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Abstract: We developed a novel apparatus based on a lead glass calorimeter that can measure the

flux of high-energy electrons or photons. Our detector uses the electromagnetic shower leakage

from the beam dump, where the particles are disposed of at the beamline’s end. A prototype of such

a calorimeter was set up at the FLASHForward experiment at DESY. We show that it can measure

the electron bunch charge with precision and accuracy at the 10% and 3% level, respectively.

Additionally, it is capable of determining the beam’s position with a precision on the order of tens

of micrometers. Finally, we show the applicability to the measurement of high-energy photons.
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1 Introduction

Accurately measuring high fluxes of high-energy photons is a general experimental challenge. Such

photon beams can originate from future experiments and facilities, such as the LUXE experiment

that is planned at the Deutsches Elektronen-Synchrotron DESY in Hamburg, Germany [1, 2]. LUXE

aims to test quantum electrodynamics in the strong-field regime. The interaction of electron bunches

from the European XFEL [3] with a high-intensity laser will produce pulses of O
(

10
9
)

photons

with an energy spectrum of up to a few GeV. Similar photon sources could also be included in future

circular or linear particle collider facilities such as the FCC-ee or LCF/CLIC/ILC, respectively [4].

These photon beams serve a key diagnostic tools for studying the strong-field quantum electro-

dynamics interaction and also offer promising opportunities as a probe in fixed-target experiments

searching for new physics. The search for new phenomena beyond the standard model of particle

physics through fixed-target or beam-dump experiments has recently regained particular interest.

This is motivated by the absence of new physics signals at high-energy colliders and the theoretical

expectation that weakly interacting particles, potential candidates for dark matter or mediators of

hidden sectors, may be more effectively probed in high-intensity, low-background environments [5].

In these experiments, high-energy electrons or protons are dumped onto a solid target, where new

long-lived particles can be produced and reconstructed via their decay products. Knowing the flux

and properties of the beam impinging onto the target is critical. Various options exist to measure

the flux of charged particles [6].

Current diagnostic systems for high-flux, high-energy photon beams typically use a target to

partially convert the photon beam into electron-positron pairs, which can then be measured using a

magnetic dipole spectrometer [7, 8]. However, this method has the disadvantage of disturbing the

photon beam.1

In this paper, we describe a method for measuring the photon-beam flux without interfering

with the beam during its transport. Our novel approach uses a lead-glass calorimeter to detect the

electromagnetic shower leakage emerging from the beam dump, where the photons are ultimately

absorbed. Although the beam is terminated at the dump, our measurement is non-invasive with

respect to the beam’s propagation and interaction up to that point. The shower leakage, which is the

part of the electromagnetic shower that is not contained in the dump, is known to correlate with the

photon beam flux [2]. This technique allows for flux monitoring without introducing any upstream

disturbance to the beam or requiring additional components in the beamline.

Commissioning and testing of this detector is difficult because, to date, there is no running

high-flux high-energy pulsed photon source that matches the requirements of the diagnostic system.

To test the dump leakage calorimeter in such an environment, we exploited the similarities of the

electromagnetic shower development in beam dumps for both photons and electrons. Specifically,

we set up a prototype at the dump of the FLASHForward beam-driven plasma-wakefield experi-

ment at DESY, where we could test the detector parasitically to the FLASHForward measurement

campaigns [9].

1Furthermore, it requires a dipole magnet, a carefully selected converter target which has to be stable during operation,

and a sizable particle detector that covers the spatial spread after the magnet.
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The CAD design and photos of the detector setup are shown in figures 1 and 2, respectively.

The dump is made of an aluminum-magnesium alloy (AlMg). It has a cylindrical shape with a

length of 1070 mm and a diameter of 300 mm. A segment on the bottom side of the dump is

removed to allow for a secure mounting. The calorimeter consists of eight lead-glass bars, which

are coupled to Photo-Multiplier Tubes (PMTs), mounted around the dump. The lead-glass bars have

a cross section of 38 mm × 38 mm, a length of 450 mm, and are of glass type TF1 [13] as used in the

GAMS-2000 spectrometer [14]. The PMTs are of type XP1911/UV from Photonis SAS [15] and

were used in the HERMES RICH detector [16]. The lead-glass bars and the PMTs are connected

via optical wave guides made of plexiglas to transport the light. In addition to the lead-glass

calorimeter modules, we mounted two scintillating tiles of size 60 mm × 60 mm × 5 mm that are

optically connected to silicon photomultipliers (SiPMs) via wavelength-shifting fibers before and

after the dump below the beam axis. The PMTs and SiPMs were electronically connected to a

CAEN V1730 digitizer [17] that was controlled via a modified version of the CAEN Wavedump

software [18]. The data acquisition was synchronized with the accelerator clock, using a delay to

compensate for the position of the dump at the end of the facility. The digitizer acquired the full

waveform of 1 µs - 2 µs for each channel and event with a 122 µV resolution and a sampling interval

of 2 ns. Approximately 103 valid events per run were recorded.

In addition to the data from the dump leakage calorimeter, data from the accelerator beam

diagnostics were recorded via the main accelerator control system [19, 20]. Three devices were

used at the end of the beamline before the dump, which are indicated in figure 2. A button-type

beam position monitor (BPM) allows measurement of the transverse beam position with a position

noise of about 10 µm [21, 22]. A toroid beam charge transformer is used to precisely measure the

bunch charge via passive induction and a resolution of about 1 pC [23]. Finally, a screen station with

a retractable scintillating screen that is read by a camera system enables the determination of the

shape and position of the beam [24]. The latter system has a resolution of 10.8 µm in G and 11.4 µm

in H. It was used during a single data-taking campaign to ascertain the size of the beam spot. We

determined a full width at half maximum size on the screen of (0.23 ± 0.01) mm in the horizontal

direction and (0.63± 0.02) mm in the vertical direction for a 100 pC bunch charge. The screen was

intermittently retracted during measurements, depending on the diagnostic requirements.

3 Measurements

The data presented here were obtained in several measurement campaigns. They are publicly

available together with the analysis code [25, 26]. The accelerator electron energy was set to

accommodate the requirements of the other users of the facility and could therefore not be specifically

chosen or varied for this study.

The first successful campaign at FLASHForward in November 2023 allowed investigation of

the position dependence of the signal described in section 3.3. The electron energy was 1050 MeV.

A later campaign in March 2024 with a beam energy of 1020 MeV is used to find the observable

with the most linear response, explained in section 3.1 and enabled us to perform the charge

calibration described in section 3.4.

The last campaign in April 2024 with a beam energy of 1200 MeV allowed comparison of the

various sensor options described in section 3.2. It was used to validate the charge calibration and
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• Preliminary simulations and laboratory tests indicate that much of the signal in the calorimeter

modules originates from scintillation in the light guide. The quenching of the scintillation

light yield [33] together with a saturation of the PMT [34] probably causes the non-linear

signal response when the bunch charge is increased. This could be mitigated by removing

the light guide or by positioning the calorimeter module so that the particle flux through the

light guide is reduced.

• Radiation damage must be considered, especially in the case of the LUXE dump leakage

calorimeter. The lead glass used for this prototype cannot handle the radiation doses that are

expected at LUXE in such a configuration. The more radiation hard lead glass TF101 could

be used. Details must be discussed when the specific detector layout is worked out, such as

the position of the calorimeter modules. An LED pulser is being developed to calibrate the

calorimeter and monitor the darkening of the lead-glass bars.

• In a future experiment like LUXE, the photon spectrum will not be monochromatic but will

span an energy range over several GeV. This will make the measurement more complicated

and require more studies and tests.
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