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Abstract

The FCC-ee is the first stage of a two stage project which would envision a 92 km tunnel

being used for an electron-positron collider experiment starting around 2045, and a proton-

proton collider in the 2070’s. The FCC-ee offers unprecedented precision tests of the Standard

Model, owing to its clean leptonic collision environment and exquisite luminosity. The precise

identification of decay products at future colliders is instrumental to the exploitation of the full

physics potential. In this thesis two facets of this problem are explored: jet flavour tagging and

charged particle tracking.

Jet flavour tagging describes the algorithmic identification of the initiating parton from

hadronic decays. The prospect of identifying strange quark jets has emerged as a promising

avenue to study a multitude of largely unexplored processes, including Z → ss̄ production and

rare Higgs boson decays. DeepJetTransformer is a transformer-based multiclassifier neural net-

work developed by the CMS jet tagging team at the VUB, achieving state-of-the-art performance

while being relatively lightweight. This thesis combines DeepJetTransformer with secondary ver-

texing and a novel implementation of K-short reconstruction at the FCC-ee to identify strange

jets. Through the inclusion of different levels of K±/π± discrimination, strange tagging efficien-

cies ranging from 31.6% to 57.8% were obtained at a u, d jet efficiency of 10%, highlighting the

need for charged Kaon discrimination at future colliders.

Monolithic Active Pixel Sensors (MAPS) combine the sensing node and readout circuitry into

the same substrate, thus offering several advantages with respect to their hybrid counterparts.

The Circuit Exploratoire 65 nm (CE-65), and its evolution CE-65v2, are MAPS test structures

produced in the 65 nm TPSCo CMOS process to explore charge collection properties for a

variety of configurations, including variations in pixel pitch, process modification, amplification

scheme, and matrix geometry. In this thesis the lab characterisation of the CE-65v1 and CE-

65v2 chips is reported, where charge collection efficiencies of 96% were achieved for all variants.

In a subsequent beam test at CERN SPS a sub 3 µm spatial resolution was obtained for Standard

process variants, satisfying FCC-ee requirements. The characterisation of the CE-65 family of

chips has supplemented the APTS and DPTS studies in the validation of the 65 nm TPSCo

process as a candidate technology for advanced particle detection applications, directly informing

the development of future tracking detectors.
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“The limits of my language mean the limits of my world.”

– Ludwig Wittgenstein
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1 Introduction

The Standard Model (SM) provides a consistent and predictive framework describing funda-

mental particles and their interactions. It has since the 1980s become the established theory of

particle physics, and a sizeable departure from the theory is yet to be observed. In 2012 [5] its

last, and arguably one of its most central elements, was observed: the Higgs boson. While this

marked a triumph of the theory, it was also an expected one, and thus its presence alone did

not clearly chart a course forward. The Standard Model has proven robust in the face of ex-

tensive experimental scrutiny, yet it is known that it does not provide a complete description of

nature as evidenced by a variety of phenomena that remain unexplained, including the absence

of gravity in the framework, the existence of dark matter, and the observed matter-antimatter

asymmetry.

The particle physics community is thus at a crossroads, where the clear necessity for studying

the Higgs boson in detail has arisen. The most suitable experiment for such an endeavour

is an electron collider, which owing to its clean experimental conditions is often dubbed a

“precision machine”. Electrons, unlike protons which are currently collided at the Large Hadron

Collider (LHC) at CERN, are fundamental particles. Electron-positron collisions thus involve

well-defined initial states, which are additionally not subject to the strong force. As a result,

electron-positron collisions are considerably cleaner than their hadronic counterparts, with fewer

final-state particles and a sizeably reduced background from particles not associated with the

primary hard scattering. By operating near the Higgsstrahlung threshold, lepton colliders can

produce a Higgs boson in association with the well-studied Z boson and nothing else1, thus

enabling the study of one of nature’s most interesting objects. Beyond Higgs studies, lepton

colliders enable a broad physics programme encompassing electroweak and strong interactions.

This includes precision measurements of Z and W boson properties, which mediate the weak

force. Precision studies of the strong force, including a per-mille determination of the strong

coupling αs, are key to global electroweak fits and other precision measurements where it might

otherwise dominate as a parametric uncertainty.

In each of these a departure from SM predictions would imply the existence of a deeper

underlying theory, that could be entering these measurements indirectly. Such an effect has

been observed in the past, for instance with the top quark, where its loop contribution to

e+e− → ff̄ was used to estimate its mass. Currently there have been several proposals for a

future lepton collider, around which collaborations have formed. These include: the FCC-ee

at the Swiss-French border [6], the ILC in Japan [7], and the CEPC in China [8]. This thesis

focuses specifically on the FCC-ee, both in the context of the flavour tagging studies introduced

below, and the subsequent characterisation of silicon detectors.

As the partons produced in a hard scattering process decrease in energy scale, they radiate

a cascade of strongly interacting particles. The resulting collimated spray of colourless particles

1This is, of course, not quite true, as it neglects radiative effects such as ISR, which modify the final state.
Nevertheless, the process remains remarkably clean compared to hadronic collisions.
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is referred to as a jet. While a jet is an interesting physics object in and of itself, offering insight

into the dynamics of the strong force, such as the strength of its coupling αs, most physics mea-

surements ultimately target the partons produced by the hard scattering. Thus the need for a

mapping between the spray of detector stable particles back to their initiating partons emerged,

known as jet-flavour tagging. Early approaches to jet flavour tagging focused on physics-inspired,

high-level observables, such as the impact parameter significance, designed to identify jets of a

particular species. With the advent of sophisticated machine learning techniques, jet flavour

tagging has increasingly relied on lower-level information, and high-capacity models, often ex-

ceeding 105 parameters, carefully trained on MC data. Among these, transformer-based ar-

chitectures have recently emerged as computationally efficient models that are able to exploit

subtle correlations between jet constituents.

At the FCC-ee the clean environment and well-defined initial states will provide an ideal

setting for precision jet flavour tagging. In particular, the identification of strange quark initiated

jets will enable direct access to processes including Z → ss̄, W → cs, and rare Higgs boson

decays, channels that remain experimentally challenging and imprecise. Jet flavour tagging

studies at the FCC-ee relying on a transformer-based architecture are presented in Part II of

this thesis.

Charged particle tracking is a central component of modern collider experiments, and ar-

guably the most important to jet flavour tagging. As a charged particle traverses a detector

its trajectory is governed by the Lorentz force. This allows for the precise determination of

a particle’s momentum, based on its track curvature in the presence of a B field. Moreover,

measurements of energy depositions in the sensors the particle traverses allow the identification

of its species via its energy loss per unit length (dE/dx). One of the most powerful applica-

tions of charged particle tracking is the reconstruction of displaced vertices due to the longer

lifetimes of certain hadrons, typically dubbed secondary vertex reconstruction. Secondary ver-

tex reconstruction plays a central role in the jet flavour tagging described above, allowing the

identification of bottom or charmed hadrons in a jet, providing a direct handle on the flavour of

the originating parton.

At future lepton colliders high-resolution sensors will be instrumental for precise impact pa-

rameter measurements and secondary vertex reconstruction, enabling both jet flavour tagging

and a rich flavour physics programme. A primary complication as particles traverse detector

material is their small-angle deflection due to multiple coulomb scattering, significantly de-

grading the precision of track reconstruction. Monolithic Active Pixel Sensors (MAPS) offer

a compelling avenue to low-material, high-precision tracking, by combining the sensor and the

readout circuitry onto the same silicon die.

While this entails a variety of advantages with respect to having dedicated sensing and

readout chips, ranging from a lower material budget to miniaturisation, MAPS have seen limited

adoption at hadron colliders due to their lower radiation tolerance. At lepton colliders, however,

the radiation environment is foreseen to be considerably milder than at the LHC. MAPS are thus

quickly emerging as the enabling technology for vertexing systems at future lepton colliders. As

detailed later in this thesis, all four primary detector concepts proposed for the FCC-ee foresee

the use of MAPS for vertexing. The characterisation of MAPS tests structures produced in the

65nm TPSCo CMOS imaging process, targeting future vertexing systems, and in particular the

FCC-ee, is presented in Part III of this thesis.

This thesis begins with an overview of the general prerequisites for understanding the material

2



herein presented. Chapter 2 starts with a brief overview of the Standard Model, followed by

a discussion of some of its known limitations, which serve as the motivation for future collider

projects. The details of the Future Circular Collider project are given in Chapter 3, which

is primarily framed as an answer to the open questions mentioned in the previous chapter.

Particular emphasis is placed on the FCC-ee’s physics potential, and the detector concepts

that have emerged to exploit it. Chapter 4 discusses the reconstruction of physics objects by

combining different subdetector measurements, with particular emphasis on jets, serving as a

segue to Part II, which details jet flavour tagging studies at the FCC-ee.

Part II begins with a pedagogical introduction to the topic of machine learning in Chapter 5,

presenting the foundations before delving into topics particularly relevant for jet flavour tagging.

The chapter concludes with a brief survey of machine learning in jet flavour tagging, providing

context for the studies that follow. Chapter 6 subsequently presents flavour tagging studies at

the FCC-ee based on fast simulation of the IDEA detector concept. Focus is placed on strange

jet identification and its dependence on the identification of charged and neutral Kaons.

Part III encompasses the characterisation of MAPS test structures produced in the 65nm

TPSCo CMOS imaging process. Chapter 7 presents the fundamentals of semiconductor de-

tectors, beginning with the semiconductor band structure before delving into signal formation.

The chapter ends with a brief discussion of signal readout and a presentation of MAPS princi-

ples. The details of the CE-65 family of chips are presented in Chapter 8, setting the stage for

their characterisation. Chapter 9 details the lab characterisation of the CE-65v1 and CE-65v2

chips conducted at the University of Zurich, including measurements of noise, gain calibration,

charge sharing, and gain uniformity. Chapter 10 subsequently details the characterisation of

the CE-65v2 chips at an SPS and DESY testbeam, focusing on the achievable efficiency and

spatial resolution, as well as on the ramifications of a staggered matrix geometry. The thesis

concludes with Part IV, where the findings are summarised and future directions of research are

highlighted.
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Part I

Theoretical and Experimental

Foundations
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Most observable matter, however, appears not as fundamental particles, but in the form of

hadrons, or composite particles consisting of more than one quark. Hadrons appear overwhelm-

ingly in the form of baryons, consisting of three quarks, typically of the first generation. Quarks

are grouped into up-type (+2
3) and down-type (−1

3) according to their electric charge. As with

leptons, each subsequent generation is considerably more massive than the one preceding it, and

second and third generation quarks are orders of magnitude rarer than their first generation

cousins, as their large masses render them unstable and only produced in high-energy processes.

The peculiar ordering of fermion masses in the Standard Model remains an open question.

The fact that quarks are not observed as free particles, but as hadrons, is a direct consequence

of the strong force, whose potential rapidly increases as quarks are separated in a process called

confinement. Hadrons are fundamentally colour singlets, which in effect means that they do not

carry any charge associated with the strong force, and are thus not subject to it. Before delving

into the details of confinement, some more background is necessary, and the details are thus left

to the following passages.

Forces

The vector bosons mediate three of the four known forces: the electromagnetic, the strong,

and the weak force. Although the Standard Model fails to accommodate gravity, it in some sense

has no bearance on collider physics, as the gravitational coupling is many orders of magnitude

lower than comparable couplings of the remaining forces at 1 GeV [11]:

αs ∼ 1 > αQED ≈ 1

137
> αW ∼ 10−6 ≫ αg ∼ 10−39 (2.1)

Electromagnetism is arguably the simplest of the three Standard Model forces after symmetry

breaking, as the theory that describes it, Quantum Electrodynamics (QED), is an Abelian

gauge theory based on a U(1)EM symmetry, where the conserved quantity is the electric charge.

More tangibly, this means that while the massless photon mediates electromagnetic interactions

between charged particles, it does not couple to itself. This aligns with the intuitive picture of

electric field lines spreading across space, where Gauss’ law gives the familiar ∼ 1/r2 scaling

extending to infinity. In the infrared limit, the coupling constant of QED is given by the fine

structure constant αQED = e2/4π ≈ 1/137. Self-energy corrections to the photon propagator

modify this value depending on the momentum transfer Q, giving rise to an increase known as

the running of the coupling.

The strong force, by contrast, is described by Quantum Chromodynamics (QCD), which is a

non-Abelian gauge theory based on an SU(3)C symmetry. While the strong force also features

a massless vector boson as its mediator, the gluon, the key distinction is that the gluon carries

both a charge and an anti-charge, and thus couples to itself. Moreover, rather than a single

charge as in the case of electromagnetism’s U(1)EM symmetry, the SU(3) symmetry features

three distinct charges, collectively denoted the colour charge, which takes the values of r, g, b. A

core feature of QCD is that, in contrast to QED, the running of the strong coupling αs decreases

with increasing momentum transfer Q. More precisely, the running of the coupling is governed
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by the Beta function1 [12]

β(g) = Q
dg

dQ
= − b0

(4π)2
g3 +O(g5) (2.2)

where g =
√
4πα, b0 = 11 − (2/3) · nf with nf = 5 as the number of quark flavours that

contribute2, and the right-most term is the 1-loop result. The 1-loop differential equation is

solved by

α(Q) =
α(Q0)

1 +
b0
2π

α(Q0) ln

(

Q

Q0

) (2.3)

where Q0 is some reference momentum at which the value of the coupling is known. It is the

running of the strong coupling ultimately leads to jet formation, briefly described in Section 4.3.

An interesting feature of the Standard Model is that the couplings seem to converge to a similar

value at high energy scales, hinting at some yet-unresolved deeper symmetry.

The final force is the weak force, which is described by electroweak theory. Electroweak theory

unifies electromagnetic and weak interactions based on an SU(2)L × U(1)Y symmetry [13–15].

The SU(2)L symmetry acts on left-handed fermion doublets and introduces three massless gauge

bosons (W 1
µ ,W

2
µ ,W

3
µ), where the weak isospin is the conserved charge in interactions. The U(1)Y

symmetry acts on all fermions and introduces a single massless gauge boson Bµ, with the weak

hypercharge Y as the conserved charge. The breaking of the SU(2)L ×U(1)Y symmetry by the

introduction of a Higgs doublet with non-zero vacuum expectation value leads to the mixing of

the gauge bosons, and the generation of mass terms for three of the four resulting gauge bosons:

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) (2.4)

Zµ = cos θW W 3
µ − sin θW Bµ (2.5)

Aµ = sin θW W 3
µ + cos θW Bµ (2.6)

where θW is the Weinberg, or weak mixing, angle, defined by the relation tan(θW ) = gY /gW for

the couplings of the U(1)Y and SU(2)L gauge groups. The Aµ is the massless photon described

above, while the W±, Z are the resulting, physical bosons with masses of 80 GeV and 91 GeV,

respectively. It is primarily the large mass that the weak gauge bosons acquire after symmetry

breaking that gives the weak force its name. The virtuality of particles respects Heisenberg’s

uncertainty principle ∆E∆t & ~, and thus the timescale of weak interactions is very small, or

in other words short range.

Perhaps the most peculiar feature of the weak force is that it is the only force that allows

flavour changing decays. This results from the fact that the interaction eigenstates of charged

currents do not align with the quark mass eigenstates. The change of basis matrix for quarks is

1Technically the Beta function is defined in terms of the renormalisation scale µ, not the momentum transfer.
However, a discussion on renormalisation is beyond the scope of this short introduction.

2The top quark is too massive to contribute at momentum transfers below hundreds of GeV.
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known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [16, 17] and is given by

VCKM =







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb






(2.7)

The small but non-zero off diagonal elements are in essence responsible for flavour changing weak

transitions between up-type and down-type quarks of different generations. These transitions

underlie the decay of heavy hadrons, and are ultimately responsible for their finite lifetimes, key

in the flavour tagging discussed in Part II of this thesis.

Higgs Boson

The final element of the Standard Model is the Higgs boson, which is uniquely situated as the

only scalar boson. The Higgs boson is not a force carrier like its vector boson counterparts, but

rather an intimate part of the mass-generating mechanism of the Standard Model. In particular,

the Higgs boson appears in the Standard Model as a complex scalar doublet

Φ =

(

φ+

φ0

)

(2.8)

The gauge symmetry of the Lagrangian is spontaneously broken by the non-zero vacuum ex-

pectation value [18, 19], with the weak vector bosons acquiring mass via the interaction terms

in the covariant derivative, while the photon remains massless. Fermion masses, on the other

hand, arise from the so-called Yukawa couplings: interaction terms between the Higgs field and

the left- and right-handed fermion fields. After symmetry breaking these terms reduce to mass

terms proportional to the Higgs vacuum expectation value

mf = yf
v√
2

(2.9)

with heavier fermions, like the top quark, exhibiting the strongest Higgs couplings. The central

role of the Higgs in the Standard Model, along with the unknown nature of its properties such

as its potential, situate it at the very focus of current research.

2.1 Beyond the Standard Model

The Standard Model of particle physics is widely regarded as one of the most successful scientific

theories ever devised. Its role in unifying three fundamental forces into a single quantum field

theory, and accurately describing all known elementary particles, position the Standard Model at

the very core of our understanding of the universe. It has been tested with unprecedented rigour

at collider experiments, and a sizeable deviation from its predictions is yet to be observed. And

yet, the present sentiment is that the Standard Model is the low-energy limit of some deeper,

underlying theory.

Despite its success, the Standard Model leaves a number of observed phenomena unexplained,

and does not accommodate gravity. A straightforward quantisation of gravity has yet to be

demonstrated, due to the apparent non-renormalisability of a gravitational quantum field the-

ory. Extensions such as String theory [20, 21] offer possible routes towards quantum gravity.

Nevertheless, the path forward is unclear since the effects of gravity are negligible at the en-
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ergy scales probed at current and foreseeable collider experiments. Dimensional analysis of the

relevant constants reveals the Planck energy scale EP =
√

~c5

G ∼ 1019 GeV at which quantum

corrections to classical gravity are expected to become relevant, which is many order of magni-

tude higher than even the reach of the LHC. The unification of gravity and the Standard Model

thus remains one of the primary open questions of modern physics.

A number of cosmological measurements appear to be incompatible with the Standard Model

and general relativity. The rotation curves of spiral galaxies [22, 23], for instance, appear to

deviate from expectations based on the luminous mass, which is located primarily in the centre,

displaying instead a linear M(r ≤ R) ∼ R dependence, hinting at some form of invisible matter

that does not interact electromagnetically, dubbed dark matter. Roughly 85% of matter in the

universe is thought to be dark matter, and yet the Standard Model offers no compelling dark

matter candidates. A class of models extending the Standard Model to include weakly interacting

massive particles (WIMPs) postulates dark matter candidates whose small cross sections and

subtle signatures have meant they have thus far remained undetected. Experiments at the LHC

are at the forefront of WIMP searches, revolving around experimental signatures such as missing

energy, as well as deviations in precision measurements.

A well-motivated extension of the Standard Model, supersymmetry, introduces an additional

symmetry between fermions and boson, where every Standard Model particle has an associated

superpartner whose spin differs by 1/2. While supersymmetry introduces dark matter candidates

addressing the problem stated above, the primary motivation lies in resolving the problem of

naturalness, whereby the Standard Model requires the precise cancellation of the bare Higgs

mass and its large self-energy corrections to 1 part in 1034 in order to obtain the comparatively

miniscule pole mass of mH ≈ 125 GeV. Supersymmetry instead addresses the observed Higgs

mass by introducing cancellations between loop corrections of Standard Model particles and their

superpartners. Despite its motivations, the LHC has placed stringent limits on supersymmetry,

excluding many models and placing lower bound on superpartner masses.

Beyond gravity, dark matter, and naturalness, further glaring limitations of the Standard

Model include the observed non-zero neutrino masses [24–26] and the matter-antimatter asym-

metry of the universe. However, the Standard Model does not accommodate massive neutrinos,

since the absence of right-handed neutrinos forbids a Dirac mass term. Extensions including

treating the neutrino as its own antiparticle exist, but minimally require a modification of the

Standard Model. While the Standard Model does accommodate some matter-antimatter asym-

metry via CP violation, it does not suffice for the observed baryon asymmetry. The precise

properties of the Higgs boson, including the shape of its potential, may hold clues regarding the

prerequisite conditions for baryogenesis.

Thus the particle community is rallying behind a number of proposed "Higgs factories", or

lepton colliders where Higgs bosons may be plentifully produced in a clean experimental environ-

ment. These include linear collider concepts, such as the ILC [7] and CLIC [27], which generally

feature high centre-of-mass energies, albeit with reduced luminosity, and circular colliders, such

as CEPC [8] and the FCC-ee [6]. The following chapter introduces the FCC project in detail,

outlining its design, physics goals, and proposed detector concepts.
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3 The Future Circular Collider Project

Colliders have historically served as engines of discovery, providing a way forward in tandem

with theoretical efforts, and hinting at the existence of yet-undiscovered phenomena. Today

however, the field of particle physics is at a crossroads. Following decades of success, the field

has shifted from targeted discoveries to precision tests of the Standard Model, and studying

any deviations therefrom. The discovery of the Higgs boson at the LHC marks its most recent

triumph, but does not chart a clear course forward. The Future Circular Collider (FCC) project

[28, 29] has emerged as a two-pronged answer to the open questions the field currently faces,

tackling present challenges both at the precision and energy frontiers.

This chapter begins with a brief introduction into the fundamentals of collider physics, before

presenting the Future Circular Collider in Section 3.2. The remainder of this chapter details

several aspects of the FCC-ee, including the proposed runs in Section 3.3 and physics programme

in Section 3.4, before concluding by presenting the detector concepts that have emerged to

address these challenges.

3.1 Introduction to Collider Physics

Particle colliders function by accelerating particles to high energies and colliding them in bunches.

The resulting interactions produce on-shell particles that manifest as final state objects which can

be directly studied. Additionally, the scattering process is influenced by off-shell virtual parti-

cles, offering an avenue to indirectly infer their properties, often at higher energy scales. Particle

colliders can be broadly divided into lepton colliders, which collide electrons and positrons1, and

hadron colliders, which collide protons and (anti-)protons. Additional collider types featuring

linear geometries or alternative particle combinations (e.g. eh, heavy ion, ...) exist and have

played significant roles in advancing the field, particularly in contexts like deep inelastic scat-

tering or QCD matter at high temperatures and densities, but will not be discussed for brevity.

Presently, the largest particle collider is the LHC at CERN, which collides hadrons at energies

of up to 13.6 TeV.

Hadron and lepton colliders differ greatly in their motivation. While the more massive

hadrons allow collisions at considerably higher energies, the collision environment is substantially

more challenging as hadrons are not fundamental, and their constituents carry colour charge.

Lepton colliders, on the other hand, are fundamentally precision machines.

The precise energy at which a particle collider operates is defined with respect to the Man-

delstam variable s, given as

s = (pµ1 + pµ2 )
2 = (pµ1 + pµ2 )(p1µ + p2µ) = (E1 + E2)

2 − |~p1 + ~p2|2 (3.1)

where pµ1,2 are the 4-momenta of the incoming particles in a 2-body scattering process. In the

centre-of-mass frame, where the total 3-momentum vanishes, this reduces to
√
s = ECM

1 +ECM
2 ,

1Ref. [30] provides a review of recent efforts exploring the feasibility of a multi-TeV muon collider.
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and defines the centre-of-mass energy of the collision, interpreted as the total energy available for

particle production. Operating at higher centre-of-mass energies broadens the collider’s physics

reach, as it allows the on-shell production of more massive particles and access to new kinematic

regimes. However, increased energy entails notable drawbacks, including the need for stronger

bending magnets, increased synchrotron radiation, and substantially higher energy consumption.

Beyond the centre-of-mass energy, the second key parameter is the number of events that is

produced for the physics process under consideration. The number of events depends both on the

cross section σ, which characterises the probability of a process, and on the luminosity L. The

luminosity is a measure of the number of particles through a unit area per unit time, quantifying

the intensity of beam overlap. It is given in units of inverse area (e.g. cm−2) and inverse time

(e.g. s−1). In the case of the head-on collision of two Gaussian beams, the luminosity is given

by [31]

L =
N1N2fNb

4πσxσy
(3.2)

where N1,2 are the number of particles per bunch for the colliding beams, Nb is the number of

bunches per beam, f is the revolution frequency, and σx,y are the transverse beam sizes. The

number of events can be obtained by integrating the product of the luminosity and the cross

section, given as

Nev =

∫

σ · L dt = σ · Lint (3.3)

where Nev is the number of produced events for the given process and Lint is the integrated

luminosity. With the basic concepts of centre-of-mass energy and luminosity established, the

following section discusses how they inform the design of future facilities such as the FCC.

3.2 The FCC Integrated Project

The Future Circular Collider (FCC) project is an ambitious two-stage project that envisions

the construction of a 90.7 km tunnel at CERN, to successively host a high luminosity electron-

positron collider, the FCC-ee, followed by a high energy hadron-hadron collider, the FCC-hh.

It will serve as the successor to the LHC, and define the future of particle physics for the latter

half of the 21st century. Figure 3.1 depicts the proposed geometry for the FCC-ee accelerator.

Additional civil engineering constraints to host both colliders in the same tunnel are being

considered in the design phase, including an increase in the tunnel diameter, with respect to the

LHC, to 5.5 m.

The natural synergy observed between LEP and the LHC serves as a primary motivation

for the two-stage approach adopted for the FCC project. As a lepton collider, LEP operated

in a comparatively clean environment, instrumental in the precise determination of a variety of

Standard Model parameters, particularly related to the Z boson, such as the mass (mZ) and

width (ΓZ), which remain state-of-the-art. Moreover, and just as importantly, is the oft-touted

phrase that "precision is discovery". High-mass particles enter lower energy precision measure-

ments though virtual loop corrections, shifting observables away from their expected values in

the absence of such contributions, as exemplified in Section 3.4. Thus, the precise measurement

of Standard Model parameters, and potential deviations from theoretical predictions, can pro-

vide sensitivity to heavier states, helping chart the course forward for future high-energy hadron

14







3.4 Physics Programme

The full physics programme of the FCC-ee is much too detailed to be explained in the space

herein alloted, so the interested reader is encouraged to consult Refs. [6, 29] for a more com-

plete discussion. As mentioned in Section 3.2, the FCC-ee physics programme spans Higgs

physics, precision electroweak measurements, flavour physics, precision QCD, and even light

BSM searches. Some aspects of these will be highlighted.

The Higgs programme at the FCC-ee is centered around the measurement of the Higgs boson

mass, constraints on its total width, as well as the precise determination of many of its couplings

to Standard Model particles. The recoil mass method exploits the well-determined kinematics of

a lepton collider to reconstruct the invariant mass of the system recoiling against the Z → l+l−

produced in Higgsstrahlung events, allowing the identification of Higgs events without reference

to a specific decay mode. The peak position of the recoil mass will allow the determination of the

Higgs mass (mH) to high precision. The recoil mass method additionally provides a measurement

of the total ZH cross section σZH , which when coupled with the H → ZZ∗ branching fraction

allows the determination of the Higgs width ΓH [29]. The FCC-ee will improve the precision

on a number of κ parameters, which quantify deviations of Higgs couplings from their Standard

Model predictions, with respect to HL-LHC projections, with κZ improving by over an order of

magnitude, and more moderate gains expected for couplings to the W , b, c, g, τ , µ, γ, Zγ [29].

Beyond this, the prospect of constraining the electron Yukawa coupling [32] with a dedicated

run at the Higgs boson pole mass is being actively considered. While not explicitly included in

the baseline run plan depicted on Figure 3.2, a dedicated e+e− → H run would allow a ∼ 1.6×
Standard Model value upper limit to be set within 2 years [32]. The s-channel Higgs production

presents one of the most formidable challenges to the FCC-ee due to the narrow Higgs boson

width. An excellent control over the beam energy spread would be required, lest the Higgs

resonance be rendered invisible.

The precision electroweak programme at the FCC-ee is complemented by the Z-pole, WW

threshold, and tt̄ run. In particular, the exquisite statistics in the vicinity of the Z-pole will

allow a precise determination of both the Z boson mass (mZ) and width (ΓZ) from the line shape

scan, improving present determinations by over 1 and 2 orders of magnitude, respectively [29].

A multitude of additional precision observables will become accessible during the tera-Z run,

including the weak mixing angle and the b-quark forward backward asymmetry (Ab
FB), likewise

improving by over two orders of magnitude. Improvements of a similar scale are expected the W

mass (mW ) and width (ΓW ) from the WW threshold scan. Rapid advances in flavour tagging

precision, such as those presented in Chapter 6, will additionally allow the direct extraction of

the |Vcs| and |Vcb| CKM matrix elements from hadronic W decays, as was done at LEP in the

case of the former [33–35]. The tt̄ threshold scan will improve present determinations of the top

quark mass (mt) by almost two orders of magnitude, instrumental for a precise determination

of a number of electroweak precision observables, where it enters as a parametric uncertainty

[29]. The top quark width (Γt) will likewise be extracted from the tt̄ threshold scan, albeit with

milder improvements in precision. The high precision measurement of the top quark’s properties

will substantially tighten the global electroweak fit, improving constraints on Standard Model

parameters and exposing any potential tensions that may arise.

The FCC-ee is seldom framed as a QCD machine, but offers a clean environment and exquisite

statistics, accommodating a rich precision QCD programme. The collision of colourless parti-

cles fixes the initial state kinematics, and allows quarks and gluons to hadronise in a relative
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"QCD vacuum", devoid of partons unrelated to the main physics process. The determination

of the strong coupling is paramount to improving the precision of virtually all cross sections

and decays at colliders, where it can enter either directly (e.g. gg → tt̄H), or via higher order

corrections (e.g. e+e− → Z(qq̄)). At the FCC-ee, the strong coupling αs is expected to be the

leading parametric uncertainty in the determination of the Z boson width described above [36].

Nevertheless, the FCC-ee is uniquely suited for a per-mille level determination of the strong

coupling at the Z-pole (αs(mZ)) through combined fits of the hadronic-to-leptonic decay ratio

(RZ(Q)), the total width (ΓZ), and the hadronic cross section (σhad.
Z ). The strong coupling

could similarly be determined at the W boson pole (αs(mW )) from hadronic W decays, offering

an improvement of around two orders of magnitude with respect to present determinations [29].

Additional determinations of the strong coupling are possible via hadronic τ decays, as well as

event shapes and jet rates [37, 38], as was done at LEP for the latter [39]. The FCC-ee also

offers a plethora of opportunities to study non-pQCD effects, such as colour reconnection in

WW events, or gluon radiation patterns from an ultra-pure gluon jet sample (ZH(→ gg)).

The flavour physics programme at the FCC-ee is centered around the exquisite statistics at

the Z-pole, and will cover a wide variety of topics ranging from searches for flavour-changing

neutral currents to the precision study of bottom and charmed hadrons. Moreover, the tera-Z

run will produce over 1011 boosted τ leptons, corresponding to an improvement of over an order

of magnitude in lepton flavour universality tests [29].

The potential of the FCC-ee as discovery machine is often understated. Besides probing

extensions of the Standard Model that feature direct signatures, such as long-lived particles, the

improvements by orders of magnitude in a number of precision observables will offer a hint at

physics beyond the Standard Model. Deviations from values predicted by the Standard Model

would offer compelling evidence of mass states that are yet to be identified. The signature of

yet-undiscovered particles in precision measurements at energies substantially lower than their

pole mass has significant historical precedent. The mass of both the top quark and the Higgs

boson were predicted prior to their discovery through their influence on the cross section of

the e+e− → ff̄ process via loop corrections, as depicted on Figure 3.3. In similar fashion, the

FCC-ee is expected to offer sensitivity to particles with masses up to 10–70 TeV [6].
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Figure 3.3: Tree-level (a) and 1-loop corrections involving the top quark (b) and the Higgs
boson (c) to the e+e− → Z → ff̄ scattering amplitude. Figure inspired by Figure 1.3 of Ref.
[6].
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3.5 Detector Concepts

The rich physics programme at the FCC-ee imposes a stringent set of performance requirements

on the rapidly evolving detector concepts. For instance, beam collimation considerations at the

Z-pole run limit the magnetic field strength to 2 T, requiring large tracking detector volumes

to compensate [29]. The detector requirements of the FCC-ee are detailed in Refs. [29, 40, 41].

The present discussion focuses on a selection of the more optimistic targets outlined in Ref.

[29], along with their motivation. Table 3.1 lists the key performance requirements on each

sub-detector in the FCC-ee detector concepts.

Subsystem Requirement Subsystem Requirement

Vertex
σ(d0) = 3⊕ 15

p sin3/2 θ
µm

X/X0 < 1%

HCAL

σE
E

=
30%√
E

,

∆x×∆y = 2× 2mm2

Tracking σp/p < 0.1% for O(50)GeV Muons µ ID for p < 1 GeV

ECAL

σE
E

=
3%√
E
,

∆x×∆y = 2× 2mm2

Particle ID
3σ K/π separation

up to p < 40GeV

Table 3.1: Selected detector requirements for the FCC-ee detector concepts. Values adapted
from "Aggressive" requirements given in Ref. [29].

The requirements on the vertex detector are centered around the transverse impact parameter

resolution and the minimisation of the material budget in order to suppress multiple coulomb

scattering, as described in Section 7.2.1. A precise reconstruction of secondary vertices is in-

strumental not only to heavy-flavour jet tagging, where the presence of secondary vertices helps

to discriminate b-, c-, and light jets, but also to flavour physics, with the reconstruction of the

thus-unseen B → K∗ττ decay placing some of the most stringent requirements on the transverse

impact parameter resolution. In particular, the impact parameter resolution itself consists of

an asymptotic term, assumed to be 3 µm in the optimistic case, which can be improved by

moving the first vertex layer as close to the beampipe as possible, and using small-pitch pixel

sensors in order to achieve the exquisite spatial resolution required per layer. Moreover, the

ambitious target of maintaining the entire material budget of the vertex detector below 1%

X/X0 is instrumental to minimising multiple scattering. Recent developments in Monolithic

Active Pixel Sensors (MAPS) have demonstrated the feasibility of combining the twin goals of

high-resolution and ultra-low material budget in vertexing systems. Some developments target-

ing vertexing at future colliders are detailed in the latter part of this thesis. All of the detector

concepts presented in this Section envision the use of MAPS for vertexing.

The requirement on the tracking detector is expressed in terms of the momentum resolu-

tion for energetic particles, and is driven primarily by the measurements of the Higgs recoil

mass (mrecoil
H ), the Z boson decay width (ΓZ), and searches for lepton flavour violating decays

(Z → τµ), all of which require exquisite momentum measurements of energetic leptons. Both

the electromagnetic calorimeter (ECAL) and the hadron calorimeter envision a high transverse

resolution, expressed as the granularity ∆x×∆y, with the requirement being primarily driven

by the reconstruction of π0 → γγ decays for the electromagnetic calorimeters, and the precise

reconstruction of neutral jet constituents for the hadron calorimeter. The additional energy reso-
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The silicon vertex detector barrel consists of 5 layers of sensors extending from r = 1.37 cm

to r = 31.5 cm, where r denotes the radial distance from the beampipe. The vertex detector

can be further sub-divided into the inner and outer subsystems, where the inner subsystem

comprises the three barrel layers closest to the beampipe at radii between r = 13.7 mm and

r = 35.6 mm, respectively, while the outer subsystem comprises the outer two layers at radii of

r = 130 mm and r = 315 mm and the three endcap layers at each detector end. The baseline

design of the inner subsystems assume 25 µm × 25 µm MAPS based on the current ARCADIA

prototype [45]. Each layer of the inner subsystem contributes 0.25% X0 radially. An alternative

ultra-light design mimicking the ALICE ITS3 upgrade [46] features fully-stitched MAPS sensors

in a self-supporting structure, allowing a reduction of ∼ 3 in the material budget per layer to

0.07% X0 [47]. The outer subsystem assumes hybrid pixel sensors featuring a pixel pitch of 50

µm × 150 µm and a similar sensor thickness to the inner subsystem MAPS of ∼ 50 µm.

The second part of the IDEA tracking system is the low-mass drift chamber. It consists of 112

layers of wires spanning 4 m along the z axis at radii between r = 0.35 m and r = 2 m in a 90%

He and 10% iC4H10 mixture. The drift chamber offers a low-material budget alternative to full-

silicon tracking detectors, with a budget of only 1.6% X0 for the entire subdetector, orthogonally

to the beampipe. Besides providing high-precision tracking measurements, the drift chamber

is expected to provide exquisite particle identification capabilities for a wide momentum range

using the cluster counting technique (dN/dx). The drift chamber is surrounded by a large

area silicon tracking system, providing an additional high-precision spatial measurement, and

potentially a time-of-arrival measurement.

The final subdetector lying within the superconducting coil 2 T magnet is the crystal elec-

tromagnetic calorimeter providing energy and position measurements for electrons and photons.

The electromagnetic calorimeter extends from r ≈ 2 m to r = 2.5 m

The penultimate subdetector is the hadronic dual-readout calorimeter spanning from r = 2.7

m to r ≈ 4.5 m. The dual-readout calorimeter consists of alternating rows of scintillating and

Cherenkov fibres in capillary tubes. An excellent energy resolution of 30%/
√
E is expected

for hadrons. While the subdetector effectively functions as the hadron calorimeter in the pre-

sented design of the IDEA detector concept, its use as a combined electromagnetic and hadron

calorimeter, distinguishing between the two via the ratio of scintillation and Cherenkov light,

was originally the baseline and is still being actively explored.

The final subdetector is the muon system consisting of layers of chambers embedded in the

iron return yoke surrounding the solenoid. The baseline technology is derived from the µ-RWELL

muon detector system [48]. While the muon system is primarily designed for muon detection,

as its name suggests, its potential for detecting LLPs is currently being explored.

It is worth highlighting two key differences between the IDEA detector concept presented in

this section and the configuration used for the flavour tagging studies in Part 6:

• First vertex detector layer was placed at a radius of 1.7 cm, rather than the current,

reduced baseline of 1.37 cm

• Absence of a dedicated dual-readout electromagnetic calorimeter

3.5.2 CLD

The CLIC-like detector (CLD) [49] is an adaptation of the most recent CLIC detector model

to the FCC-ee. A number of modifications in order to accomodate the FCC-ee conditions was
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is a high-granularity electromagnetic calorimeter using a noble liquid as the active material. The

interested reader is referred to Ref. [29] for a detailed schematic of the detector layout.

The vertex detector is expected to make extensive use of the promising MAPS developments,

as for the detector concepts already presented. The baseline vertex detector design is that of the

IDEA detector concept, and will thus not be repeated. Surrounding the vertex detector is the

tracking detector, whose precise technology is still being explored. Fundamentally, two avenues

are being explored: a full-silicon tracker, as proposed for CLD, and a gaseous tracker either in

the form of a straw tracker or a drift chamber, as proposed for IDEA, with the latter serving as

the baseline. The electromagnetic calorimeter is situated within the superconducting coil, and

will consist of a combination of a noble liquid as an active medium and a metallic absorber as

the passive material. Proposed combinations include tungsten or lead as absorbers paired with

liquid argon, or tungsten with liquid krypton, with lead and liquid argon currently serving as

the baseline. The hadron calorimeter situated around the coil will adopt a design combining

steel absorber plates and scintillator tiles, much like CLD. Finally, technology options for the

muon system are still under active investigation, with drift tubes, resistive plate chambers, and

micromegas among those proposed.

3.5.4 ILD

The International Large Detector (ILD) [52] is a detector concept originally developed for the

ILC, but more recently adapted for the FCC-ee. As the CLD detector concept was developed

from the ILD [29] it shares significant overlap in design choices. In particular, both detector

concepts feature high-granularity electromagnetic and hadronic calorimeters within the super-

conducting solenoid, and envision the use of MAPS for their high-precision vertexing detectors.

The primary distinction between the two detector concepts is the adoption of a time-projection

chamber as the tracking detector for the ILD. While a time-projection chamber features a very

low material budget and allows excellent charged particle identification via ionisation clusters,

the concept still faces significant challenges for FCC-ee operation [29], particularly at the Z-pole.

Having surveyed the principal detector concepts under consideration for the FCC-ee, the

following chapter provides an overview of how measurements of subdetectors are combined into

reconstructed physics objects.
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4 Reconstruction

The raw output of detectors, such as the concepts presented in Section 3.5, is a large number

of localised signals resulting from particle interactions with different subdetectors. However, it

is not until these measurements are combined and interpreted as reconstructed particles, with

an associated charge and 4-momentum, that meaningful physics can be extracted. This chapter

provides a very brief overview of the reconstruction chain, beginning with individual hits in the

tracking system and culminating in high-level physics objects like jets.

4.1 Tracks

Charged particle tracking forms the backbone of event reconstruction at collider experiments.

The sequential measurement of charged particles as they traverse finely-segmented detectors

allows the reconstruction of their trajectories. The trajectory of a charged particle is bent into

a helix by the Lorentz force, with a curvature that is inversely proportional to the particle’s

momentum. The determination of a particle’s trajectory relies at minimum on two1 points

which can be interpolated. It can be shown that for an idealised two layer tracking detector the

impact parameter resolution σb is approximately given by [53]

σb =

(

r2
r2 − r1

σ1

)2

+

(

r1
r2 − r1

σ2

)2

+ σ2
ms (4.1)

where r1, r2 denote the radii of the detector layers from the beamline, while σ1, σ2 their resolu-

tions. The σms term is included to describe the degradation of the resolution due to the multiple

scattering of particles as they traverse the detector. It is immediately manifest that the radius

of the first detector layer r1 should be minimised in order to improve the resolution. Thus it is

customary to place the first detector layer as close to the beampipe as possible, as evidenced by

the IDEA detector concept’s reduction in the innermost layer’s position from 1.7 cm to 1.37 cm.

Subsequent detector layers provide additional measurements which are combined into a single

track.

The process begins with the formation of hits on each detector layer, consisting primarily

of identifying pixels where signals are large enough (although this often occurs internally at

hardware level) and combining measurements of adjacent pixels in a process described in Chapter

9. Track seeds, which are initial track candidates, are subsequently formed from two or more

hits, typically close to the beampipe. Trajectories are then built by iteratively adding hits

to track seeds and using techniques like the Kalman filter [54] to update track parameters at

each step to minimise goodness of fit metrics like the χ2, while accounting for uncertainties

and track curvature. The fitting procedure is considerably more involved than the straightline

fits described in Chapter 10, as the tracks must follow helical trajectories consistent with the

magnetic field strength and particle momentum hypotheses. After all hits have been included

1In the absence of a magnetic field, two points suffice to define a straight line trajectory.
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placed decay points, the resolution of a track’s distance from the primary vertex is often used

as a proxy. This is commonly parametrised by the transverse (d0) and longitudinal (z0) impact

parameters, corresponding to the distance of closest approach in each respective dimension.

The performance of a vertexing detector can be quantified via the transverse impact parameter

resolution as

σd0 = a⊕ b

p · sin3/2θ
(4.2)

where the a and b are parameters describing the spatial resolution and multiple scattering of a

given detector, respectively, while p denotes the particle momentum and θ its angle to the beam

axis. The spatial resolution of the sensor is largely driven by its granularity, or so called pixel

pitch in the case of silicon pixel detectors. Positional reconstruction schemes making reference

to the charge deposited in each pixel can be exploited to further improve the spatial resolution

of a detector layer, as explored in detail in Chapter 10 for the chips presented in this thesis.

4.2 Particle Reconstruction

The particle flow algorithm [57] has emerged as a powerful paradigm in event reconstruction,

combining information from all subdetectors into a single coherent picture. Inputs to the parti-

cle flow algorithm include tracks reconstructed from charged particle depositions in the tracking

system, clusters in the electromagnetic and hadronic calorimeters formed from energy deposits

in neighbouring calorimeter cells, and standalone tracks in the muon system reconstructed from

hits in the muon chambers. By combining different signatures into physics objects with cor-

responding identity and 4-momenta, dubbed particle flow candidates, the algorithm achieves

a superior energy resolution for composite objects like jets, and an improved reconstruction

accuracy compared to what any individual subdetector can achieve. A particle flow approach

is foreseen for the reconstruction of physics objects at the FCC-ee. The Pandora particle flow

algorithm [58], for instance, is already well-integrated with the CLD and ILD detector concepts,

stemming from its long use in linear collider contexts. In the following, the reconstruction of

the particle flow candidates will be briefly described, without reference to a specific detector

concept.

4.2.1 Leptons and Photons

Muons are often the first physics object to be reconstructed in particle flow reconstruction chains

due to their clean experimental signature. Given that muons do not interact strongly, and are

much more massive than electrons, they traverse considerably more detector material before

suffering significant energy loss. This is exploited by situating the muon system outside of the

superconducting coil, often interweaved with the return yoke, as described for several detector

concepts in Section 3.5, such that virtually only neutrinos and muons themselves reach the

muon system. Particle flow algorithms then begin by reconstructing the muon trajectory from

individual deposits in the muon chambers. The track can be extrapolated to the interaction

point, and then matched to the tracks constructed as detailed in Section 4.1, often coupled with

additional constraints like minimal calorimeter deposits along the extrapolated track. Deposits

in the tracking system are often instrumental in increasing the track resolution of low-energy

muons, as these are more subject to multiple scattering. Once a muon particle flow candidate is
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added to the collection, all associated deposits (e.g. the track) are removed from consideration

for subsequent stages of the particle flow algorithm.

The reconstruction of electrons, by comparison, is more challenging, and makes use of both

tracking information and deposits in the electromagnetic calorimeter. Calorimeter clusters with

identifiable tracks along the extrapolated electron trajectory are identified as electrons. Due to

substantial bremsstrahlung and multiple scattering, electron tracks are often constructed in a

dedicated step with considerably more relaxed criteria than that of muons or charged hadrons.

Additional criteria are imposed, including the absence of deposits in the hadronic calorimeter to

minimise misidentification from hadrons, and isolation criteria to reject electrons from photon

conversions in the detector material. The identification of photons is of course intimately related.

Bremsstrahlung photons originating from identified electrons are typically not reconstructed as

independent objects, but are instead associated with the electron through extended calorimeter

clustering. This association ensures that ECAL deposits are correctly attributed and prevents

double counting. Clusters that remain unassociated with any track are identified as photons,

with the photon energy defined by the ECAL deposit itself.

4.2.2 Hadrons

Unlike the leptons and photons reconstructed above, the identification of hadrons hinges pri-

marily on the absence of a signature. Charged tracks that are not associated to a lepton are

considered to originate from charged hadrons, primarily pions (π±), protons (p), and Kaons

(K±). Associated deposits in the hadron calorimeter are used for consistency checks, but are

generally considered too coarse to resolve the track invariant mass. Dedicated particle identifica-

tion techniques exist in the form of ionisation energy loss measurements (dE/dx) or time-of-flight

measurements. In either case, the dependence of an uncorrelated observable is coupled with mo-

mentum measurements of the tracking system in order to determine the particle mass. These

two types of particle identification measurements are particularly effective when combined, as

foreseen in the IDEA detector concept, as they cover slightly different momentum ranges, with

time-of-flight measurements providing better sensitivity at low momenta [59].

After the subtraction of deposits in the hadronic calorimeter associated with charged hadrons,

the remaining deposits are interpreted as originating from neutral hadrons. The energy of neutral

hadron candidates is defined by the calorimeter deposit, resulting in a considerably worse energy

resolution than for other reconstructed particle flow objects. The momentum vector is then

defined by the relative position of the calorimeter cluster and a mass hypothesis. Despite the

limited precision of neutral hadron reconstruction, it plays an important role in the completeness

of the event reconstruction, particularly in observables such as the missing transverse energy.

4.3 Jets

At high energy scales partons produced in a hard scattering emit radiation in the form of gluons

as they travel outward, which may themselves branch into quark-antiquark pairs, or further

gluons. The cascade of emissions, known as a parton shower, is governed by perturbative QCD

and continues until the energy scale approaches O(1) GeV, where the strong coupling αs becomes

large, and the perturbative treatment of partons begins to break down. In a non-perturbative

process known as hadronisation, the outgoing partons recombine into colourless hadrons. The

exact dynamics of hadronisation are poorly understood, and it is customary to instead resort to
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phenomenological models, such as the Lund String model [60]. The curious reader is referred

elsewhere for the details, but it suffices to note that the model revolves around the treatment of

a linear potential between the partons V (r) ∼ k · r, where k is known as the string tension. In

this picture, colour field lines are confined to a narrow tube, analogous to a 1-d electric potential,

rather than spreading spherically. As the quarks begin to separate and their potential increases,

it becomes energetically favourable for the string to "snap" and produce a quark-antiquark pair

from the vacuum. This process repeats iteratively until all partons recombine into colourless

hadrons, and the resulting experimental signature is a collimated spray of particles.

Formally a jet is defined with respect to a jet algorithm, in other words a mapping from the

(hadronic) final state P to the jet pattern Q [61]

P = {pµ1 , ..., pµn} → Q = {qµ1 , ..., qµm} (4.3)

where the pµi and qµj denote the momenta of the ith particle and jth jet in the final state. A

particle in this thesis refers to a particle-flow object as defined in Section 4.2, unless stated oth-

erwise. Jet clustering algorithms are generally sub-divided into cone algorithms and sequential

recombination algorithms. Cone algorithms exploit the fact that jets appear as flows of energy

in conical shapes to define angular regions in ∆y and ∆φ within which particles are clustered

into jets. However, cone algorithms are generally not infrared and collinear (IRC) safe, and have

thus largely been superseded by sequential algorithms.

Sequential clustering algorithms, which can be designed to be IRC safe, use less obvious

measures often related to the momentum of particle pairs to group particles into pseudo-particles

until some minimal distance between pseudo-particles is obtained. The resulting set of pseudo-

particles define the jets. The anti-kT algorithm [62] is defined as

1. Define the clustering set C as the set of all particles in an event

2. Begin by defining the distances between all pairs of (pseudo-)particles

{dij | i, j ∈ C and i 6= j}, and (pseudo-)particles and the beam

{diB| i ∈ C}

• dij = min(k−2
ti , k−2

tj )
∆2

ij

R2

• diB = k−2
ti

3. Find min({dij | i, j ∈ C and i 6= j}, {diB| i ∈ C})

• if min(...) ∈ {dij | i, j ∈ C and i 6= j}, combine (pseudo-)particles i and j into new

pseudo-particle, and remove (pseudo-)particles i and j from C

• if min(...) ∈ {diB| i ∈ C}, define (pseudo-)particle i as a jet and remove (pseudo-

)particle i from the C

4. Repeat from 2. until there are no (pseudo)particles left

where the distance measure ∆2
ij = (yi − yj)

2 + (φi − φj)
2 is defined as the (y − φ) separation

between (pseudo)particles i and j. The anti-kT algorithm is known to result is roughly conical-

shaped jets, as depicted on Figure 4.2 where it is shown alongside a number of other clustering

algorithms, whose size is defined by the parameter R.

Although the anti-kT algorithm is widely adopted at the LHC, it is not very well suited for

e+e− collisions where spherical coordinates provide better measures of angular distance. The
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Figure 4.2: Jets clustered from partons with the kt, Cambridge/Aachen, SISCone, and anti-kt
algorithms. Soft ghosts are used to indicate catchment areas. Figure taken from Ref. [62].

generalised e+e− kT algorithm [63] replaces the distances dij and diB by

• dij = min(E2p
i , E2p

j )
(1−cos(θij))
(1−cos(R))

• diB = E2p
i

where θij is the angle between particles i and j, and p,R are parameters of the algorithm.

In processes where a certain number of jets is expected, such as the Z → qq̄ decays studied

in Chapter 6, the clustering recipe can be modified to stop once a certain number of jets is

reached. This is the case for the e+e− kT , or Durham, algorithm [64], which only includes a

single distance metric dij

• dij = 2 min(E2p
i , E2p

j ) (1− cos(θij))

and was adopted for the results presented in Part II of this thesis.

While the jet clustering algorithm defines the mapping presented in Equation 4.3, jets are

often treated as proxies to the final state partons originating from the hard scattering. Consider-

ing the notion of jets as collimated sprays of particles resulting from the hadronisation of a given

parton, the jet flavour can loosely be defined as the flavour of the initiating parton. The notion

is ill-defined since a jet is not guaranteed to exclusively include the particles resulting from the

hadronisation of a single parton, or indeed only particles from the hard scattering. This may

at first seem salvageable by noting that the ambiguity arises from imperfect knowledge of the

event, and that if each hadron were perfectly reconstructed and mapped back to its initiating

parton, then the flavour definition given above would hold. However, the definition still depends

on the notion of a final state parton, which is inherently energy scale dependent, as gluon emis-

sions alter the final state structure. Even the notion of a parton is only well-defined at tree

level, beyond which the concept becomes increasingly ambiguous. Thus it becomes necessary

to approach the problem of jet flavour in the same way as the problem of jet clustering was

approached above: with a precise recipe.
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The physics definition2 derives its name from the intuitive picture above, and matches the

flavour of the jet to the flavour of the parton from which it was initiated. The ambiguities

discussed above are dealt with by constraining this definition to the leading order contribution

to a scattering process. The physics definition was adopted for the studies presented in Part

II of this thesis, where the Z → qq̄ and Z(→ νν)H(→ qq̄) events allow the assignment of jet

flavour without reference to a particular jet. Generalising the definition to more non-trivial

decay topologies is done by matching the parton lying within R < 0.3 of the given jet’s axis

in (η − φ) space. Jets for which this not is unambiguously possible are left undefined. While

generally superseded by the ghost matching definition presented below at CMS, the physics

definition is well-motivated at lepton colliders, where the parton to jet matching is considerably

more straightforward.

The ghost-matching definition [66] revolves around the inclusion of hadrons containing b or

c quarks, herein referred to as b and c hadrons, during a separate reclustering of the jets. In

particular the process begins with the rescaling of the momenta for b and c hadrons that do

not have b and c hadrons as daughter particles, as well as partons from the end of the parton

showering, by a small constant ǫ = 10−18, turning them into "ghost". Jets are then reclustered

with the inclusion of ghosts, which do not affect the jet kinematics. Flavour is then assigned

according to the presence of a ghost b or c hadron, with precedence given to b hadrons, such

that jets containing both are considered b-jets. Jet flavour for jets containing neither a b nor c

hadron is further subdivided with reference to the clustered partons. If the jet contains a b or c

parton then it is assigned the respective flavour in analogy to above. For jets containing neither,

the hardest light quark or gluon defines the jet flavour.

Having surveyed how a jet is constructed and its flavour defined, the following part of this

thesis explores how to map the spray of particles back to its assigned jet flavour. Chapter 5

begins by introducing a powerful tool that has emerged over the past few decades: Machine

Learning. Given the extensive availability of labelled datasets in the form of Monte Carlo simu-

lation, machine learning has emerged as the de facto avenue to exploiting the subtle correlations

characteristic of hadronisation.

2The jet flavour definitions presented here stem from conventions of the CMS experiment [65].
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Part II

Jet Flavour Tagging at the FCC-ee
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5 Machine Learning

Machine learning (ML) broadly describes the emergence of algorithms from specified boundary

conditions and learning rules, rather than being explicitly programmed. The concept revolves

around the iterative improvement of algorithms as they acquire more experience, often with

minimal human intervention, standing in analogy to Darwinian evolution. Ref. [67] provides a

definition for ML as

"A computer program is said to learn from experience E with respect to a class of tasks

T and performance P, if its performance at tasks in T, as measured by P, improves with

experience E."

where the task T in Ref. [67] is playing checkers, while the performance P is the probability of

winning a game, and the experience E is the amount of games played.

Machine learning techniques are largely subdivided along the T/E/P into three categories:

supervised learning, unsupervised learning, and reinforcement learning. In supervised learning

the task revolves around learning a mapping from a set of inputs {~x} to a set of outputs {~y}. In

the case where the outputs {~y} are classes, the task is referred to as classification, while in the

case where the outputs are real-valued, the task is referred to as regression. The experience takes

the form of labelled inputs, turning the problem into a minimisation problem according to some

metric defined on the labels of the given inputs, and the prediction of the algorithm. These are

referred to as loss-functions, and are detailed in Section 5.2. In unsupervised learning no such

labels exist, and the task is more abstractly to learn latent structure in the input data. Classic

examples of unsupervised learning include clustering, dimensionality reduction, and anomaly

detection. One of the primary challenges in unsupervised learning lies in defining a meaningful

measure of performance, which is often task-dependent. For clustering, for instance, this could

be the silhouette score, which revolves around the distance of each data point to its assigned

cluster compared to other clusters. In reinforcement learning the task revolves around decision-

making in some environment. Examples include decisions in a game, robotics, and self-driving

cars. While often considered one of the most promising areas of machine learning, reinforcement

learning also presents unique challenges due to the need for exploration and delayed reward

signals. The experience is not neatly available in the form of data, but rather is acquired

through interaction with its environment. The performance is then defined according to a

reward function that reflects the desired outcome following the actions taken. The goal is to

maximise the cumulative reward through interaction with the environment.

All three types of machine learning have been gainfully applied in high-energy physics, with

early applications dating as far back as the 1980s. Supervised learning has been applied to

classification tasks including particle identification [68] and jet tagging [69]. More generally,

supervised learning has been employed in the classification of events, including BSM particles

[70]. Regression-based calibration tasks involve the use of machine learning models to predict

the values of true physical observables based on reconstructed detector data. These include

jet energy calibration [71] and detector response calibration [72]. Two tasks that have greatly
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benefitted from unsupervised learning are anomaly detection [73] and generative modelling [74],

where explicit labelling is either not possible or impractical. The identification of signals de-

viating from the Standard Model background relies on the model’s ability to detect statistical

anomalies without prior knowledge of the signal’s characteristics. In generative modelling, the

underlying distribution of the physics data is learned, allowing for fast sampling of distributions

that are numerically challenging. This manifests as learned simulations that are substantially

faster than their traditional MC counterparts. Reinforcement learning is arguably the least

explored of the three within the field of HEP, not least due to the computational challenges it

entails. A promising application is beam control at collider experiments, where precise tuning

of parameters is required in order to ensure optimal beam parameters, including luminosity and

stability. Recent attempts [75] at autonomous control of a particle accelerator have demonstrated

a better-than-human performance in beam quality in high-fidelity simulation.

Given that the work in this thesis revolves around the application of a transformer architecture

to the classification of jets at the FCC-ee, focus will be given to modern deep learning techniques

applied to supervised learning. In particular, this chapter provides the necessary foundations

to understand the results presented in Chapter 6, and the architecture of DeepJetTransformer

[2] detailed in Section 6.3. The chapter begins by delving into the foundational block of deep

learning: the fully-connected neural network. Techniques for training of neural networks are

presented, along with challenges often encountered. Subsequently, more sophisticated architec-

tures are presented, with special emphasis on those appearing in DeepJetTransformer. Finally,

the core building block of DeepJetTransformer is presented: the Self-Attention Mechanism. The

chapter concludes with a brief overview of machine learning in jet flavour tagging at the LHC.

5.1 Neural Networks

A natural starting point for any discussion on machine learning is the introduction of the percep-

tron [76] by Frank Rosenblatt. The idea was to mimick the functioning of a neuron by connecting

information encoded in a set of features {~x}, in order to produce a single output y = ±1, cor-

responding to whether or not the neuron had fired. The remarkably simple algorithm consisted

of a linear combination of the input features

y = sign(w0 + w1x1 + ...+ wnxn) (5.1)

where the wi are the trainable weights of the algorithm. The update rule of the perceptron

revolves around adding the input vector of any incorrect prediction yt to the weight vector as

~w → ~w + y′t · ~xt (5.2)

where y′t corresponds to the correct prediction for input vector xt. It was proven that the per-

ceptron converges for a finite number of passes [77]. Nevertheless, the perceptron is constrained

to linearly separable problems. Extending the perceptron to non-linear problems requires in-

troducing non-linearities into the algorithm. The first approach revolves around extending the

basis of the input vectors with non-linear feature transformations. This involves introducing

a mapping to a higher-dimensional space, where the data does become linearly separable. A

conceptually simple yet powerful approach is extending the basis to include polynomial terms,
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defined as

f(x) =







x if x ≥ 0

0 if x < 0
(5.6)

Another widely used activation function is the softmax function, which is defined over a vector

of inputs ~v = {v0, ..., vn}⊺ as

f(~v)i =
evi
∑

l e
vl

(5.7)

and is often used to map the output vector of a neural network to a vector of numbers in

the interval (0, 1), which sum to 1, allowing the interpretation of the vector as a probability

distribution. The ReLU activation function is typically favoured for hidden layers, due to its

relative simplicity and piecewise constant derivative, while the softmax function often appears

at the very end of the network, particularly during inference.

The seemingly trivial adjustment of introducing an activation function has profound impli-

cations, by stacking such layers a Multi-Layer Perceptron (MLP) is obtained:

~x → h1(~x) → h2h1(~x) → hn...h1(~x) → ~y (5.8)

where ~x, ~y are the input and output vectors respectively, and hi is a fully-connected layer given

by Equation 5.5. The Multi-Layer Perceptron was proven to approximate any "well-behaved"

function arbitrarily [78]. The MLP laid the foundations of Deep Neural Networks (DNNs),

with early theoretical results showing their universal approximation capability, albeit limited by

training and hardware bottlenecks.

Nevertheless, DNNs are notoriously compute-heavy. It suffices to consider the number of

multiplications in a forward pass for a 4-layer network presented in Figure 5.1:

Nmult. =

nlayers
∑

i=1

Ni ·Ni−1 = 100 · 512 + 5122 + 512 · 10 = 318464 (5.9)

where Ni is the number of neurons in the ith layer with N0 being equal to the input dimension.

Even a comparatively simple MLP presents a formidable challenge for the Von Neumann CPU

architecture, which requires inputs to be processed sequentially at a high clock frequency, making

such a large number of multiplications, and their associated memory lookups, quickly intractable.

It was not until the advent of heterogeneous computing, and the Graphics Processing Unit

(GPU), that interest in DNNs resurged.

GPU Paradigm

Indeed, Equation 5.5 can be rewritten as a matrix multiplication by defining the input vector

as ~x = (x0, ..., xn)
T

~x → W · ~x+~b → f(W · ~x+~b) → ~y (5.10)

where the W is the weight matrix whose elements wij are given as in Equation 5.5, ~b =

(b0, ..., bm)T is the bias vector, ~y = (y0, ..., ym)T is the output vector, and f is the activation func-

tion. Not only is the matrix form of Equation 5.5 considerably more concise, but it highlights

that the bulk of the computation in a neural network consists of matrix multiplications. As
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used loss function is the categorical cross-entropy given by

L(~t, ~y) = −
Nc
∑

i

tilog(yi) (5.11)

where ~t refers to the truth vector, defining the class to which a given input belongs, and ~y is the

vector of predictions given by the neural network.

Denoting the weights of a single output neuron for a single-layer neural network as ~w gives

~w∗ = argmin
~w

L(~w) (5.12)

where ~w∗ are the optimal weights. For a given weight wi = (~w)i we wish to find the roots of the

first derivative, which we can do by performing a Taylor expansion about some initial estimate

w0
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(5.13)

Setting the LHS equal to 0, gives

wi = w0
i −

L′(w0
i )

L′′(w0
i )

(5.14)

which is the well-known Newton’s method for optimisation, typically expressed as an update-rule

with wn+1
i = wn

i − L′(wn
i )

L′′(wn
i )

. As a second order method, the algorithm converges quadratically,

with the L′ term giving the direction and magnitude of the function’s growth, while the L′′ term

accounts for the local curvature. Generalising the method to higher dimensions, we obtain

~wn+1 = ~wn −
[

∇2L(~wn)
]−1∇L(~wn) (5.15)

where ∇2L(~wn) is the Hessian matrix at ~wn, and the subscripts no longer denote the component

of the vector, but the step in the iteration. However, Equation 5.15 reveals two aspects of

Newton’s method that have prevented widespread adoption when training neural networks:

computational complexity and numerical instability. In particular, the Hessian is a N × N

matrix of the mixed partial derivatives that must be inverted, which can be computationally

expensive for large numbers of weights. Moreover, if the Hessian is singular or ill-conditioned

then the update of ~wn+1 can either not be performed, or leads to numerical instability by

distorting the update vector.

This can be addressed by simply replacing the Hessian with a constant η−1, such that the

update rule becomes:

~wn+1 = ~wn − η · ∇L(~wn) (5.16)

and is denoted as the gradient descent. Although gradient descent converges only linearly as it

is a first-order method, it circumvents the computational challenges that the Hessian introduces.

Gradient descent became the de facto foundation for neural network training algorithms following
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its successful application in 1986 by Rumelhart, Hinton, and Williams [86].

Computing the gradient of the loss over all examples in the dataset before updating the

weights, known as batch gradient descent, is computationally expensive for large datasets. In

stochastic gradient descent the gradient of the loss is computed for individual training examples

before updating the weights according to Equation 5.16. While the advantage is immediately ob-

vious: reduced computation, this also entails a noisier training which may not converge smoothly.

Thus mini-batch gradient descent offers a compromise, where the derivative of the loss is com-

puted over a small sample of size n before updating the weights. Typical values for the batch size

n are 32, 64, 128, ..., balancing a quick computation of the gradients with reduced noise resulting

from the averaging.

Modern Optimisers

Despite offering a simple recipe for weight optimisation, gradient descent often struggles in

regions of high curvature, leading to slow convergence or oscillatory behaviour. Momentum

methods were introduced to account for the value of previous gradients:

vn = β · vn−1 + (1− β) · ∇L(~wn) (5.17)

where vt is denoted as the velocity, which can be interpreted as a smoothed gradient, and

β ∈ [0, 1) is a parameter controlling the extent of the smoothing. The update rule then takes

the form

~wn+1 = ~wn − η · vn (5.18)

Extensions include the Adam optimiser [87], which in addition to the velocity term that exponen-

tially averages the gradient, includes an uncentered variance term that exponentially averages

the square of the gradient. Adopting a convention where the velocity is denoted by mn and the

variance by vn, the two terms are given by

mn = β1 ·mn−1 + (1− β1) · ∇L(~wn) (5.19)

vn = β2 · vn−1 + (1− β2) · (∇L(~wn))
2 (5.20)

where the square in the computation of vn applies component-wise, and the β1,2 ∈ [0, 1) pa-

rameters control the degree of the exponential averaging for the velocity mn and variance vn,

respectively. Since the velocity and variance are initialised at 0, this can lead to excessively

small updates at early training steps. The terms are bias-corrected by scaling them as

m̂n =
mn

1− (β1)n
, v̂n =

vn
1− (β2)n

where it can be seen that the (β1)
n and (β2)

n terms scale up the velocity and variance early into

the training, but vanish at high training epochs. The term v̂n is then used to scale the velocity

in Equation 5.18, accounting for directions in which the gradients have consistently been large

and taking smaller steps, leading to the Adam optimiser update rule:

~wn+1 = ~wn − η · m̂n√
v̂n + ǫ

(5.21)

where the ǫ is a small term added for numerical stability. The Adam optimiser tends to struggle
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with over-aggressive weight updates early in the training process, before the bias-corrected

velocity and variance terms stabilise. The rectified Adam optimiser (RAdam) [88] addresses

this by introducing a term ρn that serves to estimate to the reliability of the variance vn, and

reducing the Adam optimiser update rule to a simple momentum update rule early into training.

In particular, the update rule is given by Equation 5.18 if ρn < 5, as the adaptive learning rate

component is considered unreliable below this threshold. The ρn term is defined as

ρn = ρ∞ − 2n · (β2)n
1− (β2)n

, ρ∞ =
2

1− β2
− 1

For ρn > 4 a rectification term rn is introduced, which is defined as

rn =

√

(ρn − 4)(ρn − 2)ρ∞
(ρ∞ − 4)(ρ∞ − 2)ρn

(5.22)

The rectification term is included in the Adam optimiser update rule to suppress updates early

into the training, and tends towards 1 as n → ∞:

~wn+1 = ~wn − rn · η · m̂n√
v̂n + ǫ

(5.23)

Having detailed some sophisticated update rules for the weights, attention can be shifted to how

to train the full neural network.

Back-propagation

Until now we have constrained our discussion only to the optimisation of the weights in a

single layer of a neural network. While instructive, this is clearly not the full story, and it is

evident that the weights appearing in the final layer of a neural network cannot be optimised

without considering those before it, complicating the problem. Rumelhart, Hinton, and Williams

offered the solution in their landmark 1986 paper [86]. Their landmark paper introduced the

concept of back-propagation, whereby the weights of the final fully-connected layer are related

to weights of earlier layers by the chain rule. Let ~xn denote the output neurons of layer n, then

for the last layer we have

∂L

∂wn
ij

=
∑

l

∂L

∂yl
· ∂yl
∂wn

ij

=
∂L

∂yj
· ∂yj
∂wn

ij

(5.24)

where yj denotes the jth neuron of the output layer and wn
ij denotes the weight connecting it to

xni . Considering the partial derivative of the loss-function with respect to a weight wn−1
ki of the

previous layer gives

∂L

∂wn−1
ki

=
∂L

∂xni
· ∂xni
∂wn−1

ki

=
∑

l

∂L

∂yl
· ∂yl
∂xni

· ∂xni
∂wn−1

ki

(5.25)

This procedure generalises naturally to earlier layers, where the partial derivative of each weight

wl−1
ki can be computed by evaluating ∂L

∂xl
i

recursively. In this way, the gradients are propagated

backward through the network, allowing the computation of the updated weights at each layer

according to Equation 5.16.

Training and Performance
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While the loss serves as the arbiter of the model performance during training, it is somewhat

abstract, and additional metrics are often included when considering the performance of the

model on the test set. In the case of classification, it is useful to describe the rate at which

elements of a class are identified correctly and incorrectly. The true positive rate describes the

fraction of elements of a class c that are correctly identified as belonging to that class, i.e.

TPR =
N(yp=c|t=c)

N(yp=c|t=c) +N(yp 6=c|t=c)
(5.26)

where yp describes the class predicted by the network, and t describes the true class the element

belongs to. The network prediction for class c can be obtained by considering the cth component

of the output vector ~y, appearing for instance in Equation 5.8, and setting a decision threshold

τc:

yp =







c if yc > τc

¬c if yc ≤ τc
(5.27)

The true positive rate is used as a proxy for the probability of correctly identifying an element

of class c: P (yp = c|t = c). While it is clear that a high true positive rate is desirable, this

comes at the cost of incorrectly labelling elements of other classes as belonging to the class c.

The "cost" of incorrectly labelling elements of other classes is given by the false positive rate

FPR =
N(yp=c|t 6=c)

N(yp=c|t 6=c) +N(yp 6=c|t 6=c)
(5.28)

The tradeoff between the true positive rate and the false positive rate is given by computing a

receiver operating characteristic (ROC) curve, obtained by computing the true- and false positive

rates at a number of different decision thresholds τc, appearing in Equation 5.27. Figure 5.3b

depicts a ROC curve, where the x-axis is the true positive rate, and the y-axis is the false

positive rate. Although the more common convention flips the axes, with the true positive rate

appearing on the y-axis, Figure 5.3b adopts an axis orientation often used in jet flavour tagging.

Classifiers are considered to be more performant the closer the ROC curve is to the bottom-right

corner, suggesting a high true positive rate, and a low false negative rate. On the other hand,

a random classifier would appear along the x = y diagonal. This corresponds to guessing, with

the probability of an element assigned to a class truly belonging to that class being 50% in a

balanced binary dataset.

Though the above discussion has been deliberately general with respect to what constitutes

the background to class c, it can be subdivided into two evaluation strategies commonly referred

to as one-vs-rest and one-vs-all. In the one-vs-rest evaluation scheme the class c is taken to be

the signal, while all non-c elements are treated as the background. This entails that the entire

dataset is used in the computation of the ROC curve, but also that the ROC curve will depend

on the distribution of the classes in the dataset. If for instance a class that is particularly difficult

to resolve with respect to c, then the measured performance of the classifier will be worse. On

the other hand, in the one-vs-one evaluation scheme, the class c is considered only with respect

to one background class b at a time. In other words, the expressions yp 6= c, t 6= c appearing in

Equations 5.26 and 5.28 are replaced by yp = b, t = b. The one-vs-one evaluation strategy is

adopted throughout this thesis, and in particular in Section 6.5 presenting the jet flavour tagging

2These curves are illustrative and do not correspond to an actual NN training.
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results. With the foundations of fully-connected neural networks, along with their training and

evaluation, established, the following Section introduces more sophisticated architectures that

have shown strong performance in jet flavour discrimination. A key distinguishing feature of

these architectures is how jets are represented.

5.3 Beyond Fully Connected Networks

A primary consideration in the architecture of a neural network is the input representation.

While the MLPs introduced in Section 5.1 are powerful in their own right, they are not well

suited for geometric inputs, such as those arising in jet tagging. Though MLPs can be useful,

they typically require extensive pre-processing of the data. High-level features are constructed

which capture dependencies between jet constituents explicitly. For instance, in the case of quark

gluon discrimination features like the jet mass or the charge-weighted track pT are constructed

to capture the discrepancies expected from the differing colour factors and charges of quarks

and gluons [89]. Many applications in machine learning, including HEP, arise from information

measured by detectors and sensors. This information often comes coupled with spatial informa-

tion, and is thus laid out in an irregular cluster of points in space, denoted a point cloud. Each

point in a point cloud corresponds to a set of information. In the case of jet tagging each point

in the cloud might represent a particle, with its location corresponding to kinematic coordinates

(e.g. px, py, pz), and additional features including the energy, charge, and particle type being

treated as attributes of the point. The point cloud representation aligns naturally with the

particle-flow reconstruction detailed in Chapter 4, where each candidate is treated as a point

by virtue of not only the tracking information, but also the precise location of the calorimeter

deposits with respect to the interaction point. While point clouds encode geometric information

well, they are not particularly easy to deal with from a neural network perspective due to their

irregular, unordered nature. A common approach, and the first that will be discussed in this

section, is mapping the point cloud to a regular grid, and subsequently using a convolutional

neural network (CNN) to extract local features. Figure 5.4a depicts this approach for jet tagging

by representing the jet as a set of |p|-weighted images binned with respect to distance in θ − φ

from the jet axis. An alternative, and more direct, approach revolves around treating the point

cloud as an unordered graph and using a graph neural network (GNN) to process the input, as

depicted in Figure 5.4b.

Convolutional Neural Networks

CNNs emerged as an attempt at reducing the computational complexity of neural networks

when applied to image recognition tasks [90]. Considering, for instance, a 128× 128 pixel image

with three channels for the RGB colours gives an input dimensionality of 128 × 128 × 3 =

49152. Plugging this into the simple 4-layer MLP introduced in Section 5.1 gives a formidable

512 · (49152 + 1) + 512 · (512 + 1) + 10 · (512 + 1) = 25434122 weights. Larger pictures, and

more sophisticated models, would increase this number polynomially, again presenting a familiar

problem: the curse of dimensionality. Instead, the constraints of early hardware motivated the

exploitation of correlations between local pixels. Features appearing in images are often local.

A picture of a dog, for instance, will almost always contain two ears, but these will appear only

in small corners of the image, rather than extending across it. Thus, the network should sample
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local elements of the input image and summing the output as

Si,j =

Cin
∑

c=1

kH
∑

m=1

kW
∑

n=1

Ic,i+m,j+n ·Kc,m,n (5.29)

where Cin denotes the number of channels of the input image I, and kH , kW denote the height

and width of the kernel K, respectively. The sliding of the kernel is controlled by the so-called

stride, which describes for which elements Ii,j the cross-correlation is computed. For instance

a stride sH = 2 along the height, and a stride sW = 2 along the width, would entail the

computation of the cross-correlation of every second element of Ii,j along both dimensions, such

that

i ∈ {2k | k ∈ N, 2k ≤ NH} , j ∈ {2l | l ∈ N, 2l ≤ NW }

Computing the cross-correlation between the input and the kernels addresses several of the

aforementioned challenges, since the kernels extract features of adjacent pixels, and are agnostic

to where features appear in the image, since the kernel does not change as it is slid across the im-

age. By introducing several, distinct kernels, whose outputs are passed to further convolutional

layers, a variety of low-level features can be extracted by early filters which are combined into

more sophisticated objects in later layers. Convolutional neural networks have enabled highly

accurate image recognition, particularly following the introduction of GPU training [82, 91, 92].

In particle physics convolutional neural networks have been used to process detector images

including calorimeter deposits as energy or pT -weighted η − φ distributions of particles [93].

Despite the advantages with respect to the reduced number of weights that CNNs offer, they

are not very well suited for sparse representations, where a large number of the pixels are equal

to 0, such as those appearing in detector or particle images. Not only do sparse images entail

computational inefficiency, but a main bottleneck in modern compute is the memory access

speed, and thus modern jet tagging algorithms adopt more straightforward representations of

jets, including the point cloud [94–96].

Recurrent Neural Networks

Recurrent neural networks (RNNs) first emerged in the late 80’s and early 90’s [97, 98],

primarily in the context of natural language processing and time series modelling, as a way to

address input data with temporal or sequential structure. Traditional approaches like the MLPs

introduced in Section 5.1 assume independent inputs, and are thus not well suited for input

data with sequential structure like natural language. While it is in principle possible to simply

pass entire sequences to an MLP, this would entail using fixed-length sequences and increased

complexity. While CNNs used kernels to exploit correlations between spatially adjacent inputs,

RNNs preserve memory of previous inputs by introducing recurrent connections as a way to

exploit correlations between temporally adjacent inputs. In this way weights are reused, and

the symmetry of the problem is exploited as a way to reduce compute. Simple RNNs, or Elman

networks [97], resemble 2-layer MLPs, but introduce a connection to the values of the hidden

layer for the previous element of the input sequence. For the tth element of some sequence

~x1, ..., ~xn, the output yt is computed as

~ht = g(U · ~ht−1 +W · ~xt) (5.30)
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~yt = f(V · ~ht) (5.31)

where U, W, V are the weight matrices, and g, f are the activation functions. However,

simple RNNs often struggle in propagating forward information that is distant in the input

sequence. Moreover, the repeated multiplications that the hidden layers are subjected to in a

recursive pass during the gradient computation can lead to vanishing and exploding gradients

[99]. More sophisticated RNN architectures relying on gating mechanisms to control the flow

of information, such as Long Short-Term Memory (LSTM) [100] and Gated Recurrent Unit

(GRU) [101] networks, were introduced to address these challenges. RNNs have been used for

jet tagging by representing jet constituents as elements of a sequence sorted according to their

impact parameter or some other metric [102, 103], achieving considerably better performance

than their MLP predecessors.

Graph Neural Networks

Graph neural networks (GNNs) are a class of neural networks that operate directly on a

graph representation of the input data, consisting of nodes containing input feature vectors ~xi

and edges ~eij that encode relationships between node pairs. GNNs function by aggregating

information of a node and its connected edges into an updated representation of the node in

some latent space. The node is iteratively updated to encode information not only of itself, but

also its relation to adjacent nodes, allowing for the extracted information to be processed by

later layers in the neural network, in analogy to the feature extraction performed by successive

convolutional layers in CNNs. GNNs are naturally permutation invariant unlike RNNs, making

them an attractive candidate for tasks like jet flavour tagging, where the constituents of a jet

do not display an inherent ordering.

GNNs have found a variety of applications in particle physics, including jet flavour tagging

[94, 95, 104, 105], secondary vertex finding [105, 106], and particle reconstruction [107–109].

In the context of jet flavour tagging, jets are represented as sets of nodes, corresponding to jet

constituents, and edges, corresponding to some pair-wise defined feature, often the difference in a

given variable between jet constituents. In order to lower complexity, nodes of a graph are often

only connected to a subset of its closest neighbours. Determining the k nearest neighbours,

and according to what metric, is a non-trivial operation that cannot be neatly included in

the backpropagtion given in Equation 5.25, as it is not differentiable. Moreover, long-range

correlations between nodes that are distant in the graph may be neglected by considering only

a subset of its neighbouring nodes. These limitations motivated the use of architectures which

dynamically assigned weights to the connections between a node and all other nodes in a graph.

The attention mechanism introduced in the following section addresses these challenges, and its

adoption in jet flavour tagging resulted in architectures that were not only more performant,

but also significantly faster to train [2, 110].

5.4 Transformers and the (Self-) Attention Mechanism

Attention first emerged in the context of machine translation [111], as a way to address chal-

lenges of pure RNN encoder-decoder architectures. Encoder-decoders [112, 113] function by

transforming the input sequence { ~x1, ..., ~xn} into some latent representation ~c, which is then

translated into an output sequence {~y1, ..., ~yn} by a decoder. While effective for short sequences,
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these architectures struggle for long inputs as the latent representation ~c is often taken to be

the final hidden state of the encoder, and thus may not represent early elements of the input

sequence well. Attention mechanisms were introduced as a way to dynamically assign weights

to all elements of a sequence, thereby focusing on different parts of the sequence when relevant.

In particular, rather than including only a single latent representation ~c of the input sequence, a

set of representations {~ci} could be constructed by computing similarity scores between different

elements of the sequence as:

αij =
exp(score(~hdi−1,

~hej))
∑

l exp(score(
~hdi−1,

~hel ))
(5.32)

~ci =
∑

j

αij
~hej (5.33)

where the score() is some similarity score, αij are the attention scores, ~hdi−1 is the decoder hidden

state of the previous output sequence element, and ~hej is the hidden state of the jth element of

the input sequence. More generally, attention mechanisms compute a score αij between a query

vector ~qi and a key ~kj vector, which determines the contribution of a value vector ~vj to the

output. The key and the value vectors typically originate from the same set. The specific

similarity score that is used to relate the query and the key defines the type of the attention

mechanism, with variants including additive attention [114], dot-product attention [115], and

its refinement, scaled dot-product attention [116]. Self-attention denotes the special case where

the key, query, and value all originate from the same set.

Transformers are a class of neural networks that make use of a self-attention mechanism [116].

At its core, the self-attention mechanism captures the relations of an element of a sequence

to all other elements of the same sequence. In this work, we will consider the self-attention

mechanism in the form it was introduced in [116]: the scaled dot-product attention. Given an

input sequence {~x1, ..., ~xn}, each element is projected into a query3 ~qi = ~xiW
Q, key ~ki = ~xiW

K ,

and value ~vi = ~xiW
V by the weight matrices WQ, WK , WV . The scaled dot-product attention

is given as

~yi =
∑

j

exp(~qi · ~kj/
√
dk)

∑

l exp(~qi · ~kl/
√
dk)

~vj =
∑

j

αij ~vj (5.34)

where αij are attention weights, ~yi are the output vectors, and dk is the dimension of ~q, ~k. In

summary, the output of the self-attention mechanism is the sum of the values {~v1, ~v2, . . . , ~vn}
scaled by the attention weights αij , which reflect the importance of the jth input to the ith

output vector via the softmaxed dot product of the query ~qi and key ~kj .

One of the key motivations for Transformer NNs is that the computation of ~yi in equation

5.34 does not depend on any other ~yk 6=i, i.e. there is no recursion. Moreover, equation 5.34 can

be rewritten in matrix form by defining Q = (~q⊺1 |...|~q
⊺
n)⊺, K = (~k⊺1 |...|~k

⊺
n)⊺, V = (~v⊺1 |...|~v

⊺
n)⊺. The

scaled dot-product attention Y = (~y⊺1 |...|~y
⊺
n)⊺ is then given as

Y = softmax(
QK⊺

√
dk

)V (5.35)

3Throughout this section a row-vector convention is adopted, in accordance with standard treatments of
transformer models. This departs from the column-vector convention adopted for previous sections in this chapter.
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NN architectures are being used to gauge the physics potential of different detector configu-

rations, to each of which a NN will have to be optimised. The Z boson run will be the most

challenging computationally with roughly 4.8×1012 visible decays [29]. Moreover, given the 20+

year timeline, until the FCC-ee would be in operation, it is certain that current ML approaches

will be superseded by more performant architectures.

5.5 Machine Learning in Jet Flavour Tagging

Machine learning techniques are uniquely suited to the task of discriminating jet flavours, where

training samples are abundant in the form of MC simulation, but the underlying dynamics are

poorly understood. Jet flavour tagging is often sub-divided into flavour tagging, which aims to

identify b, c, s, and light quarks, and jet substructure tagging, which targets W , H, Z, t, and

gluons. A primary distinction is how the discriminating information manifests [93]. In the case

of (heavy) flavour tagging, the long lifetime of B/D-mesons results in displaced vertices. By

contrast, gluon jets do not display such identifiable structure, and much of the distinguishing

information is encoded in the distributions of the outgoing hadrons. This section provides a

brief overview of machine learning in flavour tagging, mostly from an LHC perspective. The

interested reader is encouraged to consult the comprehensive review of jet flavour tagging at the

LHC found in Ref. [69].

Clearly, there were many ML developments in jet tagging prior to the LHC, but the LHC-

era has coincided with the shift to the GPU paradigm, and thus modern machine learning.

Early applications of ML to jet tagging revolved primarily around simple MLPs trained on

hand-engineered features and date back to LEP [118–121].

The introduction of BDTs at the MiniBooNE experiment [122, 123] and at the D0 experiment

[124, 125], shaped early ML architectures at the LHC, particularly during Run 2. The com-

putational advantages of BDTs were leveraged by providing algorithms with carefully curated

high-level variables that had been shown to be discriminating between jet flavours, as those

presented in Section 6.2. BDTs often outperformed their simple MLP counterparts [126].

Initial jet tagging algorithms at the CMS and ATLAS experiments relied on likelihood ratios

constructed from high-level physics-motivated variables [127–129] Improvements were observed

with the inclusion of MLPs, such as from the Combined Secondary Vertex (CSV) algorithm [127]

to its successor, CSVv2 [55, 130]. Simple MLP architectures were used to combine the outputs

of several individual tagging algorithms, both at CMS [55, 130] and at ATLAS [128, 131]. With

Run 2 of the LHC came the advent of BDTs in the form of cMVAv2 [55] at CMS and MV2

[132, 133] at ATLAS, leading to sizeable improvements in performance [69].

BDT-based architectures were eventually superseded by MLPs in jet tagging as the shift

to GPU-training allowed models to become deeper and include more input features. Dense

Neural Networks (DNNs), that is to say fully-connected neural networks with several hidden

layers, have been used in the context of jet tagging using a variety of inputs. Ref. [134], for

instance, uses physics motivated high-level variables as inputs for quark gluon discrimination.

The DeepCSV algorithm [55, 135] incorporated similar features to its predecessor, but with an

increased number of tracks and model complexity leading to a performance increase. The DL1

algorithm [136, 137] similarly implemented a DNN, with many of the same features as MV2.

The emergence of CNNs occurred mostly in the realm of jet substructure tagging. Contrary

to the secondary vertex variables that proved discriminating for heavy flavour jets, quark gluon

51



tagging relies on variables that capture the spatial distribution and multiplicity of outgoing

partons, which hint at the colour factor of the initiating parton. Motivated by the success of

CNNs in computer vision, CNNs were applied to quark-gluon discrimination [138–140] and top

tagging [141].

RNNs allowed the processing of more complex dependencies between jet constituents. Deep-

Jet [102], in particular, is tailored to processing large input sequences, and allowed the processing

of considerably more information, including that of neutral jet constituents. DeepJet achieved

a 20% improvement with respect to DeepCSV in b tagging efficiency at a light-jet mistag rate

of 0.1% [69].

Graph representations of jets [94, 95, 104, 105] emerged as one of the most performant

representations. The ParticleNet [94] algorithm uses EdgeConvolutions [142] in order to extract

correlations between jet constituents, outperforming previous CNN architectures in quark-gluon

and top tagging [94], and RNN architectures in heavy flavour tagging [69].

With the introduction of Transformers [2, 96, 110, 117], jet tagging algorithms addressed two

shortcomings of pure GNNs: computational efficiency and full connectivity among elements of

an input sequence. ParT [110] and GN2 [117] achieve similar, or improved, performance with

respect to their pure GNN counterparts [69]. Transformers have emerged as a considerably more

efficient architecture, with ParT displaying a reduced number of FLOPs, despite including vastly

more parameters [110].

Recent developments in jet flavour tagging have been marked by a general trend to process

low-level inputs with ever more complex models. While the additional information, coupled with

the additional expressivity of the models, has resulted in demonstrable improvements in tagging

efficiencies, a concern has become amplified: the task T does not perfectly align with the dis-

crimination of actual jets. Indeed, while jet tagging algorithms are primarily trained on labelled

simulations, the ultimate goal is to perform inference on detector data. Sophisticated models

are particularly susceptible to learning unphysical artifacts of the simulation as distinguishing

features. For instance, the classification of quark and gluon jets has been observed to perform

differently with different generators such as Pythia and Herwig, with quark and gluon jets ap-

pearing more distinct in Pythia than in Herwig [138]. Moreover, classification performance is

also sensitive to the particular jet flavour definition that is adopted, including those introduced

in Section 4.3. Much emphasis is put on the Data/MC agreement and the computation of scale

factors in an effort to quantify the errors carried over from simulation. Promising avenues to

better align the task T with the discrimination of true jets, rather than merely optimising a

pure data science classification problem on simulations, include adversarial [143, 144], as well as

weakly- and unsupervised [145–149] learning techniques. Ref. [93] expands on this discussion,

and highlights some further problems that emerge from the trade-off of performance against

systematic uncertainties and interpretability.
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6 Jet Flavour Tagging at the FCC-ee with a

Transformer-based Neural Network

The identification of jets is instrumental to the exploitation of the full potential of collider

experiments. The steady evolution of the machine learning techniques presented in the previous

chapter has led to ever increasing accuracy in the task of jet flavour tagging. Nevertheless,

the relatively messy environment at hadron colliders has meant that jet flavour tagging efforts

have focused primarily on heavier b- and c-jets, whose distinctive signatures allows them to be

disentangled from the formidable QCD background. The FCC-ee, and lepton colliders in general,

offer much cleaner environments in which the initial state kinematics are known, without the

additional complications of parton distribution functions or initial state QCD radiation. The

prospect of tagging strange jets at the FCC-ee would enable studies of processes such as Z → ss̄

production, rare Higgs decays to s-jets, CKM matrix elements via W decays, and BSM physics

scenarios such as FCNCs at tree level.

DeepJetTransformer [1, 2], a multiclassifier neural network using a transformer-based ar-

chitecture, is coupled with secondary vertexing and K-short reconstruction at the FCC-ee to

discriminate strange quark initiated jets. This chapter begins by introducing the input fea-

tures and network architecture of DeepJetTransformer, followed by details of the training pro-

cedure. The classification results of DeepJetTransformer on Z → qq̄ jets at
√
s = 91.2 GeV and

Z(→ νν)H(→ qq̄) jets at
√
s = 240 GeV are presented, with a focus on strange jet discrim-

ination. Subsequently, the importance of individual features to the classification performance

is evaluated. Finally, the chapter concludes with a case study demonstrating the isolation of

Z → ss̄ jets using DeepJetTransformer, before the main findings are summarised.

The jet flavour tagging results covered in this chapter have been published in Ref. [2].

Parts of the text have been reproduced from the original publication.

6.1 Jets

Jets were clustered from Z → qq̄ events at
√
s = 91.2 GeV and Z(→ νν)H(→ qq̄) events at√

s = 240 GeV. The events were generated using Pythia 8.303 [150], including parton showering

and hadronisation, while the detector response was simulated using Delphes [151], assuming the

IDEA [152, 153] detector concept described in Section 3.5. Charged tracks were reconstructed

with efficiencies of 99.7%, 65%, and 4% in the high (> 0.5 GeV), medium (0.5-0.3 GeV), and low

(< 0.3 GeV) momentum ranges, respectively. No fake tracks were included in the simulation.

The exclusive e+e− kT algorithm [64], implemented in FastJet 3.3.4 [63], was used for clus-

tering the particle flow style objects output by Delphes. While other algorithms, including the

anti-kT algorithm [62] and the generalised e+e− kT [63], were explored, the e+e− kT algorithm

was found to be the most suitable due to the simple event topology, and its robustness to gluon

emissions (i.e. Z → qq̄g).
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Jet flavour labels were defined as the flavour of the outgoing partons from the boson decay.

While this provides a natural and unambiguous definition in the 2-parton decays studied (e.g.

Z → qq̄), it does not generalise to multi-parton decays such at ZH → 4 jets, or allow the

sub-division into quark and antiquark jets. It is worth noting that this jet labelling approach

departs from the ghost-matching [66] technique commonly used at hadron colliders, where jet

flavour is defined by the reclustering of particles with partons from earlier stages in the Monte

Carlo history.

6.2 Input Features

The input to DeepJetTransformer consists of 5 distinct classes: jet-level variables, charged

jet constituent variables, neutral jet constituent variables, secondary vertex variables, and V0

variables. The first of these, jet-level variables, are either kinematic variables derived from the

4-vector of the jet, or properties of the entire jet derived from its constituents. These include

variables such as the number of charged constituents or the various jet angularities constructed

from the momentum-weighted spatial distributions of the jet constituents. The full set of jet-level

variables used in DeepJetTransformer is listed in Table 6.1.

Table 6.1: Summary of per-jet global input variables to DeepJetTransformer.

Input Feature Description

|p|, E, m 3-momentum magnitude, energy, and invariant mass of the jet
θ, φ polar and azimuthal angle of the jet axis

Ncharged charged particle (track) multiplicity in the jet
Nneutral neutral particle multiplicity in the jet

jet angularity [154] as sum of normalized jet constituent energy (zi)
λκ
β = Σi∈jetz

κ
i R

β
i and angular distance to jet axis (Ri) for (κ = 0, β = 0),

(κ = 1, β = 0.5), (κ = 1, β = 1), (κ = 1, β = 2), (κ = 0, β = 2)

Jet constituents themselves are split into charged particles and neutral particles, correspond-

ing to the sub-detectors that were used for their reconstruction in the particle flow-like algorithm

[155]. For both charged and neutral particles, a set of kinematic variables related angle and mo-

mentum with respect to the jet (axis) is defined, as listed on Table 6.2. For each jet up to 25

charged jet constituents and 25 neutral jet constituents are considered. This is enforced by trun-

cating the input feature array of a given jet if the number of charged/neutral jet constituents

is more than 25. Conversely, if the number of charged/neutral jet constituents is less than 25,

then the input feature array is zero-padded.

Charged particles additionally include track-specific variables such as the signed transverse

and longitudinal impact parameters, which describe the distance of closest approach to the pri-

mary vertex for a given track. Figure 6.1a depicts the transverse impact parameter significance,

which serves as a distinguishing feature as tracks with a large transverse impact parameter

originate overwhelmingly from heavy jets. Finally, a set of flags identifying the particle type is

included for charged and neutral particles. Many of these flags are naturally output by particle

flow-like algorithms with high precision. Thus in this implementation, they are perfectly re-

constructed from the MC truth. This includes the "isMuon" and "isElectron" flags for charged

particles, as well as the "isPhoton" flag for neutral particles, which tellingly describe the type

of a given jet constituent. The "isKaon" flag identifies a particle as a charged Kaon (K±) and
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Table 6.2: Summary of jet constituent input features, divided into charged and neutral jet
constituents.

Input Feature Description

D0(z0) signed transverse (longitudinal) impact parameter
D0/σD0(z0/σz0) signed transverse (longitudinal) impact parameter significance

θrel(φrel) polar (azimuthal) angle of track with respect to the jet axis
R angular distance of track and jet axis
C half-curvature of the track

mch., q track invariant mass and charge
|p|ch.

|p|jet
, ln(|p|ch.), ln

( |p|ch.

|p|jet

)

(normalised) magnitude of track momentum and logarithms

Ech.

Ejet

, ln(Ech.), ln

(

Ech.

Ejet

)

(normalised) track energy and logarithms

isKaon if the particle is identified as a K±

isMuon if the particle is identified as a µ±

isElectron if the particle is identified as an e±

θrel(φrel) polar (azimuthal) angle of particle with respect to the jet axis
R angular distance of neutral particle and jet axis

|p|neut.

|p|jet
, ln(|p|neut.), ln

( |p|neut.

|p|jet

)

(normalised) magnitude of particle momentum and logarithms

Eneut.

Ejet

, ln(Eneut.), ln

(

Eneut.

Ejet

)

(normalised) neutral particle energy and logarithms

isPhoton if the particle is identified as a Photon

is thus central to the identification of strange jets. Figure 6.2a depicts the charged Kaon multi-

plicity of s-, u-, and d-jets, where it can be seen that Kaons are more prevalent in strange jets.

This effect is amplified when particle momentum is accounted for, as discussed in Ref. [156].

The identification of charged Kaons relies on distinguishing Kaons from other charged hadrons,

primarily pions and protons. Cluster counting and time-of-flight have emerged as promising

particle identification techniques, with separations of > 3σ achievable in the momentum range

of |p| < 30 GeV with the IDEA detector concept [59]. In this work the identification of charged

Kaons is emulated by sampling a uniform distribution with a K± efficiency of ǫK
±

sig = 90%,

and a background efficiency of ǫπ
±

sig = 10%, with charged pions serving as the false positive

for the "isKaon" flag. This constitutes the baseline scenario of DeepJetTransformer, although

some additional scenarios are explored in Section 6.5.1. The deliberately conservative estimate

reflects PID studies at Belle, where an efficiency of ǫK
±

sig = 87.99 ± 0.12% with a fake rate of

ǫπ
±

sig = 8.53± 0.10% was achieved for particles below 4 GeV [157].

The final two classes of features are SVs and V0s, both of which originate from the vertexing

algorithm acting on charged particle tracks. The set of SV and V0 features is listed on Table 6.3.

The V0 and SV input feature arrays are likewise truncated/zero-padded, with an array length

of 4 being enforced. The distinguishing power of some of these variables is discussed below.

The reconstruction of SVs has long been the cornerstone of heavy jet identification, and

begins with the identification of tracks originating from the primary vertex. Figure 6.1b depicts

the number of secondary vertices reconstructed for b-, c-, and light-jets, illustrating that jets

containing at least 1 secondary vertex originate almost exclusively from heavy jets. As the

primary goal of vertexing algorithms is the reconstruction of secondary vertices associated with

the decay of b or c quarks, neutral particles decaying to a pair of charged tracks, denoted V0s, are

often reconstructed, and subsequently discarded. This is done in order to prevent the erroneous
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Table 6.3: Summary of input features characterising each reconstructed secondary vertex. Input
features are defined analogously for V0s, with the addition of the PDG ID [158].

Input Feature Description

|p|, m 3-momentum magnitude and invariant mass of the SV
Ntracks track multiplicity of the SV
χ2,NDoF χ2 and number of degrees of freedom of the SV
θrel, φrel polar and azimuthal angle of the SV with respect to the jet axis

p̂.̂r collinearity of SV with respect to PV
d3D, dxy 3D and transverse distance of the SV from the PV

association of these decaying neutrals with bottom or charmed hadrons. Subsequently, remaining

tracks undergo a fitting procedure to reconstruct secondary vertices, known as vertexing. In

this work, an implementation of the vertexing module of the LCFIPlus framework [56, 159] in

FCCAnalyses [160] was used, using a χ2 vertex fitter [161]. One of the key differences in this

implementation with respect to other vertexing approaches is that rather than reconstructing

V0s only for the purpose of discarding their tracks, V0s are saved as separate objects within

the jet. The finding of V0s begins with the assumption of a mass hypothesis related to the V0

decay under consideration. The decays K0
S → π+π− and Λ0 → pπ− were included in this study.

For instance, assuming a mass hypothesis of the Λ0 would entail assigning one of the tracks the

mass of a proton and the other the mass of a charged pion. Using the measured 3-momentum,

the invariant mass of the track pair is computed. Figure 6.2b depicts the invariant mass of track

pairs under the K0
S mass hypothesis. The pronounced peak at approximately the mass of the K0

S

confirms the efficacy of the V0 reconstruction algorithm. Track pairs are subsequently subjected

to a set of constraints, in order to determine whether or not they originate from a V0 decay.

These revolve around how close the reconstructed invariant mass is to the true mass of the V0

particle under consideration, and whether or not the V0 is displaced enough from the primary

vertex. Additionally, the track pair 3-momentum must be collinear with the vector linking the

primary vertex to the V0. The exact constraints that were adopted can be found in Ref. [2].

6.3 Network Architecture

The architecture of DeepJetTransformer, depicted on Figure 6.3, can largely be split into three

sections: the convolutional layers that encode the input, the Heavy-Flavour (HF) transformer

blocks, and the fully connected layers at the end of the network. The input to DeepJetTrans-

former consists of 5 classes of variables detailed in Section 6.2. All variable classes barring

jet-level variables are passed through 1-d convolutional layers with 1 × 1 filters and stride 1.

In the context of convolutional layers, introduced in Section 5.3, the 1 × 1 filters act as linear

projections of each input constituent. By using the same filters for the entire input set, weights

are shared for each of the constituents. This is desirable physically, as all constituents of a given

class (e.g. charged particles) should be subjected to the same embedding. Moreover, it is worth

noting that this is a suitable encoding for jet constituent variables, since the length of the input

(e.g. number of charged particle variables) is not constant. More specifically, and focusing only

on charged particles (though valid for all other classes), denote by ~vch. the m-dimensional vector

of input features for a single charged particle in a jet. Then for a jet with charged multiplicity

n, the charged particles variables will be a set {~v1, ~v2, . . . , ~vn}. The 1-d convolution operation

encodes the set {~v1, ~v2, . . . , ~vn} into a new set of equal length {~u1, ~u2, . . . , ~un} by defining the
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In the first step of the HF transformer blocks, the output of the convolutional layers above

{~x1, ~x2, . . . , ~xm} = {~u′′ch.} ⊕ {~u′′neut.} ⊕ {~u′′SV s} ⊕ {~u′′V 0s} is encoded via a 1-d convolution with

128 filters, with a skip-connection again defined as the input ~si = ~xi. Next, the encoded set

{~x′} is used to define a set of queries Q, keys K, and values V, in order to compute the

scaled dot-product attention, as defined in equation 5.35. This is repeated n = 8 times for

different weight matrices WQ
i , WK

i , W V
i , and concatenated before being projected back to m

128-dimensional vectors {~yMHA}, as defined in Equation 5.36. Subsequently, the output of the

Multi-head attention step is added to the input via a skip connection such that ~yi = ~yMHA
i +~x′i,

before finally being passed to a pair of fully connected layers. The first fully connected layer

projects {~y} to a set of 512-dimensional vectors {~y′} followed by a ReLU activation function,

whereas the second serves simply to linearly project the set {~y′} back to m 128-dimensional

vectors {~y′′}. Finally, a skip-connection is employed to define the output of the HF transformer

layer as ~youti = ~y′′i + ~yi. The output set {~yout} serves as input to another HF transformer block.

This is stacked 3 times in DeepJetTransformer, enabling the attention mechanism to act on

progressively more abstracted features.

The final section of DeepJetTransformer are the fully connected layers, where higher level

features output by the HF transformer blocks are abstracted into class scores for each jet-flavour.

In particular, the output of the HF transformer blocks {~yout} is passed through an attention

pooling layer. The pooling layer begins by computing a score for each element in the sequence

as a linear combination of all 128 features of each element, via a 1-d convolution with a single

filter followed by a softmax activation function. This reduces Equation 6.1 to

αi = f(~youti · ~w) (6.2)

where αi are scalar scores for each element of {~yout} that will be used for the pooling, ~w is the

filter of the convolution, and f denotes the softmax function applied over all i. The elements of

{~yout} are then pooled into a single output vector

~ypool = f
(

∑

αi · ~youti

)

(6.3)

where f denotes a ReLU activation function applied element-wise. The vector ~ypool is subse-

quently concatenated with the jet-level variables, before being passed to the fully connected

layers. There are four stacked fully connected layers consisting of 140, 140, 140, and 6 nodes,

respectively, which were found to be performant hyperparameter choices. The first three layers

are followed by a ReLU activation function, and a skip connection that adds the input of the

layer to the output. The final layer simply projects the vector to a vector of dimension c, corre-

sponding to the number of jet flavours. During inference, the raw network scores are normalised

by a softmax function, given in Equation 5.7. These normalised outputs, which are constrained

to lie between 0 and 1 and sum to 1 across all jet flavours, are referred to as "softmaxed classifier

outputs" for brevity.

Throughout this discussion some details, including normalisation and dropout layers, have

been omitted for clarity. Batch normalisation is used throughout the network, particularly

following convolutional and linear layers, while layer normalisation is used in the HF Transformer

blocks to improve training stability. The full implementation, along with documentation for the

sample preparation, the training methodology described in the following section, and the relevant

code, is publicly available here: DeepJetFCC1

1https://github.com/Edler1/DeepJetFCC/tree/master/docs
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6.4 Training Details

Training and inference of the DeepJetTransformer algorithm was performed in Pytorch (v1.10.1)

[85]. As detailed in Section 5.2, the training of a neural network entails the computation of

weights that minimise the loss function, which in this case was chosen to be the categorical

cross-entropy L(~t, ~y), defined in Equation 5.11. By punishing incorrect predictions of each node

separately, a multi-class classifier was trained for which each output node corresponds to a

distinct jet flavour: b, c, s, u, d, (g). Weights were optimised by combining the rectified Adam

optimiser [88], given in Equation 5.23, with the Lookahead optimiser [162]. The Lookahead

optimiser introduces a set of "slow" weights alongside a set of "fast" weights computed by the

RAdam optimiser. After k updates of the fast weights, the slow weights are updated by moving

a fraction α towards the fast weights, improving training stability, particularly for aggressive

weight updates. During training, the number of updates was set to k = 6, while the fraction

was set to α = 0.5. An initial learning rate η of 5 · 10−3 and decay rates β1, β2 of 0.95, 0.999

were chosen for the RAdam optimiser.

The training dataset is comprised of roughly 1 million jets from Z → qq̄ events at
√
s = 91.2

GeV, split roughly evenly among the different jet flavours. The dataset was divided 80/20% into

training and validation datasets. Training was conducted for 70 epochs with the learning rate

being unchanged for the first 49 epochs, but decaying exponentially thereafter. A relatively large

batch size of 4000 was used for training stability. Figure 6.4 depicts the training and validation

loss for each epoch during the training of the baseline version of the classifier. Upon inspection,

an epoch at which the training training and validation losses were similar was selected, before

the onset of overfitting and subsequent divergence of the loss. With about 106 parameters and

efficient transformer blocks as the workhorse, training DeepJetTransformer takes about 2 hours

on an NVIDIA Tesla V100s GPU. Finally, the model’s performance was evaluated on a separate

set of 1 million jets, with similar balancing of jet flavours, to which it was not exposed during

training.

The tagger was trained separately on Z(→ νν)H(→ qq̄) events at
√
s = 240 GeV for the

H(→ qq̄) results shown in Section 6.5. The focus of these studies was jet flavour tagging at the

Z resonance, with the classification of H → qq̄ events serving primarily as a comparison to the

classification performance of other jet flavour taggers for future colliders, like ParticleNetIDEA

[59, 163].

6.5 Classification Results

A binary classifier was constructed for each jet flavour q ≡ u, d, s, c, b, (g) with a signal flavour

(i) and a background flavour (j):

Sij =
Si

Si + Sj
, (6.4)

where Si are the softmaxed classifier outputs, shown in Figure 6.5 for the five quark flavours.

ROC curves were computed for each Sij combination and are depicted in Figure 6.6 for the Z

resonance and the ZH training. Predictably, the strongest discrimination is between b-jets and

s-, u-, d- jets and is roughly equivalent for all three background jets. The dominant background

is from c-jets, originating from the similarity of b- and c-jets with a single reconstructed SV.

Discriminating c-jets from u-, d- and s-jets exhibits similar performances, with relatively worse
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u, and d quarks from gluons due to their similar jet composition.

Qualitative Comparison with Other Taggers

A fair quantitative comparison with other taggers developed for future colliders is not fea-

sible due to differing event samples and input features. However, the jet tagging performance

trends are very similar to those of ParticleNetIDEA [59, 163]. The strange tagging efficiency

of ParticleNetIDEA against the u-, d-jets surpasses that of DeepJetTransformer, owing to PID

techniques like cluster counting and time-of-flight used by ParticleNetIDEA and the conserva-

tive PID estimates of DeepJetTransformer. A more detailed training dataset including such PID

variables is expected to improve the tagging efficiencies of DeepJetTransformer.

DeepJetTransformer outperforms ParticleNetIDEA in bottom-gluon discrimination, espe-

cially for efficiencies lower than 90%. DeepJetTransformer also has a better discrimination

of b-jet background for all other signal quark jet flavours. This efficient discrimination can be

attributed to the inclusion of SVs.

6.5.1 Dependence on Particle Identification

Several K± classification scenarios were defined by fixing the efficiency of misidentification to π±

and varying the K± identification efficiency. In addition, the limiting cases of Kaon identification

with 0% and 100% efficiencies were considered. These are referred to henceforth as the no K±ID

and the perfect K±ID scenarios. The considered efficiencies and the misidentification rates are

the following:

Table 6.4: Set of K± and π± particle identification points used to evaluate classification
performance.

K± ID efficiency 0% 20% 40% 60% 80% 90% 95% 100%
π± misID efficiency 0% 10% 10% 10% 10% 10% 10% 0%

The no K±ID scenario is used as the reference in this section to assess the impact of adding

PID variables as input features for jet flavour tagging. The largest performance gain with

the addition of K±ID information is predictably in the classification of s vs ud jets, shown in

Figure 6.7. Relative to the reference no K±ID scenario, with a ǫsig of 31.6% at a ǫbkg of 10%,

strange tagging efficiency improvements of 11.4%, 25.9%, and 32.9% are evident as the K±ID

efficiency is increased to 60%, 90%, and 95%, respectively. The perfect K±ID scenario shows

the most sizeable performance gain in ǫsig of 82.9%. This large performance improvement over

the 95% K±ID efficiency with the efficiency of misidentification to π± of 10% scenario suggests

that minimising this misidentification is crucial to tagging strange jets, given their high π±

multiplicity [156].

The performance gain for other forms of classification was marginal, with the exception of

c vs ud and u vs d discrimination. For c vs ud, a performance gain of 1.8% from a ǫsig of 89.3%

to 90.9% at a ǫbkg of 10% is observed while comparing the no K±ID and the perfect K±ID

scenarios. In the case of u vs d, a 12.5% performance gain from a ǫsig of 13.6% to 15.3% at a

ǫbkg of 10% is observed.

These results confirm the importance and necessity of particle identification techniques, es-

pecially for strange quark studies, as was also noted by some previous studies [59, 166, 167].
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Figure 6.5: The softmaxed classifier outputs (Si) of the bottom (a), charm (b), strange (c), up
(d), and down (e) output nodes of DeepJetTransformer for Z → qq̄ events at

√
s = 91.2 GeV.

The distributions are sub-divided by MC flavour.
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As noted earlier, an excess of V0s, reconstructed K0
S and Λ0, carrying the bulk of the jet

momenta is also a distinguishing feature of strange jets and these are expected to be more

significant in the scarcity of charged Kaons. The inclusion of V0 variables, as Figure 6.7 shows,

results in an improvement of signal efficiency ranging from 14.3% in case of no K±ID to 4.2%

in the case of perfect K±ID at a background efficiency of 10% for s vs ud discrimination. The

percent improvement in signal efficiency for each of the K±ID scenarios listed in Table 6.4 is

depicted separately in Figure 6.7b. This trend proves the importance of V0s to identify strange

jets with low K± multiplicities or substandard K±/π± discrimination. The performance gain

in other forms of classification was again marginal.

6.6 Feature Importance

Aiming to estimate the relative importance of a given variable class (e.g. SV variables) in the

task of classifying jets, the classifier performance was evaluated using the Permutation Feature

Importance [168, 169] method. For a jet i, let the variable classes introduced in Section 6.2 be

denoted by { ~Ji, ~Ci, ~Ni, ~Si, ~Vi}. Then for the given variable class under investigation, for instance
~S, the variable class was shuffled amongst all jets in the test data set, such that the jet i becomes

{ ~Ji, ~Ci, ~Ni, ~Si, ~Vi} → { ~Ji, ~Ci, ~Ni, ~Sj , ~Vi} (6.5)

where the variable class ~S now corresponds to that of some randomly selected jet j. In this way,

the values for the variable class under investigation were randomly permuted across all jets in the

dataset, disrupting the relationship between the permuted variable class and jet classification.

This allows for an estimate of how much the performance of the classifier depends on the given

variable.

The resulting performance change was considered for discriminating between b- vs c-, c-

vs s-, and s- vs ud- jets, compared to the baseline where no variable classes were permuted,

with respect to the change in signal efficiency. Charged jet constituent variables, listed in

Table 6.2, were found to be the most impactful variable class for all types of discrimination

at a background efficiency of ǫbkg = 10%, as detailed in Table 6.5. This is presumably due to

more precise and discriminating information available for charged particles, arising from high-

resolution tracking and vertexing measurements. SV variables, listed in Table 6.3, primarily

benefited c vs s discrimination, with s vs ud tagging particularly insensitive. Of the remaining

three variable classes, V0 variables and neutral jet constituent variables were found to almost

exclusively impact the performance of s vs ud discrimination, with little impact on both b vs c and

c vs s discrimination, justifying the inclusion of V0s for identifying s-jets through conservation

of strangeness. Jet-level variables were found to be the least significant, marginally impacting

s vs ud discrimination, and having virtually no impact on heavy flavour discrimination. While

jet-level variables, including jet angularities, reflect differences in the initiating parton, it can

be expected that sophisticated architectures like DeepJetTransformer capture these differences

intrinsically by constructing mappings involving other variable classes. Moving to the high purity

regime at a background efficiency of ǫbkg = 0.1%, primarily the same trends were observed,

with the impact of any variable type being amplified. SV variables, in particular, became

hugely important to heavy flavour tagging, reaching almost equal in impact to the charged jet

constituent variables, proving that the presence and properties of SVs are definitive indicators

for identifying heavy flavour jets.
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Table 6.5: Performance decrease in signal efficiency (ǫsig) after permutation of variable classes
defined in Section 6.2 for fixed background efficiencies (ǫbkg) of 10% and 0.1%.

Variable Class Jet-level Charged Neutral SV V0

b vs c 2.4% 62.4% 2.2% 13.9% 0.1%
ǫbkg = 10% c vs s 1.2% 65.7% 2.9% 29.6% 0.2%

s vs ud 7.6% 59.4% 21.8% 5.0% 16.4%

b vs c 6.6% 97.0% 8.0% 89.9% 0.6%
ǫbkg = 0.1% c vs s 9.3% 96.1% 11.0% 77.9% 0.2%

s vs ud 35.9% 91.0% 57.3% 7.4% 43.8%

The above studies were repeated to estimate the relative importance of individual variables

(e.g. mSV), where rather than shuffling an entire variable class amongst jets, one individual

variable was shuffled amongst itself. Adopting the same notation as for Equation 6.5, the jet-level

variables of jet i can be written out, such that the variable classes become { ~Ji, ~Ci, ~Ni, ~Si, ~Vi} =

{ ~Ji, ~Ci, ~Ni, {si1, ..., si25}, ~Vi}. Then for the kth SV variable (e.g. mSV), the sk is permuted amongst

all other jets

{ ~Ji, ~Ci, ~Ni, {si1, ..., sik, ..., si25}, ~Vi} → { ~Ji, ~Ci, ~Ni, {si1, ..., sjk, ..., si25}, ~Vi} (6.6)

where the variable sjk now corresponds to that of some randomly selected jet j. The 64 variables

included in DeepJetTransformer can be loosely split into the following categories:

• Kinematic (|p|, E, |p|/|p|jet, θ, ∆θ, . . . )

• PID (isPhoton, K±ID, . . . )

• Track (D0, z0, . . . )

At a background efficiency of 10%, it was found that kinematic variables of charged particle

constituents, including
Ech.

Ejet

and
|p|ch.

|p|jet
, were generally impactful, particularly for c vs s discrim-

ination. Track variables, such as D0/σD0 and z0, were the most impactful, though less for b

vs c than other types of discrimination, possibly due to their redundant information after the

inclusion of SVs. PID variables had little impact on b vs c and c vs s discrimination, but K±ID

and photon ID were the most important for s vs ud discrimination, as was observed earlier. The

high purity regime at a background efficiency of 0.1% resulted in similar trends, though with

PID variables, including K±ID and photon ID, decreasing in importance and being somewhat

replaced by kinematic ones. It should be stated that the baseline K±ID scenario, as mentioned

in Section 6.2, is deliberately pessimistic, which could account for its decrease in importance.

Track variables remained the most impactful. The secondary vertex mass mSV became the most

impactful variable in b vs c discrimination at high purity by a sizeable margin, as SV kinematics

store essential information about the decaying hadrons. The results of this study are summarised

in Table 6.6 below.

6.7 Z Peak Extraction

The decay of the Z boson was chosen for the evaluation of DeepJetTransformer due to the rel-

ative uniformity of its hadronic branching fractions, as well as the exquisite statistics that are

expected from the FCC-ee’s 4 year run at the Z-pole. Isolating Z → ss̄ events is a challenging,

yet promising, avenue that has largely remained unexplored, in favour of leptonic or heavy-

flavour channels, with their distinct signatures [158]. In this section the extraction of Z → ss̄
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Table 6.6: Performance decrease in signal efficiency (ǫsig) after permutation of individual vari-
ables defined in Section 6.2 for fixed background efficiencies (ǫbkg) of 10% and 0.1%. A set of
seven variables, chosen among the most impactful, is presented here.

Variable ln(Ech.) isPhoton K±ID mSV |p|V0
z0 D0/σD0

b vs c 3.5% 0.3% 0.2% 3.0% 0.1% 7.8% 11.6%
ǫbkg = 10% c vs s 23.8% 0.7% 0.5% 0.3% 0.2% 20.9% 39.1%

s vs ud 12.8% 16.6% 38.8% 0.0% 9.2% 23.3% 26.7%

b vs c 13.8% 1.3% 0.9% 67.2% 0.8% 34.1% 45.0%
ǫbkg = 0.1% c vs s 57.6% 0.9% 4.8% 7.0% 0.3% 56.2% 79.5%

s vs ud 35.0% 28.0% 59.0% 0.4% 34.7% 60.5% 80.1%

events from Z → qq̄ events at the FCC-ee is reported, providing a realistic scenario for evaluat-

ing DeepJetTransformer’s performance in discriminating against b, c, u, d-jets, simultaneously.

Backgrounds beyond the hadronic jets from Z decays are not considered, but are expected to

constitute less than 1% of events at the Z-pole. The events used in this study originate from

the same Z → qq̄ at
√
s = 91.2 GeV sample introduced in Section 6.1. Events were required

to consist of exactly two jets of matching MC flavour. Jets were required to pass fiducial cuts

corresponding to a jet 3-momentum of at least |p| > 20 GeV and a polar angle in the range

14◦ < θ < 166◦, ensuring the jet axis was sufficiently distant from the beam pipe. If either jet

from an event did not satisfy the requirements, the event was rejected.

The adopted strategy for isolating s-jets consisted of first defining a s vs bc classifier according

to Equation 6.4, where the individual scores for each class Si were computed from the DeepJet-

Transformer softmaxed output nodes. It is important to note that the score for each Z → qq̄

jet was computed individually, with no knowledge of the event propagated to the network, as

in previous sections in this chapter. The s vs bc classifier was evaluated at a set of background

efficiencies ǫb,cbkg of 10%, 1%, and 0.1%. Jets passing the s vs bc cut were subsequently subjected

to a second cut by a s vs ud classifier defined similarly. The s vs ud classifier was likewise eval-

uated at a set of background efficiencies ǫu,dbkg of 10%, 1%, and 0.1%, now defined with respect

to the set of jets passing the first cut. Four working points (WP) of increasing purity were

defined by considering different combinations of background efficiencies, or mistag rates, for the

sequential classifiers. The working points, along with their respective efficiencies, are summa-

rized in Table 6.7, where it can be seen that while the first classifier removes the comparatively

"easy" background of heavy flavour jets while maintaining a high signal efficiency, even at the

1% working point. The s vs ud classifier, however, shows a sharp decrease in signal efficiency

when moving to more stringent working points, as discrimination against ud-jets relies heavily of

Kaon identification, and the baseline version of the DeepJetTransformer makes relatively modest

PID assumptions. Interestingly, the signal efficiency of the s vs ud classifier only varies from

ǫssig = 40.03 ± 0.04% to ǫssig = 39.28 ± 0.06%, demonstrating the apparent orthogonality of the

classification problem.

The Z resonance depicted on Figure 6.8a was obtained as the invariant mass of the sum of

the 4-momenta of both jets in an event pµ = (p1)
µ + (p2)

µ: m =
√
pµpµ. Events are split

by flavour, with light jets appearing roughly symmetrically about ∼ 90 GeV. Z boson decays

to heavy quarks display a pronounced tail towards lower mass corresponding to energy carried

away by neutrinos arising from semi-leptonic decays of the hadrons containing b and c quarks.

Figure 6.8b depicts the dijet invariant mass for all events passing the s vs bc cut for WP2/3.

Figure 6.9a depicts the dijet invariant mass for all events which additionally pass the s vs ud cut
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Table 6.7: Signal efficiency at the four working points defined with respect to mistag rates of
the s vs bc and s vs ud cuts. The number of signal events Nsig and background events Nbkg is
listed explicitly for an integrated luminosity of 125 ab−1. Signal efficiencies and mistag rates
are defined with respect to Z → qq̄ jets.

Mistag Rate [%] Efficiency [%] Nsig Nbkg

WP1 s vs bc 10 98.93± 0.03 7.35× 1011 1.35× 1012

s vs ud 10 40.03± 0.04 1.45× 1011 3.25× 1010

WP2 s vs bc 1 54.18± 0.04 2.38× 1011 2.06× 1011

s vs ud 10 39.28± 0.06 5.10× 1010 5.57× 109

WP3 s vs bc 1 54.18± 0.04 2.38× 1011 2.06× 1011

s vs ud 1 10.05± 0.11 1.12× 1010 4.77× 108

WP4 s vs bc 0.1 17.96± 0.06 3.23× 1010 6.98× 109

s vs ud 0.1 1.98± 0.33 3.56× 108 3.38× 106

defined sequentially for WP3 in Table 6.7. The Z peak is extremely pure, with the remaining

background consisting almost exclusively of u- and d-jets. The precise number of signal and

background events passing the WP3 cuts is listed on Table 6.7 for an integrated luminosity of

125 ab−1. While this study does not consider machine backgrounds or irreducible backgrounds

from other Standard Model processes, both expected to be at the per cent level, it is nevertheless

instructive to consider the Asimov estimate of the discovery significance [170, 171], defined as

Z =

√

2

[

(Nsig +Nbkg) log

(

1 +
Nsig

Nbkg

)

−Nsig

]

. (6.7)

Figure 6.9b depicts the discovery significance as a function of integrated luminosity for the

different working points. A discovery significance corresponding to the canonical 5 σ is reached

extremely quickly for all four of the working points. WP3, in particular, reaches 5 σ after an

integrated luminosity of only 60 nb−1, corresponding to less than a second of the Z-pole run at

the FCC-ee.
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Figure 6.8: Dijet invariant mass of Z → qq̄ events at
√
s = 91.2 GeV before any cuts (a), and

for events where both jets pass the s vs bc cut of WP2/3 of Table 6.7. An integrated luminosity
of 125 ab−1 is assumed.
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Figure 6.9: Dijet invariant mass of Z → qq̄ events at
√
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is assumed. Discovery significance of Z → ss̄ events at 91.2 GeV as a function of integrated
luminosity for WP1-4. The dashed lines denote the luminosity required for a 5 σ significance
for each of the WPs.

6.8 Conclusions

The discrimination of strange quark jets at the Z-pole run of the FCC-ee was demonstrated

using a computationally-efficient, transformer-based neural network. This approach combines

the representational power of the attention mechanism with a novel implementation of vertexing

at the FCC-ee, achieving state-of-the-art performance. The impact of particle identification on

strange tagging was explicitly explored through the inclusion of V0 reconstruction and varying

degrees of K± discrimination.

An excellent discrimination of b-, c-, s-jets was achieved, with signal efficiencies in the ǫsig ∼
90%+ range for both b vs c and c vs s tagging, at a background efficiency of ǫbkg ∼ 10%. The

model performance showed little dependence on the events, with jets originating from Z → qq̄

and H → qq̄ decays being discriminated with similar efficacy, though a slight improvement was

observed in the Higgs sample for c-jet tagging specifically.

The u, d background proved to be the most challenging throughout these studies, particularly

for s-jets, though this was mitigated by Kaon identification. Among the considered K± scenarios,

the improvement was found to depend more on the π± misidentification than on increasing

K± identification efficiency, reflecting the high pion multiplicity in light jets. Similarly, the

reconstruction of V0 particles was found to benefit strange jet tagging sizeably, though the

improvement was reduced as the K± identification improved.

Subsequent permutation feature importance studies on b vs c, c vs s, and s vs ud tagging

performance further emphasised the importance of Kaon identification for strange jet discrim-

ination. For heavy flavour tagging, and even for s vs d at high purity, track and SV variables

proved most impactful.

Finally, a case study targetting the isolation of Z → ss̄ jets using DeepJetTransformer at the

Z-pole was performed, illustrating its use in a concrete physics scenario. It was shown that a

discovery significance of 5 σ is reached after less than a second of the Z-pole run at the FCC-ee,

albeit in a simplified scenario where non-Z backgrounds are neglected.
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DeepJetTransformer offers a lightweight architecture for efficient discrimination of jets initi-

ated by all quark flavours. The computational complexity, measured in FLOPs, is approximately

19.7 MFLOPs. Comparatively, DeepJetTransformer requires fewer FLOPs than competing ar-

chitectures [94, 110], making it an excellent choice to efficiently evaluate the impact of the

constantly evolving detector design on flavour tagging.

Future work may focus both on the optimisation of the machine learning algorithm, and

the realism of input features. The network performance could benefit from refining the input

feature set, hyperparameter tuning, and a larger training set. In parallel, more realistic K± PID

scenarios using the time-of-flight or number of primary ionisation clusters, as in Ref. [59], could

be incorporated. A detailed outlook for further developments is presented in Chapter 11 at the

end of this thesis.

Ultimately, while increasingly sophisticated architectures may be able to extract additional

discriminative power, the jet tagging performance will be gated by the quality of information

that is available. These studies emphasise the central importance of particle identification to

strange jet tagging at future colliders. The potential for further gains through precise vertexing

enabling not only increasing precision in secondary vertex reconstruction, but also V0 decays,

motivates ongoing MAPS development and optimisation, as explored in the following chapters

of this thesis.
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Part III

Monolithic Active Pixel Sensors for

Future Colliders
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7 Silicon Detectors

Silicon detectors have emerged as the enabling technology in high-precision tracking applications

since their adoption in the 1980s. Their introduction vastly improved the spatial reconstruction

of particle tracks, leading to a more precise determination of particle properties such as momen-

tum, and enabling the reconstruction of SVs for the first time. Secondary vertex reconstruction,

and tracking in general, are critical components of detector-level information for a wide variety

of measurements, and in particular the identification of jets. While novel jet tagging algorithms,

such as the one introduced in Chapter 6, will continue to incrementally improve the achievable

jet flavour tagging accuracy, the fundamental constraint will always remain the information

on the particle trajectories and properties from which the algorithm must infer the initiating

parton.

Owing to the low energy (∼ 3.6 eV) required to create an electron-hole pair, silicon detec-

tors can be regarded as extremely sensitive ionisation chambers, where energy deposited by an

impinging particle is translated to an electrical signal by the generation and subsequent motion

of charge carriers. The resulting signal, however, is a small current and must thus undergo a

sophisticated signal processing chain in order to become practically usable, balancing a variety

of design requirements including the spatial and energy resolutions, power density, material bud-

get, radiation tolerance, cost, and many others. Naturally, a variety of different technologies,

each optimal for a different environment or measurement, have emerged.

This chapter provides an introduction to silicon detectors, with a strong bias towards topics

relevant to the characterisation of the monolithic active pixel test structures presented in this

thesis. Much more comprehensive treatments of the topics covered can be found in Refs. [53,

172, 173]. The chapter begins with the fundamental properties of semiconductors, followed by an

overview of pn-junctions. Subsequently, Section 7.2.1 explores the energy deposition of charged

particles and photons in matter. The signal formation and its readout are presented in Sections

7.2.2 and 7.3.1, respectively. Noise sources and their impact on signal detection are presented

in Section 7.3.2. Finally, Section 7.4 provides a brief overview of monolithic active pixel sensors

and their applications.

7.1 Semiconductors

Solid materials can be classified according to their conductivity into insulators, conductors, and

semiconductors. The close spacing of atoms leads to overlapping of the individual wavefunctions

of atoms, leading to a splitting of the energy levels [53]. For a large number of atoms typical of a

solid, this results in an almost continuous band of allowed energies. The electrical conductivity

of a solid is determined by two of these bands: the valence band and the conduction band.

The valence band is the highest energy band that is completely filled at 0 K. The valence band

is separated from the conduction band by a finite energy gap covering a range of "forbidden"

energies, as depicted on Figure 7.1. The size of the band gap defines whether a material is

considered an insulator or a semiconductor. While this distinction is not strict, typical band
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for the collection electrode). The high doping ensures a low resistivity, and such regions are

accordingly denoted as p+, n+ depending on the type of impurity. By contrast, the active region

where electron-hole pairs are generated is often doped with at much lower concentrations, as the

higher resistivity is beneficial to charge collection, as detailed in the following section. The low

doping is denoted by p−, n−.

pn-junctions

Combining two oppositely-doped regions of silicon, typically by introducing n- and p-type

impurities to different volumes of the same silicon crystal, results in the creation of a depletion

region, which has several desirable properties for particle detection. Figure 7.3 depicts the

interface between the n- and p-type regions, referred to as a pn-junction. The formation of the

depletion region in a pn-junction begins with the majority carriers in the n-type silicon diffusing

into the p-type silicon, and vice-versa. This leads to an electron-hole pair recombination, whereby

conduction electrons from the n-type silicon form valence bonds with holes in the p-type silicon.

In this way both atoms in the n-type and p-type silicon are ionised, and the depletion region,

which is devoid of charge carriers, begins to form. While the pn-junction as a whole is electrically

neutral, the n-type impurity atoms are positively charged, while the p-type impurity atoms are

negatively charged. Accordingly, a potential difference across the depletion region resulting

from the oppositely charged ions also forms. The resulting electric field opposes the flow of

charge carriers along the diffusion gradient, with conduction electrons being swept back to the

now positively-charged n-type silicon, and vice-versa. At equilibrium, the motion of the charge

carriers due to diffusion and drift along the electric field are equal and opposite, such that the

depth of the depletion region remains constant. Although electron-hole pairs continue to be

thermally-generated within the depletion region, the electric field causes them to drift to their

corresponding n- or p-type silicon, before any meaningful build-up of charge carriers.

The depletion region is central to the functioning of semiconductor detectors, since the ab-

sence of thermally-generated charge carriers translates to greatly reduced noise. Moreover,

charge carriers resulting from the energy deposition of particles traversing the detector material

drift towards either the n- or p-type silicon generating a signal, as detailed in Section 7.2.2.

By applying a reverse bias voltage, that is to say a voltage along the built-in potential Vbi, the

depth of the depletion region can be increased, as depicted in the bottom panel of Figure 7.3.

In particular, the electric potential ϕ(~r) satisfies Poisson’s equation:

∇2ϕ(~r) = −ρ(~r)

ǫ
(7.5)

where ǫ is the dielectric constant and ρ(~r) is the charge density. Assuming the potential depends

only the direction perpendicular to the pn-junction, and noting that the charge density is given

by the respective carrier concentrations for each of the junction sides, reduces Equation 7.5 to

d2

dx2
ϕ(x) =







− eND

ǫ if 0 < x < xn
eNA

ǫ if − xp < x < 0
(7.6)

where −xp and xn denote the boundaries of the depletion region, and x = 0 the junction

interface. Given the constant charge density, Equation 7.6 can easily be integrated in order to
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obtain the x-component of the electric field in each respective region:

d

dx
ϕn,p(x) = −En,p

x (x) = −ρn,p

ǫ
· x+ Cn,p (7.7)

where the integration constant is determined from the boundary condition that the electric field

vanishes at the boundaries, yielding

d

dx
ϕ(x) =







− eND

ǫ (x− xn) if 0 < x < xn
eNA

ǫ (x+ xp) if − xp < x < 0
(7.8)

The above Equation can be integrated again to obtain

ϕ(x) =







− eND

2ǫ (x− xn)
2 + Vbias if 0 < x < xn

eNA

2ǫ (x+ xp)
2 if − xp < x < 0

(7.9)

where the integration constant is now determined from the boundary conditions of the applied

voltage: ϕ(xn) = Vbias and ϕ(−xp) = 0.

The continuity of the potential at the junction interface ϕ(0+) = ϕ(0−) allows the expression

of the bias voltage as a function of the depletion region depth of each region (xn, xp) using

Equation 7.9. Using the charge neutrality across the junction ND ·xn = NA ·xp, the relation can

easily be solved for the depth of the depletion region (d = xn + xp), making its approximately

square-root dependence on the bias voltage manifest [173]:

d · xp =
2ǫ

NAe
Vbias (7.10)

which can be written as

d ≈
√

2ǫ

NAe
Vbias ∝

√

Vbias (7.11)

by letting d ≈ xp. This holds when the doping concentration of the n-type region is much higher

than for the p-type region, as is the case for the junction between the n-well collection electrode

and the lightly-doped p-type sensitive layer of the chips explored in this thesis. Notably, the

depth of the depletion region also depends on the inverse root of the doping concentration of

the lightly-doped layer, suggesting that the extent of the depletion region can be increased by

minimising the doping concentration.

The extent of the depletion region is one of the defining characteristics in the performance of

a semiconductor detector. In addition to defining the region in which generated charges will drift

to the collection electrode, the width of the depletion region determines the junction capacitance

of the detector. Treating the pn-junction as a parallel plate capacitor, a capacitance of

C =
ǫA

d
≈ A ·

√

NA · e · ǫ
2 · Vbias

(7.12)

is obtained, where A is the area of the pn-junction interface. The capacitance should be min-

imised in order to induce a larger signal for an equivalent number of deposited charge. A

reduction in capacitance can greatly mitigate electronic noise contributions arising from later

stages of the signal processing, as described in Section 7.3.2.

The thermal generation of charge carriers can contribute to a current in the absence of a charge

deposition from an ionising particle. The leakage current is increased substantially by impurities

and radiation damage to the silicon bulk, which can introduce intermediate energy levels that
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plane perpendicular to the particle trajectory θplane. In the limit of a large number of scatter-

ings, the scattering angle θplane is expected to be distributed approximately Gaussian, as per

the central limit theorem. Ref. [181] provides an estimate for RMS of θplane as

θms ≈
√

〈θ2plane〉 ≈
Es√
2pcβ

√

x

X0
(7.14)

where Es = mec
2
√

4π
α is a constant and x/X0 is the thickness of the medium in radiation lengths.

The 1/(pβ) scaling of θms highlights that multiple scattering is minimised when particles traverse

a medium at high energies. Moreover, multiple scattering can also be reduced by minimising the

amount of material that a particle must traverse in a detector, known as the material budget.

Minimising the material budget in order to reduce the deflection of particle trajectories is a key

consideration in tracking detector design.

Photons

The primary mechanisms involved in the interaction of photons with matter are the photo-

electric effect, Compton scattering, pair production, and Rayleigh scattering. The cross sections

for each of the processes in carbon is depicted on Figure 7.5b. At low energies below ∼ 50 keV

the photoelectric effect dominates the energy loss of photons in matter. The photoelectric effect

denotes the absorption of an energetic photon by an atom, freeing a bound electron and ionising

the atom. The energy of the freed electron is given by

Ee− = Eγ − EB (7.15)

where Eγ denotes the energy of the incoming photon and EB denotes the binding energy of

the electron. In the case of silicon, the freed electron deposits its energy by creating electron-

hole pairs as it traverses the medium. A ∼ 5.9 keV electron resulting from the photoelectric

absorption of a Kα photon from an 55Fe decay will deposit its entire energy almost locally, within

O(1) µm [182]. In addition to the photoelectric effect, Rayleigh scattering also contributes to

the interaction of photons at low energies, although with a much smaller cross section. Rayleigh

scattering describes the elastic scattering of a photon off an atom. Its contribution to the cross

section falls rapidly with energy, as the photon wavelength becomes smaller than the typical

radius of an atom.

At higher energies above ∼ 50 keV Compton scattering becomes the dominant process,

whereby the impinging photon scatters inelastically off a free or shell electron. The photon

transfers a fraction of its energy to the electron, and is scattered at an angle.

At even higher energies above ∼ 10 MeV, the dominant process is increasingly pair production.

Pair production describes the conversion of an energetic photon into an electron-positron pair,

as it interacts with the electric fields of atomic nuclei, or atomic electrons, to a lesser degree.

Kinematically, the photon energy must be greater than twice the rest mass of the electron, which

is evidenced by the Eγ ≈ 2mec
2 ≈ 1.022 MeV point in Figure 7.5b, above which pair production

begins to contribute.

7.2.2 Signal: Induced Current

The formation of a signal in a semiconductor detector begins with the excitation of electron

hole pairs by impinging radiation, as described above. The collective, orchestrated motion of
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charge carriers within the depletion region induces a current at the collection electrode, whose

magnitude is given by the Shockley-Ramo theorem [183, 184]

i(t) = −q
(

~v · ~EQ

)

(7.16)

where q,~v are the charge and velocity of the charge carrier, and ~EQ is the "weighting field",

which relates the carrier motion to the induced current at a given electrode, depending only

on geometry [172]. Thus, it is worth emphasising that the formation of a signal begins with

the motion of electron hole pairs in the sensitive layer, not necessarily when they arrive at the

collection electrode or substrate.

In general, the motion of charge carriers within the depletion region consists of a drift compo-

nent and a diffusion component. The drift of charge carriers within the depletion region due to

the electric field is roughly linear according to Equation 7.2, offering a natural avenue to increas-

ing the charge collection speed. Increasing the biasing voltage not only widens the depletion

region, guaranteeing that a larger fraction of the deposited charge is collected, but also increases

the electric field, particularly after full depletion. The increased charge collection speed has the

twin benefits of reducing the likelihood of charge trapping and recombination, which can become

significant after radiation damage, thereby increasing the fraction of charge that is collected,

but also reduces the rise time of the signal. The drift velocity cannot be increased indefinitely

by increasing the electric field, as the linear relationship given in Equation 7.2 breaks down at

high electric fields as the drift velocity saturates [53].

In addition, all charge carriers diffuse randomly throughout the semiconductor medium as a

result of their thermal motion. In this way, what may start as a localised deposition of charge by

an impinging particle becomes a charge carrier cloud spread out in a roughly Gaussian profile.

The standard deviation of said profile σdiff is given as [173]

σdiff =
√
2Dt, D = µ

kBT

e

where D is the diffusion constant and t is the time during which the charge carriers have diffused.

Charges generated within the depletion region are unlikely to diffuse very far, since they quickly

drift to either the collection electrode or the substrate according to Equation 7.2, minimising

the time of their diffusion.

For charges generated outside the depletion region, however, the diffusion component of their

motion can be substantial before they reach the depletion region. Indeed, for large enough

drift times, or for charge depositions close to pixel boundaries, this could mean diffusing to

the depletion region of the neighbouring pixel, and thus inducing a signal in the collection

electrode of the neighbouring pixel in a process denoted charge sharing. While high charge

sharing implies a number of drawbacks related to slow charge collection, charge trapping and

recombination, and reduced signal-to-noise ratio (SNR), charge sharing can aid substantially

in the reconstruction of a particle hit position by leveraging positional information encoded in

the charge of its neighbours. For instance, while a hit close to the pixel boundary may only be

reconstructed with a ∼ p/2 error if the entire charge is collected by the pixel in which the particle

impinged, a sharing of half the charge would allow the centre-of-mass to be reconstructed at

the pixel boundary, leading to a much lower reconstruction error. In practice, a trade-off must

be made in the degree of charge sharing desired in a sensor, with the positional reconstruction

accuracy weighed against the radiation hardness, timing performance, occupancy, and resulting

hit rate.
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7.3 Signal Readout

The induced current introduced in Section 7.2.2 must be integrated in order to obtain a measure

of the charge deposited by an impinging particle. Moreover, the resulting signal is generally

very small and must be amplified before being processed further. As this is first step following

the collection electrode, the amplifier is referred to as a preamplifier. The preamplifier may be

either DC- or AC-coupled to the collection node, with the latter using a coupling capacitor that

allows higher bias voltages at the collection node, albeit at the cost of added input capacitance.

Additional steps to increase the SNR, readout speed, or reduce the data rate, are typically

performed in subsequent signal processing stages. Since the chips presented in this thesis feature

an analogue readout, the reader is referred to Refs. [53, 172] for details on signal processing

beyond amplification.

7.3.1 Readout Electronics

The integration of the induced current must be performed at some capacitance, often by a

dedicated feedback capacitor of the preamplifier, in which case the preamplifier is said to be

charge-sensitive. Alternatively, the current may be integrated on the capacitance of the collection

node itself, as is done for the chips in this thesis. In other words, the signal at the input of the

preamplifier is simply the voltage drop at the collection node due to charge carrier accumulation,

and the preamplifier is thus considered voltage-sensitive. The observed signal following the

preamplifier is a stable baseline defined by the preamplifier working point, which falls sharply as

charge from an impinging particle is collected. In order to restore the baseline and maintain the

dynamic range of the amplifier, its input must be discharged. The discharge of amplifier input

is performed either through some dedicated current (e.g. Ireset) or through the leakage current

itself, in which case the preamplifier is said to be self-recovering.

While an analogue readout is feasible for the test structures presented in this thesis, for larger

detector systems the readout of the full analogue signal can pose a major challenge. Instead,

the signal can be digitised to a certain precision. There is a tradeoff in the digitisation precision

and speed [172], such that for fast applications, only the hit-no hit information is saved [185].

The attainable spatial resolution using the binary method can be computed as the variance of

a uniform distribution, integrated from −p/2 to p/2 corresponding to the pixel boundaries

σ2 =

∫ p/2

−p/2
x2f(x)dx =

1

p

∫ p/2

−p/2
x2dx =

p2

12
(7.17)

where f(x) is the pdf and p is the pixel pitch. The resolution is then σ = p/
√
12, which suffices

only for small pitches.

Alternatives to the binary readout method, whereby the collected charge is encoded to higher

precision, exist. For instance, the measured pulse height may be passed to comparators, thereby

digitising the collected charge. On the other hand, if a reset current discharges the integrating

capacitor linearly, then the time required to return to baseline may be exploited to determine

the deposited charge, in what is known as the Time-Over-Threshold (ToT) method. It offers a

compromise between precision and speed, as the ToT is generally less precise than the full pulse

height, but requires fewer bits.
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7.3.2 Noise

Noise broadly describes fluctuations of a signal arising from sources unrelated to the underlying

measured phenomenon. In the context of semiconductor pixel detectors, the primary noise source

in the measurement of an energy deposition is typically the electronic noise resulting from the

readout electronics. Minimising electronic noise is one of the key considerations in semiconductor

detector design, as noise can quickly degrade the achievable SNR given the relatively low signals

generated by ionisation.

Fano Noise

Even if one were to imagine a detector with negligible electronic noise, a measurement of the

energy deposited by a particle would still be smeared by statistical fluctuations in the number

of generated electron hole pairs. The number of electron hole pairs Neh generated by an energy

deposition has the mean 〈Neh〉 = E/Ei, where Ei denotes the ionisation energy. Assuming a

Poisson distribution would imply a standard deviation of σNeh
=
√

E/Ei, which would give a

measurement resolution of σNeh
/Neh =

√

Ei/E. In practice, however, the observed standard

deviation is significantly smaller due to the contributions from other excitation mechanisms such

as phonons [172], though a complete understanding does not yet exist [173]. The deviation from

the expected standard deviation from statistics alone is given by the Fano factor

σNeh

Neh
=

√

F · Ei

E
(7.18)

The Fano factor for silicon is F ≈ 0.1, setting the intrinsic energy resolution that can be achieved

in a silicon detector.

Fixed Pattern Noise

Measurements that combine the signal of multiple pixels, such as reconstructing a particle

track position from the signal of neighbouring pixels, are subject to an additional type of noise

resulting from variations between them. Fixed Pattern Noise (FPN) denotes the noise resulting

from the differing response of neighbouring pixels due to gain and baseline differences introduced

by manufacturing variations. FPN is characterised by varying spatially, for instance across a

pixel matrix, but being temporally constant. Calibration measurements can be used to scale the

response of each pixel, minimising FPN, as is done in Section 9.6.3 for the chips studied in this

thesis.

Electronic Noise

Electronic noise results from statistical fluctuations in the readout electronics. The primary

noise sources in silicon detectors include thermal noise, shot noise, and 1/f noise. Thermal noise,

or Johnson noise, describes voltage fluctuations resulting from the random thermal motion of

charge carriers in a resistive circuit element. The spectral density up to high frequencies is

constant, and proportional to the temperature of the medium.

Shot noise describes fluctuations in the number of charge carriers overcoming some potential

barrier. In semiconductor detectors the primary source of shot noise is the stochasticity of
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thermal electron-hole pair generation in the pn-junction, leading to fluctuations in the leakage

current. The spectral density is likewise constant, and proportional to the leakage current.

Flicker noise, or 1/f noise, encompasses noise whose spectral density scales as 1/fα for some

α = 0.5, ..., 2 [53], and thus dominates at low frequencies. In electronics 1/f noise is associated

with the trapping of charge carriers. The correlated double sampling technique briefly introduced

in Section 8.4 can be used to mitigate 1/f noise [186].

The contribution of noise to the measured signal is often quantified by measuring the equiva-

lent noise charge (ENC). The equivalent noise charge represents the fluctuation in input charge

(i.e. Neh) that would correspond to the observed noise in the output signal (e.g. ∆V). The ENC

is obtained by scaling the measured noise by the charge-to-voltage gain of the detector

ENC =
∆V
GQ

(7.19)

where GQ is the charge-to-voltage gain of the detector1 under consideration. In this way, the

contribution of all noise sources can be compared, regardless of where in the signal processing

chain they appear. Moreover, by expressing the noise in terms of input charge, and thus as a

fraction of the signal, the observed noise can be meaningfully compared across detectors as its

magnitude no longer depends on the amplifier gain.

7.4 Monolithic Pixel Detectors

Semiconductor detectors function by converting the energy deposited by an impinging particle

into an electrical signal. Typically the charge formation and collection described in Section 7.2 is

performed on a high-resistivity piece of silicon where the depletion region can extend over a large

area of the sensor. The intricate readout electronics, on the other hand, require a low-resistivity

piece of silicon, where the signal can be amplified and digitised. In the hybrid approach the

sensor and the readout electronics are fabricated on two separate silicon dies and connected via

a micro-connection, typically a bump bond. In this way, the readout chip and the sensor can be

optimised independently.

MAPS Overview

Monolithic Active Pixel Sensors (MAPS) combine the sensor and readout chip onto the same

silicon die. Integrating sensing and readout electronics onto the same silicon die introduces

challenges, including isolation of the transistors. In order to ensure proper functioning of PMOS

transistors, they must be fabricated within an n-doped well. The n-well must, in turn, be

isolated from the active layer where electron-hole pairs are generated, since it would otherwise

compete with the n-type collection electrode for electrons. Two strategies for achieving this are

either the use of a large collection electrode into which the readout circuitry is placed [187], or

separate deep p-wells which ensure isolation from the active sensing layer, as depicted Figure 7.6.

The latter approach is adopted for the chips presented in this thesis, which entails the benefit

that the n-well collection electrode can be miniaturised, reducing the junction capacitance, and

thereby benefitting the SNR.

MAPS offer a variety of advantages with respect to their hybrid counterparts, including a

1For the CE-65 family of chips studied in this thesis, GQ corresponds to γ−1
ccf

defined in Equation 9.5.
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[192, 193] and STAR at RHIC [194], where radiation environments are considerably more mild

than in proton-proton collisions. The synergy between ongoing research efforts on MAPS de-

velopment for heavy-ion experiments and future lepton colliders is exemplified by the latest

upgrade of ALICE’s Inner Tracking System (ITS), dubbed the ITS3 [46]. The ITS3 upgrade

plans to replace the ITS2’s [192] three innermost layers with fully cylindrical, wafer-scale bent

sensors, targeting an excellent ∼ 5 µm spatial resolution and an ultra-low material budget of

0.07% X0 per layer. Refs. [195, 196] highlight that the FCC-ee vertex detector requirements are

generally comparable to those of the ALICE ITS3 upgrade, with requirements on the spatial

resolution being somewhat more stringent, while baseline material budget constraints are more

relaxed2. The details of a MAPS test structure targetting both the ALICE ITS3 upgrade and

future colliders such as the FCC-ee are presented in the following chapter, before delving into

its characterisation thereafter.

2Ref. [47] explores the benefits of a reduced material budget at the FCC-ee.
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8 CE-65 Chip

In December 2020 the first set of small-scale test structures targeting the ALICE ITS3 upgrade

[46] were produced using the TPSCo 65 nm CMOS imaging process. This Multi-Reticle Layer

Run 1 (MLR1) submission targeted the systematic exploration and validation of key aspects of

the 65 nm technology, including process parameters, in-pixel electronics, and front-end designs,

in preparation for the wafer-scale MAPS sensors of ITS3. The MLR1 submission featured a

number of distinct test-structures targeting specific challenges of the ITS3 upgrade, three of

which are listed here:

• Analogue Pixel Test Structure (APTS) [197]: A small 6×6 pixel matrix, of which the inner

4 × 4 are active, with direct analogue readout, optimized for studying charge collection

efficiency, noise performance, and collection electrode geometry variations

• Digital Pixel Test Structure (DPTS) [198]: A larger 32×32 pixel matrix with time-encoded

digital readout, developed to evaluate pixel-level digital electronics

• Circuit Exploratoire 65 nm (CE-65) [199]: A larger test structure featuring a 64×32 pixel

matrix combined with analogue readout, designed to investigate scalability, and process

properties in the 65 nm technology

The MLR1 prototypes provided critical insights into the feasibility of 65 nm MAPS for ITS3,

validating key process parameters [4, 196–204].

While the subsequent ER1 submission targeted primarily the ALICE ITS3 upgrade through

the fabrication of the MOSS and MOST sensors, significant room on the wafer was devoted to

the advancing of earlier test-structures, including the CE-65v2: the evolution of CE-65.

8.1 Chip Details

The CE-65 and its evolution, the CE-65v2, were developed to investigate the charge collection

and electrical properties of the 65 nm CMOS process, targetting not only the ITS3 upgrade,

but future applications of MAPS, including the FCC-ee. Both the CE-65v1 and the CE-65v2

feature a large matrix read out in an analogue way, as depicted on Figures 8.1a and 8.1b.

While the CE-65v1 implements three separate in-pixel amplification schemes: an AC-coupled

preamplifier (AC), a DC-coupled preamplifier (DC), and a DC-coupled source-follower (SF), the

CE-65v2 features only the AC-coupled pre-amplifier. The CE-65v1 chip is split into three

submatrices, each corresponding to one of the amplification schemes. The CE-65v2 expands on

the CE-65v1 by including a wide variety of chip variants targeting additionally the exploration

of process and pitch variations, and introduced the staggered pixel arrangement as a way to

gauge the importance of matrix geometry on the achievable single point resolution. The four

exploration axes that are targeted by the CE-65 family of test structures are listed below:

• Amplification Scheme: AC-amp., DC-amp., SF

• Process variation: Standard, Modified, Modified w/ Gap
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8.2.1 Standard Process

Figure 8.2a illustrates the cross section of a pixel produced in the Standard process, consisting

of an n-well collection electrode, and in-pixel CMOS circuitry that is isolated from the epitaxial

layer by a deep p-well. The deep p-well provides a charge-reflective boundary between the

epitaxial layer and the circuitry, preventing the n-wells housing the PMOS transistors from

competing with the collection electrode for the generated electrons. The depletion region begins

to develop at the n-well collection electrode and follows a balloon shape in the eptaxial layer,

as the reverse biasing voltage is increased. This proceeds until the p+ substrate is reached, at

which point the strong doping gradient inhibits further depletion. Due to the limited depth

of the epitaxial region of O(10 µm), the lateral region remains largely undepleted, resulting in

diffusion-dominated charge collection. In effect, charge collection is slow and subject to charge

trapping, whilst exhibiting substantial charge sharing between pixels.

8.2.2 Modified Process

In order to address the shortcomings of the Standard process, a planar junction spanning the

pixel width was introduced [205]. Figure 8.2b depicts the Modified process which has, in addition,

a deep low-dose n-type implant between the epitaxial layer and the CMOS circuitry. The

development of the depletion region now begins at the interface of the n-type implant and

the epitaxial layer. Even at low bias voltages, the depletion region spans the width of the

pixel and begins to extend vertically. While this ensures full depletion of the epitaxial layer,

it also entails a substantial increase in the sensor capacitance as the region around the n-well

collection electrode remains undepleted [205]. This is addressed by providing higher biasing

voltages, which then deplete the region in the n-type implant between the n-well collection

electrode and the deep p-wells. At a high biasing voltage the capacitance is defined by the

geometry of the n-well collection electrode itself. Indeed, during the laboratory characterisation

of the CE-65 family of chips detailed in Chapter 9, capacitance was found to vary little across

process variations at full depletion. While a larger biasing voltage is needed to operate chips

at low sensor capacitance than in the Standard process, the lateral depletion of the Modified

process allows for the development of the electric field. The electric field induces drift-dominated

charge collection, resulting in faster charge collection and reduced charge sharing. The resulting

improved radiation hardness was one of the primary motivations for the introduction of the

Modified process [46].

8.2.3 Modified with Gap Process

Nevertheless, the Modified process displayed considerable drops in efficiency towards the pixel

edges at mild irradiation doses of 1014 1 MeV neq cm−2. Figure 8.2c depicts the Modified with

Gap process, which adopts the same layout as the Modified process, but includes gaps at the

pixel edges [206]. The gaps enable the development of the electric field at the edges, resulting

in even less charge sharing than in the Modified process.

While the process modifications were initially developed for the 180 nm TowerJazz technology,

the adoption of the TPSCo 65 nm technology entails a reduction in the depth of the epitaxial

layer by over a factor 2 [46]. Accordingly, the incomplete lateral depletion of the Standard

process is magnified, with an even larger fraction of the epitaxial layer remaining undepleted,

for equivalent pixel pitches. Thus, the impact of the process modifications is amplified with
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The staggered arrangement, depicted on Figure 8.7b, was adopted only for the 22.5 µm and

18 µm pixel pitches, and thus for 6 variants in total. In the staggered arrangement every second

column is shifted by p/2 vertically. The shift results in a reduction in the immediate number

of neighbours from 8 in the square arrangement to 6. While the collection electrodes of the

neighbouring pixels now follow a hexagon, it is important to distinguish the arrangement of

the neighbours from the shape of the pixel boundaries, which remain squares. This entails

that unlike in the FASTPIX chip where the charge collected by the seed pixel was observed

to be substantially higher than in the square arrangement, the staggered arrangement shows

little difference with respect to the square arrangement. However, the reduction in the number

of neighbours results in an increase in the number of clusters consisting of 3 pixels or less,

as demonstrated in Section 10.2.6. This reduction, coupled with a geometry favourable for

cluster position reconstruction, resulted in sizeable improvements to the spatial resolution of the

staggered arrangement variants.

8.6 Summary of V1 and V2 Design Differences

A summary of the properties and differences between between the CE-65v1 chip and the CE-65v2

is listed below:

Table 8.1: Selected design parameters of CE-65v1 and CE-65v2. Parameters only present in
the 22.5 µm Standard process CE-65v1 variant are written in parentheses.

Parameter CE-65v1 CE-65v2

Sensor dimensions 64×32 pixels (48×32 pixels) 48×24 pixels
Process modifications Standard, Modified, Gap
Readout Rolling shutter
Pitch 15 µm (25 µm) 15, 18, 22.5 µm
Amplification scheme AC-amp., DC-amp., SF AC-amp.
Matrix geometry Square Square, Hexagonal/Staggered
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9 Laboratory Characterisation

The characterisation of novel MAPS technologies begins in a controlled laboratory setting, where

the basic functionality of the chip is verified. Fundamental properties including charge collection

and noise performance are evaluated. For the CE-65 family of sensors, this initial evaluation

focused on critical performance metrics revolving around the sensor’s response to X-rays and

noise characteristics. Using a 55Fe source, the laboratory studies detailed in this chapter probed

the charge collection properties of the CE-65v1 and CE-65v2 variants, including the depletion

of the epitaxial layer, charge sharing, collection efficiency, and gain uniformity across the pixel

matrix. Complementary noise performance studies were conducted to observe both the pixel

baseline and ENC, providing a picture of some of the sensors’ limitations.

The laboratory characterization served as a crucial first step in investigating three of the

four exploration axes introduced in Section 8.1: amplification scheme, process modification,

and pitch variation. It served as a precursor to subsequent testbeam studies, where additional

performance aspects, including the spatial resolution and detection efficiency, were evaluated to

demonstrate the full potential of sensors fabricated in the 65 nm TPSCo CMOS process. This

chapter begins by detailing the data acquisition (DAQ) setup before delving into the analysis

strategy and clusterisation procedure. The gain calibration of the CE-65v1 and CE-65v2 chips

is presented, emphasizing key performance parameters such as charge collection efficiency and

gain uniformity. Finally, key trends and results are summarized.

Parts of the 55Fe source characterisation covered in this chapter have been published

in Ref. [4]. Similar phrasing was used for relevant sections.

9.1 Lab Setup

9.1.1 Data Acquisition Setup

The DAQ setup at the University of Zurich is depicted on Figure 9.1. The custom test setup

was developed by INFN Cagliari in collaboration with CERN targeting all of the MLR1 test

structures introduced in Chapter 8. The setup consists of a DAQ board, a proximity board,

and a carrier board housing the CE-65 chip, all interconnected via PCIe connectors. Various

connectors can be seen which power the test setup, provide voltage biases, and read out data.

A brief overview of the core components is given below, but the interested reader is encouraged

to consult Ref. [210] for details.

At its core Altera Cyclone IV-based DAQ board serves to read out and format the chip data,

transferring it to the connected PC via the USB interface visible at the left edge of Figure 9.1,

where it is further processed using the DAQ software framework described in Section 9.1.2. The

DAQ board includes a configurable clock (up to 40 MHz), enabling tests of different CE-65

readout speeds. In the presented results, the clock speed was limited to 10 MHz. In addition,

reverse biasing voltages are applied to the CE-65 chip via the LEMO connectors visible on top

of the DAQ board. Power is supplied externally to the DAQ board via the green 3-pin screw
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Figure 9.3 depicts the pixel baseline for the 15 µm pitch CE-65v1 chip produced in the

Modified process. The three submatrices corresponding to the AC-coupled preamplifier, DC-

coupled preamplifier, and source-follower amplification schemes, introduced in Section 8.3, are

clearly visible. The right-most SF submatrix displays a positive baseline in the ∼ 2500 ADU
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Figure 9.3: Baseline pixel response of the entire matrix of the 15 µm pitch CE-65v1 chip
produced in the Modified process. Biasing information is displayed to on the right.

range, in accordance with simulations. The AC and DC submatrices display negative baselines,

owing to the inverting amplifier.

Equivalent Noise Charge Dependence on Chip Design

The ENC was computed by considering the CDS signal, introduced in Section 8.4, whereby

the raw response of time-adjacent frames is subtracted. The noise distribution for each of the

pixels was fit using a Gaussian. The standard deviation was then converted into electrons using

the charge conversion factors computed in Section 9.6.3. Figure 9.4a shows the ENC distributions

of the three submatrices of the 15 µm pitch CE-65v1 chip produced in the Modified process. The

vast majority of pixels lie in the ∼ 10 to 20 electron range, with the AC submatrix displaying

the lowest ENC, followed by the SF submatrix, as evidenced by the overlayed 2-d distribution

of the ENC. All three distributions display the characteristic shape of a decaying exponential

leading to a quickly decreasing number of noisy pixels. This is associated with rare fabrication

defects or increased leakage currents, increasing noise in a small subset of pixels.

Figure 9.4b shows the ENC distributions of the three submatrices of the 25 µm pitch CE-65v1

chip produced in the Standard process for comparison. There is a clear decrease in the ENC

of all three submatrices. The most drastic improvement is for the DC submatrix, which goes

from being the noisiest submatrix in the Modified with Gap process chip, to the least noisy in

the Standard process. A similar trend is observed when comparing the 15 µm pitch CE-65v1

chip produced in the Standard process to its Modified with Gap counterpart, suggesting that

the increase in noise observed for the Modified and Modified with Gap chips is a property of

the n-type blanket implant, that is magnified for the DC submatrix. The increase in noise can

be associated with the increased capacitance resulting from the incomplete depletion of the low

dose n-type implant around the collection electrode, as mentioned in Section 8.2. The effect is

expected to be largest for the DC-submatrix, due to the low biasing voltage.
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9.3 Methodology of Radioactive Source Characterisation

9.3.1 Fe-55 Emission Lines

55Fe is an isotope commonly used for the calibration of MAPS. The decay of 55Fe proceeds

overwhelmingly via electron capture, whereby an electron from one of the outer shells is captured

by the nucleus:

55
26Fe + e− →55

25 Mn + νe (9.1)

The resulting Mn atom remains in an excited state with one of the inner shells missing an

electron (typically the K-shell). This is compensated either through the emission of an electron,

known as an Auger electron (∼ 60%), or an electron transition from a higher shell, resulting in

the emission of an X-ray (∼ 30%)[211]:

55
25Mn∗ →55

25 Mn + γ (9.2)

Table 9.1: The 55Fe X-ray emissions and their Energies. Values adapted from Ref. [211].

Type Transition Energy (keV) Relative Probability

XK Kα2 5.88772 51
Kα1 5.89881 100
Kβ1 6.49051 20.5
Kβ′′

5 6.5354 -included above-

XL Ll 0.5576 –
Lα 0.6394 – 0.6404 –
Lη 0.5695 –
Lβ 0.64636 – 0.7694 –
Lγ 0.65826 –

The energy of the emitted X-rays is determined by the energy difference between the higher

and lower shells. Common X-ray energies are summarized in Table 9.1, where it can be seen that

the primary emission lines are determined by the transitions of electrons from the L-subshells

to the K-shell, denoted as the Kα1 and Kα2 emissions. These occur with relative probability of

2:1 at energies of 5.89881 keV and 5.88772 keV, respectively [211]. The energy difference is far

smaller than the intrinsic energy resolution of silicon detectors [212]:

R = 2.35 ·
√

Fw

E
≈ 2% (9.3)

where F is the Fano factor in silicon, w is the excitation energy of an electron-hole pair in silicon,

and E is the energy deposited by an impinging X-ray. In effect the Kα1 and Kα2 emissions result

in a single peak, denoted as the "Kα peak" throughout this thesis. In addition, Table 9.1

highlights also transitions from the M-subshells to the K-shell, denoted by Kβ1 and Kβ′′
5 . The

energy difference is once again smaller than the intrinsic energy resolution, resulting in a single

Kβ peak with ∼ 8 times less counts than its Kα counterpart.
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background. The fit range was chosen around the most-probable value (MPV) of the distribution

as MPV± 0.05 ·MPV, but was adapted where necessary if the fit did not properly describe the

underlying distribution.

A set of constraints was imposed on the fit parameters in order to ensure convergence (and

where appropriate fit the Kβ peak). The constraints for the AC submatrix are reported below.

Other submatrices differed only in the peak width owning to their differing energy resolutions.

• Kα Peak Position (µα): The Kα peak position was required to lie within MPV ±
MPV/12. In practice this constraint was purely for fit stability as the MPV lies on the

Kα peak.

• Kβ Peak Position (µβ): The Kβ peak position was required to lie within [1.05 ·µα, 1.15 ·
µα]. This constraint was imposed to center the µβ around the expected nominal Kβ peak

position of ∼ 1.10 · µα.

• Peak Widths (σi): The Kα and Kβ peak width was required to lie within [100 ADUs, 10000 ADUs].

As 10000 ADUs spans the entire spectrum this was in effect only a lower bound of >∼ 1%.

• Kβ Amplitude (B): The Kβ amplitude was required to lie within [0, 0.2·MPV] reflecting

the relative transition probability given in Section 9.3.1 (A/B ∼ 8).

In spectra where the Kβ peak could not be discerned, only the Kα contraints given above were

applied. The fitting procedure was performed using the least-squares method, with the χ2

serving as the goodness-of-fit estimate.

Charge Conversion Factor

The most prominent Kα peak, introduced in Section 9.3.2, was used to perform a mapping

from the measured ADUs to energy by matching the known peak positions of the Kα X-rays.

The energy is often expressed in terms of electrons, corresponding to the number of electron-

hole pairs produced by the impinging X-ray. In silicon the mean energy for the creation of an

electron-hole pair is 3.6 eV, meaning that an X-ray of 5.9 keV corresponding to the Kα emission

line will on average generate 1640 electron-hole pairs. The mapping is defined as the charge

conversion factor (γccf)

γccf =
dQ

dE
=

Ne · e
µα · ADU

=
1640

µα
· e

ADU
(9.5)

where Q is the generated charge in the sensing volume, E is the energy of the impinging X-ray,

and e is the electron charge. This computation assumes a complete charge collection, which was

found to hold reasonably for most sensor variants, as detailed in Section 9.5.2.

9.4 Gain Calibration

An extensive characterisation of the CE-65v1 and CE-65v2 chips was performed using X-rays

from an 55Fe source. Each of the different flavours of the CE-65v2 chip were measured at

constant 20oC using a chiller for temperature control. CE-65v1 chips were measured at room

temperature (i.e. without cooling). The single-pixel cluster spectrum, introduced in Section

9.3.2, was used for calibration under the assumption that the vast majority of the charge was

collected by a single pixel. As shown below, this is the case for the Modified and Modified with
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The large discrepancy in the peak position between the high and low charge sharing events

in the case of the DC submatrix of the 25 µm Standard process CE-65v1 chip meant that the

DC submatrix was exceptionally calibrated using the 5 × 5 matrix signal distribution in order

to include the full contribution of neighbouring pixels. In effect, this means that the nominal

calibration values presented in Section 9.4 are likely significant underestimates. Nevertheless,

they still allow for the pixel-to-pixel gain variations to be studied.

For all other measured CE-65v1 chip configurations the discrepancy between the peak posi-

tions was considerably smaller (< 5%).

9.5.2 Charge Collection Efficiency

The charge collection efficiency is introduced in Ref. [212] as the ratio between the Kα peak

position determined from the 3 × 3 matrix signal 55Fe distribution, and the peak position de-

termined from the single-pixel spectrum. Under the assumption that the single-pixel spectrum

is dominated by events where the charge conversion from impinging X-rays takes place entirely

within the depletion region of the sensing volume, it is expected that the measured ADU count

corresponds to the full 1640 electrons generated. The assumption was found to hold best for

the AC submatrix of the CE-65v1 chips, as the large biasing voltage allows for a full depletion

of the sensing volume (vertically).

The matrix signal, on the other hand, contains contributions from events where the charge is

split between more than 1 pixel, either because the charge conversion took place in an undepleted

part of the epitaxial layer, or because a part of the charge conversion took place in the p+

substrate. In either case, the charge will not drift directly to the collection electrode of the pixel

in which it was generated. In the latter case, the electrons may not diffuse into the epitaxial

layer, leading to an incomplete charge collection. This results in a shifting of the Kα peak

position towards lower ADU counts. This effect is reproduced in Refs. [213] and [212]. Thus,

the charge collection efficiency gives an estimate of the fraction of generated charge that is

actually collected.

Figure 9.14 depicts the charge collection efficiency as a function of biasing voltage for the

AC submatrices of the 15 µm Modified process and 25 µm Standard process CE-65v1 chips. In

order to disentangle the influence of charge sharing between the epitaxial layers of neighbouring

pixels, the charge collection efficiency for both the 3× 3 and 5× 5 matrix signal was included.

The charge collection efficiency increases monotonously for the Standard process chip as

higher biasing voltages are applied and the depletion region develops. Comparing the 3 × 3 to

the 5 × 5 charge collection efficiency reveals that the majority of this effect is due to charge

diffusing beyond the immediate neighbours of the seed pixel. Nevertheless, even the 5×5 charge

collection efficiency is found to gradually increase with the depletion voltage. At a depletion

voltage of 10V a charge collection efficiency of ∼ 96% is achieved.

The charge collection efficiency of the Modified process chip is above 100% at 0V, suggesting

that the assumption that the single-pixel spectrum is dominated by events where the full 1640

electrons are collected does not hold at low biasing voltages. This is in agreement with the

considerably slower depletion of the Modified process chip discussed in Section 9.4. At biasing

voltages of 2V and above, the charge collection efficiency is relatively stable at above 97%. The

charge collection efficiency shows virtually no dependence on the size of the matrix window,

suggesting that the effect is primarily due to incomplete charge conversion in the epitaxial layer.
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Figure 9.20: Gain distribution of the CE-65v2 chip in the Modified with Gap process with a
15 µm pitch obtained by considering the normalized Kα peak position (Figure 9.16a) for each
pixel.
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Figure 9.21: Gain distribution of the CE-65v2 chip in the Standard process with a 22.5 µm
pitch obtained by considering the normalized Kα peak position (Figure 9.16b) for each pixel.
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Figure 9.22: Gain distribution of the CE-65v1 chip in the Modified process with a 15 µm pitch
obtained by considering the normalized Kα peak position (Figure 9.17a) for each pixel.
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Figure 9.23: Gain distribution of the CE-65v1 chip in the Standard process with a 25 µm pitch
obtained by considering the normalized Kα peak position (Figure 9.17b) for each pixel.
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performant, and motivating its selection as the sole amplification scheme in the CE-65v2 chip.

The validation and characterisation of the CE-65 family of chips in a laboratory setting served

as a critical stepping stone to the testbeam studies of the CE-65v2 chip, which explored all four

exploration axes from Section 8.1: amplification scheme, process modification, pitch variation

and matrix geometry to optimize spatial resolution and detection efficiency.
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10 Testbeam Analysis

The characterisation of novel sensor technologies typically rests on three pillars: simulation

studies, laboratory tests, and testbeams. Following the initial study of sensor properties in

a controlled lab setting, where basic functionality of the chip is verified, testbeam campaigns

represent a critical next step in assessing real-world performance. Testbeam campaigns offer

the opportunity to study the response of a sensor to MIPs, providing realistic performance

benchmarks for metrics crucial to the applications of the sensors in HEP, including the hit-

detection efficiency and spatial resolution. In contrast to lab tests, where one typically relies on

a radioactive source with essentially no tracking information, testbeams leverage beam telescopes

to precisely reconstruct particle trajectories, allowing the determination of the these key metrics.

These metrics underline the suitability of the 65 nm TPSCo CMOS process in high-resolution

vertexing applications, with the detection efficiency and spatial resolution serving as the primary

arbiters for the design choices.

While Chapter 9 presents the lab characterisation of both the CE-65v1 and CE-65v2 chips,

this chapter focuses solely on the testbeam campaigns of the CE-65v2 chip. This chip adopts

the best-performing amplification scheme from CE-65v1, and introduces additional design vari-

ations, notably the staggered matrix geometry. The chapter begins with a brief introduction

to testbeam analysis and the adopted analysis framework. The CE-65v2 testbeam at the Su-

per Proton Synchrotron (SPS) [215] at CERN is detailed, with the main results including the

obtainable hit-detection efficiency, spatial resolution, and the cluster properties as a function

of process modifications and pitch. Subsequently, the CE-65v2 testbeam at DESY [216] is pre-

sented, where the cluster properties with respect to biasing voltage were explored. Finally, the

chapter concludes with a summary of the main findings and their implications for future sensor

development.

Parts of the SPS testbeam results covered in this chapter have been published in Refs.

[4, 196]. Similar phrasing was used for relevant sections.

10.1 Methodology

The core task during a testbeam is the characterisation of the performance of a given sensor

by studying its response to MIPs at a beam facility. Testbeam campaigns offer the opportunity

to evaluate a sensor under real-world operating conditions, unlike the laboratory measurements

presented in Chapter 9. This is typically done by arranging the device under testing (DUT)

into a beam telescope consisting of several reference detectors whose properties have been well

established. Figure 10.4 depicts the adopted setup during the CE-65v2 testbeam campaign at the

SPS. The reference detectors are arranged so that the trajectories of the particles passing through

the DUT can be determined with utmost precision. By combining multiple measurements of

the same particle as it traverses the reference detectors, a track can be reconstructed with

a resolution that is significantly better than the spatial resolution of the individual reference
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detectors. The interpolated track position on the DUT can be compared with the measured

sensor response in order to determine a number of core metrics.

10.1.1 Performance Metrics

The first of these is the hit-detection efficiency. It can be understood as the probability with

which a given particle track elicits a discernible response in the DUT. Formally, it is defined as

the ratio between the number of tracks with an associated cluster k, and the total number of

tracks N :

ǫ =
k

N
(10.1)

The details of how tracks are associated to clusters are given in Section 10.1.2.

The second metric, the residual, is intimately related to the hit-detection efficiency. For a

track with an associated cluster, the residual in the x, y dimension is defined as the distance be-

tween the track intercept on the DUT plane, and cluster centre, as determined by a clusterisation

method:

∆x = x∗ − xcl. (10.2)

∆y = y∗ − ycl. (10.3)

where the x∗ denotes the interpolated position, and the xcl. the cluster centre. Throughout the

testbeam campaigns detailed in this chapter the mean of the residuals in the x and y dimensions,

∆d, was used to estimate the intrinsic spatial resolution as

σDUT =
√

(∆d)2 − σ2
tel. (10.4)

where the σtel. denotes the telescope resolution, which depends on both particle momentum and

type.

Many of the design levers of the CE-65v2 chip revolve around the tuning of cluster properties,

including the cluster size and shape, in order to optimize the aforementioned metrics. It is thus

worthwhile to introduce a third metric, the accumulated charge ratio, which was used to quantify

the observed charge sharing in Sections 10.2.5 and 10.3.2. The accumulated ratio is defined by

summing the charge of individual pixels in a cluster successively, until a cluster size of 9 is

reached. The accumulated ratio is then normalized by the total cluster charge, calculated as the

sum of the charge of all pixels in a 3× 3 window around the seed pixel:

f i
acc. =

∑i
j=1Qj

∑9
j=1Qj

(10.5)

where f i
acc. denotes the accumulated charge ratio for the ith pixel and Qi denotes its charge.

The indices in the computation of the accumulated charge ratio are assigned by charge ordering,

with the first pixel being the most energetic.

10.1.2 Corryvreckan

The Corryvreckan software framework [3, 217] provides a toolset for the reconstruction and anal-

ysis of testbeam data. The framework spans the entire pipeline of a typical testbeam analysis,

from the reading of the raw detector data to the final observables in the form of efficiencies and
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cluster on the reference detector. During the analysis of the CE-65v2 data, the first ALPIDE

[185] from the downstream arm was chosen as the reference detector. The other telescope planes

are then translated in the x-y plane with the goal of centring the correlation peaks for each of

the planes. Rotations are not performed during the pre-alignment step, and instead only take

place during alignment.

Once a coarse estimate of the telescope geometry has been performed by the prealignment

module, the description is passed to the alignment module where an iterative minimisation

procedure is performed on the computed tracks. In particular, while pre-alignment step did not

require an explicit reconstruction of the tracks, as shown in Figure 10.1, track reconstruction is

a prerequisite step of the precise alignment of the beam telescope.

Track reconstruction begins with the identification of clusters on all detector planes during a

given event. Track candidates are then built by considering a straight line interpolation between

two given clusters on the first and last detector planes of the beam telescope. Clusters on all

remaining detector planes along the track candidates are looked for in a user-defined elliptical

search window of 100 µm × 100 µm. If a cluster is found on a subsequent detector plane within

the search window, then the cluster is added to the track candidate, and the track is refitted.

For the SPS testbeam the high beam energy ensured minimal multiple scattering, and thus a

straight-line model sufficed for track construction. At the DESY testbeam the considerably

higher multiple scattering motivated the use of the General Broken Lines (GBL) algorithm

[218, 219], whereby tracks are allowed a kink angle at every detector plane to scattering effects.

If a cluster can be associated on every detector plane for the given track model, then the track

candidate becomes a reconstructed track.

The precise goal of the alignment procedure is the minimisation of the χ2 of all computed

tracks, via the iterative translation and rotation of the detector planes with respect to the

reference detector. Once the minimisation algorithm converges, the telescope is considered to

be aligned and its geometry is frozen for subsequent steps1.

DUT (Pre-)Alignment

Following the alignment of the telescope the precise position of the DUT with respect to the

reference plane must be determined. This proceeds similarly to the alignment of the telescope,

with an initial coarse pre-alignment, an a subsequent fine-tuning by the AlignmentDUTResidual

module. During the pre-alignment the correlations of the DUT with the reference plane are

minimised by translations on the x-y plane. This is followed by the alignment step, where

rather than minimising the track χ2 as was done for the telescope alignment, the DUT plane is

iteratively translated and rotated to minimise the unbiased residuals between the interpolated

track position on the DUT and its associated cluster. The tracks are constructed as described

during the telescope alignment step, with an additional track quality cut of χ2/ndof < 2 to

prevent misalignment due to poor quality tracks. The DUT clusters are associated similarly

to in the track fitting step, by considering an initial elliptical search window of 100 µm × 100

µm. In the case where multiple clusters are found, the combined contribution of all residuals is

considered for that track during the minimisation of the residuals.

1While the telescope geometry is frozen for analysis steps, it is generally good practice to repeat the alignment
if there have been appreciable changes to the telescope geometry, e.g. thermal expansion during long runs.
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DUT Analysis

The final step in the Corryvreckan analysis pipeline is the computation of the performance

metrics. In the case of the CE-65v2 chip this entails primarily the hit-detection efficiency and the

x,y-residuals. In the Corryvreckan framework this is performed by the AnalysisEfficiency and

AnalysisCE65 modules. The efficiency was computed as the number of tracks with associated

clusters divided by the total number of tracks, as defined in Equation 10.1. The uncertainty is

given by the Clopper-Pearson [220] confidence interval of 1 σ. The residuals were extracted via

the AnalysisCE65 module, which is a derived class of the AnalysisDUT module, where the x, y

residuals are defined by Equation 10.2.

Coordinate Systems

The Corryvreckan framework relies on three basic coordinate systems for the internal rep-

resentation of a given testbeam telescope. These can be sub-divided into two local coordinate

systems, and one global. The first local coordinate system represents the actual detector chan-

nels, and thus for the square and staggered geometries adopted in this work, represents the

row and column of a given hit. It corresponds closely to the raw position of where the hit was

recorded. By definition, this coordinate system is centered at the centre of the lower left pixel

of the given detector. For the square matrix arrangement, this coordinate systems already de-

fines a cartesian coordinate space supporting vector addition. This, in principle, allows for the

computation of the cluster centre, and other distance metrics relevant to the analysis pipeline.

However, for more non-trivial geometries, including the staggered matrix arrangement, depicted

on the left of Figure 10.3, this is no longer the case. Instead, the second local coordinate sys-

tem is introduced, which is explicitly a right-handed cartesian coordinate system centred at the

geometric centre of the given detector plane. It is typically referred to as the local coordinate

system, and appears in the centre of Figure 10.3. A set of helper functions are defined to trans-

late the position in the first local coordinate system to the local cartesian coordinate system,

which for the square matrix take the trivial form of

xlocal = px ·
(

xcol. −
Ncol. − 1

2

)

ylocal = py ·
(

yrow − Nrow − 1

2

) (10.6)

where the px, py denote the pixel pitches in their respective dimensions and Ncol., Nrow denotes

the number of columns and rows, respectively. The translation of the y coordinate has to be

modified for the staggered matrix arrangement, yielding

ylocal = py ·
(

yrow. −
Nrow − 1

2
± fstag.

2

)

(10.7)

where fstag. represents the pixel fraction by which the matrix is staggered, which in the case of the

CE-65v2 chip is fstag. =
1
2 . The addition or subtraction of the additional pixel fraction follows

the opposite parity of the staggering for the given column, i.e. if column xi is staggered positively

with respect to the geometric centre, then the minus sign is taken during the computation of

ylocal.

While the local coordinate systems allows for highly simplified calculations on each given
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of all pixels in a cluster

(xcl., ycl.) =

∑

i∈cl.(xi, yi) · qi
∑

i∈cl. qi
(10.8)

where (xi, yi) denotes the position vector of pixel i in the cluster, and qi denotes its charge. For

the digitisation tests performed in Section 10.2.4, the charge qi was digitised to different levels

of precision. For all other sections in this chapter, the full analog information was used.

In order to prevent the formation of clusters due to noise fluctuations, particularly at low

electron thresholds, a signal-to-noise ratio greater than 3 was required for all seed pixels. The

noise was computed as the standard deviation of the Gaussian fit to the CDS distribution for

each pixel, as detailed in Section 9.2. Multiple cluster candidates were considered corresponding

to each pixel passing the required seed e− threshold and signal-to-noise ratio. Clusters within

a 75 µm radius were associated with a given track as described in Section 10.1.2, corresponding

to just over 3-4 times the pixel pitch. The nearest associated cluster was selected in cases of

multiple candidates.

Charge Spectra

The charge deposited in the epitaxial layer of a silicon sensor is governed largely by its

thickness, since the energy loss per unit length is comparable across different thicknesses, as

illustrated by Figure 7.4b introduced in Section 7.2. At low silicon thickness of order O(100) µm

or less, the combined effect of the detector noise and resolution along with the non-negligible

electron binding energy broadens the distribution considerably. The observed straggling function

can be pragmatically described by the convolution of a Landau and a Gaussian [180]:

f(x) =
A

ξσ
√
2π

∫ ∞

−∞
fL(τ ;xMPV , ξ) · e−

(x−τ)2

2σ2 dτ (10.9)

where the four fit parameters are the area under the curve (A), the MPV (xMPV ) and the scale

(ξ) of the Landau distribution, and finally the width (σ) of the Gaussian function. Figure 10.6

depicts the normalized distributions of the cluster charge in electrons for the 15 µm and 22.5 µm

Modified with Gap and Standard process CE-65v2 prototypes measured at the SPS testbeam.

All four distributions were fit with a Landau-Gaussian convolution, which describes the observed

energy loss well. As expected, the cluster charge is virtually identical for all four chip variants,

as these all share the same sensor thickness. Although the charge collected by a typical seed

pixel differs greatly between the different variants, across the entirety of the cluster the charge

is very similar for all variants.

Figure 10.7 depicts the normalized distributions of the seed charge in electrons for all four CE-

65v2 variants. The MPV of the seed energy of all four chips lies considerably below the MPV of

the cluster charge, which is explicitly marked by the narrow grey band. A clear trend emerges of

a high energy fraction being carried by the seed pixel in the case of the Modified with Gap chips,

and a small fraction being carried by the seed pixel in the case of the Standard variants. This

diverging behaviour manifests as a design trade-off, where the large energy fraction carried in the

Modified with Gap chips enables operation at higher electron thresholds, increasing robustness

and lowering front-end complexity and data read-out challenges. On the other hand the large

charge sharing of the Standard process enables a more precise reconstruction of the track position

if information encoded in the charge carried by neighbouring pixels is used. The extent to which
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this is possible with different levels of digitisation, and thus complexity, is explored in Section

10.2.4.

The Modified with Gap chips, in particular, both have a seed energy MPV of ∼ 600 e−,

which is ∼ 14% lower than that of the cluster charge. There is little dependence on the pitch

for the MPV of the seed energy, which reflects the charge sharing studies detailed in Section

10.2.5. This effect, however, is much more pronounced for the Standard process, where the 22.5

µm shows a seed energy MPV that is ∼ 55% lower than that of the cluster charge, highlighting

the large sharing of the Standard process. The 15 µm variant shows a seed energy MPV that is

∼ 43% lower than that of the cluster charge, which although lower than its 22.5 µm counterpart,

still shows substantial charge sharing.

At around ∼ 1700 e−, the seed energy distributions of the Modified with Gap chips exhibit a

localized excess inconsistent with the expected Landau-Gaussian fit. The corresponding cluster

energy distributions show a similar mild excess in this range, followed by a sharp drop at

approximately ∼ 1900 e−. This behaviour suggests pixel saturation above a certain signal

threshold, with the transition smeared by pixel capacitance. As a result, the saturation manifests

as a bump in the seed energy distribution rather than a sharp cutoff. While this bump is much

less pronounced in the Standard process variants, it is still evident. Investigations into the origin

of this bump, and the abrupt drop in signal, are ongoing at the time of writing.

10.2.3 Hit Detection Efficiency

The hit-detection efficiency of the four chip variants was studied as a function of electron thresh-

old using the cluster method to quantify the trade-off between detection performance and noise

robustness at higher operating thresholds. Figure 10.8 depicts the efficiency as a function of

electron threshold for the Modified with Gap process chip variants. An efficiency of over 99%

is achieved up to ∼ 180 e− for both the 22.5 µm and 15 µm chips. The efficiency declines as

the electron threshold is increased. Given the relatively large association window of 75 µm, this

trend is expected irrespective of the cluster size, as even a single-pixel cluster is sufficient to

detect a track impinging upon any point of the pixel. In practical terms, the efficiency begins to

decrease as the threshold excludes clusters associated with low charge depositions, correspond-

ing to the lower end of the distribution shown in Figure 10.6. The difference in the measured

detection efficiency with respect to pitch size is marginal, with the 22.5 µm pitch maintaining a

slightly higher efficiency.

Figure 10.9 depicts the efficiency as a function of electron threshold for the Standard process

chips. By comparison, these chips achieve an efficiency of over 99% up to ∼ 130 e− and ∼ 150 e−

for the 22.5 µm and 15 µm chips, respectively. The decrease in efficiency is considerably faster

than for the Modified with Gap chips, with the Standard process 22.5 µm pitch chip exhibiting a

steeper drop than its 15 µm counterpart. This behaviour results from the much smaller fraction

of cluster charge carried by the seed pixel. The disparity is clearly visible in Figure 10.7, where

a threshold of 200 e− excludes a much larger fraction of events in the Standard process chips.

In-pixel Efficiency

The large matrix of the CE-65v2 chip allowed dedicated high-statistics runs to be performed

in order to study the in-pixel distributions of the efficiency, and the resolution, for each of the

four chip variants presented. A threshold of ∼ 170 e− was chosen in order to demonstrate the
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Importance of Digitisation

The precise determination of the measured track position requires the full exploitation of

the sensor’s signal. In the CE-65 family of chips, this entails the readout of the full analog

signal, which, while referred to as "analog" throughout this thesis, is not "analog" in the formal

sense, as it is digitised2 to high precision by the 16-bit ADC introduced in Section 9.1.1. The

readout of the "analog" signal presents a data rate challenge. Typically this is addressed by

setting a threshold (much like the electron thresholds explored in Section 10.2.3 and earlier in

this Section), above which a binary or time over threshold signal corresponding to a hit is read

out.

In this section the importance of digitising the signal was explored by performing the clus-

ter reconstruction using a variety of methods. Firstly, a lower bound on the performance of a

clusterisation method was set by considering the spatial resolution achievable if only the seed

position is used for reconstruction. This is referred to as the seed method. Next, in the bi-

nary method, a cluster was built using the cluster method. However, instead of the analogue

information, the hit or no-hit information was used for computing the centre of the cluster.

The cluster and window clusterisation methods were used to set an upper bound on the

achievable spatial resolution. The ADC range from [0, 10000] was digitised to n = 1, 2, 4, 6, 8, 16

bits for the window method in order to observe the degradation in the achievable spatial res-

olution when a coarser reconstruction is performed. Digitisation was emulated during analysis

by performing a trivial bit-shift, and considering only the n leading bits. The ADC range from

[threshold, 10000] was similarly digitised to n = 0, 1, 2, 4, 6, 8, 16 bits for the cluster method in

order to perform the same comparison. Where relevant for each clusterisation procedure, the

seed and neighbour thresholds were set to 100 e−.

Figure 10.15 depicts the achievable resolution for each of the clusterisation methods for the

15 µm Modified with Gap and 22.5 µm Standard process chips.

For the 15 µm Modified with Gap process chip a resolution of just above 3 µm is achieved

with the binary method. Such a low resolution can be associated with tracks close to the pixel

boundaries where considerable charge is shared with the neighbours, even in the Modified with

Gap process, aiding in the cluster reconstruction. Remarkably, additional information during

clusterisation has a marginal improvement in the precision of the reconstruction. As more bits

are included in the cluster method, and even in the analog limit, the achievable resolution hardly

changes. The window method performs poorly for n < 4 bits. Presumably, the most important

information is encoded at low ADC counts given that low amounts of charge are generated

by MIPs traversing the epitaxial layer, as shown in Figure 10.6. This information is neglected

during digitisation, due to the linear spread in digitisation bins. For n = 6, 8, 16 bits, the window

method outperforms the analog window method. This was observed for both the 15 µm and

22.5 µm Modified with Gap chips. While the n = 16 bit window method might be expected

to be equivalent to the analog window method, the digitised window method does not include

negative signals resulting from the CDS, which are set to 0 during the digitisation procedure.

This results in a reduction in noise during the cluster reconstruction.

The 22.5 µm Standard process chip shows a much larger improvement in the spatial resolution

when moving from the seed clusterisation method to the binary method, in accordance with the

2“Digitisation” is used throughout this section to refer exclusively to the signal quantisation step, and should
not be confused with the broader signal processing chain.
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Modified with Gap process chips. In particular, the mean absolute deviation begins to degrade

when moving along the A path away from the centre to ∼ 3.5 µm. Beyond ∼ p/4 from the

centre, the mean absolute deviation hardly varies, including at the pixel edges, suggesting an

accurate position reconstruction for high charge sharing events. The same trend can be observed

for the 15 µm Standard process variant, with the mean absolute deviation stabilizing around

∼ 3 µm outside the pixel centre, and decreasing below the telescope resolution therein.

10.2.5 Charge Sharing

Charge sharing behaviour significantly impacts the hit-detection efficiency and the spatial res-

olution, making it a key metric when comparing different pixel configurations. To study the

extent of charge sharing for the different CE-65v2 variants, the accumulated charge ratio, intro-

duced in Section 10.1.1, was used. It is defined as the fraction of charge carried by the n first

pixels in a cluster.

Figure 10.18a and 10.18b depict the accumulated charge ratio as a function of the number

of pixels in the cluster for the 15 µm and 22.5 µm pitch Modified with Gap process CE-65v2

chips. The average charge fraction collected by the central pixel of the two chips is 83.9%

and 86.8%, respectively, demonstrating the low charge sharing characteristic of the Modified

with Gap process. When considering the two most energetic pixels, both the average and most

probable value of the accumulated charge are around unity for both chips, indicating that the

vast majority of events consist of single-pixel or two-pixel clusters. Indeed, if a hit occurs close

to the pixel boundary, then significant charge may diffuse a neighbouring pixel, otherwise the

charge is almost entirely collected in the central pixel due to the strong drift current of the

Modified with Gap process. Due to the Gap modification at the pixel boundaries, the electric

field propagates well. Coupled with a larger pitch, the 22.5 µm pitch Modified with Gap chip

exhibits the lowest charge sharing of all considered chip variants.

Figure 10.19a and 10.19b show the accumulated charge ratio for the 15 µm and 22.5 µm

Standard process chips. The average charge fraction collected by the central pixel in the 15

µm Standard process chip is 66.1%, indicating substantial charge sharing. The 22.5 µm pitch

chip exhibits the most extreme charge sharing of all considered variants, with an average charge

fraction of less than 60%, and the most probable value being even lower at ∼ 45%. This results

from the competing effects of a larger pitch, whereby more charge is collected due to the larger

area, and the electric field not propagating well at the pixel edges, resulting in considerably

less charge drift. It should be noted that due to charge ordering, negative noise contributions

resulting from the CDS can appear in the larger cluster size bins towards the right side of

Figures 10.18 and 10.19. These negative noise contributions can result in the accumulated

charge exceeding 100%.

Considering the two exploration axes of process modification and pixel pitch, the SPS test-

beam quantitatively substantiated that the Standard process results in considerably more charge

sharing than its Modified with Gap counterpart. The dependence on the pixel pitch is inverted

for the processes, with a larger pitch resulting in less charge sharing for the Modified with Gap

process, but a larger pitch resulting in more charge sharing for the Standard process. The effect

of biasing on charge sharing was explored at the DESY testbeam, detailed in Section 10.3.2.
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10.2.6 Ramifications of a Staggered Matrix Geometry

The staggered matrix geometry reduces the number of immediate neighbours from 8 to 6. Nev-

ertheless, in the staggered matrix geometry, the detector channels no longer define a Cartesian

coordinate system. In order to perform the vector addition necessary for determining the cluster

centre, the detector channels were first transformed to the local Cartesian coordinate system,

introduced in Section 10.1.2, as depicted on Figure 10.3. The analysis strategy employed for the

staggered matrix geometry chips mirrored the strategy employed for the square chips. Both the

window and the cluster methods were used for the determination of the spatial resolution and,

for the latter, efficiency. For the window method, the cluster centre was defined as the centre-

of-mass position of the seed pixel and its 6 immediate neighbours. For the cluster method, the

size-n clusterisation procedure detailed in Section 9.3.2 was used, with the immediate neighbours

also defined by the 6 pixels around the seed pixel.

The window clusterisation method with a seed threshold3 of ∼ 100 e− was used for the

analysis of 22.5 µm and 18 µm Modified with Gap and Standard process staggered matrix chips.

Table 10.1 summarizes the obtained spatial resolution for the eight chips analysed in this thesis.

Table 10.1: Measured spatial resolution for the squared and staggered CE-65v2 variants at
the SPS testbeam at a seed threshold of 100 e− using the window clusterisation method. The
improvement of the staggered variants is mainly driven by the y-residuals. Uncertainties reflect
the statistical error from the fit.

Matrix Process Pitch (µm) Spatial Resolution (µm)

Square Mod. w/ Gap 22.5 4.97± 0.1
Mod. w/ Gap 15 3.09± 0.2
Standard 22.5 2.02± 0.2
Standard 15 1.43± 0.2

Staggered Mod. w/ Gap 22.5 4.62± 0.1
Mod. w/ Gap 18 3.50± 0.2
Standard 22.5 1.94± 0.2
Standard 18 1.49± 0.2

Comparing the 22.5 µm staggered matrix chips to their square matrix counterparts reveals

an improvement in the spatial resolution. The improvement is pronounced for the Modified with

Gap chip, which improves from 4.97± 0.1 µm to 4.62± 0.1 µm.

Figure 10.20 depicts the x-residuals for each of the four staggered matrix chips. Similar

trends to the square matrix chips can be observed, with the Standard process chips achieving a

significantly better resolution than the Modified with Gap variants. Smaller pitches lead to an

improved resolution, with the 18 µm Standard process chip now achieving the best x-residuals

at 1.49± 0.2 µm.

Figure 10.21 depicts the y-residuals for each of the staggered matrix chips. The residual

distributions for all four chips are narrow. For the Standard process chips this entails a decrease

of 0.3 µm for both the 22.5 µm and 18 µm chips, with respect to their x-residual distribution.

For the Modified with Gap chips the decrease is of 0.4 µm and entails a change in the shape

of the distribution. While the x-residuals of the Modified with Gap process chips retain their

3As the gain calibration for the staggered chips was not completed at the time of writing, the γccf values from
the square chips were used. Given that γccf does not depend on matrix geometry, the resulting error is expected
to be negligible.

148













size-2 cluster where a fraction A of the cluster charge is shared, is given by

(xcl., ycl.) = A · (x2, y2) + (1−A) · (x1, y1) = (x1, y1) +A · (x2 − x1, y2 − y1) (10.11)

and thus lies a fraction A along the diagonal connecting the two pixels. In the limit of perfect

charge sharing the reconstructed position is given by the projection of the hit position (x∗, y∗)

onto the linking vector ~v.

For the staggered matrix the linking vector v becomes

~v = (x2 − x1, y2 − y1) = (p, p/2) (10.12)

Setting the origin of the coordinate system at (x1, y1) means the reconstructed position is given

by

(xcl., ycl.) =
(x∗, y∗) · (p, p/2)

|(p, p/2)|2 (p, p/2) =
x∗p+ y∗p/2

p2 + p2/4
(p, p/2) =

4x∗ + 2y∗

5
(1, 1/2)

=
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5
,
2x∗ + y∗

5

) (10.13)

Thus giving a reconstruction error of
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where the absolute value in the second expression is to be understood component-wise.

In order to compute the expected error for each of the dimension, we need only integrate the

uniform distribution from [0, p/2] for both dimensions. For the y dimension this becomes

E[|∆y|] = 4

p2
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0
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0
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For the square matrix the linking vector always lies on the x-axis since both the seed pixel

and its neighbour share the same y coordinate. This simplifies the calculation considerably,

since the error in the y dimension will be given by the true position of the hit with respect to

the cluster y coordinate, or following convention above, |∆y| = y∗. The expected error is then

E[|∆y|] = 4

p2

∫ p/2

0

∫ p/2

0
|∆y(x′, y′)| dy′ dx′ = 4

p2
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16
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p

4

(10.16)

The obtained expected error of p
4 is almost double that of the staggered matrix arrange-

ment. Though the equivalent estimate for the error is the x dimension is not included here, it is

marginally better in square arrangement than in the staggered arrangement, which follows the
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intuition that in the squared arrangement only the x-residual is minimized. Indeed, these esti-

mates line up well with the observed trend, where the staggered matrix was found to outperform

the square arrangement primarily through the the improved reconstruction of the y position of

the cluster. This was observed even at very low thresholds of the cluster method, and separately

for the window method, explicitly depicted on Figure 10.21.

The staggered matrix arrangement offers an improved spatial resolution by minimizing the

loss of information due to charge sharing among neighbours, and optimizing the geometry for hit

localization. This effect is especially pronounced along the y-axis, where the pixel arrangement

provides more distinct spatial projections, facilitating finer discrimination. The excellent reso-

lution performance, especially under high-threshold operation, highlights the value of geometric

optimization as a design lever in future pixel architectures.

10.3 DESY 2023 Testbeam

In addition to SPS, testbeam measurements of different CE-65v2 variants were conducted at the

T24 beamline of the DESY II testbeam facility [216] in November 2023. Although this testbeam

campaign preceded the SPS testbeam, the observed large residuals limited the usefulness in

determining the sensor’s intrinsic resolution. This section presents the DESY testbeam setup

and results, with particular focus on the influence of biasing voltage on charge sharing.

10.3.1 Setup

Testbeam Facility

The 293 m DESY II synchrotron serves as an injector for PETRA III [224], providing electrons

and positrons with beam energies of up to 7 GeV. Beam generation for the testbeam facilities

proceeds parasitically by inserting a carbon fibre target into the primary DESY II beam, causing

the emission of energetic photons via bremsstrahlung. The photons are subsequently converted

to electron-positron pairs by striking a secondary target consisting of Cu or Al. The resulting

beam passes through a set of dipole magnets located 60 cm downstream of the secondary target,

allowing for the selection of particle parity and momentum through adjustment of the magnetic

field. The selected particles, either electrons or positrons, are then collimated and served to the

testbeam areas at user-selected energies ranging from 1-6 GeV. For all results presented in this

thesis, a 4 GeV/c electron beam was used.

Beam Telescope

The same ALPIDE-based telescope was used for the DESY II testbeam. A similar arrange-

ment was adopted, with three reference planes positioned upstream and downstream of the DUT

and the trigger, respectively. However, the distance between the upstream and downstream tele-

scope arms was increased to 100 mm, increasing the separation by 25 mm with respect to the

SPS setup. The telescope used at the DESY testbeam is depicted on Figure 10.27. The telescope

resolution was estimated to be 3.2 µm using the telescope optimizer tool [221], which is likely a

significant underestimate based on the observed residuals, as detailed in the following Section.

155









significantly degrade the telescope resolution [225]. Although the telescope optimiser in principle

accounts for such geometry, additional material (e.g. the cloth covering the telescope) may have

enhanced scattering effects more strongly during the DESY testbeam than at SPS, where the

high energy hadron beam is less sensitive to such perturbations.

Charge Sharing

The accumulated charge ratios, as defined in Section 10.1.1, were measured for the four CE-

65v2 chips at biasing voltages of [10, 4, 2, 0] V. Unsurprisingly, the accumulated charge ratio

for the four chips almost exactly mirrored the accumulated charge ratio measured at the SPS

testbeam at a biasing voltage of 10 V, depicted on Figures 10.18 and 10.19 for the Modified

with Gap and Standard process chips, respectively. The average charge fraction collected by

the central pixel is virtually the same as for the SPS testbeam for all four of the chips. For

the Standard process chips this corresponds to 66.0% and 58.6% for the 15 µm and 22.5 µm

pitch chips, respectively. For the Modified with Gap process chips this corresponds to 84.2%

and 86.7% for the 15 µm and 22.5 µm pitch chips, respectively.

Figure 10.31a depicts the measured accumulated charge ratio for the 22.5 µm Standard pro-

cess chip at a biasing voltage of 4V. A sizeable decrease in the accumulated charge in the first

couple bins can be observed, which diminishes in magnitude as the cluster size increases. In

particular, the average charge fraction collected by the central pixel is now 53.4%, marking a 9%

decrease in the collected charge. This can be associated with the development of the depletion

region as the biasing voltage is increased, evident also in Figure 9.11 from the lab tests.

Figure 10.31b depicts the equivalent result at 4 V for the 15 µm Modified with Gap chip. For

the Modified with Gap process chip a considerably milder decrease in the average charge fraction

can be observed to 83.2%. For cluster sizes of 2 and above the decrease in the accumulated charge

ratio is negligible, showing that, despite the larger capacitance change observed when moving

from 4 V to 10 V in Figure 9.11, the charge sharing behaviour of the Modified with Gap process

shows little sensitivity to the biasing voltage at this range. This lines up with the expectation

that this capacitance change does not result from the vertical depletion of the epitaxial layer,

but rather with the depletion of the low dose n-type implant around the collection electrode.

Figure 10.32a depicts the measured accumulated charge ratio for the 22.5 µm Standard pro-

cess chip at a lower biasing voltage of 2 V. A continuation of the trend observed for the biasing

voltage of 4 V can be observed, with the charge ratio again decreasing considerably for all low

cluster size bins. Indeed, the decrease in the charge ratio is noticeable until a cluster size of 5.

The average charge fraction collected in the central pixel decreases to 49.7%, which is smaller

than the decrease observed for a biasing voltage of 10 V, although still comparable.

The equivalent result for the 15 µm Modified with Gap chip, depicted on Figure 10.32b, again

shows a considerably milder decrease than its Standard process counterparts. Indeed, above a

cluster size of 2, the change in the accumulated charge fraction is hardly perceptible. The average

charge fraction collected by the central pixel decreases to 81.7%, which although perceptible,

does not compare to the biasing voltage dependence observed for the Standard process.

Despite the challenges posed by multiple scattering and limited telescope resolution, the

DESY testbeam confirmed key trends also observed at the SPS and provided further insight

into the charge sharing behaviour of the CE-65v2 chips. The results illustrate that the biasing

voltage can serve as an effective handle to tune charge sharing in the Standard process chips,

159







where the seed pixel collects between ∼ 43% at 0 V and ∼ 60% at full depletion. On the

other hand, the Modified with Gap process exhibits a much weaker dependence on bias voltage,

limiting its tunability. In particular, it was observed that even at 2 V, an average of 95+% of

the signal is carried by the first two pixels in a cluster. Although increased charge sharing can

be achieved at even lower voltages, this comes at the cost of rapidly rising sensor capacitance

as the n-type implant around the collection electrode is still undepleted in this biasing regime.

Nevertheless, the measurements confirm that the Modified with Gap chips can be operated

at high biasing voltages with minimal loss of charge sharing, offering the advantage of low

capacitance and improved noise performance.

10.4 Conclusions

A comprehensive comparison of the Standard and Modified with Gap process variations, pixel

pitch (15 µm, 22.5 µm), and matrix geometry (square vs staggered), was performed during two

testbeam campaigns using the CE-65v2 chip. Particular emphasis was placed on the charge

sharing properties, and their ramifications on the hit-detection efficiency and spatial resolution,

across the different design variants.

An excellent resolution was obtained in large-matrix 65 nm CMOS test structures during a

test beam campaign at the CERN SPS. In-pixel studies demonstrated a uniform spatial resolu-

tion across the Standard process CE-65v2 pixel, highlighting the accurate position reconstruction

for events far from the pixel centre. The sub 3 µm spatial resolution obtained in the Standard

process for both the 15 µm and 22.5 µm pitch satisfies FCC-ee requirements [226], and allows

tradeoffs in-pixel pitch with respect to power consumption, readout-rate, and manufacturing-

ease. The 15 µm Modified with Gap process, while not quite reaching sub 3 µm spatial resolution,

is likely to meet the requirement with a modest reduction in pixel pitch, retaining all benefits

associated with the process modification. This enables a wide range of applications for 65 nm

TPSCo MAPS for both current, and next-generation detector systems.

However, the spatial resolution was observed to quickly degrade when Standard process chips

are operated outside the low electron threshold regime, making the process particularly sensitive

to noise and radiation defects, including charge trapping. The Modified with Gap process, on

the other hand, displays a wide operating range, with an efficiency of over 99% being achievable

up to ∼ 180 e− for both the 15 µm and 22.5 µm chips. While the wider operating margin and

faster charge collection make the process more suited for high radation environments, in pixel

studies demonstrated a considerable degradation in the spatial resolution when moving away

from the pixel centre, with the observed spatial resolution being as high as 6 µm at the pixel

corners.

Adopting a staggered matrix arrangement resulted in an improved reconstruction of the y

position, particularly for the Standard process chips. While gains in efficiency were marginal,

the spatial resolution in the range 150-250 e− improved considerably for the 22.5 µm Standard

process chip, with a 16% improvement with respect to the square arrangement at 210 e−.

The consistently superior spatial resolution of the Standard process can be directly attributed

to enhanced charge sharing, which was further investigated across process modifications and pixel

pitches. The 22.5 µm Standard process chips exhibited an average charge fraction collected by

the seed pixel of 58.6%, which is substantially lower than its Modified with Gap counterpart at

86.8%. An inverse relationship between pixel pitch and charge sharing was observed between
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both process modifications, with a larger pitch leading to more charge sharing for the Standard

process. While the biasing voltage was successfully used as a lever to tune charge sharing in the

Standard process chips, it was of limited effect for their Modified with Gap counterparts.

Digitisation studies demonstrated that the spatial resolution in Modified with Gap process

only marginally benefits from more sophisticated reconstruction methods, with the resolution

obtained using the binary method 3.22 ± 0.02 µm improving only to 3.09 ± 0.02 µm when the

window method is used. In contrast, the Standard process variants, with their high charge shar-

ing, benefitted considerably more, with the spatial resolution improving from 3.74± 0.02 µm to

2.02±0.02 µm under the same change in clusterisation approach. However, the full improvement

in the reconstruction of the cluster was already observed at a 6-bit encoding, suggesting that a

significant reduction in data rate is possible, without compromising reconstruction quality.

In summary, the characterisation of the CE-65v2 chip has supplemented the APTS [197] and

DPTS [198] studies in the validation of the 65 nm TPSCo process as a candidate technology for

advanced particle detection applications, including the ALICE ITS3 upgrade. The demonstrated

spatial resolution, and its dependence on process modifications, pixel pitch, and matrix geometry,

provides valuable input for guiding future design choices in next-generation tracking detectors for

high-energy physics. Ongoing investigations into radiation tolerance and the Modified process

variants will extend these findings and help assess the applicability of the adopted technologies

under diverse radiation conditions.
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Conclusion and Outlook
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11 Conclusion

Future lepton colliders such as the FCC-ee promise a rich physics programme in a clean envi-

ronment at unparalleled statistics. From electroweak measurements at the Z-pole to precision

studies of the Higgs boson, the physics programme at the FCC-ee will probe the Standard Model

with unprecedented scrutiny, offering a unique window into potential new physics. Maximally

exploiting the physics potential of future colliders hinges on the precise reconstruction of fi-

nal states, and in particular of the partons from which it originates. This thesis reports on

two complementary pillars of final state reconstruction at future colliders: jet flavour tagging

and charged particle tracking. Together they exemplify how advances in both algorithms and

hardware domains will be instrumental for achieving the ambitious goals set out for the FCC-ee.

Jet Flavour Tagging at the FCC-ee

Part II revolves around exploring the prospects of flavour tagging at the FCC-ee, with par-

ticular focus on the identification of strange quark initiated jets, a task that has long remained

elusive due the absence of long-lived hadrons. To this end a multiclassifier neural network using

a transformer-based architecture, dubbed DeepJetTransformer, was used to discriminate jets

using Delphes fast simulation to simulate the IDEA detector concept. By combining the repre-

sentational power of the self-attention mechanism, able to capture subtle correlations between

jet constituents, with novel vertexing strategies at the FCC-ee, the tagger achieved state-of-the-

art performance in a wide variety of classification tasks. Across both Z → qq̄ and ZH(→ qq̄)

decays, the model consistently achieved high performance, with efficiencies above ǫsig ∼ 87%

at a ǫbkg ∼ 10% background efficiency for b vs c and c vs s discrimination. Kaon identification

proved to be instrumental for s-jet discrimination, where u- and d-jets were found to domi-

nate the background. Charged kaon identification was emulated through the inclusion of a K±

ID flag sampled from a uniform distribution at varying efficiencies. By contrast, neutral kaon

identification was treated more realistically, with K0
S candidates included explicitly through the

reconstruction of V0 vertices during vertexing. Following the evaluation of tagging performance,

and its dependence on varying levels of particle identification, subsequent permutation feature

importance studies demonstrated the dominant impact of track and secondary vertex variables

to heavy flavour tagging, while further highlighting the importance of particle identification for

s-jet discrimination.

DeepJetTransformer is part of a wider shift towards transformer architectures in the context of

jet flavour tagging. Their rapid adoption is motivated by their improved representational power

and computational efficiency. The detector concept landscape at the FCC-ee is rapidly evolving,

with optimisations ranging from adjustments in the subdetector geometry to improvements in the

performance of individual detector modules, such as the silicon pixel detectors presented in Part

III of this thesis. With a computational complexity of just 19.7 MFLOPs, DeepJetTransformer

offers a compelling avenue for the iterative studies necessary to quantify the ramifications of

detector design choices. The observed necessity of kaon identification in isolating strange jets
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reinforces a growing body of evidence highlighting its critical role at the FCC-ee. These findings

align with the increasing emphasis on the inclusion of particle identification in the detector

concepts presented in Chapter 3, including for instance the potential adoption of a RICH detector

in the CLD design.

Future work on the DeepJetTransformer algorithm may be centered around improvements to

the input feature set. While there is significant room for optimisation of the architecture and

hyperparameter tuning, including adjustments to layer parameters and the network structure,

the most impactful gains would stem from enhancing the realism and relevance of the input fea-

ture set. The current feature set is likely far from optimal, partially due to degraded vertexing

performance under the assumed innermost vertex layer radius of 1.7 mm, relative to the present

baseline of 1.37 mm. A natural starting point would be to incorporate an updated description

of the IDEA detector concept, as well as a substantially larger input dataset. With ∼ 106 jets,

comparable to the number of trainable parameters, the current input dataset effectively consti-

tutes a rough lower bound for model training. Further gains could be achieved by extending the

input feature set to include additional features, including the full covariance matrix. Moreover,

the permutation feature importance studies highlighted overlap in the current input feature set,

which could be exploited to reduce computational complexity. The baseline K±/π± discrimina-

tion is overly conservative with respect to the particle identification performance forseen at the

FCC-ee. The inclusion of more realistic PID variables, such as the time-of-flight mass mt.o.f. and

the number of ionisation clusters dN/dx, would not only add realism, but significantly improve

the s-jet tagging performance achievable with DeepJetTransformer. Finally, the subdivision of

jet flavours into categories with distinct signatures, such as hadronic and semi-leptonic B hadron

decays, or g → bb̄ splittings that may not resemble the typical radiation pattern of a gluon jet,

is likely to offer further improvements in performance. Nevertheless, the optimisation of present

algorithms is only of limited interest given the FCC-ee’s distant timeline. The primary motiva-

tion lies in assessing the physics potential based on specific design choices for detector systems

and the FCC-ee accelerator as a whole.

Monolithic Active Pixel Sensors for Future Colliders

Monolithic Active Pixel Sensors have emerged as the enabling technology for vertexing sys-

tems at the FCC-ee. By combining the sensing layer and the readout circuitry onto the same

silicon die, MAPS offer a reduced material budget, increased spatial resolution, and decreased

power consumption, albeit at the cost of a reduced radiation tolerance. MAPS are thus uniquely

suited to environments where high granularity is the primary constraint, such as in heavy-ion

collisions, or future lepton colliders such as the FCC-ee. Part III reports on the characterisation

of a test structure produced in the 65nm TPSCo CMOS imaging process: the CE-65. The CE-

65v1 and CE-65v2 chips were produced in a wide variety of variants targetting four exploration

axes: amplification scheme, process modification, pitch variation, and matrix geometry. During

the initial lab characterisation of the CE-65 family of chips at the University of Zurich, the chips

exhibited low noise performance in the range of 15 - 25 e− across a variety of different pixel

pitches and process modifications. Subsequent gain calibration and uniformity studies using an
55Fe source demonstrated a high-gain uniformity of O(4%) for all considered chips, and a rela-

tive gain of 1:4:3 for the 25 µm Standard process CE-65v1 chip and 1:3:4 for its 15 µm Modified

process counterpart, in agreement with simulation. The AC-coupled preamplifier displayed the
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highest charge collection efficiency (∼ 97%) and best energy resolution (∼ 7%), vindicating its

adoption as the sole preamplifier architecture in the CE-65v2 chip.

The subsequent characterisation of the CE-65v2 at testbeams at CERN SPS and DESY

provided a comprehensive comparison of the Standard and Modified with Gap process variations,

pixel pitch (15 µm, 22.5 µm), and matrix geometry (square vs staggered). Substantially higher

charge sharing was observed for the Standard process chips, allowing a precise reconstruction

of impinging particles. A sub 3 µm spatial resolution was achieved for the both 15 µm and

22.5 µm pitch CE-65v2 chips, satisfying FCC-ee requirements. Reducing the precision of the

collected charge to a 6-bit encoding preserved the reconstruction precision, offering potential

gains in data volume. By contrast, the Modified with Gap process chips display much less

charge sharing, and thus only marginally benefit from sophisticated position reconstruction

methods. Despite displaying a consistently worse spatial resolution than the Standard process

chips, the 15 µm Modified with Gap process chip still achieves a ∼ 3 µm spatial resolution, and

a considerably wider operational margin, maintaining an efficiency of over 99% up to ∼ 180

e−. The spatial resolution was further improved through the adoption of a staggered matrix

geometry for all considered chip variants, with improvements particularly pronounced for the

Standard process chips at moderate thresholds of 150-250 e−. The improvement in the spatial

resolution is primarily attributed to the reduced charge sharing among neighbours, and the

beneficial geometry of the staggered arrangement. The adoption of a staggered matrix geometry

only marginally impacted the hit-detection efficiency of the CE-65v2 chip.

The CE-65 characterisation presented in this thesis complements existing APTS [197] and

DPTS [198] studies, and further consolidates the 65nm TPSCo imaging process as a candidate

technology for high-resolution silicon tracking. The systematic study of the aforementioned ex-

ploration axes provides valuable input for future MAPS detectors development. The recently

formed Optimized CMOS Technology fOr Precision in Ultra-thin Silicon (OCTOPUS) project

[227] aims to develop a full-size sensor demonstrator satisfying the stringent requirements of

future lepton collider vertex detectors. In line with the presented results, two promising avenues

have emerged to satisfy the multifaceted requirements of future vertex detectors, and in partic-

ular the sub 3 µm spatial resolution. The first is a small-pitch sensor produced in the Modified

with Gap process with a binary readout. While the 15 µm CE-65v2 chip does not quite satisfy

the spatial resolution requirement, a modest reduction in pixel pitch is likely to achieve a sub

3 µm spatial resolution with a binary readout. Such an approach would entail a fast charge

collection and a high hit-detection efficiency at moderate electron thresholds, thereby enhancing

radiation hardness. The small pixel pitch would, however, introduce challenges regarding the

miniaturisation of the in-pixel electronics, and would limit the achievable spatial resolution due

to the binary readout scheme. The second avenue would be a considerably larger pitch Stan-

dard process chip with a charge-sensitive readout. As demonstrated in this thesis, a 22.5 µm

Standard process chip achieves a ∼ 2 µm resolution when operated at low thresholds through

the exploitation of significant charge sharing during the position reconstruction. Novel readout

strategies are prerequisite to unlocking combinations of design parameters explored with the

CE-65(v2) chips, enabling a maximal single point resolution whilst not compromising readout

speed or power efficiency. The newly developed SPARC chip [228], for instance, implements

an asynchronous matrix readout architecture based on Fixed-Priority Arbiters (FPAs), allowing

large groups of pixels to be readout in a fast and power-efficient way. While the larger pitch and

improved spatial resolution with respect to the Modified with Gap approach are compelling, it
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remains unclear if the Standard process can simultaneously satisfy the remaining requirements,

and in particular the radiation tolerance, due to its slow, diffusion-dominated charge collection,

and rapid decrease in hit-detection efficiency when operated at higher thresholds. Investigations

into the radiation tolerance of the CE-65v2 chip variants are ongoing at the time of writing,

aiming to extend the presented findings, and to clarify whether the Standard process remains a

viable candidate under the conditions expected at future lepton colliders.
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