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Abstract: Protein kinase CK2 is a promising therapeutic
target, especially in oncology. Over the years, various in-
hibitors have been developed, with polyhalogenated scaf-
folds emerging as a particularly effective class. Halogens like
bromine and chlorine enhance inhibitor stability by forming

additional interactions within the ATP pocket. Among halo-
genated scaffolds, benzotriazole and benzimidazole have led to
potent molecules such as 4,5,6,7-tetrabromo-1H-benzotriazole
(IC50 = 300 nM) and 4,5,6,7-tetrabromo-2-(dimethylamino)
benzimidazole (IC50 = 140 nM). Modifications, including 4,5,6-
tribromo-7-ethyl-1H-benzotriazole (IC50 = 160 nM), further
improved activity. Changing scaffolds while retaining halo-
gens has enabled design of new inhibitors. Flavonols,
dibenzofuranones, and the indeno[1,2-b]indole scaffold are
key examples. Halogenation of the reference molecule
5-isopropyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione
(4b, IC50 = 360 nM) significantly boosted potency. The study
focused on introducing four halogens, yielding to the com-
pound 1,2,3,4-tetrabromo-5-isopropyl-5,6,7,8-tetrahydroindeno
[1,2-b]indole-9,10-dione (MC11), with an IC50 of 16 nM.
Co-crystallography revealed how bromine atoms enhance
binding, and MC11 demonstrated strong in cellulo activity,
particularly against leukemic cell lines like IPC-Bcl2.
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1 Introduction

Protein kinase CK2 is a ubiquitously expressed serine/thre-
onine protein kinase present in all eukaryotic cells. This
tetrameric holoenzyme consists of two catalytic subunits (α
and/or α′) and two regulatory subunits (β) and is constitu-
tively active. CK2 can phosphorylate hundreds of protein
substrates (Litchfield 2003) and is implicated in most
biological processes, including in a wide range of human
diseases (Borgo et al. 2021), such as neurodegenerative
disorders (Castello et al. 2017), viral infections, namely SARS-
CoV-2 (Quezada Meza and Ruzzene 2023), and cancer
(Trembley et al. 2023). In the latter case, CK2 was reported to
regulate various signaling pathways associated with cancer
progression and response to damage signals (Chen et al.
2023; Meggio and Pinna 2003). CK2 is overexpressed in
numerous tumor cells, which exhibit a dependency on CK2,
referred to as a “non-oncogene addiction” (Ruzzene and
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Pinna 2010). This makes CK2 a promising target for anti-
tumor therapies (Borgo et al. 2021; Chen et al. 2023), and
numerous scaffolds have thus been employed in the devel-
opment of CK2 inhibitors (Cozza 2017), notably scaffolds
harboring halogen substituents (e.g., Br, Cl, I). Over the last
four decades, the design of CK2 inhibitors has progressively
advanced (Figure 1), resulting in particular in the incorpo-
ration of bromine and chlorine substituents on various
(hetero)cyclic scaffolds.

The very first CK2 inhibitor featuring halogens was 5,6-
dichloro-1-β-D-ribofuranosylbenzimidazole (DRB, IC50 =
15,000 nM) (Zandomeni et al. 1986). This discovery paved the
way for the development of 4,5,6,7-tetrabromo-1H-benzo-
triazole (TBBt, IC50 = 300 nM) (Sarno et al. 2001; Zień et al.
2005), 4,5,6,7-tetrabromo-2-(dimethylamino)benzimidazole
(DMAT, IC50 = 140 nM) (Pagano et al. 2004a,b), 4,5,6,7-
tetrabromo-1H-benzimidazole (TBBi, IC50 = 1,300 nM) (Zień
et al. 2005), and tetrabromocinnamic acid (TBCA, IC50 =
110 nM) (Pagano et al. 2007). Indeed, benzimidazole and
benzotriazole scaffolds have been at the heart of numerous
studies aimed at developing potent and selective inhibitors of
protein kinase CK2. Compounds such as 1-carboxymethyl-2-
dimethylamino-4,5,6,7-tetrabromobenzimidazole (K66, IC50 =
500 nM) (Pagano et al. 2008), 3-(4,5,6,7-tetrabromo-1H-benzo-
triazol-1-yl)propan-1-ol (MB002, IC50 = 320 nM) (Bretner et al.
2008) and 4,5,6-tribromo-7-ethyl-1H-benzotriazole (IC50 =
160 nM) (Makowska et al. 2011) illustrate the importance of
polybrominated groups to interact with CK2, strengthening
the binding through hydrophobic and halogen interactions.
The year 2008 was also marked by other polybrominated

derivatives based on o-phenylenediamine, for instance the
compounds K22 (Ki = 200 nM), K37 (Ki = 70 nM) and K44 (Ki =
100 nM) (Mazzorana et al. 2008; Winiewska-Szajewska et al.
2021). In addition, compounds related to benzotriazole and
benzimidazole were developed by incorporating a nitrogen
atom into the benzene ring, resulting in halogenated azolo
[4,5-b]pyridine-type compounds. Compound 4a proved to be
the most active in inhibiting CK2 (IC50 = 2,560 nM) (Chojnacki
et al. 2021).

The introduction of halogens such as bromine and
chlorine in the design of CK2 inhibitors gradually continued,
replacing the benzimidazole and benzotriazole motifs with
other scaffolds such as quinolones (5,6,8-trichloro-4-oxo-1,4-
dihydroquinoline-3-carboxylic acid, IC50 = 300 nM) (Golub
et al. 2006), flavonols, exemplified by the compounds FLC21
and FLC26 (IC50 = 40 and 9 nM, respectively) (Golub et al.
2011), and dibenzofuranones, including themolecule TF (IC50
= 29 nM) (Gotz et al. 2012; Schnitzler et al. 2018) have brought
to light new CK2 inhibitors. Finally, some halogenated CK2
inhibitors that contain the indeno[1,2-b]indole structural
motif (Rongved et al. 2013), particularly two mono- and
di-brominated inhibitors, 4j and 4w (IC50 = 140 and 110 nM,
respectively) (Haidar et al. 2020), should be highlighted as
they display a greater inhibitory activity than the reference
molecule 4b (IC50 = 360 nM) (Hundsdörfer et al. 2012).

Halogens, especially bromine atoms, play a key role in
these systems due to their ability to formhalogen bondswith
specific residues within the active sites of CK2α and CK2α′.
This has paved the way for fine-tuned chemistry aimed
at improving the pharmacological properties of these

Figure 1: A timeline of potent halogenated inhibitors of protein kinase CK2.
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compounds. To enhance the efficacy of existing indeno[1,2-b]
indoles as CK2 inhibitors, including 4j and 4w (Figure 1), and
4p, 5a-2 and THN27 (Figure 2), we present the synthesis and
evaluation of two novel tetrahalogenated derivatives, MC11
and MC14, inspired by the structural motifs of TBBt. All
structures of reference compounds used in this article are
also described in Figure 2.

2 Results and discussion

2.1 Chemical synthesis of halogenated
indeno[1,2-b]indoles

Tetrabromo- and tetrachloroindeno[1,2-b]indole-9,10-diones
MC11 and MC14 were quickly synthetized according to the
previously reported two-step procedure (Figure 3) (Haidar
et al. 2020; Hemmerling and Reiss 2009). First, the corre-
sponding tetrahalogenoninhydrin MC2 was coupled with
the isopropylenaminone MC3 (Hundsdörfer et al. 2012) in
methanol (MeOH) to afford the dihydroxylated derivative

MC4, which was then subjected to a dedihydroxylation step
using tetraethylthionylamide (TETA).

Tetrahalogenoninhydrins MC2 were prepared through
the rapid microwave-assisted selenium oxidation of the
corresponding tetrahalogenoindane-1,3-diones MC1 (Mar-
minon et al. 2015), in turn obtained from the corresponding
phthalic anhydrides, according to the method described by
Bouzina et al. (2021).

2.2 In silico physicochemical properties and
cell viability of halogenoindeno[1,2-b]
indole-9,10-diones

Lipinski’s rule offive (Ro5), established in 1997 (Lipinski et al.
2001), provides a founding guideline for assessing the
drug-likeness or pharmacokinetic suitability of chemical
compounds. This rule is widely recognized in pharmaceu-
tical research for evaluatingwhether a compound is likely to
be orally active as a drug. The parameters includemolecular
weight (MW), less than 500 g/mol; hydrogen bond donors,
no more than 5, typically involving hydroxyl (OH) or amine

Figure 2: General structure of reference inhibitors and emerging tetrahalogenated indeno[1,2-b]indoles.

Figure 3: Synthesis of compounds used in this study. Reagents and conditions: (a) selenium dioxide, dioxane, water, microwave irradiation, 180 °C;
(b) methanol, room temperature; (c) TETA, N,N-dimethylformamide, acetic acid, room temperature.
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(NH) groups; hydrogen bond acceptors, no more than 10,
usually oxygen (O) or nitrogen (N) atoms; LogP (lip-
ophilicity), the partition coefficient should be below 5. We
have supplemented the Rule of Five (Ro5) data with two
additional parameters, namely water solubility and topo-
logical polar surface area (TPSA), whose value must be
below 140 Å2.

Results summarized in Table 1 provide insights into the
compliance or not of our compounds with these parameters.
We note that the compound MC11 does not meet the MW
parameter, with a value exceeding 500 g/mol. Moreover, its
solubility is also limited (Log S = 7.22). This in silico solubility
datawas confirmed during the cytotoxicity evaluation assay.
Due to its low solubility (not soluble in 20 mM DMSO), its
intrinsic toxicity was evaluated on human lung fibroblast

MRC5 cells at 4 mM. Its half-maximal inhibitory growth
concentration (GI50) was 20 μM.

2.3 Inhibition of CK2 in vitro

In order to investigate the effects of full halogenation at the
A-ring of the indeno[1,2-b]indoles on their CK2 inhibitory
activity, IC50 valueswere determined for theMC11 andMC14
compounds (Table 2). Both exhibited a remarkable inhibi-
tory activity towards CK2α2β2 with IC50 values of 16 nM and
29 nM, respectively. Compared to compounds with a lower
degree of halogenation, such as those previously tested
(Haidar et al. 2020; Hundsdörfer et al. 2012), it seems that full
halogenation results in stronger inhibition. Given the higher

Table : In silico physicochemical properties and cell viability of halogenoindeno[,-b]indole-,-diones.

Cpd Ro Water solubility Log Sb TPSA (Å)

MW (g/mol) HBD HBA Log Po/wa

b .   . −. .
j .   . −. .
w .   . −. .
MC .   . −. .
MC .   . −. .

aConsensus Log Po/w, average of all five predictions; bESOL: topological method implemented from Delaney ().

Table : Inhibitory effect of selected indeno[,-b]indoles and prominent CK-inhibitors as determined in the capillary electrophoresis based CK-
activity assay.

Compound R R R R IC (nM) Reference

CKα CKα′ CKαβ

b H H H H . Hundsdörfer et al. ()
j Br H H H . Haidar et al. ()
w Br H Br H . Haidar et al. ()
MC Br Br Br Br   . –

MC Cl Cl Cl Cl . –

TBBt – – – – . Jabor Gozzi et al. ()
p – – – – . Jabor Gozzi et al. ()
a- – – – – . Birus et al. ()
THN – – – –   . Lindenblatt et al. ()
CX- – – – – . Jabor Gozzi et al. ()
SGC-CK- – – – – . –
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potency of brominated MC11 in comparison to the chlori-
nated MC14, and that it is the most potent indeno[1,2-b]
indole-based CK2 inhibitor known to date, we decided to
focus on MC11 for further characterization. Although less
potent than CX-4945, other prominent CK2 inhibitors, such
as SGC-CK2-1 and TBBt, tested here as reference com-
pounds, exhibited slightly lower inhibitory effects compared
to MC11 (Table 2).

In order to determine the Ki value ofMC11 for the CK2
holoenzyme, IC50 values were measured with differing ATP
concentrations. The following ATP concentrations, 30 µM,
150 µM and 300 µM led to IC50 values of 9.7 nM, 17 nM and
25.6 nM, respectively, resulting in a linear slope (Figure 4).
This clearly indicated an ATP-competitive mode of action of
MC11. The intersection of the linear slope with the Y-axis
was taken as the Ki value, which turned out to be 8.1 nM.

We next wondered whether MC11 has different affin-
ities towards CK2α and CK2α′, and determined its IC50 value
in each case. The similar levels obtained, namely 24 nM
and 19 nM, respectively, suggested that MC11 has no spec-
ificity for either subunit. Moreover, MC11 inhibited both
catalytic subunits to the same extent as the holoenzyme

CK2α2β2. To verify the mode of inhibition ofMC11 on CK2α,
its activities were evaluated at different concentrations of
MC11 and ATP, and plotted according to Hanes-Woolf
(Figure 5A). Then, the Hanes-Woolf Plot was used to
determine Km and Vmax of ATP with CK2α at differingMC11
concentrations. As shown in Table 3, Km increased with
increasing ATP concentrations, whereas Vmax remained
the same. Hence, this confirmed the ATP-competitive mode
of action of MC11. Km and Vmax values obtained from the
primary Hanes-Woolf plot were applied to a secondary plot
as shown in Figure 5B. Here, the intersection of the linear
slope and the X-axis generated the −Ki value according to
the Hanes-Woolf plot, giving rise to a Ki of 9.5 nM forMC11
with CK2α, almost identical to that determined for the
CK2α2β2 holoenzyme.

2.4 Crystal structures of MC11 in complex
with CK2α and CK2α′

In order to get insights into the binding of MC11 to the
isoenzymes of CK2 catalytic subunit, we determined two
crystal structures ofMC11 in complex with CK2α and one in
complex with CK2α′ and refined them to acceptable R values
(Table S1). The better resolved CK2α/MC11 structure had a
resolution of 1.7 Å, while the CK2α′/MC11 even reached
atomic resolution (1.04 Å). We use these two structures
(columns 2 and 4 of Table S1) for the subsequent discussion.
In the second (less well resolved) CK2α/MC11 structure,
obtained under low-salt crystallization conditions, no

Figure 4: IC50 values for MC11 plotted against the corresponding ATP
concentration. A linear slope was obtained and its Y-axis intersection was
taken as the Ki value. IC50 values were determined with the standard
kinase activity assay by capillary electrophoresis in a sample size of n = 3.

Figure 5: CK2α activities obtained at different concentrations ofMC11 and ATP plotted according to Hanes-Woolf. Panel (A) shows the primary Hanes-
Woolf plot, which was used to determine Km and Vmax with differentMC11 concentrations ( 100 nMMC11, 20 nMMC11, 0 nMMC11 (DMSO)). The
Y-axis intercept was used to determine Km/Vmax, which was applied in the secondary Hanes-Woolf plot shown in panel (B). The secondary plot was used to
determine the Ki value of MC11 for CK2α.

Table : Km and Vmax of CKα with ATP at different concentrations of
MC.

MC concentration [nM] Km [µM] Vmax [nmol/min]

 . ± . . ± .
 . ± . . ± .
 . ± . . ± .
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significant differences compared to the first one are visible;
therefore, this structure is just documented in column 3 of
Table S1 as well as in Figure S1, which illustrates the same
features as discussed below. A structural overview illus-
trates thatMC11 binds to the canonical ATP/GTP binding site
(Figure 6A).

The two bromo substituents at positions 2 and 3 of ring A
formhalogen bondswith the carbonyl oxygen atomsofGlu114
and Val116 in CK2α, and with Glu115 and Ile117 in CK2α′,
respectively (Figure 6B and C), while the bromo substituent at
position 1 of ring A is part of a π-halogen bond with the
gatekeeper residue Phe113 (Phe114 in CK2α′). Only the fourth
bromo substituent (at position 4 of ring A) is not involved in
any halogen bond, but points towards the solvent. The ketonic
oxo groups of the rings B and D establish water-mediated

hydrogen bonds with the highly conserved residues Lys68
(Lys69 in CK2α′) and Glu81 (Glu82 in CK2α′). The water mole-
cule facing the inhibitor was previously named “front water”
and the water closer to the conserved glutamate was called
“back water” (Hochscherf et al. 2017; Lindenblatt et al. 2019).
In the CK2α′/MC11 complex, a third water molecule is present
contributing to the binding of MC11 via hydrogen bond
formationwith the ketonic oxo group of ringD andwith Lys69
(Figure 6B). An equivalent water molecule is absent in the
CK2α/MC11 complex (Figure 6C), where the ketonic oxo group
of ring D is directly (without mediation by a water molecule)
hydrogen-bonded to Lys68 (Figure 6D).

Which impact do the bromo substituents – via the
halogen bonds they form – have on the binding mode of
indenoindole-like CK2 inhibitors, as known so far from 4p

Figure 6: Structures ofMC11 in complex with CK2α and CK2α′. (A) Overview of the CK2α′/MC11 complex structure. (B/C)MC11 at the ATP site of CK2α′
(B) and CK2α (C); green dotted lines indicate halogen bonds and red dotted lines hydrogen bonds. (D) Local structural overlay of the CK2α/MC11 (grey
C-atoms) and the CK2α′/MC11 (slate-blue C-atoms) complex structures. (E) Superimposition of the CK2α′/MC11 structure and the CK2α′/THN27 structure
(PDB_ID 6HMC). (F) Superimposition of the CK2α/MC11 structure and the CK2α/THN27 structure (PDB_ID 6HBN). The pieces of electron density visible in
parts A-C of the Figure were drawn with a cut-off level of 1.0 σ.
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(Hochscherf et al. 2017) as well as THN27 and AR18 (Linden-
blatt et al. 2019)? All three are free of halogens and their
orientations in the ATP site are dominated by hydrogen
bonds. To answer the question formulated above, we overlaid
the CK2α′/MC11 structure and the CK2α/MC11 structure with
the equivalent complex structures with THN27 (PDB_ID
6HMC: CK2α′/THN27; PDB_ID 6HBN: CK2α/THN27) (Figure 6E
and F). The difference in the binding mode is particularly
striking in CK2α′: Here, Figure 6E shows that the bromine
atoms of MC11 have shifted the indenoindole scaffold so
strongly outwards and rotated it at the same time that ring D
no longer makes direct polar contact with the enzyme and
that space has been created for the aforementioned third
water molecule. In the case of CK2α, the same shift and
rotation of the indenoindole scaffold can be seen (Figure 6F);
however, they are less pronounced, so that the space created
is not sufficient for a third water molecule. Whether this
subtle difference between CK2α and CK2α′ in the binding of
MC11 is due to their sequence difference in the hinge region
(Figure 6D) andwhether it canbe expandedandutilized in the
longer term to generate isoenzyme-selective inhibitors
remains to be seen.

2.5 Cytotoxicity test on leukemia cell lines

The compounds were also tested on a panel of myeloid
cancer cells, as well as on a chronic myeloid leukemia (CML)
cell line and a non-cancerous cell line (Figures 7 and S2,
Table S2). The CK2 inhibitor emodin was used as a reference
compound for the bioactivity tests. The ability to induce
apoptotic cell death was determined at 30 µM and 100 μM.

The most active compounds were 4p and MC11, which
resulted in 100 % cell death in most acute myeloid leukemia
(AML) cell lines. Interestingly, MC11 was able to induce cell
death in the cell line with enforced expression of Bcl-2 (IPC-
Bcl2), whereas 4p was less efficient towards these cells. The
compounds 5a-2 and TBBt led to distinct responses toward
the different AML/acute promyelocytic leukemia (APL) cell
lines. For instance, TBBt did not induce apoptosis in
MOLM-13 cells, but was efficient towards the MV4-11 and
IPC-81 cell lines, even those with attenuated expression of
p53 (MV4-11 shp53) or enforced expression of Bcl-2 (IPC-Bcl2).
MC14 was the least efficient compound, leading to less than
10 % apoptosis at 100 μM. In general, none of the compounds
showed considerable activity towards the CML or normal rat
kidney (NRK) cells, highlighting the potential of these com-
pounds in AML therapy.

3 Conclusions

It seems clear that bromine enhances interactions between
the indeno[1,2-b]indole A-ring and three amino acids of the
ATP site (Phe113, Glu114 and Val116 in CK2α; Phe114, Glu115
and Ile117 in CK2α′), interactions that do not exist with
THN27, for example (Figure 6F).

Then, these studies have not only enhanced our
understanding of the structural interactions between in-
hibitors and CK2 but also provide new perspectives for
optimizing our recent indeno[1,2-b]indole-based inhibitors
(Birus et al. 2022) targeting protein kinase CK2. As part of
the “XPLOR_CK2” partnership (https://anr.fr/en/funded-
projects-and-impact/funded-projects/), we are working on

Figure 7: Cytotoxic potential of the CK2 inhibitors MC11 and MC14. The CK2 inhibitor emodin was included as a reference compound. The cells were
incubated with the given concentrations of the compounds for 24 h, then fixed and the DNA stained with the DNA-specific dye Hoechst 33342, and the
percent of apoptotic cells was determined by microscopic evaluation of surface and nuclear morphology. See the materials and methods Section 4.7 for
experimental details.
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the development of a new generation of bivalent inhibitors
(commonly referred to as type V inhibitors). Building on the
success of TBBt as a warhead for the ATP-binding pocket
(Lindenblatt et al. 2022), we now have additional options (e.g.,
MC11) to guide our drug design. MC11 is also being further
investigated for its potential to inhibit thehumanATP-binding
cassette transporter ABCG2.

4 Materials and methods

4.1 Chemistry

4.1.1 General

Chemicals are named according to IUPAC nomenclature. All
of the reagents were purchased from Sigma-Aldrich and
Thermo-Fisher Scientific.

4,5,6,7-Tetrachloroindane-1,3-dione MC1b was prepared
according to the literature (Allen et al. 2008). Syntheses of
4,5,6,7-tetrabromo-2,2-dihydroxyindane-1,3-dione (MC2a) and
enaminone MC3 were already described (Bouzina et al. 2021
forMC2a, Jabor Gozzi et al. 2015 forMC3).

Microwave reactions were conducted using a Biotage
Initiator Microwave synthesizer 2.0440W. Melting points
were determined on an Electrothermal 9200 capillary appa-
ratus. The IR spectra were recorded on a PerkinElmer Spec-
trum Two IR spectrometer. The 1H and 13C NMR spectra were
recorded at 400MHz on a Bruker DRX 400 spectrometer or a
Jeol ECZ 400 spectrometer. Chemical shifts are expressed in
ppm (δ) downfield from internal tetramethylsilane and
coupling constants J are reported in hertz (Hz). The following
abbreviations are used: s, singlet; bs, broad singlet; d, doublet;
t, triplet; dt, doubled triplet; q, quartet; qui, quintuplet; sept,
septuplet; m, multiplet; Cquat, quaternary carbons. The mass
spectra were performed by direct ionization (EI or CI) on a
ThermoFinnigan MAT 95 XL apparatus.

Chromatographic separations were performed on silica
gel columns by column chromatography (Kieselgel 300e400
mesh). All reactions were monitored by TLC on GF254 plates
that were visualized under a UV lamp (254 nm). Solvent
evaporation was performed under vacuum with a rotating
evaporator. The purity of the final compounds (greater than
95%)wasdeterminedbyuHPLC/MSon anAgilent 1290 system
usinganAgilent 1290 InfinityZORBAXEclipse Plus C18 column
(2.1mm × 50mm, 1.8mm particle size) or a Poroshell 120
Agilent infinity lab (2.1 mm × 50mm, 2.7mm particle size)
with a gradient mobile phase of H2O/CH3CN (90:10, v/v) with
0.1 % formic acid to H2O/CH3CN (10:90, v/v) with 0.1 % formic

acid at a flow rate of 0.5ml/min, with UV monitoring at the
wavelength of 254 nm with a run time of 10min.

4.1.2 Synthesis of tetrahalogenoindeno[1,2-b]indole-9,10-
diones MC11 and MC14

4.1.2.1 4,5,6,7-Tetrachloro-2,2-dihydroxyindane-1,3-dione
(MC2b)
A sealed-pressurized reaction vessel (5 ml) equipped with a
magnetic stirrer and chargedwith 4,5,6,7-tetrachloroindane-
1,3-dione MC1b (285 mg, 1.00 mmol), selenium dioxide
(167 mg, 1.50 mmol), dioxane (3.8 ml) and two drops of water,
was irradiated 5 min at 180 °C with a maximum of 400W.
The vessel was rapidly forced-air cooled to room tempera-
ture. The mixture was transferred to a round bottom flask,
and the vessel washed with acetone. Silica was added to
prepare a solid deposit. The volatile solvents were then
evaporated in vacuo before purification by flash chroma-
tography (ethyl acetate:cyclohexane, 1:2) to give the corre-
sponding ninhydrin MC2b clearly recognizable as a brown
solid (194 mg, 0.61 mmol, 61 %).

Mp > 148 °C, degradation. Rf (ethyl acetate:cyclohexane,
1:2): 0.21. IR υ (cm−1): 3,370 (OH), 1,744 (C=O), 734 (C–Cl). 1H
NMR (400MHz, DMSO‑d6): δ 7.84 (bs, 2H, OH). 13C NMR
(101 MHz, DMSO‑d6): 192.16 (2 C=O), 140.89 (Cquat), 134.10
(Cquat), 129.45 (Cquat), 87.22 (C(OH)2). MS-ESI calcd for
C9H3Cl4O4 [M+Na]+ 314.8780, found: 314.8779.

4.1.2.2 1,2,3,4-Tetrabromo-4b,9b-dihydroxy-5-isopropyl-
4b,5,6,7,8,9b-hexahydroindeno[1,2-b]indole-9,10-dione
(MC4a)
A solution of tetrabromoninhydrinMC2a (634mg, 1.28mmol)
and enaminoneMC3 (206mg, 1.34mmol) in methanol (25 ml)
was stirred at room temperature for 24 h. The precipitate was
then filtered and washed with diethyl ether (Et2O) to obtain
the corresponding dihydroxy derivative MC4a, clearly
recognizable as an orange solid (594mg, 0.95mmol, 74%).

Mp > 158 °C, degradation. Rf (ethyl acetate) 0.54. IR ν
(cm−1): 3,347 (OH), 1,717 (C=O), 1,758 (C=O), 1,163 (C–Br). 1H
NMR (400 MHz, DMSO‑d6): δ 7.00 (s, 1H, OH), 6.11 (s, 1H, OH),
4.76 (sept, J = 7.0 Hz, 1H, CH(CH3)2), 2.76 (dt, 1H, J = 17.6, 5.5 Hz,
1H of CH2), 2.43–2.35 (m, 1H, 1H of CH2), 2.08–2.00 (m, 2H, CH2),
1.85–1.69 (m, 2H, CH2), 1.46 (d, J = 7.1 Hz, 3H, CH3), 1.25 (d, J =
6.6 Hz, 3H, CH3). 13C NMR (101 MHz, DMSO‑d6): δ 193.48 (C=O),
189.92 (C=O), 167.65 (Cquat), 148.04 (Cquat), 137.00 (Cquat),
135.12, (Cquat), 132.58 (Cquat), 122.23 (Cquat), 120.58 (Cquat),
109.06 (Cquat), 96.12 (C–OH), 84.46 (C–OH), 46.64 (CH), 36.76
(CH2), 25.05 (CH2), 22.93 (CH3), 22.41 (CH3), 21.59 (CH2). MS-ESI
calcd for C18H16Br4NO4 [M + H]+ 625.7802, found 625.7807.
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4.1.2.3 1,2,3,4-Tetrachloro-4b,9b-dihydroxy-5-isopropyl-
4b,5,6,7,8,9b-hexahydroindeno[1,2-b]indole-9,10-dione
(MC4b)
A mixture of tetrachloroninhydrinMC2b (2.01 g, 6.37 mmol)
and enaminone MC3 (1.02 g, 6.68 mmol) in methanol (77 ml)
was stirred at room temperature for 24 h. The precipitate
was then filtered and washed with Et2O to obtain the cor-
responding dihydroxy derivative MC4b, corresponding to a
pale orange solid (1.15 g, 2.55 mmol, 40 %).

Mp 193 °C. Rf (dichloromethane:acetone, 9:1) 0.40. IR ν
(cm−1): 3419, 1740, 1,531, 723. 1H NMR (CDCl3, 400 MHz) δ: 7.12
(s, 1H, OH-4), 6.15 (bs, 1H, OH-9), 4.70 (sept, 1H, J = 7.0 Hz,
CH(CH3)2), 2.78 (dt, 1H, J = 17.5, 5.4 Hz, 1H of CH2), 2.49–2.41 (m,
1H, 1H of CH2), 2.15–2.04 (m, 2H, CH2), 1.93–1.74 (m, 2H, CH2),
1.43 (d, 3H, J = 7.2 Hz, CH3), 1.30 (d, 3H, J = 6.9 Hz, CH3). 13C NMR
+ DEPT (DMSO‑d6, 100 MHz) δ: 192.52 (C=O), 189.55, (C=O),
167.11 (Cquat), 150.27 (Cquat), 145.10 (Cquat), 138.41 (Cquat),
134.49 (Cquat), 132.03 (Cquat), 129.03, 128.07 (Cquat), 107.73
(Cquat), 95.90 (Cquat), 84.59 (Cquat), 45.90 (CH), 36.40 (CH2),
24.88 (CH2), 22.57 (CH3), 22.38 (CH3), 21.56 (CH2). HRMS calcd
for C18H16Cl4NO4 [M + H]+ 449.9828, found 449.9817.

4.1.2.4 1,2,3,4-Tetrabromo-5-isopropyl-5,6,7,8-tetrahydroin
deno[1,2-b]indole-9,10-dione (MC11)
Amixture of dihydroxy derivativeMC4a (140mg, 0.22 mmol),
TETA (200mg, 1.04 mmol), and acetic acid (0.04 ml) was dis-
solved in N,N-dimethylformamide (DMF) (0.2ml) and stirred
at room temperature for 24 h. Crushed ice was added and the
mixture was stirred for 1 h. The precipitate was filtered,
washed with water, Et2O, and purified by column chroma-
tography (dichloromethane:acetone, 9:1) to give a red solid
(100mg, 0.17 mmol, 76%).

Mp 280 °C. Rf (dichloromethane:acetone, 9:1) 0.62. IR υ
(KBr, cm−1): 2,933, 1,714 (C=O), 1,655 (C=O), 552 (C–Br). 1H NMR
(400MHz, CDCl3 + drop DMSO‑d6): δ 5.52 (sept, 1H, J = 7.0 Hz,
CH(CH3)2), 2.83 (t, 2H, J = 6.0 Hz, CH2), 2.30 (m, 2H, J = 6.4 Hz,
CH2), 2.05–1.86 (m, 2H, CH2), 1.44 (d, 6H, J = 6.9 Hz, 2CH3). 13C
NMR (100 MHz, CDCl3 + drop DMSO‑d6): δ 191.48 (C=O), 177.90
(C=O), 152.32 (Cquat), 148.98 (Cquat), 139.59 (Cquat), 136.76
(Cquat), 134.71 (Cquat), 130.74 (Cquat), 123.32 (Cquat), 121.05
(Cquat), 119.41 (Cquat), 114.08 (Cquat), 52.12 (CH), 37.90 (CH2),
25.55 (CH2), 23.51 (CH2), 21.98 (2 CH3). HRMS calcd for
C18H14Br4NO2: [M+H]+ 591.7753 found: 591.7760.

4.1.2.5 1,2,3,4-Tetrachloro-5-isopropyl-5,6,7,8-tetrahydroin
deno[1,2-b]indole-9,10-dione (MC14)
A mixture of dihydroxy derivativeMC4b (1.14 g, 2.53 mmol),
TETA (2.20 g, 11.5 mmol), and acetic acid (4.4 ml) was

dissolved in DMF (16.3 ml) and stirred at room tempera-
ture for 24 h. Crushed ice was added and the mixture was
stirred for 1 h. The precipitate was filtered, washed with
water, Et2O, and purified by column chromatography
(dichloromethane:acetone, 9:1) to give a red solid (456 mg,
1.93 mmol, 43 %).

Mp 294 °C. Rf (dichloromethane:acetone, 9:1) 0.81. IR ν
(cm−1): 2,947 (CH), 1,718 (C=O), 1,666 (C=O), 726 (C–Cl). 1H NMR
(CDCl3 + drop of DMSO‑d6, 400 MHz) δ: 5.50 (sept, 1H, J =
6.7 Hz, CH(CH3)2), 2.84 (t, 1H, J = 6.0 Hz, 2H, CH2-6), 2.30 (t, 2H, J
= 5.7 Hz, CH2-8), 2.00–1.91 (m, 2H, CH2-7), 1.49 (d, 3H J = 7.1 Hz,
CH3), 1.47 (d, 3H J = 7.1 Hz, CH3). 13C NMR+DEPT (CDCl3+ drop
of DMSO‑d6, 100 MHz) δ: 191.59 (C=O), 177.90 (C=O), 152.05
(Cquat), 148.20 (Cquat), 137.58 (Cquat), 135.69 (Cquat), 133.64
(Cquat), 133.30 (Cquat), 129.65 (Cquat), 123.27 (Cquat), 121.62
(Cquat), 119.24 (Cquat), 52.71 (CH), 38.01 (CH2), 25.76 (CH2),
23.72 (CH2), 22.17 (2 CH3). HRMS calcd for calcd for
C18H13Cl4NNaO2: [M+Na]+ 437.9593, found: 437.9597.

4.2 Determination of in silico
physicochemical properties

In our study, we used the SwissADME web tool (http://www.
SwissADME.ch/) to analyze various pharmacokinetic attri-
butes, including molecular weight, LogP, hydrogen bonding
capacity, rotatable bonds, and adherence to Lipinski’s
guidelines (Daina et al. 2017).

4.3 MRC5 cell viability assay

Cell viability assay was evaluated through the MTT colori-
metric assay (Mosmann 1983). The assay was optimized for
the cell lines used in the experiment. MRC5 cells (Lung
Fibroblast Human CCL-171 ATCC) were plated in triplicate
at a density of 6,000 cells/well in 96-well culture plates. Cells
were incubated overnight at 37 °C in 5 % CO2 in MEM
(modified Eagle’s medium) medium supplemented with 10%
FBS (fetal bovine serum). The following day, cells were treated
with the compounds (1–40 µM) or with vehicle control (DMSO).
After 72 h, the cells were incubatedwith 1mg/ml ofMTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Sigma
Aldrich) for 3 h at 37 °C. Themediumwas removed and 100 μl of
0.01M HCl in isopropanol was added in each well for 15min.
Absorbance wasmeasured by a plate reader at 570 nm and the
value measured at 690 nm was subtracted. Data are pre-
sented as the mean ±SD of at least three independent ex-
periments. GI50 value was calculated using GraphPadPrism.
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4.4 Protein expression and purification

Purification of the CK2α2β2 holoenzyme as applied in the
in vitro kinase assay was performed as previously described
(Gratz et al. 2010). For the purification of the catalytic sub-
units CK2α and CK2α′ a recently published protocol for His6-
tagged CK2α/CK2α′ was used instead (Werner et al. 2022).

4.5 Protein kinase assay

CK2 activity was determined by a capillary electrophoresis
assay as previously reported (Gratz et al. 2010) with modi-
fications. Briefly, 98 µl kinase buffer (150 mM NaCl, 25 mM
MgCl2, 25 mM Tris/HCl, pH 7.5) containing either 0.25 µg
CK2α2β2 or 0.5 µg of the catalytic subunits CK2α/CK2α′ was
supplemented with 2 µl of the test compound dissolved in
DMSO. After incubation for 10 min at 37 °C (CK2α2β2) or 30 °C
(CK2α/CK2α′) the kinase reaction was initiated by adding
100 µl assay buffer (150 mM NaCl, 25 mM MgCl2, 228 µM
substrate peptide RRRDDDSDDD, 120 µM ATP, 25 mM Tris/
HCl, pH 7.5). After 15 min at 37 °C (CK2α2β2) or 12 min at 30 °C
(CK2α/CK2α′), the reaction was stopped by adding 25 µl EDTA
(0.5 M, pH 8.0).

For the determination of IC50 values, dose-dependent
activity determinationswere performedwith test compound
concentrations ranging from 1 nM to 10 µM. A control
without test compound, but the same volume of DMSO cor-
responded to 100 % activity. IC50 values were calculated by
GraphPad Prism 5 (La Jolla, CA, USA).

In order to determine the mode of inhibition and Ki

values of the compounds for CK2α, Michaelis-Menten kinetics
was recorded at different test compound concentrations. To
maintain steady-state conditions at all ATP concentrations,
enzyme activities were determined over a period of 12min at
30 °C. In addition, the final concentration of the substrate
peptide RRRDDDSDDD was increased to 300 µM in these ex-
periments. The resulting data pointswere plotted according to
Hanes-Woolf using GraphPad Prism 5 (Hanes 1932).

4.6 Crystallization and crystal structure
determination

4.6.1 Protein preparation and crystallization

For crystallization experiments with CK2α, we expressed
and purified the C terminally-truncated, but fully active,
CK2α1–335 (Ermakova et al. 2003). For the crystallization of
MC11 with CK2α′ we used the point mutant CK2α′Cys336Ser.
Introducing this point mutation into CK2α′ prevents

aggregation during purification (Bischoff et al. 2011). Trans-
formation, expression and purification of both isoenzymes
were carried out according to a previously reported protocol
(Werner et al. 2022). Proteins were concentrated to 5–
6 mg/ml in a 500 mMNaCl, 25 mM TRIS-HCl, pH 8.5 buffer for
crystallization setups.

In this work, three crystal structures were reported. The
CK2α′ co-crystal structure was prepared by applying a
previously published back-soaking protocol (Lindenblatt
et al. 2019; Werner et al. 2023) using the sitting-drop variant
of vapor diffusion crystallization. For this, we initially pre-
pared co-crystals of CK2α′ and the ATP-competitive inhibitor
MB002 (Maria Bretner, Warsaw). Firstly, MB002 (10 mM
stock solution in DMSO) was added to CK2α′ yielding a so-
lution of 1 mMMB002 in 5 mg/ml CK2α′. This was incubated
on ice for 30 min followed by a short centrifugation step to
remove any precipitate. The reservoir solution was
composed of 900 mM LiCl, 100 mM TRIS-HCl, pH 8.5 and 28 %
(w/v). We used 700 µl of this solution for every reservoir. The
initial drop was composed of 4 µl of the protein/MB002
mixture and 2 µl reservoir solution. After equilibration
crystals were optimized by micro- and macro-seeding.
Grown crystals were then used for back-soaking in reser-
voir solution mixed in a 4:1 ratio with a 10 mM solution of
MC11 in DMSO yielding a final concentration of 2 mMMC11.

CK2αwas crystallized withMC11 by co-crystallization in
a low-salt and in a high-salt condition using the sitting-drop
variant of vapor diffusion crystallization. The high-salt
reservoir solution was composed of 4.2 M NaCl and 0.1 M
citric acid adjusted to pH 5.5 with NaOH. CK2α1–335 wasmixed
with a 10 mM stock ofMC11 in DMSO to final concentrations
of 1 mM MC11 and 5 mg/ml CK2α1–335. After 30 min of incu-
bation on ice we removed any precipitate by centrifugation.
1 µl of the supernatant was mixed with 1 µl of the high-salt
reservoir solution and equilibrated against 700 µl of the
reservoir solution. Crystal growth occurred spontaneously.

4.6.2 Data collection and processing

Co-crystals ofMC11 and CK2α’were cryo-protected by briefly
incubating the crystals in a mix of 1.4 µl of their respective
reservoir solution and 0.7 µl ethylene glycol prior to freezing
the crystals in liquid nitrogen. Crystals grown in the high-salt
crystallization condition were flash-frozen directly. Data
collectionswere carried out at beamlines ID23‑2 and ID30B of
the ESRF (Grenoble, France). Diffraction data derived from
the CK2α’/MC11 crystal were processed using the autoPROC
pipeline (Vonrhein et al. 2011), which applies XDS (Kabsch
2010), Pointless and Aimless (Evans and Murshudov 2013)
from the ccp4 suite (Winn et al. 2011) and lastly Staraniso
(Tickle et al. 2018). Data related to the high‑salt co‑crystal of
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CK2α and MC11 were manually processed in XDS (Kabsch
2010) and in Pointless and Aimless (Evans and Murshudov
2013) from the ccp4 suite (Winn et al. 2011). All phases were
solved by molecular replacement using PHASER (McCoy et
al. 2007) from Phenix (Adams et al. 2010). For the CK2α
structure 2PVR (Niefind et al. 2007) from the PDB (Berman et
al. 2000) was used as the search model, while PDB structure
6HMQwas used as the search model for the CK2α’ structure.
Refinement was conducted either manually in Coot (Emsley
et al. 2010) or automated in the phenix.refine (Afonine et al.
2012) module of Phenix. Parameters and restraints of MC11
were prepared in elbow (Moriarty et al. 2009).

The crystal structures are deposited in the PDB with the
following codes: 9H97 (CK2α1-335/MC11 crystallized under
high-salt conditions), 9H9D (CK2α1-335/MC11 crystallized
under low-salt conditions) and 9H96 (CK2α’Cys336Ser/MC11)
(Table S1).

4.7 Cytotoxicity test on leukemia cell lines
and non-cancerous cell lines

4.7.1 Maintenance of cell lines

The acute myeloid leukemia (AML) cell lines MOLM-13
(DSMZ, ACC-554, and Matsuo et al. 1997) and MOLM-13 shp53
(Myhren et al. 2013)were cultured in RPMImediumenriched
containing 10 % fetal bovine serum (FBS, Invitrogen, Carls-
bad, CA, USA), whereas the MV4-11 cells (Quentmeier et al.
2003) were cultured in Iscove’s medium supplemented with
8 mML-glutamine and 10 %FBS. The rat acute promyelocytic
leukemia (APL) cell lines IPC-81 (Lacaze et al. 1983) and IPC
with enforced expression of Bcl-2 (Séité et al. 2000) were
cultured in Dulbecco’s Modified Eagles Medium (DMEM)
supplemented with 10 % horse serum (Invitrogen, Carlsbad,
CA, USA), and the human APL cell line NB4 (Lanotte et al.
1991) was cultured in RPMI medium containing 10 % FBS.
The chronic myeloid leukemia (CML) cell line K562 (ATCC:
CCL-243) was cultured similarly to the MV4-11 cells. The NRK
normal rat kidney epithelial cells (ATCC: CRL-6509) were
cultured in DMEMmedium supplemented with 10 % FBS. All
cell media were supplemented with 100 IU/ml penicillin and
0.1 mg/ml streptomycin (Cambrex, Verviers, Belgium) and
cultured in a humidified atmosphere (37 °C, 5 % CO2). All cell
media were from Sigma (Sigma, La Jolla, CA, USA). The cell
suspensions were cultured in tissue culture flasks at a den-
sity ranging between 70 and 800 × 103 cells/ml. The adherent
NRK cells were cultured in monolayer, and when reaching
more than 90 % confluence, detached by mild trypsin
treatment for 4 min, centrifuged at 120 × G and reseeded at
15–20 % confluence. Tests for mycoplasma infection were

done for all cell lines twice during the period of the experi-
ments, using the manufacturer’s protocol (MycoAlert™,
www.invivogen.com/mycostrip). No mycoplasma infection
was detected for the duration of the experiments.

4.7.2 Cytotoxicity tests

The cell lines were seeded in 96-well tissue culture plates at
150,000 cells/ml and 0.1ml/well. The adherent NRK cellswere
seeded the day before the experiment and left overnight in
the incubator to attach to the substratum. The cells were
exposed to 30 or 100 μM of CK2 inhibitors for 24 h before
assessment of viability by the reporter dye WST-1 as
described by the supplier (Roche Diagnostics, Basel,
Switzerland). The cells were next fixed in 2 % buffered
formaldehyde (pH 7.4) with the DNA-specific dye Hoechst
33342 (Polysciences Inc., Eppelheim, Germany) and scored
for apoptosis and necrosis as previously described
(Bjørnstad et al. 2019). Since CK2-inhibition can affect the
activity of the enzyme which converts WST-1 into the re-
porter dye (Park et al. 2001), we found some instances
where addition of CK2 inhibitors increased the WST-1
signal despite the presence of apoptotic nuclei. Therefore,
only microscopic evaluation of nuclear morphology was
used to assess cytotoxicity.
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