the 

protein—DNA interface, as shown for TFs such as 

FOXA1 [21].

RNA—protein interactions are equally attractive tar

gets, particularly in RNA-binding proteins (RBPs) that 

drive cancer progression [2]. For instance, the RBP 

HuR (Hu antigen R) has been identified as a potential 

target in multiple cancers. Wu et al. (2023) identified 

inhibitors of HuR that block its RNA-binding pocket 

and suppress tumor growth in breast cancer models 

(Figure 1a) [22]. They used a structure-guided 

approach combining molecular docking, molecular dy

namics simulation, and a free energy decomposition 

method to find subpockets within the RNA-binding site 

of HuR. This suppression aligns with other studies 

showing that HuR inhibitors, such as KH-3 and CMLD- 

2, sensitize tumors to chemotherapy [23,24]. Qiu et al. 

(2025) showed that phenylpyrazoles inhibit another 

RBP, the m6A “reader” YTHDF2, by binding its YTH 

domain, leading to apoptosis and cell cycle arrest in 

cancer cells [25]. Similarly, Takayama et al. (2023) re

ported small molecules that block the splicing factor 

PSF from binding RNA, inhibiting tumor growth and 

AR expression [26]. Small molecules targeting RNA- 

binding interfaces have also been discovered using a 

high-throughput, fluorescence-based assay that detects 

disruption in hnRNPA2B1—RNA binding, reducing the 

vesicular enrichment of the pro-inflammatory micro

RNA [27].

Recent screening campaigns have further expanded this 

approach. Dunnett et al. used molecular dynamics 

(MD) and fragment-based crystallography to identify 

small molecules that bind the RNA-binding domain of 

the RBP hnRNPA1 [28]. A high-throughput fluores

cence-polarization screen was used to identify an in

hibitor of the RBP Igf2bp1, which significantly reduced 

KRAS mRNA levels in cancer cells [29]. Finally, Matias- 

Barrios et al. used CADD, in combination with quanti

tative biochemical and biological assays, to discover a 

small molecule that inhibits the binding of the RBP 

Lin28 to RNA and suppresses Lin28-driven cancer cell 

proliferation [30].

Stabilization of nucleic acid – protein 
complexes
In contrast to inhibition, some drugs stabilize protein- 

nucleic acid complexes (which are often referred to as 

“molecular glues”) (Figure 1b). This strategy can either 

enhance or impair downstream biological outcomes 

depending on the functional role of the complex, of

fering an alternative therapeutic approach [31]. For 

example, Kathman et al. (2023) provided a strategy 

targeting NONO, an RBP that modulates AR expression 

at the RNA level. Their study revealed that electro

philic small molecules can stabilize NONO—RNA in

teractions, impair transcript processing, and selectively 

downregulate AR isoforms [32].

Another approach involves stabilizing non-canonical 

DNA structures. G-quadruplexes (G4s) are stable sec

ondary DNA configurations found in telomeres and 

promoters of genes like hTERT and VEGF [33]. Small 

molecules that bind and stabilize G4s can block tran

scription and replication by hindering protein—DNA 

interactions. As a result, it induces replication stress, 

DNA damage, and cell fate outcomes such as apoptosis 

or ferroptosis. G4 ligands have shown therapeutic po

tential in cancers, such as triple-negative breast and liver 

cancer [34,35]. Huang et al. (2025) identified a selec

tive inhibitor of liver cancer cells that binds and stabi

lizes VEGF G4 DNA structures via π-π stacking using 

molecular docking and molecular dynamics combined 

with in vitro and in vivo studies [35] (Figure 1b). It 

decreased VEGF release, inhibited angiogenesis, and 

induced apoptosis.

Therapeutic modulation of RNA splicing has also 

benefited from stabilization-based strategies. White 

et al. demonstrated that the small molecule Branaplam 

selectively stabilizes the U1 snRNP-5′ splice site com

plex, exemplifying precise targeting of an RNA—protein 

interface [36].

Collectively, these studies reveal how stabilizing 

protein-nucleic acid interactions can reshape regulatory 

pathways and enable therapeutic outcomes that are 

difficult to achieve through inhibition alone.

Targeted degradation of interaction 
partners
Because many nucleic acid—binding proteins lack 

pockets considered classically druggable, induced- 

proximity degradation strategies have emerged as 

powerful alternatives (Figure 1c) [37]. Application of 

PROteolysis-TArgeting Chimeras (PROTACs) has 
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proven to be an attractive method of targeting DNA and 

RNA-binding proteins by taking advantage of the 

ubiquitin—proteasome pathway in order to drive selec

tive protein degradation [38]. PROTACs are two-part 

molecules that bring a disease-causing protein and the 

cell’s degradation machinery together, causing the un

wanted protein to be tagged and proteolyzed.

Some examples are PROTACs against the Androgen 

Receptor (AR), the Estrogen Receptor α DNA-binding 

domain (ERα-DBD), and BRD4 [39—41]. Naganuma 

et al. used a structure-based approach to develop decoy 

oligonucleotide PROTACs targeting ERα, incorporating 

a phosphorothioate backbone and a T4 hairpin loop to 

enhance structural stability, nuclease resistance, and 

ERα degradation activity in breast cancer cells [40] 

(Figure 1c). Notably, the selective PROTAC degrader 

Vepdegestrant (ARV-471) of ERα is currently in clinical 

trials, showing superior degradation of both wild-type 

and mutant ER and improved tumor growth inhibition 

compared to standard endocrine therapies [42].

Most recently, a recognition-based covalent PROTAC 

was developed that uses a DNA aptamer to selectively 

degrade the Z-DNA binding protein 1 (ZBP1) as a po

tential therapy for infection-induced inflammation [43]. 

Kashkush et al. (2024) demonstrated the selective 

degradation of Lin28, a repressor of the tumor sup

pressor microRNA let-7, using PROTACs and small 

molecule molecular glues [44]. Similarly, Lin28A- 

miRNA-based PROTACs were developed to degrade 

Lin28A selectively, restoring tumor-suppressive let-7 

miRNA levels. This approach inhibited cancer cell 

proliferation and migration, enhanced chemotherapy 

sensitivity, and reduced tumor growth [45]. Wang et al. 

(2023) designed a methylated cytosine-containing 

oligonucleotide conjugate (methyl-PROTAC) to 

degrade the DNA methylation reader MeCP2. The 

compound induced apoptosis and selectively eliminated 

MeCP2-overexpressing cancer cells, illustrating a novel 

epigenetic degradation strategy [46].

Further demonstrating the versatility of nucleotide- 

guided degradation, Li et al. (2023) developed a 

PROTAC using a threose nucleic acid (TNA) and a 

DNA aptamer targeting and degrading the TF c-Myc in 

breast cancer [47]. Another study by Wang et al. (2023) 

introduced prototype telomere-targeting chimeras 

(TeloTACs) that degrade the telomeric repeat-binding 

factors 1 and 2 (TRF1/2). TeloTACs induce telomere 

shortening and proliferation inhibition in cancer cells 

[48]. Notably, the splicing factor RBM39 is being 

targeted in a completed phase II clinical trial using the 

sulfonamide E7820 for degradation in Leukemia pa

tients [49], demonstrating the clinical translation of 

degradation strategies for RNA-binding proteins.

Computational structural modeling of the PROTACs 

has also led to insights for their optimization and rational 

design, for example, by integrating protein—protein 

docking, structural alignment, and atomistic MD simu

lations [50,51]. Resources like PROTAC-DB 2.0, which 

now includes predicted ternary complex structures for 

degraders with high efficacy, are accelerating structure- 

guided development of next-generation PROTACs [52]. 

Recently, PRODE, a novel in silico framework for 

PROTACs, has been developed to model ternary com

plexes, predict binding thermodynamics, assess complex 

stability, and design degraders for challenging targets [53].

Together, these advances underscore how induced- 

proximity degradation is reshaping the landscape of 

therapeutic targeting, enabling the pharmacological 

elimination of nucleic acid—binding proteins that lack 

classical ligandable pockets.

Allosteric modulation of interactions
A related strategy is allosteric modulation, where small 

molecules bind to a site on the protein or on the RNA/ 

DNA separate from the protein-nucleic acid interface 

and trigger a conformational change that affects binding 

affinity (Figure 1d) [54]. In some instances, this in

volves binding to a nearby region of the DNA or RNA to 

alter its structure.

Allosteric strategies have emerged as effective means to 

modulate DNA-binding enzymes by stabilizing inactive 

conformations, bypassing direct active-site competition. 

For example, the covalent inhibitor VVD-133214 targets 

C727 in the WRN helicase, inducing a compact 

conformation that blocks DNA unwinding and selec

tively kills MSI-H cancer cells through DNA damage 

[55]. Fried et al. (2024) identified a nanomolar allosteric 

inhibitor that traps the DNA damage response protein 

DNA Polymerase θ (Polθ) on B-form DNA via an 

induced-fit mechanism (Figure 1d) [56]. Using X-ray 

crystallography and biochemical assays, they showed 

that the inhibitor stabilizes Polθ in a closed conforma

tion, selectively blocking its activity and overcoming 

PARP inhibitor resistance in breast cancer cells. The TF 

STAT3, a well-established oncotarget, has also been 

subjected to allosteric modulation. While most efforts 

have focused on its SH2 domain, Szalai et al. (2025) 

identified a previously underexplored pocket at the 

junction of the coiled-coil and DNA-binding domains. 

They identified covalent ligands with virtual screening, 

representing a promising scaffold for targeting this 

allosteric site in future studies [57].

Notably, targeting the nucleic acids is another way to 

achieve allosteric modulation. Recent studies on DNA- 

binding heterocyclic diamidines demonstrated that 

binding to one region of DNA can redistribute 
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transcription factor occupancy elsewhere, exerting an 

indirect yet potent influence on gene regulation [58].

Together, these diverse examples highlight the versa

tility of allosteric strategies in expanding the druggable 

space for protein—nucleic acid interactions.

Advances in structural and computational 
techniques
Technological breakthroughs in structural biology and 

computational modeling have significantly expanded 

the landscape for targeting protein—nucleic acid in

teractions. Recent AI-based approaches, such as Alpha

Fold3 and RoseTTAFoldNA, enable modeling of 

protein—protein (or peptide), DNA—protein, and 

RNA—protein complexes with increasing accuracy, 

supporting rational drug design for previously intrac

table targets [59,60]. Similarly, DOCKGROUND pro

vides a resource for the development and benchmarking 

of structure-based modeling of protein-RNA in

teractions [61]. However, despite the success of struc

ture prediction softwares, they still fall short of their 

protein-level accuracy with RNA structures, as 

observed in the last two structure prediction competi

tions, CASP15 and CASP16 [62].

Over the last decade, cryoEM has significantly expanded 

the structural landscape of RNA/DNA-protein in

teractions. Softwares like TEMPy-ReFF/RIBFIND2 

[63] in combination with ERRASER2, a yet to be 

published successor to ERRASER [64], can be used for 

improving model refinement of complexes involving 

nucleic acid structures [65]. This has been demon

strated on many CASP15 targets, highlighting the value 

of integrating computational methods with experi

mental techniques to aid protein-nucleotide drug dis

covery. Such advances will allow more accurate 

identification of druggable pockets on traditionally 

challenging RNA/DNA-protein targets.

A comprehensive design cycle might use the prediction 

of a protein-RNA/DNA structure, or protein-stapled 

peptide structure, to identify a binding site, dock the 

small molecule (or peptide) to the target protein/RNA 

or DNA using docking algorithms for evaluating small- 

molecule interaction (e.g. NPDock [66], HADDOCK 

[67] and SwissDock 2024 [68]), and then run MD 

simulations (e.g. with GROMACS [69]). Other 

computation methods have been developed for the 

evaluation of small molecules/peptides [70]. For 

example, recently, StaPep has enabled detailed charac

terization of stapled peptide interactions by analyzing 

their structure and molecular features, improving 

rational design strategies [71].

For RNA-focused discovery, several structure-based and 

deep-learning methods have emerged. DRLiPS, a 

structure-based SVM (Support Vector Machine) 

framework, predicts druggable RNA-ligand binding 

pockets with improved accuracy over prior models like 

DrugPred_RNA [72,73]. Recent attention has also 

focused on molecular docking scores developed specif

ically for RNA, with RLaffinity being introduced in 2024 

as one of the first deep-learning methods for predicting 

RNA-ligand affinity [74]. FingeRNAt utilizes a machine 

learning model encoding covalent interactions as struc

tural interaction fingerprints to predict key interactions 

driving ligand binding to RNA [75]. Recently, RNAmi

gos2 introduced a deep learning pipeline that allows the 

representation of RNA binding sites as 2.5D graphs. The 

model leveraged synthetic data to overcome the limited 

number of RNA-ligand structures, achieving a high 

speed up, which enables ultra-high throughput docking 

[76]. In parallel, DRPScore, a deep learning model using 

4D-CNN architecture, significantly improves the iden

tification of native-like protein—RNA complexes from 

docking decoys, outperforming existing methods. 

However, its modest success rate on unbound—unbound 

cases underscores the ongoing challenges in accurate 

RNA—protein structural prediction [77].

A recent study reported an experimental technique for 

large-scale analysis of RNA-small molecule interactions 

[78,79]. This approach adapted the FOREST platform, 

which was originally developed for RNA—protein 

interaction profiling, for high-throughput mapping of 

RNA—small molecule interactions by combining barco

ded RNA libraries with bead-based pull-down and 

microarray readout.

Lastly, TRIBE-ID (Targets of RBPs Identified by 

Editing induced through Dimerization) offers 

transcriptome-wide in vivo mapping of RNA—protein 

interactions using chemically induced A-to-I editing by 

fusing an RNA-editing enzyme to an RBP. It can quan

tify drug-induced changes in binding, as shown with the 

RBP G3BP1 under oxidative stress [80].

Collectively, these advances are transforming our ability 

to identify, predict, and manipulate protein-nucleic acid 

interactions with precision.

Conclusion and outlook
Targeting protein-DNA and protein-RNA interactions 

for drug discovery has made great progress in recent 

years. For example, disrupting such interfaces with small 

molecules has shown promise for inhibiting oncopro

teins like the transcription factor N-Myc or the RBP 

HuR. Conversely, stabilizing protein-nucleic acid com

plexes demonstrates how enhancing instead of inhibit

ing these interactions can reprogram regulatory 

pathways and achieve therapeutic effects that tradi

tional inhibition strategies often cannot. Additionally, 

targeted degradation strategies like PROTACs have 
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successfully eliminated “undruggable” transcription 

factors and RBPs. Finally, allosteric approaches are also 

emerging, providing new ways to influence binding. 

These diverse strategies demonstrate that there is no 

one-size-fits-all solution, but rather a toolkit of ap

proaches to tackle different facets of these com

plex targets.

Despite these advances, challenges remain. Specificity 

is critical, as many DNA- or RNA-binding proteins have 

similar motifs, and minimizing off-target DNA and RNA 

interactions remains an essential goal. Designing ligands 

that can distinguish between closely related binding 

sites without affecting homologous proteins is particu

larly difficult and requires high-resolution structural 

data and careful optimization. Equally important is 

optimizing pharmacokinetic properties, including cell 

permeability, metabolic stability, and bioavailability, 

particularly for emerging therapeutic modalities such as 

PROTACs and stapled peptides. In addition, a deeper 

understanding of potential resistance mechanisms and 

the broader systemic consequences of perturbing 

fundamental cellular processes is necessary to ensure 

both efficacy and safety.

In the future, integrating structural biology, multi- 

omics-based approaches, and high-throughput 

screening will likely uncover new chemotypes for 

targeting protein—nucleic acid complexes. The ability to 

degrade, stabilize, or allosterically modulate these in

teractions opens exciting opportunities to treat cancers, 

as well as genetic and viral diseases by directly inter

vening with the gene regulators. However, realizing the 

full clinical potential of these approaches will require 

addressing challenges related to scalability, drug stabil

ity, and regulatory pathways. Alongside these, advances 

in computational methods are expected to accelerate 

this progress by improving the prediction of 

protein—nucleic acid interactions and guiding the design 

of selective ligands. Machine learning can identify key 

interaction patterns and optimize molecules faster than 

traditional approaches. While generative AI models offer 

novel compound design beyond existing chemical space, 

they are currently restricted due to the limited avail

ability of structural data. Explainable AI, which makes 

the behavior of AI systems understandable to humans, 

will enhance mechanistic insights, helping to reduce off- 

target effects and resistance. Together, these advances 

promise to amplify the therapeutic toolkit for targeting 

protein—nucleic acid interactions and are rapidly 

changing what was once considered “undruggable”.
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