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A B S T R A C T

Nanoparticle (NP) self-assembly is a promising tool for the straightforward preparation of complex materials 
without lithography. Self-assembly on liquid subphases is established for the preparation of thin NP films with 
quasicrystalline order on large scales. Small-angle X-ray scattering (SAXS) at synchrotron radiation sources is in 
particular advantageous to study self-assembly in situ, providing detailed structural information with high 
temporal resolution. Here we present a new experimental setup that allows measuring SAXS in a vertical ge
ometry. This way it is possible to study the self-assembly of nanoparticles on liquid subphases in situ as 
demonstrated with gold nanoparticles. In contrast to measurements with grazing incidence (GISAXS), spatial 
resolution in the µm range and sampling of the volume material is possible. Integration of optical microscopy 
allows observing the measurement position and formation of supercrystal flakes. The setup can be used to study 
self-assembly of various nanoparticles on liquid subphases but is not limited to such studies. It was realized at the 
beamline P10 at PETRA III (Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany).

Introduction

Within the past decades, nanoparticle (NP) self-assembly has 
emerged as a powerful tool for the preparation of complex nano
materials [1,2]. NPs of various materials and in different sizes and 
shapes can be assembled and the structure of the resulting materials can 
be tailored by judicious choice of the coating ligand. Interesting mag
netic, electronic and optical properties are aimed for, especially new 
emerging properties resulting from strong and coherent collective 
coupling in the material [3–5]. Inspired by the Langmuir-Blodgett 
technique, self-assembly of NP on liquid subphases has been tested to 
prepare monolayer films [6]. Two immiscible solvents are used in this 
method, one containing the material that is to be assembled. Typically, a 
dispersion of the nanomaterial in an apolar organic solvent like toluene, 
hexane or heptane slowly evaporates on top of a polar subphase (e.g. 
water, ethylene or diethylene glycol (EG or DEG), acetonitrile). After 

complete evaporation, the self-assembled material remains floating on 
the liquid subphase and can be then transferred to arbitrary substrates 
for further treatment or experiments. Various crystalline superstructures 
have been demonstrated, including binary structures [7,8], large-scale 
monolayer films [9,10], defined crystals from very small nanoclusters 
(diameter, d ~ 1 nm) [11] as well as from large plasmonic gold NP 
(AuNP) [12]. These are just a few examples from the broad range of 
intriguing structures that have been demonstrated and we refer to 
available reviews for a more detailed overview and discussion [1,3,
13–19]. Because self-assembly is a complex process involving various 
forces and interactions, in situ studies are highly desirable and valuable 
for the informed development and optimization of robust protocols for 
the reproducible and controlled preparation of functional materials. The 
most common techniques used to this end are electron microscopy and 
small-angle X-ray scattering- (SAXS-) based approaches and a recent 
overview and discussion of these approaches in the context of NP 
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self-assembly is available [3]. Liquid-cell-TEM approaches have 
revealed valuable information about crystallization mechanisms, but 
also confirmed that the self-assembly process and outcome is affected by 
the experimental conditions (in particular charging effects due to the 
electron beam), which is a well-known effect for this approach [20]. 
SAXS provides the unique advantage of measuring in conditions similar 
to laboratory, at ambient pressure and in the according geometry. SAXS 
in transmission (in contrast to GISAXS) has several advantages, in 
particular it allows a much higher spatial resolution, but is not possible 
in situ with the common horizontal geometry at synchrotron radiation 
sources [21,22]. Here, we present a vertical geometry for in situ SAXS 
measurements of NP self-assembly on liquid subphases at beamline P10 
of PETRA III (Deutsches Elektronen-Synchrotron DESY, Hamburg, Ger
many), based on a six-circle diffractometer setup. The setup was suc
cessfully tested with AuNP, but can be used to study the whole range of 
nanomaterials in terms of size, shape and material/composition that is 
typically studied in this context.

Experimental section

Materials. Tetrachloroauric(III) acid (⩾ 99.9 % trace metals basis), 
hexadecyltrimethylammonium bromide (CTAB, ⩾ 98 %) and chloride 
(CTAC, ⩾98 %), L-ascorbic acid (reagent grade), and sodium borohy
dride (⩾ 98 %) were obtained from Sigma-Aldrich (USA). Toluene (⩾ 
99.5 %), tetrahydrofuran (⩾99.5 %), and ethanol (denat., > 96 %) were 
purchased from VWR (USA). Diethylene glycol (DEG, reagent grade) 
was obtained from Merck (Germany). Thiolated polystyrene (PSSH: Mn 
= 5300 g/mol, Mw = 5800 g/mol) was obtained from Polymer Source 
(Canada). All reagents were used without further treatment.

AuNP Synthesis, Functionalization, and Self-Assembly. CTAC stabilized 
AuNPs with a low dispersity were synthesized with a slightly modified 
version of the protocol presented by Zheng et al. [23] and coated with 
PSSH ligands as described previously [12,24]. The self-assembly took 
place on the liquid subphase, DEG, by pipetting 150 µL of the 
AuNP@PSSH dispersion in toluene onto the subphase (200 µL) in the 
assembled sample cell.

Coherent X-ray scattering experiments. The in situ SAXS experiments 
were conducted at the beamline P10 at PETRA III (Deutsches 
Elektronen-Synchrotron DESY, Hamburg, Germany). A two-mirror sys
tem was used for higher harmonics rejection. The experimental setup 
and the measurements are described and discussed in detail in the main 
text. For the optical microscopy, a live video microscopy (LVM) system 
with a working distance of 108 mm and equipped with a high-resolution 
color camera was used (Hinze-Optoengineering, Braunschweig, Ger
many). Optical illumination of the sample cell from below was realized 
with LED-lamps placed close to the sample cell.

Cleaning of the sample cell. The sample cell was disassembled by 
carefully removing the Si3N4 window with tweezers and cleaned with 
toluene in a fumehood. If necessary, further cleaning with aqua regia 
was used to quantitatively remove all gold deposits. [Caution! Aqua regia 
is highly corrosive and releases toxic gases. It must be prepared and handled 
only by trained personnel in a well-ventilated fume hood while wearing 
appropriate personal protective equipment. All procedures must comply with 
relevant institutional safety protocols and local regulations regarding chem
ical handling and waste disposal.].

Fig. 1. Experimental setup at the beamline P10 of PETRA III based on a six-circle diffractometer setup. Top row: Renderings of the model, bottom row: Photos, from 
the left to the right a zoom towards the sample cell is displayed.
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Results

Fig. 1 shows a scheme of the experiment located at the beamline P10 
at PETRA III (Deutsches Elektronen-Synchrotron DESY, Hamburg, Ger
many). Based on a six-circle diffractometer (HUBER Diffraktionstechnik 
GmbH & Co. KG, Rimsting, Germany) setup, we used a germanium 
crystal to deflect the beam (8.052 keV) at the (333) plane by 90◦ up
wards. At different photon energies other planes or crystals may be used 
(Si(333) at 8.388 keV; Si(555) at 13.980 keV). The Germanium crystal 
was placed in the center of rotation of the diffractometer. Placed on xyz- 
translation stages the crystal features 3 translational and 3 rotational 
degrees of freedom, allowing thus for the precise alignment of the crystal 
with respect to the beam and upward pointing direction. Approximately 
36 mm above the crystal, the sample cell was positioned on a heavy load 
xyz-translational piezo stage (SmarAct GmbH, Oldenburg, Germany). 
This translational stage was moving independent of the Germanium 
crystal translations, allowing thus for easy scanning of the sample in the 
x-ray beam. Please note that due to the liquid nature of the sample, the 
sample surface is always aligned in the horizontal plane. The sample cell 
was milled from Teflon and a detailed sketch is provided as Supporting 
Information (Supporting Figure S1). At the bottom, a square silicon 
nitride window (3 mm x 3 mm, 1000 nm thickness) in a square silicon 
support frame (7.5 mm x 7.5 mm, 525 µm thickness, Silson, UK) was 
carefully placed into the according indentation. The liquid subphase 
(diethylene glycol, DEG) was pipetted on top. In our experiments we 
observed no leakage of the DEG even without any further fixing of the 
silicon nitride window. However, when water is desired as a subphase, 
additional measures to seal the bottom of the cell might be necessary. In 
case of damage or contamination of the SiN window it can be easily 
removed for replacement or cleaning. Because the chemically very sta
ble Teflon is used as a material for the sample cell, cleaning is 
straightforward. In our case toluene was used for cleaning. Resistant 
adhesions of AuNP were removed with aqua regia (see Methods). The 
sample cell was covered with polyimide foil (poly(4,4′-oxydiphenylene- 
pyromellitimide, Kapton®, DuPont, US) in case a slowed evaporation 
was desired.

Above the sample cell an evacuated flight tube was positioned 
(length: 1.60 m) and an Eiger X4M detector was placed at the end of it. 
The sample-detector distance was 1784 mm. On the side of the flight 
tube, an optical microscope with a long working distance (108 mm) was 
attached. Beryllium compound refractive lenses were used to focus the 
x-rays on the sample plane. An additional pinhole of 100 µm diameter 
was placed between germanium crystal and sample to reduce parasitic 
scattering. After alignment, the x-ray spot size on the sample was 2.5 µm 
x 4.5 µm (perpendicular and parallel to the original beam direction). In a 
typical experiment we did not move the stage throughout the self- 
assembly to avoid additional agitation of the sample.

Polystyrene-coated AuNP, AuNP@PSSH, in toluene have been shown 
to assemble into well-defined layered 2D-hexagonal supercrystalline 
thin-films on DEG [12]. The size and spacing of the AuNP in the struc
tures can be tuned, for instance to maximize the light-matter coupling in 
the supercrystals with interesting physical consequences [25,26]. We 
have performed ex situ experiments with coherent SAXS on such 
supercrystals previously, revealing domain sizes and orientations, 
thickness-dependent features and thickness-independent degree of 
sixfold order [27]. Up to now, however, the thickness (number of layers) 
of the supercrystals and domain sizes cannot be perfectly controlled. To 
gain a better understanding of the self-assembly of these AuNP@PSSH 
we used them as the first model system in the new setup for in situ 
studies. Fig. 2 shows the SAXS curves for AuNP with 40 nm diameter. 
Thin-film supercrystals floating on the liquid subphase are formed 
during the evaporation of the toluene. Selected curves reveal the onset of 
Bragg reflections during the self-assembly. The sample was not moved 
via the piezo stage during the experiment, but it is important to keep in 
mind that the forming supercrystal fragments are freely floating on the 
liquid subphase, i.e. the beam does not necessarily sample the exact 

same position of the according supercrystal fragment throughout the 
experiment. For the interpretation, the correlated optical microscopy 
data is therefore valuable. Because the AuNP are comparably large, even 
small crystallites and agglomerates of AuNP can be clearly discerned. 
From the optical microscopy monitoring it is evident that under the 
experimental conditions the kinetics of self-assembly were highly het
erogeneous. The first observable crystallites formed within minutes but 
nucleation of new crystallites was observed throughout the experiment. 
Another important observation from the optical microscopy is the 
presence of strong convective flows and occasional stress-induced rapid 
movements and rearrangements in the sample. As a tendency with 
increasing crystallite size these movements are reduced to a minimum 
and a continuous growth at the edges of the crystallites takes place. In 
this stage, even the mass transport and density gradients can be 
observed, again pointing at a dynamically and spatially heterogeneous 
process. An exemplary optical microscopy image capturing different 
phases of the assembly is provided as Supporting Information 
(Figure S2). Turbulences and flows can be significantly reduced by 
covering the sample cell, thus slowing down the evaporation of the 
solvent and avoiding external disturbances. The fluid dynamics in the 
sample are to some extent intrinsic and cannot be completely avoided. 
The meniscus of the toluene in the sample cell is concave, in the center of 
the sample cell the toluene layer is the thinnest and accordingly 
completely evaporated first. Therefore, the first nucleation of crystallites 
could be expected to take place in the center. Similar to the well-known 
coffee ring effect, the different evaporation rates at different positions of 
the sample cell can lead to convective flows within the toluene and 
according mass transport towards the center. In the optimum case, a 
large crystalline flake could therefore grow in the center, but due to 
fluctuations in mass transport and convection the thickness is not always 
uniform and voids can be included. These observations just from optical 
microscopy already provide some guidelines for optimization of the 
process.

To gain a more detailed view on the structures forming during self- 
assembly, the structure factors were calculated by dividing the experi
mental I(q) by the form factor F(q) of the dispersed AuNP@PSSH 
(Supporting Information, Figure S3). Note that the continuous densifi
cation of the superlattice (formed by the assembling AuNP@PSSH) due 
to the evaporation of the solvent leads to a gradual increase of multiple 
scattering that has to be considered [28]. The main contribution of 
multiple scattering can be observed at the form factor minima that 
smear out with increasing concentration. In consequence, this may be 
misinterpreted as additional peaks in the structure factor. The resulting 

Fig. 2. SAXS data obtained during the crystallization of AuNP (40 nm diam
eter) on the liquid subphase. Indication of crystallization (or motion of crys
tallites into the beam) can be observed after about 25 min.
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structure factors are shown in Fig. 3 for selected times before, during and 
after the assembly. We also added the results after 116.5 min and 142.9 
min which represent final states of the formed structures. After around 
24 min a broad peak appears around 0.13 nm-1 whose amplitude grows 
quickly in the following. Also, its position changes towards larger q and 
further peaks appear. The peaks labeled with q1, q3 and q4 correspond 
to a 2D hexagonal lattice, also reported before as the final state of the 
assembly of such particles [12,27]. During early times of the assembly, 
we find a shoulder around q2. This can be associated with the (11) 
reflection of a 2D cubic lattice. As this shoulder disappears at longer 
times, the cubic state appears as an intermediate structure during the 
assembly. Note that if we do not account for multiple scattering with a 
correction, a clear peak shows up at q2 (Supporting Information, 
Figure S4). This artifact originates from the smeared-out particle form 
factor minima at higher concentrations and can thus be misinterpreted 
as a coexisting phase, in our case almost matching a bcc structure.

The correlated SAXS-optical microscopy data confirm that the for
mation of the first agglomerates or crystallites already takes places 
within the initial phase of the experiment (i.e. within the first minutes 
for fast evaporation (no cover on the sample cell) or within the first 30 
min for slower evaporation (sample cell covered with Kapton®). The 
initial lattice constant of the crystallites in this run was roughly a = 57 

nm. After densification of the lattice, it was reduced to a = 49.2 nm, 
which corresponds to an average gap of 7.8 nm between neighboring 
particles. The timescale of the densification is visualized in Fig. 4 where 
an exponential fit to the experimental data reveals a characteristic time 
scale of ~ 2 min. In the final dried state, the thin-film supercrystal was 
large enough to remain unaffected by motor movements and could be 
reliably mapped. Fig. 4 shows the distribution of lattice constants in this 
state, derived from the mapping data, indicating a slight additional 
decrease in the lattice constant. due to final drying.

The mapping data of the final dried state also reveal the very narrow 
distribution of lattice constants with a full width at half maximum of 
0.25 nm and a standard deviation of 0.1 nm. This observation underlines 
the well-defined crystallinity of the thin-film supercrystals in accordance 
with our previous studies [12,27].

Discussion

To present and discuss the newly developed experimental setup, we 
focused herein on a simple and established model system: the super
crystal formation by spherical AuNP@PSSH. The advantage of this 
model system is the formation of highly defined supercrystals with a 
narrow distribution of lattice constants in the final state. The AuNP cores 
with a diameter of 40 nm scatter and absorb strongly, which benefits the 
confident analysis of experimental data, because it allows for in-situ 
monitoring of supercrystal formation with optical microscopy. 
Compared to electron microscopy studies, the advantages of SAXS 
measurements include robust statistics of the high-resolution structural 
data and the possibility of measuring under laboratory-like conditions. 
Compared to GISAXS experiments the vertical scattering geometry al
lows for small footprints of the beam, resulting in higher spatial reso
lution, and volume sampling of the material. The reproducibility of the 
experiment strongly depends on the sample system. Spherical 
AuNP@PSSH are known to form homogeneous 2D-hexagonal thin-film 
supercrystals reproducibly under the given experimental conditions 
[24], but more complex samples, such as binary mixtures or differently 
shaped NP, may lead to a larger variety of crystalline phases and less 
reproducibility of the self-assembly experiments [29]. In such cases 
more measurements and control experiments may be required. We 
focused here on the self-assembly on a liquid subphase with a specific, 
well-defined model system, but the utility of the vertical scattering ge
ometry is not limited to such experiments. The requirements for the 
samples are their scattering strength ensuring sufficient intensity for 
meaningful SAXS measurements. If this requirement is fulfilled, there is 
no principal limitation regarding material, shape and structure of the 
sample. For instance, also complex core-shell materials, AuNP obtained 
by different synthetic approaches, different materials and shapes, and 
other processes than NP self-assembly can also be studied, such as 
crystallization and aggregation processes [30–42].

Conclusion

In summary, we presented a new experimental setup for SAXS 
measurements in a vertical scattering geometry that allows in situ 
measurements of NP self-assembly on a liquid subphase. We demon
strated its potential using spherical AuNP as a simple model system. We 
observed the formation and densification of the AuNP superlattice and 
characterized the final dried state. In-situ data of structure formation 
under laboratory-like conditions (ambient pressure and temperature) 
are hard to obtain with other methods. The setup can be applied to 
monitor the formation of more complex supercrystals in future studies. 
Open challenges include the optimization of motor movements to allow 
accurate positioning and in situ mapping experiments without inducing 
movements of the crystallites on the liquid subphase. This applies in 
particular for the early stage of the experiments, the larger crystallites in 
the final stage were much less affected. The experimental approach al
lows to obtain valuable in situ data of self-assembly on a liquid-subphase 

Fig. 3. Structure factors S(q) for several experimental times. Data is shifted 
vertically for clarity. The labels q1, q3 and q4 describe the (10), (11), and (20) 
reflection of a 2D hexagonal lattice. Around q2 = 0.22 nm-1 a shoulder appears 
at the beginning of the assembly. This corresponds to the 2D cubic 
(11) reflection.
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but is not limited to such experiments. Crystallization directly on the 
Si3N4 windows, i.e. without a liquid subphase, might be monitored as 
well. This will advance our understanding of NP self-assembly using 
well-established synthesis methods for high-quality supercrystals - an 
emerging class of new functional materials.
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[28] E.F. Semeraro, J. Möller, T. Narayanan, Multiple-scattering effects in SAXS and 
XPCS measurements in the ultra-small-angle region, J. Appl. Cryst. 51 (2018) 
706–713, https://doi.org/10.1107/S160057671800417X.

[29] J. Marcone, S. Juergensen, J. Barrios-Capuchino, X. Li, C. Goldmann, A. Köppen, 
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