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This paper develops a homogenized harmonic balance finite element method (HomHBFEM) to predict

the dynamic behavior of magnets with fast excitation cycles, including eddy current and skin effects. A

homogenization technique for laminated yokes avoids resolving the individual laminates and the skin depth

in the finite element (FE) mesh. Instead, the yoke is represented by a bulk surrogate material with

frequency-dependent parameters. The ferromagnetic saturation of the yoke at higher excitation currents is

tackled by a harmonic balance method, which accounts for a coupled set of frequency components.

Thereby, a computationally expensive time stepping of the eddy-current field problem and a convolution of

the homogenized yoke model are avoided. The HomHBFEM enables, for the first time, nonlinear

simulations of fast corrector magnets, which are embedded in a fast orbit feedback system to counteract

orbit disturbances over a broad frequency spectrum, and thus guarantee stable light-source operation. The

results show the impact of the nonlinearity on the phase lag and the field attenuation, as well as the eddy

current losses at frequencies up to several tens of kilohertz. The numerical validation for a C-dipole magnet

example shows that the HomHBFEM achieves a sufficient accuracy at an affordable computational effort,

with simulation times of a few hours. In comparison, standard 3D transient FE simulations need to resolve

the lamination thickness and the skin depth in space and the largest relevant frequency in time, which leads

to a 2 to 3 orders of magnitude larger mesh and prohibitive computational effort, with simulation times of a

few weeks on a contemporary computer server.
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I. INTRODUCTION

The transition to the fourth generation of storage ring-
based synchrotron radiation sources is in underway, with
accelerator laboratories worldwide upgrading their facili-
ties [1]. At the core of these upgrades is the implementation
of the multibend achromat design, or variants thereof, for
the magnetic lattice [2]. This allows for a significant
reduction in the electron beam’s emittance and ultimately
for higher brightness of the photon beam. In the case of
PETRA IV, the fourth-generation storage ring currently
being planned at DESY, the aim is to reach a horizontal
emittance of 20 pm rad and a vertical emittance of 4 pm rad
[3,4]. With the push toward such extremely low emittances
comes the challenge of providing the necessary electron

beam stability [5]. Typically, the requirement is to stabilize
the beam position within 10% of the beam size [6,7]. To
that end, fast orbit feedback (FOFB) systems are employed.
These control systems employ beam position monitors to
measure the perturbation of the orbit and fast corrector (FC)
magnets to steer the particles toward the design orbit [8].
For PETRA IV, the FOFB system should achieve a
disturbance-rejection bandwidth of 1 kHz [4]. To meet
the space constraints, the FC magnets are also used for slow
correction. Hence, we need to understand the behavior of
the FC magnets from the dc case up to the kilohertz range.
To that end, finite element (FE) simulations of the eddy
current effects in the laminated yokes of the FC magnets
must be conducted. Since the magnets are short compared
to their transversal dimensions, a three-dimensional (3D)
analysis is indispensable.
It is well known that such 3D FE simulations of

laminated ferromagnetic structures at elevated frequencies
are computationally exceedingly demanding [9]. Reaching
convergence becomes more and more difficult at higher
frequencies since the thin lamination sheets, combined with
the small skin depth, necessitate an extremely fine mesh.
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As a result, a brute-force approach, i.e., simulating the
laminated structures using commercial software tools with
a very fine mesh, is not an option for realistic models [10].
For simulations with a linear B–H curve, there are
appropriate homogenization techniques that allow for
capturing the eddy current effects without resolving the
laminations and the skin depth with the FE mesh [11]. We
have employed such a technique to conduct linear simu-
lation studies of the FC magnets for PETRA IV in [12,13].
However, if a nonlinear B–H curve is to be considered, the
only existing option is to resort to multiscale methods, see
e.g., [14–17], which are generally too complicated and
therefore not appropriate to conduct extensive simulation
studies of larger 3D models like the FC magnets.
To enable nonlinear eddy current simulations of FC

magnets, we combine a relatively simple homogenization
technique [11] with the harmonic balance finite element
method (HBFEM) [18]. The homogenization technique
replaces the laminations with a bulk model characterized
by frequency-dependent material tensors, and the HBFEM
introduces a multiharmonic approach, i.e., the solution is
represented as a truncated Fourier series. Then, we can
simulate the FC magnets with a relatively coarse mesh,
and we can include a nonlinear B–H curve without costly
time stepping.
This paper is structured as follows. First, in Secs. II

and III, we briefly explain the homogenization technique
and the HBFEM individually. Then, in Sec. IV, we explain
how the HBFEM and the homogenization technique are
combined into the so-called homogenized harmonic bal-
ance finite element method (HomHBFEM). In Secs. V
and VI, the HomHBFEM is verified by comparing results
for a model of a laminated inductor and a C-dipole magnet
to results obtained by 3D transient FE simulations with an
adequately fine mesh carried out in CST Studio Suite

® [19].
The verification studies clearly show the significant reduc-
tion in required computational resources and simulation
times achieved with the HomHBFEM. Next, in Sec. VII,
the method is applied to a model of the FC magnets for
PETRA IV, and the results are discussed. Finally, con-
clusions are presented in Sec. VIII.

II. HOMOGENIZATION

The homogenization technique considered here consists
of replacing a lamination stack with a frequency-dependent
anisotropic surrogate model [11]. We have successfully
applied the homogenization to the laminated yokes in linear
models of the FC magnets for PETRA IV in [12,13]. In
these contributions, we have investigated the eddy current
losses, magnetic flux densities along the axis, and the
integrated transfer function of the magnets by conducting
(linear) frequency domain simulations. Cross-talk with the
neighboring quadrupole magnets has also been considered
[13]. In the following, we will give a short explanation of
the technique, for the derivation, we refer the reader to [11].

Let Ω be the computational domain and let HDðcurl;ΩÞ
be the Sobolev space consisting of all square-integrable

vector fields v⃗∶Ω → C
3 whose (weak) curl is square

integrable and whose tangential components vanish on
the Dirichlet part of the boundary, i.e.,

HDðcurl;ΩÞ ≔ fv⃗∈L2ðΩ;C3Þ∶∇×v⃗∈L2ðΩ;C3Þ;
n⃗ × v⃗j

ΓD
¼ 0g: (1)

Then, the frequency domain representation of the weak
formulation of the magnetoquasistatic problem, which
we will use throughout this work, reads: Determine

A⃗∈HDðcurl;ΩÞ such that

Z

Ω

ðν∇ × A⃗Þ · ð∇ × A⃗
0ÞdV þ ȷω

Z

Ω

σA⃗ · A⃗
0
dV

¼
Z

Ω

J⃗s · A⃗
0
dV ∀ A⃗

0
∈HDðcurl;ΩÞ; (2)

where ω is the angular frequency, the A⃗
0
are the test

functions, A⃗ is the magnetic vector potential, J⃗s the source
current density, σ the conductivity, and ν the reluctivity.

The weak formulation in Eq. (2) is called A⃗
�
formulation

[20], and it is one of many options for stating the magneto-
quasistatic problem [21]. Herein, the magnetic flux density

B⃗ is given by B⃗ ¼ ∇ × A⃗, and the magnetic field strength H⃗

is obtained via H⃗ ¼ νB⃗.
Inside of a lamination stack, σðr⃗Þ and νðr⃗Þ are functions

of the spatial coordinate r⃗, since they are different for the
conducting laminates and insulation sheets. Let the coor-
dinate system be chosen as shown in Fig. 1. Then,
the homogenization technique consists of replacing σðr⃗Þ
and νðr⃗Þ in the yoke with the spatially constant material
tensors

¯̄σ ¼ σc

2

4

1 0 0

0 1 0

0 0 0

3

5; (3)

FIG. 1. Left: lamination stack with insulation in red and
conducting laminates in blue. Right: homogenized model.
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¯̄ν ¼ σcdδωð1þ ȷÞ
8

sinh
�

ð1þ ȷÞ d
δ

�

sinh2
�

ð1þ ȷÞ d
2δ

�

2

6
4

1 0 0

0 1 0

0 0 0

3

7
5

þ νc

2

6
4

0 0 0

0 0 0

0 0 1

3

7
5;

(4)

where σc denotes the conductivity of the laminates, νc

their reluctivity, d their thickness, and δ ¼
ffiffiffiffiffiffi
2νc
σcω

q

is the

skin depth.
Equations (3) and (4) assume that the insulation thick-

ness is negligible compared to the lamination thickness.
To consider a non-negligible insulation thickness, we adapt
the technique slightly using the stacking factor γ which is
the percentage of the yoke’s volume consisting of con-
ducting material. Regarding the conductivity tensor, we
simply multiply the x and y components with γ, while the z
component remains zero. For the reluctivity tensor, we use
the modified in-plane components

νmod
xy ¼ 1

ð1 − γÞν−1ins þ γν−1xy
(5)

and the modified perpendicular component

νmod
z ¼ γνz þ ð1 − γÞνins; (6)

where νins is the reluctivity of the insulation, νxy denotes the

x and y components of the reluctivity tensor in Eq. (4) and
νz denotes its z component. These modifications of the
conductivity and reluctivity tensors using the stacking
factor γ are based on a widespread technique that has,
for example, been used to simulate the bending magnets
of the SIS100 synchrotron at FAIR, Darmstadt, Germany
[22]. For detailed information on this technique, see for
example [23–25].
The basic idea behind the choice of the averaged

reluctivities is that in the z direction, the magnetic flux
has to pass a series connection of magnetic resistances,
whereas in the x and y directions, the magnetic flux
traverses a parallel connection of magnetic resistances.
For the choice of the conductivity, the idea is that due to the
presence of the insulation, in x and y directions, the cross-
sectional area of the current paths is reduced by the factor γ,
whereas in z direction, the current flow is entirely sup-
pressed. Although in reality, local insulation faults may
permit small leakage currents between lamination sheets,
which could theoretically lead to increased power loss,
such effects are typically negligible. Provided that appro-
priate care is taken to avoid short circuits of multiple
laminations, e.g., by clamping elements or excessive burrs,
the assumption of zero interlaminar current flow is thus
valid [26,27].

It should be noted here that there are multiple other
homogenization techniques following the same pattern,
thus introducing particular choices of ¯̄σ and ¯̄ν, that are
different from the one in Eqs. (3) and (4), see for example
[28,29]. Despite our focus on the choices given by Eqs. (3)
and (4), any other homogenization technique fits within the
framework of the HomHBFEM described below. For
instance, if the laminates are relatively thick, it might be
advisable to use a conductivity tensor with a nonzero z
component, not to model interlaminar current flow, but to
better capture averaged eddy current behavior, as suggested
in [28,30].

III. HARMONIC BALANCE FEM

The core idea of the harmonic balance method is to
approximate the solution of a nonlinear time periodic
differential equation with a truncated Fourier series. This
approach is well known in mathematics, for example, to
solve periodic boundary value problems for ordinary
differential equations [31,32]. The combination of this
technique with the FEM is commonly referred to as
HBFEM. For the solution of nonlinear magnetic field
problems, it was first proposed in [18]. Since then, the
method has been developed further, see for instance
[33–35], and has become a valuable alternative to transient
simulations if one is interested in the steady-state solution
of a nonlinear eddy current problem. The main advantage
of the HBFEM over a transient simulation is that it does not
require any time stepping.
To derive the method, we start from the strong form of

the magnetoquasistatic partial differential equation in the
time domain, which reads:

∇ × ðνðtÞ∇ × A⃗ðtÞÞ þ σ
∂A⃗ðtÞ
∂t

¼ J⃗sðtÞ: (7)

The reluctivity νðtÞ depends on the time t, since we take the
nonlinearity of the B–H curve into account. Note that we
consider only nonhysteretic B–H curves. To carry Eq. (7)
over into the frequency domain, we apply the continuous
Fourier transform given by

A⃗ðωÞ ¼
Z

∞

−∞

A⃗ðtÞe−ȷωtdt (8)

for the magnetic vector potential and likewise for all other
time-dependent quantities. With this definition, transform-
ing Eq. (7) into the frequency domain yields

1

2π
∇ × ½νðωÞ �∇ × A⃗ðωÞ� þ ȷωσA⃗ðωÞ ¼ J⃗sðωÞ; (9)

where � denotes the convolution operator.
Since all time-dependent quantities in Eq. (7) are

periodic functions of time, they have discrete spectra,
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i.e., the spectra have nonzero values only at multiples of
the so-called fundamental frequency ωf. Hence, we can
rewrite the Fourier transforms in Eq. (9) as sums of unit
impulses [36], so-called Dirac combs, and obtain

1

2π
∇×

�
X∞

n¼−∞

2πνnδðω − nωfÞ

�
X∞

n¼−∞

2π∇ × A⃗nδðω − nωfÞ
�

þ
X∞

n¼−∞

|σnωf2πA⃗nδðω − nωfÞ

¼
X∞

n¼−∞

2πJ⃗s;nδðω − nωfÞ; (10)

where δ is the Dirac delta function and A⃗n, J⃗s;n, and νn
denote the Fourier series coefficients of the respective
quantity. Note that since the dc component of the reluctivity
is real valued, we will refer to it as ν0 and, therefore, to
avoid confusion, the vacuum reluctivity will be denoted by
νvac. Computing the convolution of the two Dirac combs in
Eq. (10) yields [37]

X∞

n¼−∞

�
X∞

k¼−∞

∇ × ðνk∇ × A⃗n−kÞ
�

δðω − nωfÞ

þ
X∞

n¼−∞

|σnωfA⃗nδðω − nωfÞ

¼
X∞

n¼−∞

J⃗s;nδðω − nωfÞ: (11)

Thus, for each n∈Z, we have

X∞

k¼−∞

∇ × ½νkðA⃗Þ∇ × A⃗n−k� þ |nωfσA⃗n ¼ J⃗s;n: (12)

Herein, we use the notation νkðA⃗Þ to indicate that, since
we are considering a nonlinear magnetization character-
istic, each Fourier series coefficient of the reluctivity, νk,
depends on all Fourier series coefficients of the magnetic

vector potential A⃗.
Based on Eq. (12), we can derive the weak formulation

for each harmonic component in the standard manner by
multiplying with the test function A⃗

0
and integrating over

the computational domain. This leads to

Z

Ω

�
X∞

k¼−∞

νkðA⃗Þ∇ × A⃗n−k

�

·∇ × A⃗
0
dV

þ |nωfσ

Z

Ω

A⃗n · A⃗
0
dV

¼
Z

Ω

J⃗s;n · A⃗
0
dV ∀ A⃗

0
∈HDðcurl;ΩÞ: (13)

Discretizing Eq. (13) with edge elements finally
results in

X∞

k¼−∞

Kνk
ða⌢Þa⌢n−k þ ȷnωfMσa

⌢

n ¼ j
⌢
⌢

s;n
; (14)

where a
⌢

n is the vector gathering the degrees of freedom
(d.o.f.) of the nth harmonic of the magnetic vector

potential, j
⌢
⌢

s;n
is the discretized nth harmonic of the source

current density,Mσ is the mass matrix, andKνk
denotes the

stiffness matrix computed with the kth harmonic of the
reluctivity. Analogously to the continuous case, we indicate
that each harmonic of the reluctivity depends on all the
harmonics of the magnetic vector potential by using the

notation Kνk
ða⌢Þ.

In practice, it is neither possible nor necessary to take an
infinite number of harmonics into account. Hence, we must
specify the maximum order of harmonics to be considered
in our analysis and then truncate the discrete convolution in
Eq. (14) accordingly. Let the maximum order of considered
harmonics be m∈N. Then, we have a nonlinear system of
equations which reads:

Xminfm;nþmg

k¼maxf−m;n−mg
Kνk

ða⌢Þa⌢n−k þ ȷnωfMσa
⌢

n ¼ j
⌢
⌢

s;n
(15)

for n∈Z ∩ ½−m;m� [38]. Considering that a
⌢

−n ¼ a
⌢�
n, we

only have to solve for ða⌢nÞn∈N0
, which we do via

successive substitution.
The system of equations in Eq. (15) is further reduced in

size by recognizing that a source current density that
includes only odd harmonics of the fundamental compo-
nent will result in a magnetic vector potential that includes
only odd harmonics as well. This can be shown by realizing
that J⃗s including only odd harmonics can be equivalently
expressed by the condition,

J⃗s

�

tþ π

ωf

�

¼ −J⃗sðtÞ; ∀ t: (16)

Then, the statement follows directly from the unique
solvability of Eq. (7) in the space of divergence-free
HðcurlÞ functions with appropriate boundary and initial
conditions. The full proof can be found in [39].
Furthermore, since Ampère’s law prescribes a linear

relation between J⃗s and the magnetic field strength H⃗, it

follows that H⃗ also only contains odd harmonics. Finally,

since H⃗ is related to A⃗ via H⃗ ¼ ν �∇ × A⃗, it follows that
the reluctivity ν only includes even harmonics [40].
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IV. HOMHBFEM

To understand how the HBFEM is combined with the
homogenization technique, we rewrite Eq. (15) as

Kν0
ða⌢Þa⌢n þ

Xminfm;nþmg

k¼maxf−m;n−mg;
k≠0

Kνk
ða⌢Þa⌢n−k

þ |nωfMσa
⌢

n ¼ j
⌢
⌢

s;n
: (17)

Now, the material tensors of the homogenization tech-
nique are introduced. The introduction of the conductivity
tensor ¯̄σ into the mass matrix Mσ is straightforward. The

reluctivity tensor ¯̄ν, on the other hand, must only be used in
the construction of Kν0

, i.e., only for the stiffness matrix

containing the dc component of the reluctivity. Thereby, we
obtain

K ¯̄ν0ðnωfÞða
⌢Þa⌢n þ

Xminfm;nþmg

k¼maxf−m;n−mg;
k≠0

Kνk
ða⌢Þa⌢n−k

þ |nωfM ¯̄σa
⌢

n ¼ j
⌢
⌢

s;n
; (18)

where M ¯̄σ is the mass matrix constructed with the con-
ductivity tensor ¯̄σ as given in Eq. (3) and K ¯̄ν0ðnωfÞ is the

stiffness matrix constructed with the reluctivity tensor given
in Eq. (4) evaluated at w ¼ nωf and ν ¼ ν0 for each
element, i.e., with

¯̄ν0ðnωfÞ

¼ σcdδðnωf ; ν0Þnωfð1þ ȷÞ
8

sinh
�

ð1þȷÞd
δðnωf ;ν0Þ

�

sinh2
�

ð1þȷÞd
2δðnωf ;ν0Þ

�

2

6
4

1 0 0

0 1 0

0 0 0

3

7
5

þ ν0

2

6
4

0 0 0

0 0 0

0 0 1

3

7
5; (19)

where δðnωf ; ν0Þ ¼
ffiffiffiffiffiffiffiffiffi
2ν0

nωfσc

q

. Note that the adaptations

according to Eqs. (5) and (6) can be easily applied to
the components of the tensor in Eq. (19).
To explain the implementation of the method, let us

consider the following scenario. Assume that the source
current contains only a first and a third harmonic and that
we set the highest order of harmonics to be considered to be
m ¼ 3. As explained in Sec. III, the fact that the source
current only contains odd harmonics results in the magnetic
vector potential containing only odd harmonics as well, and
the reluctivity containing only even harmonics. Hence, we
arrive at the following nonlinear system of equations:

ðK ¯̄ν0ð3ωfÞ3þ ȷ3ωfM ¯̄σÞa⌢3 þKν2
a
⌢

1 ¼ j
⌢
⌢

s;3
; (20a)

Kν�
2
a
⌢

3 þ ðK ¯̄ν0ð3ωf Þ þ ȷωfM ¯̄σÞa⌢1 þKν2
a
⌢�
1 ¼ j

⌢
⌢

s;1
: (20b)

Note that, for brevity, we no longer explicitly indicate the

dependence of the stiffness matrices on a
⌢

. Linearizing the
system given by Eqs. (20a) and (20b) with the Newton-
Raphson method is difficult since we are dealing with a
nonanalytical complex system of equations [40,41]. Hence,
the system is linearized using successive substitution,
leading to

ðK ¯̄ν0ð3ωf Þ3
k þ ȷ3ωfM ¯̄σÞa⌢kþ1

3 þKk
ν2
a
⌢kþ1
1 ¼ j

⌢
⌢

s;3
; (21a)

Kk
ν�
2
a
⌢kþ1
3 þ ðKk

¯̄ν0ð3ωf Þ þ |ωfM ¯̄σÞa⌢kþ1
1 þKk

ν2
a
⌢�kþ1
1 ¼ j

⌢
⌢

s;1
;

(21b)

where the superscript k ¼ 0; 1; 2;… indicates the iteration

number and Kk
νi
¼ Kνi

ða⌢kÞ. In each iteration, the linear-

ized system can now be solved as a strongly coupled block
system of equations, e.g., by a dedicated Krylov subspace
solver [42] or multigrid technique [43]. To avoid solving
multiharmonic systems of equations increasing in size
according to the number of considered harmonics, we
adopt a block Jacobi iteration [44] according to

ðK ¯̄ν0ð3ωfÞ3
k þ ȷ3ωfM ¯̄σÞa⌢kþ1

3 ¼ j
⌢
⌢

s;3
−Kk

ν2
a
⌢k
1; (22a)

ðKk
¯̄ν0ð3ωfÞ þ |ωfM ¯̄σÞa⌢kþ1

1 ¼ j
⌢
⌢

s;1
−Kk

ν�
2
a
⌢k
3 −Kk

ν2
a
⌢�k
1 :

(22b)

In this way, the method is easily parallelized, i.e., the
equations for the different harmonics can be solved in
parallel in each iteration [34]. This is particularly important
if the model is driven into strong saturation, as the number
of harmonics required for accurate representation increases
with the level of saturation [45].
To compute the stiffness matricesKk

νi
in the kth iteration,

we first need to compute the discretized magnetic flux

densities b
⌢
⌢k

i as the discrete curl of the a
⌢k
i . These complex-

valued magnetic flux densities are transformed into the time
domain. The time signal for the magnitude of the magnetic
flux density is then inserted into the nonlinear B–H curve to
obtain the time signal for the magnitude of the magnetic
field strength. By forming the quotient of these two time

signals, we obtain the reluctivity, νkðtÞ.
Finally, computing the fast Fourier transform of νkðtÞ

gives us the Fourier series coefficients of the reluctivity

[46], which allows us to set up the Kk
νi
and to assemble the

system of equations given by Eqs. (22a) and (22b).
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The iteration is stopped upon fulfillment of an energy-
based convergence criterion, i.e., when the relative change
in magnetic energy inside the ferromagnetic material from
one iteration to the next is less than a given threshold. The
described iterative procedure is illustrated in Fig. 2. It has
been implemented in the open source FE software GetDP

[47] in combination with additional Python code.
To guarantee the convergence of the iterative scheme,

relaxation is needed, i.e., we relax the solution a
⌢kþ1
i

involving the solution from the previous iteration step
according to

a
⌢

i;relaxed
kþ1 ¼ αa

⌢kþ1
i þ ð1 − αÞa⌢k

i ; (23)

with a relaxation factor α∈ ð0; 1�. Then, we continue the

iteration with the relaxed solution a
⌢

i;relaxed
kþ1.

V. VERIFICATION FOR A LAMINATED

INDUCTOR

A. Model description

To verify the HomHBFEM, we investigate the laminated
inductor model shown in Fig. 3. The model consists of a

coil (red) wound around a ferromagnetic core (blue) with
ten laminations with a thickness of d ¼ 0.5 mm, a width of
5 mm, and a height of 12.5 mm. While this model does not
directly resemble an FC magnet, it provides a well-suited
first test case because it features laminations of a realistic
thickness and it is relatively short, resulting in non-
negligible stray flux perpendicular to the laminations, just
like in the FC magnet. Longer models can also be simulated
with the HomHBFEM, but they would constitute a simpler
test case, since stray flux effects become less important.
The source current Is in the coil is chosen as

IsðtÞ ¼ ð1.5 kAÞ cos ðωftÞ þ ð0.24 kAÞ cos ð3ωftÞ; (24)

i.e., the excitation contains the fundamental component and
a third harmonic. Note that we will refer to the period of the
fundamental component as Tf and to the respective
frequency as ff .
For the magnetization curve, we use a modified version

of the Brauer model [48]. With H ¼ jH⃗j and B ¼ jB⃗j, the
Brauer curve for the nonlinear material relation is given by

HðBÞ ¼ ðk1ek2B
2 þ k3ÞB; (25)

where k1; k2; k3 ∈R are parameters that must be fitted for
given measurement data. Given the typical shape of non-
linear B–H curves, it is clear that k1; k2 > 0.
The Brauer model is a popular and simple model, which

has some shortcomings, one of which is the fact that the
resulting reluctivity is unbounded, i.e.,

lim
B→∞

νðBÞ ¼ lim
B→∞

HðBÞ
B

¼ ∞: (26)

This is physically incorrect because in reality, the reluc-
tivity tends toward the reluctivity of vacuum νvac.
Furthermore, the fact that the reluctivity tends toward
infinity for large B is also numerically problematic, since
it can lead to instabilities. Therefore, we modify the Brauer
model to

H̃ðBÞ ¼ ðk1ek2B
2 þ k3ÞB ; B ≤ Bs;

ðk1ek2B
2
s þ k3ÞBs þ νvacðB−BsÞ ; B > Bs;

	

(27)

FIG. 2. Flowchart of the iterative procedure for the HomHB-
FEM. The index i indicates the harmonic order, and the super-
script k indicates the iteration number. Blue boxes contain steps
implemented in Python, and red boxes contain steps implemented
in GetDP.

FIG. 3. 3D model of the laminated inductor.
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where Bs is the saturation flux density, which we define by
dH
dB

jB¼Bs
¼ νvac. In this way, we guarantee that the modified

B–H characteristic is a C1 curve and fulfills

lim
B→∞

νðBÞ ¼ lim
B→∞

H̃ðBÞ
B

¼ νvac: (28)

A similar modification of the Brauer model is proposed in

[49]. We use k1 ¼ 3.8 m H−1, k2 ¼ 2.17 T−2, and

k3 ¼ 396.2 m H−1, which are typical values for cold rolled
steel, taken from [48]. The corresponding B–H curve is
plotted in Fig. 4. For the conductivity, we use

σ ¼ 10.4 MS m−1, and for the stacking factor, we use a
realistic value of γ ¼ 98.5%.

B. Results

We will now compare the HomHBFEM results for the
laminated inductor to the results of transient nonlinear
simulations conducted in CST Studio Suite

®. The
HomHBFEM results have been computed with a coarse
mesh that does not resolve the laminations. If not stated
otherwise, field quantities up to the ninth harmonic are
considered. We are using the homogenization adapted to a
non-negligible insulation thickness, as described in Sec. II.
To obtain reliable transient reference results with the CST

Studio Suite
®, the mesh is chosen such that the skin depth is

resolved. As a rough estimate for the skin depth, we use

δ ¼
ffiffiffiffiffiffi
2νin
ωσ

q

, where νin is the initial slope of the B–H curve.

1. Magnetic energies

First, we investigate the magnetic energies in the
laminated core of the inductor. Over the course of this
investigation, we will adapt the HomHBFEM in two steps,
leading to three versions of the method. To distinguish
between them, they will be numbered. The version of the
HomHBFEM that has been introduced up until this point is
called HomHBFEM-1. Figure 5 shows the results for
selected frequencies ff ∈ f50; 100; 500; 1000g Hz. While
we observe a good agreement for ff ¼ 50 Hz and
ff ¼ 100 Hz, there are significant differences between
HomHBFEM-1 and the transient reference results at ff ¼
500 Hz and ff ¼ 1 kHz. At these frequencies, the energy

computed from the transient reference simulation no longer
falls to zero. This is mainly due to the fact that because of
the skin effect, the magnetic flux densities across one
lamination are not in phase, e.g., there is a significant phase
shift between the magnetic flux density in the center of a
lamination and the flux density close to its surface. This
phase shift increases with rising frequency.
The described effect, which prevents the energy from

vanishing, cannot be directly captured by the homogeni-
zation technique because this technique averages the
components of flux densities parallel to the lamination
over the lamination thickness. Hence, a phase shift within
one lamination cannot be considered.
In order to reach a good agreement of the magnetic

energies at the higher frequencies, we need to address the
issue of the phase shifts within one lamination. To that end,
we need to transform the averaged flux densities parallel to
the lamination, meaning the x and y components, Bav

k ðzÞ,
which we obtain directly from our FE solution, back to
local flux densities BkðzÞ. As described in [11], this can be

done via

BkðzÞ ¼
Bav
k ðzÞkd

2 sinh ðk d
2
Þ cosh ðkz̃Þ; (29)

with k ¼ 1þȷ

δ
, and z̃ being the local coordinate within one

lamination, where the origin of the local coordinate system
is chosen in the center of the lamination. This trans-
formation is straightforward to implement in the linear

FIG. 4. B–H curve based on Brauer model.

FIG. 5. Magnetic energies in the ferromagnetic core computed
with the HomHBFEM-1 at four fundamental frequencies of the
source current, compared to the transient reference results.
(a) ff ¼ 50 Hz, (b) ff ¼ 100 Hz, (c) ff ¼ 500 Hz, and
(d) ff ¼ 1 kHz.
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case, which is treated in [11], but it is more difficult in the
nonlinear case, because k depends on the skin depth δ,
which in turn depends on the reluctivity and thus depends
on the local flux densities themselves. Therefore, we have

BkðzÞ ¼
Bav
k ðzÞk½BkðzÞ�d

2 sinh


k½BkðzÞ� d2

� cosh ðk½BkðzÞ�z̃Þ: (30)

Furthermore, we are dealing with multiple harmonics.
Hence, Eq. (30) leads to coupled nonlinear systems of
equations for the different harmonics. We have two options
to integrate this transformation into our method: (i) Perform
the transformation in every iteration and evaluate k½BkðzÞ�
with the BkðzÞ from the previous iteration. (ii) Solve the

nonlinear system of equations resulting from Eq. (30) once
after the iteration.
We have found that solving the nonlinear system once

after the iteration is impractical. Therefore, wewill focus on
the first option, which we will refer to as HomHBFEM-2.
The results for the energies at ff ¼ 500 Hz and ff ¼ 1 kHz
are shown in Figs. 6(a) and 6(b), respectively. We can
observe that including the transformation formula in our
iteration did actually cause an important qualitative
improvement: the magnetic energy computed with
HomHBFEM does no longer go down to zero. However,
further improvement is necessary.
The results can be further improved by adapting the

homogenization more to the nonlinear case. One apparent
remaining problem is the evaluation of the skin depth δ, for
which we have used the dc component of the reluctivity ν0.
This is of course a potentially very rough estimation,
especially at high saturation. We have found that using
some sort of effective reluctivity instead of ν0 can be very
beneficial. Many choices for such an effective reluctivity
are available in the literature, and most of them have had a
positive impact on our results, in terms of reaching closer
agreement with the transient reference results. A good
overview of available choices is given in [50]. In this paper,
we focus on the following two examples.

The first approach is given in [51]. The main idea is that
the effective reluctivity ν

ð1Þ
eff ðr⃗Þ should fulfill

1

Tf

Z
Tf

0

1

2
ν
ð1Þ
eff ðr⃗ÞjB⃗ðr⃗; tÞj2dt ¼

1

Tf

Z
T

0

Z
B⃗ðr⃗;tÞ

0

HðBÞdBdt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

w̄magðr⃗Þ

;

(31)

where w̄magðr⃗Þ is the time-averaged magnetic energy

density. This condition leads to

ν
ð1Þ
eff ðr⃗Þ ¼

2w̄magðr⃗Þ
1
Tf

R Tf

0 jB⃗ðr⃗; tÞj2dt
: (32)

The second approach is given in [52], where it is proposed
to use

ν
ð2Þ
eff ðr⃗Þ ¼

2
R Bmaxðr⃗Þ
0 HðBÞ dB
B2
maxðr⃗Þ

; (33)

with Bmaxðr⃗Þ ¼ maxt jB⃗ðr⃗; tÞj. Both are intuitive choices
based on the magnetic energy and are straightforward to
integrate into our iteration scheme. Motivated by the

observation that using ν
ð1Þ
eff leads to an overestimation of

the energy minima and ν
ð2Þ
eff to a slight underestimation, we

use the average of both approaches, i.e.,

νeffðr⃗Þ ¼
ν
ð1Þ
eff ðr⃗Þ þ ν

ð2Þ
eff ðr⃗Þ

2
(34)

as the effective reluctivity. Note that a similar reasoning can
be found in [53], where the average of two estimates for an
effective permeability based on the magnetic co-energy is
used. Incorporating the effective reluctivity into the
HomHBFEM-2 yields the second and final modification
of the method which we will refer to as HomHBFEM-3.
The results for the magnetic energy are shown in Fig. 7.

Clearly, incorporating the effective reluctivity leads to a
significant improvement. If we take a closer look at the
minima of the energy, we observe a small oscillation in the
HomHBFEM results, but this is mitigated if we include
more harmonics in the HomHBFEM. Figure 8 shows the
results at ff ¼ 1 kHz for all three considered versions of
the method compared to the transient reference results.
Herein, we increased the maximum harmonic order from
m ¼ 9 to m ¼ 11 in the HomHBFEM-3, to show the
reduction of the oscillation in the energy minima.
Note that the increased difference in the second energy

maximum arises from transient behavior in the reference
solution that is induced by its initial conditions, i.e., it is not
a physically meaningful effect.

FIG. 6. Magnetic energies in the ferromagnetic core computed
with the HomHBFEM-2 at two fundamental frequencies of the
source current, compared to the transient reference results.
(a) ff ¼ 500 Hz and (b) ff ¼ 1 kHz.
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2. Magnetic flux densities

Next, we analyze the magnetic flux densities inside the
ferromagnetic core. We apply again the source current
given in Eq. (24) at frequencies ff ∈ f50; 100; 500;
1000g Hz. We probe the solution at different locations
in the ferromagnetic core, which are specified in Table V in
the Appendix. Figure 9 compares the magnetic flux
densities computed with the HomHBFEM-1 to the transient
reference results. Clearly and as expected based on the
energy results, we see significant deviations in the magnetic
flux densities for ff ¼ 500 Hz and ff ¼ 1 kHz. The
benefit of including the transformation formula in the
iteration, as introduced during the investigation of the
magnetic energies, becomes apparent in Fig. 10, which
shows the magnetic flux densities at four different locations
inside the ferromagnetic core for the HomHBFEM-1 and
the HomHBFEM-2 compared to the transient reference
results. At this point, no effective reluctivity is included.
Clearly, the transformation formula leads to much better
agreement.
As for the magnetic energies, including an effective

reluctivity leads to even better agreement of the
HomHBFEM with the transient reference results. This is

also reflected in the magnetic flux densities inside the
ferromagnetic core, as shown in Fig. 11. Note that the
locations 2–7 for the comparison in Figs. 10 and 11 have
been chosen to show the improvement very clearly. In
many other locations, the differences are much more subtle,
as for example shown for location 8 in Fig. 12.

FIG. 7. Magnetic energies in the ferromagnetic core computed
with the HomHBFEM-3 at two fundamental frequencies of the
source current, compared to the transient reference results.
(a) ff ¼ 500 Hz and (b) ff ¼ 1 kHz.

FIG. 8. Magnetic energies in the ferromagnetic core computed
with all three variants of the HomHBFEM at ff ¼ 1 kHz,
compared to the transient reference results.

FIG. 9. Magnetic flux densities in location 1 in the ferromag-
netic core computed with the HomHBFEM-1 at four fundamental
frequencies of the source current, compared to the transient
reference results. (a) ff ¼ 50 Hz, (b) ff ¼ 100 Hz,
(c) ff ¼ 500 Hz, and (d) ff ¼ 1 kHz.

FIG. 10. Magnetic flux densities in (a)–(d) locations 2–5 in the
ferromagnetic core computed with the HomHBFEM-1 and the
HomHBFEM-2 at ff ¼ 1 kHz, compared to the transient refer-
ence results.
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From now on, we will exclusively use the
HomHBFEM-3, and therefore, we will no longer use the
numbering, i.e., we will simply refer to this final version of
the method as the HomHBFEM. Despite the improvements
made through the different versions of the method, it must
be clearly stated here that a precise representation of the
time signals of the flux densities at individual points within
the ferromagnetic core at frequencies where the skin effect
comes into play is not what this method is designed for. As
shown in the plots above, the magnetic flux densities inside
the laminations are roughly approximated, but there are
significant differences. The method can, however, give
good results on average, as indicated by the comparison of
the magnetic energies. Furthermore, as we will see in the
following, the HomHBFEM can give a good approximation
of the eddy current losses, and most importantly for the
application to the FC magnets, it can give an accurate
representation of the magnetic flux density outside of the
ferromagnetic material, i.e., in the aperture.

3. Eddy current losses

The eddy current losses in the ferromagnetic core consist
of two contributions. First, the time-averaged losses due to

the magnetic flux perpendicular to the laminations, denoted
by P̄⊥, and second, the time-averaged losses due to the

magnetic flux parallel to the laminations, denoted by P̄k. In

the A⃗
�
formulation, the losses due to the perpendicular

magnetic flux can be computed as

P̄⊥ ¼
Z

Ω̃ls

1

Tf

Z
Tf

0

J⃗ðtÞ · E⃗ðtÞdtdV

¼
Z

Ω̃ls

1

Tf

Z
Tf

0

¯̄σE⃗ðtÞ · E⃗ðtÞdtdV

¼
Z

Ω̃ls

1

Tf

Z
Tf

0

γσc

��
∂AxðtÞ
∂t

�
2

þ
�
∂AyðtÞ
∂t

�
2
�

dtdV; (35)

where Ω̃ls denotes the homogenized lamination stack. For
the losses due to the parallel magnetic flux, we have

P̄k ¼
Z

Ω̃ls

1

Tf

Z
Tf

0

H⃗ðtÞ · ∂B⃗ðtÞ
∂t

dtdV: (36)

Finally, the total eddy current losses are computed as the
sum of P̄k and P̄⊥. Note that Eq. (36) is the physical
formula for the hysteresis losses. In the context of the
homogenization, however, where we do not actually con-
sider a hysteretic material, the complex-valued reluctivity is
chosen such that this term approximates the eddy current
losses. Table I juxtaposes the eddy current losses computed
with the HomHBFEM with the transient reference results
for the losses computed with CST Studio Suite

® for a set of
selected frequency points. As mentioned above, in the
transient reference simulations, the mesh has to resolve the
skin depth in order to achieve reliable results. This leads to

up to 1.8 × 107 d.o.f. at ff ¼ 5 kHz. Note that for the
transient reference simulation at ff ¼ 10 kHz, it was
impossible with the available computing infrastructure to
fully resolve the skin depth. Therefore, we used the same
FE mesh as for ff ¼ 5 kHz. As a consequence, the actual
losses might be a bit lower than what is indicated in Table I.
On the other hand, to compute the model with the

FIG. 11. Magnetic flux densities in (a) and (b) locations 6 and
7 in the ferromagnetic core computed with all three variants of the
HomHBFEM at ff ¼ 1 kHz, compared to the transient reference
results.

FIG. 12. Magnetic flux densities in location 8 in the ferromag-
netic core computed with all three variants of the HomHBFEM at
ff ¼ 1 kHz, compared to the transient reference results.

TABLE I. Eddy current losses in the laminated inductor.

Power loss (W)

ff (Hz) HomHBFEM Reference Relative error (%)

50 1.50 × 10−2 1.45 × 10−2 3.4
100 5.68 × 10−2 5.47 × 10−2 3.8

500 1.19 1.13 5.3
1000 4.00 4.12 2.9
2000 14.1 14.9 5.4
5000 71.0 76.5 7.7
10000 218.3 242.2 9.9
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HomHBFEM, we used only 1.3 × 104 d.o.f. per harmonic
component for the frequencies up to ff ¼ 1 kHz and

2.5 × 104 d.o.f. per harmonic for the higher frequencies.
Below ff ¼ 1 kHz, it was sufficient to consider three
harmonics, at ff ¼ 2 kHz and 5 kHz, we increased the
number of considered harmonics to 5 and at ff ¼ 10 kHz
to 6. The agreement in the losses is sufficient, attaining a
relative error between 2.9% at ff ¼ 1 kHz and 9.9% at
ff ¼ 10 kHz.
Even for this small model, the speed-up thanks to the

HomHBFEM is significant. For example, at ff ¼ 1 kHz,
the simulation times are reduced from several hours to a
few minutes, and at ff ¼ 5 kHz or 10 kHz, the simulation
times are reduced from a few days to a few hours.

VI. VERIFICATION FOR A C-DIPOLE MAGNET

A. Model description

We continue the verification studies with a dipole magnet
with a C-shaped ferromagnetic yoke, as commonly used in
particle accelerators, see Fig. 13. This model is clearly
much more realistic than the laminated inductor and could,
in principle, be used as an FC magnet, but it is significantly
smaller than the actual FC magnet to allow the computation
of the transient reference results with the available com-
putational resources. The yoke (blue) has a length of
40 mm, and the transversal dimensions are summarized
in Fig. 14. The lamination thickness is d ¼ 0.5 mm, the

conductivity of the laminates is σ ¼ 10.4 MS m−1, and we
use the same B–H curve as before, see Fig. 4. The total
current in each of the two coils (red) is given by

IsðtÞ ¼ ð2.5 kAÞ cos ðωftÞ: (37)

B. Results

Again, we compare the HomHBFEM results to transient
reference results obtained by simulations in CST Studio Suite

®,
in which the FE mesh resolves the individual laminations
and, if feasible with the available computational resources,
resolves the skin depth at the given frequency as well. Here,

we investigate the full frequency range of interest up to
ff ¼ 65 kHz in preparation for the simulation of the actual
FC magnet of PETRA IV in the next section.

1. Eddy current losses

Figure 15 shows the eddy current losses in the yoke,
computed with the HomHBFEM and the transient refer-
ence simulation, over the full frequency range of interest.
Having a closer look at the losses computed with the
HomHBFEM, we can see that at the lower frequencies, up
to roughly ff ¼ 1 kHz, they scale quadratically with the
frequency. However, as we enter the kilohertz range, the
dependence becomes linear. Hence, the scaling behavior of
the eddy current losses computed with the HomHBFEM is
in agreement with the one expected in theory [54,55]. The
change in the scaling behavior happens because at lower
frequencies, the eddy currents are restricted by the thin
laminations, whereas at higher frequencies, the main limit-
ing factor is the eddy current distribution itself, i.e., the
decreasing skin depth. In the former scenario, the eddy
currents are referred to as being “resistance-limited,” in the
latter “inductance-limited” [55].

FIG. 13. 3D model of the C-dipole magnet.

FIG. 14. 2D cross section of the C-dipole magnet.

FIG. 15. Eddy current losses in the C-dipole magnet’s yoke as a
function of frequency computed with the HomHBFEM, com-
pared to the transient reference results.

HOMOGENIZED HARMONIC BALANCE FINITE … PHYS. REV. ACCEL. BEAMS 28, 104601 (2025)

104601-11



Looking at the losses computed by the transient refer-
ence simulation, we observe the same scaling behavior as
for the HomHBFEM and a good agreement up to
ff ¼ 1 kHz, but then, in the kilohertz range, the differences
grow and the losses obtained by the transient reference
simulation are significantly higher than the ones computed
with the HomHBFEM. These differences are not due to
shortcomings of the HomHBFEM but are attributed to the
mesh dependence of the transient reference results for the
losses. The problem is that in order to obtain accurate
results with the transient reference simulation, we must
resolve the skin depth with the FE mesh, which is getting
increasingly difficult for higher frequencies. If the skin
depth is not resolved, the FEM, based on a magnetic vector
potential formulation, typically overestimates the losses
[21,56,57].
Figure 16 shows that, indeed, if we are able to suffi-

ciently refine the mesh in the transient reference simulation,
the eddy current losses converge against the losses that we
have obtained with the HomHBFEM with a much coarser
mesh. We have shown this in Fig. 16 for f ¼ 1 kHz since it
is the highest frequency at which we could reach con-
vergence of the eddy current losses in this model with CST

Studio Suite
® with the available computing resources. For the

HomHBFEM simulation, we included three harmonics,

i.e., up to order m ¼ 5, and used 1.5 × 105 d.o.f. per
harmonic. On the other hand, the transient reference
simulation for the right-most data point in Fig. 16 uses

3.2 × 107 d.o.f..
For frequencies significantly above 1 kHz, where we see

the large differences in Fig. 15, it is essentially impossible
to reach convergence of the losses with a brute-force
approach in CST Studio Suite

® with the available computing
resources. This is demonstrated in Fig. 17, which shows the
eddy current losses at ff ¼ 10 kHz over the number of

d.o.f. in the transient reference simulation together with the
corresponding simulation times on a powerful computer
with 192 GB of RAM and an Intel Xeon X5690 processor.
We can see that even after 16 days of simulation time, the
eddy current losses do not converge. By contrast, the
HomHBFEM method converges with far fewer d.o.f.,
which is shown in Table II. Note that the d.o.f. listed in
Table II are only those inside of the ferromagnetic yoke, to
better illustrate the mesh refinement. The total number of

d.o.f. for the finest mesh is 2.53 × 105. Nevertheless, the
HomHBFEM allows us to simulate the model in a few
hours on an ordinary laptop with 16 GB of RAM and an
Intel Core i7 processor.

2. Magnetic flux densities

Next, we investigate the magnetic flux densities outside
of the ferromagnetic material, in the center of the aperture.
Figure 18 compares the HomHBFEM and the transient
reference simulation for a source current with fundamental
frequencies between ff ¼ 50 Hz and ff ¼ 10 kHz. We
observe very good agreement, with the largest relative error
in the magnetic flux density’s amplitude being 0.3% at

FIG. 16. Eddy current losses in the C-dipole magnet’s yoke at
ff ¼ 1 kHz as a function of the number of d.o.f., computed with
the transient reference simulation. The blue line shows the
HomHBFEM results.

FIG. 17. Eddy current losses in the C-dipole magnet’s yoke at
ff ¼ 10 kHz as a function of the number of d.o.f., computed with
the transient reference simulation. The simulation times are
indicated below.

TABLE II. Eddy current losses in the C-dipole magnet’s yoke
at ff ¼ 10 kHz, computed with the HomHBFEM for different
numbers of d.o.f. in the yoke.

No. of d.o.f. PðkWÞ
2.4 × 104 7.38

2.9 × 104 7.36

3.6 × 104 7.37

5.6 × 104 7.33

8.0 × 104 7.36

1.08 × 105 7.38
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ff ¼ 1 kHz. If we increase the frequency significantly
beyond ff ¼ 10 kHz, it again becomes virtually impossible
to obtain a reliable reference solution, i.e., to reach
convergence for the aperture field with a brute-force
approach in CST Studio Suite

®. This is illustrated in
Fig. 19, which depicts the vertical component of the
magnetic flux density in the center of the aperture at ff ¼
65 kHz for different FE meshes, i.e., for different numbers
of d.o.f.. Note that the result with the finest mesh, with

4.9 × 107 d.o.f., took 24 days of simulation time on a
powerful computer with 256 GB of RAM and an Intel
Xeon E5-2680 processor.

VII. APPLICATION TO FAST CORRECTOR

MAGNETS

A. Model description

Having derived and verified the HomHBFEM, we turn to
the application to the FC magnets for PETRA IVat DESY.
The 3D model and its cross section are depicted in Fig. 20.
Note that this type of octupolelike FC magnet design
originates from the APS Upgrade project at the ANL [58].
Other synchrotron radiation sources such as SIRIUS in
Brazil or HEPS in China are using or planning to use
similar FC magnets with a quadrupolelike design [59,60].
As already indicated, the magnet has an octupolelike

geometry, with eight posts pointing to the aperture.
However, it produces a dipole field to deflect the electrons
passing through the aperture. On each of the eight posts,
there is a large main coil and a smaller auxiliary coil, only

one of which carries a current at any given point in time. If
the red coils are powered, a vertical field is produced, if the
gray coils are powered, a horizontal field is produced. In
this way, the magnet can deflect the beam both in the
horizontal and the vertical planes, which is important to
meet the space constraints in the densely packed magnetic
lattice. Furthermore, the design offers a good field quality,
i.e., the particular choice of the currents allows to cancel out
sextupole and decapole components in the aperture field.
We consider the case that the red main coils carry 975 At
and the red auxiliary coils carry 405 At and for both types
of coils, the time signal of the source current is a
monofrequent sinusoidal function. It should be noted here
that the sinusoidal signal serves as a test signal to facilitate
the analysis of the magnet’s dynamic behavior. In practice,
the magnet operates as part of the FOFB system, where the
actual coil currents are determined by the control algorithm.
The geometrical details are given in Table III. The yoke

length and diameter in Table III are slightly different from
the measures of the prototype magnet that has been built
recently, but we have investigated both versions of the
model and the differences in terms of the investigated
quantities are small. In particular, all results regarding the
impact of the nonlinearity compiled below hold

FIG. 18. Magnetic flux density in the center of the C-dipole
magnet’s aperture computed with the HomHBFEM at four
fundamental frequencies of the source current, compared to
the transient reference results. (a) ff ¼ 50 Hz, (b) ff ¼ 1 kHz,
(c) ff ¼ 5 kHz, and (d) ff ¼ 10 kHz.

FIG. 19. Transient reference results for the magnetic flux
density in the center of the C-dipole magnet’s aperture at
ff ¼ 65 kHz for four different numbers of d.o.f..

FIG. 20. 3D model of the FC magnet for PETRA IV and its
cross section.
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qualitatively for both versions of the model. We will
investigate two lamination thicknesses, first d ¼ 1 mm,
which is the lamination thickness of the prototype magnet
and then d ¼ 0.3 mm, which is intended for series pro-
duction. For a lamination thickness of d ¼ 1 mm, the
stacking factor is γ ¼ 98.5%, whereas for 0.3 mm lami-
nations, it is decreased accordingly to γ ¼ 95.2%.
The yoke material is powercore

®
1400-100AP. The

conductivity, as provided by the manufacturer thyssenk-
rupp, is 5.814 MS m−1. The B–H curve, as measured at
DESY, is plotted in Fig. 21 together with the resulting
relative permeability μr ¼ B=ðμvacHÞ, where μvac is the
vacuum permeability.

B. Results

The most important quantities of interest are the inte-
grated value of the magnitude of the magnetic flux
density’s dipole component and the phase shift between
the field in the aperture and the current in the coils. The
knowledge of these quantities up to the kilohertz range is
crucial for modeling the FOFB system of PETRA IV. In
[13], we have computed these quantities by linear simu-
lations to obtain an integrated transfer function for the FC
magnets, which has been used at DESY for the design of
the feedback control.
So far, conducting nonlinear simulation studies for the

FC magnets at elevated frequencies had not been possible
due to the entailed prohibitive computational effort, which
has already become evident in the analysis of the smaller
models in the previous sections. With the HomHBFEM, we
are now able to conduct nonlinear simulations in the
kilohertz range, which allows us to investigate the effect
that a nonlinear B–H curve has on the dynamic behavior of
the magnet. To that end, we will compare the results of the

nonlinear simulation with the HomHBFEM to the linear
simulation that we had conducted previously, see e.g.,
[12,13]. Figure 22 shows this comparison between linear
and nonlinear simulations for the longitudinal magnetic
field profiles in the model with d ¼ 1 mm.
For the linear simulation, we use the homogenization

technique in its basic form, as described in Sec. II. For the
nonlinear simulation, we plot the magnitude of the dipole
component of the first harmonic. Higher order harmonics
are negligible in the aperture.
For both the linear and the nonlinear simulations, we

observe the typical attenuation of the magnetic flux density
due to the eddy currents as the frequency is increased.
Further, we see that at lower frequencies, such as
ff ¼ 10 Hz, the results of the linear and the nonlinear
simulations are very similar. However, at higher frequen-
cies, we see that the magnetic flux density from the
nonlinear simulation is significantly lower than the one
from the linear simulation. This is also illustrated in
Table IV, which lists the integrated values of the magnetic
flux densities plotted in Fig. 22, denoted by By;int, as well as

the respective phase shifts between the aperture field and
the current in the coils, φcenter. Note that the integration
limits for the computation of By;int were chosen to be

z ¼ �500 mm. We observe that at higher frequencies, the
integrated field in the nonlinear case is significantly
smaller, and the phase shift is greater than in the linear case.
Figure 23 shows the comparison of the eddy current

losses in the yoke computed from the linear and nonlinear

TABLE III. Geometric parameters of the FC magnet.

Yoke length 90 mm

Yoke diameter 580 mm

Aperture diameter 25 mm
Lamination thickness 1 or 0.3 mm
Stacking factor 98.5% or 95.2%

FIG. 21. B–H curve (left) and relative permeability (right) of
powercore

®
1400-100AP.

FIG. 22. Magnitude of the dipole component of the magnetic
flux density’s first harmonic along the axis of the FC magnet
computed with the HomHBFEM for 1 mm laminations at four
fundamental frequencies of the source current, compared to the
linear results. (a) ff ¼ 10 Hz, (b) ff ¼ 5 kHz, (c) ff ¼ 10 kHz,
and (d) ff ¼ 65 kHz.
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solvers. Up to roughly 100 Hz, the losses are similar for
both cases, but already at 500 Hz, the nonlinear simulation
gives us much higher power loss. Note that these losses are
computed for the same excitation current and applied
voltage across the whole frequency range. In reality, the
current will decrease significantly as the frequency is
increased. Nonetheless, we see from these results that
the losses are higher than previously expected based on
the linear simulation results.
Next, we investigate the magnet model with a lamination

thickness of 0.3 mm, as intended for series production. As
we will see, this change in the lamination thickness
significantly decreases the effect of the B–H curve’s
nonlinearity on the behavior of the magnet. Figure 24
shows the results for the longitudinal field profiles with
d ¼ 0.3 mm, and Fig. 25 shows the eddy current losses.
Regarding the longitudinal field profiles, we observe

differences between the linear and the nonlinear simula-
tions occuring only at frequencies significantly above
10 kHz, whereas before, with d ¼ 1 mm, the differences
started to become apparent already between 1 and 5 kHz.
Also with regard to the eddy current losses, the frequency
range in which the nonlinear results agree with the linear
ones is now broadened. We observe only minor deviations
up to 2 kHz, whereas with the thicker lamination,
differences are apparent already at f ¼ 500 Hz.

All in all, we observe that the change from 1 to 0.3 mm
laminations has shifted the effect of the nonlinearity to
higher frequencies, which is very beneficial for the design
of the feedback control. This phenomenon can be explained
by theory as follows. As the frequency increases, the skin
effect leads to a growing difference between the magnetic
flux density in the center of each lamination and the
magnetic flux density close to its surface. Hence, the
reluctivity, which results from these magnetic flux densities
and the nonlinear B–H curve, will become more and more
nonuniform across the laminations. Therefore, as the

TABLE IV. Integrated magnetic flux density and phase shift in
the center of the magnet’s aperture with 1 mm laminations.

Linear Nonlinear

ff (Hz) By;intðmTmÞ φcenterð°Þ By;intðmTmÞ φcenterð°Þ
10 11.7 −0.1 11.4 0.0
5000 7.9 −13.0 7.2 −16.1
10000 6.9 −16.3 5.8 −20.2
65000 4.2 −25.4 2.7 −31.8

FIG. 23. Eddy current losses in the FC magnet with 1 mm
laminations as a function of frequency computed with the
HomHBFEM, compared to the linear results.

FIG. 24. Magnitude of the dipole component of the magnetic
flux density’s first harmonic along the axis of the FC magnet
computed with the HomHBFEM for 0.3 mm laminations at four
fundamental frequencies of the source current, compared to the
linear results. (a) ff ¼ 10 Hz, (b) ff ¼ 5 kHz, (c) ff ¼ 10 kHz,
and (d) ff ¼ 65 kHz.

FIG. 25. Eddy current losses in the FC magnet with 0.3 mm
laminations as a function of frequency computed with the
HomHBFEM, compared to the linear results.
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frequency is increased, the assumption of a constant
reluctivity, which is at the core of the linear simulation,
becomes less and less valid. That explains why in general,
the nonlinearity becomes more relevant at higher frequen-
cies. Since the intensity of the skin effect is not determined

by the frequency alone but rather by the ratio d=δ ∝ d
ffiffiffiffi
ω

p
,

it also explains why a thinner lamination pushes the effect
of the nonlinearity to higher frequencies.
If the magnetic flux density in the laminations is

sufficiently small, as is the case for the FC magnet of
PETRA IV, then it is clear from the explanation above that
the described effect will only occur if the B–H curve
features a Rayleigh region, i.e., if B does not scale linearly
withH forH → 0, but rather quadratically [61]. Otherwise,
the change of the magnetic flux density across each
lamination would not translate into a nonuniform reluctiv-
ity. This is precisely what we find in the simulation with the
HomHBFEM as well. For instance, if we use an adaptation
of the original B–H curve that eliminates the Rayleigh
region, as indicated in Fig. 26, we observe almost no effect
of the nonlinearity on the magnetic flux density along the
longitudinal axis, even at the higher frequencies and with
the 1 mm lamination. This is shown in Fig. 27. Hence, we
conclude that, indeed, the effect of the nonlinearity in the
FC magnets for PETRA IV can be drastically reduced by

choosing a material with a less pronounced Rayleigh
region. Additionally, we remark that using the adapted
B–H curve instead of the original one leads to higher
magnetic flux densities in the center of the aperture
(compare Figs. 22 and 27), since the adaptation corre-
sponds to higher permeabilities in the yoke.

VIII. CONCLUSION

In this paper, we have shown how an existing frequency
domain based homogenization technique for lamination
stacks can be combined with the harmonic balance finite
element method (HBFEM) to consider nonlinear B–H
curves. The resulting method, HomHBFEM, is designed
to conduct nonlinear eddy current simulations efficiently,
without time stepping, and with a relatively coarse mesh. In
particular, the mesh does not have to resolve the individual
lamination sheets nor the skin depth therein for the
simulation results to converge. As a result, the
HomHBFEM can drastically reduce simulation times at
elevated frequencies compared to a transient simulation.
This has been demonstrated using two different models for
verification, a laminated inductor and a C-shaped dipole
magnet. In particular, the verification studies confirmed that
the HomHBFEM can be employed to determine the eddy
current losses and the field in a magnet’s aperture in the
kilohertz range. In this context, it is important to highlight
that as the level of saturation increases, a higher number of
harmonics should be included in the analysis to maintain
accuracy. For the FC magnets of PETRA IV at DESY, the
method enabled us to conduct nonlinear simulations over a
broad frequency range up to 65 kHz, which was impossible
with the available computational resources when using a
standard 3D FE simulation. This investigation of the FC
magnets with the HomHBFEM has yielded valuable
insights into the impact of nonlinearity on the dynamic
behavior of the magnets and how it can be mitigated.
Hence, the HomHBFEM approach is also of interest for
other applications with laminated ferromagnetic yokes or
cores, e.g., other types of fast accelerator magnets, trans-
formers, and electrical machines.
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FIG. 26. B–H curve of powercore
®
1400-100AP compared to

the adapted B–H curve without Rayleigh region.

FIG. 27. Magnitude of the dipole component of the magnetic
flux density’s first harmonic along the axis of the FC magnet
computed with the HomHBFEM for 1 mm laminations and the
adapted B–H curve without Rayleigh region, compared to the
linear results. (a) ff ¼ 10 kHz and (b) ff ¼ 65 kHz.
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APPENDIX: PROBED LOCATIONS IN THE

LAMINATED INDUCTOR MODEL

Table V gives the coordinates of the locations that were
probed for the plots of the magnetic flux densities in Sec. V.
The ferromagnetic core of the laminated inductor model
extends 5 mm in x direction, 12.5 mm in y direction, and
5.07 mm in z direction. The coordinate system is aligned
with one of the core’s corners and, using the symmetry
planes of the model, we simulated only the octant in the
opposite corner.
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