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Abstract

The Belle II experiment’s ability to identify particles critically affects the sensitivity of its measurements.
We describe Belle II’s algorithms for identifying charged particles and evaluate their performance in

separating pions, kaons, and protons using 426 fb
−1

of data collected at the energy-asymmetric e
+
e
−

collider SuperKEKB in 2019–2022 at center-of-mass energies at and near the mass of the Υ(4S).

Keywords: High Energy Physics, Particle Identification, Multivariate discrimination

Introduction

The Belle II experiment is located at the energy-
asymmetric e+e− collider SuperKEKB [1] in
Tsukuba, Japan. It began taking data in March
2019 and aims to accumulate 50 ab−1 of inte-
grated luminosity at center-of-mass (c.m.) energies
at and near the mass of the Υ (4S). It has
broad goals such as quantifying CP violation in
heavy-meson decays, measuring the parameters
of the Cabibbo-Kobayashi-Maskawa quark-mixing
matrix, studying exotic particles with spectroscopy,
determining the properties of the τ lepton, and
searching for particles and forces beyond those of
the standard model [2]. Its physics program is an
expansion of the BABAR and Belle experiments [3],
which together accumulated 1.5 ab−1 of data, but
with new challenges stemming from its much higher
instantaneous luminosity and background rate.

At Belle II, we detect six species of charged
particles: electrons, muons, pions, kaons, protons,
and deuterons. It is important that we distinguish
them from each other, especially in the momentum
range of the decay products of B and D mesons
and τ leptons, [0.1, 5.0] GeV/c. Particle identifi-
cation (PID) is especially important for B -flavor
tagging [4, 5], charm-flavor tagging [6], and full
reconstruction of B mesons [7].

We introduce the detector and data sets in
sections 1 and 2, define the PID likelihoods for
individual detector components in section 3, and
describe how they are combined to identify parti-
cles in section 4. In sections 5 and 6, we describe the
analysis method and software infrastructure and
evaluate performance for identifying pions, kaons,
and protons (we do not yet have suitable control
samples for deuterons) using control channels in
426 fb−1 of data collected in 2019–2022. We con-
clude in section 7 and outline development plans
for the next years.

1 Detector

Belle II is a general-purpose detector consist-
ing of seven subdetectors and a superconduct-
ing solenoid arranged cylindrically around the
e+e− interaction region [2, 8]. From innermost
to outermost, these subdetectors are the pixel
vertex detector (PXD), silicon vertex detec-
tor (SVD), central drift chamber (CDC), time-
of-propagation detector (TOP) and aerogel ring-
imaging Cherenkov detector (ARICH), electro-
magnetic calorimeter (ECL), and KL and muon
detector (KLM). The solenoid, located between
the ECL and the KLM, provides a 1.5T magnetic
field nearly parallel to the beam directions.

The PXD consists of two layers of DEPFET
pixel sensors, the first covering the full azimuthal
range and the second only 20% (the full second
layer was installed in 2023). The SVD [9] consists
of four layers of double-sided silicon strip sensors.
The CDC, the main tracking subdectector, is a
large volume of helium and ethane gas crossed
by sense and field wires. The TOP [10], covering
the barrel of the CDC, and the ARICH, covering
its forward end cap, measure Cherenkov light pro-
duced by charged particles. The TOP consists of
quartz bars that internally reflect light, which is
detected by micro-channel-plate photo-multiplier
tubes. The ARICH [11] consists of two layers of
aerogel tiles, with different refractive indices, that
focus light into sharp rings, detected by hybrid
avalanche photon detectors. The ECL covers the
barrel and forward and backward end caps with
thallium-doped cesium-iodide crystals, each 16.2
radiation lengths deep. The KLM serves as the
return yoke of the magnetic field, with gaps in the
steel structure instrumented with scintillator strips
in the end caps and first two layers of the bar-
rel and with resistive plate chambers in the other
barrel layers.
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We define ẑ as the cylindrical axis of the
solenoid, with its positive direction nearly coin-
cident with electron-beam direction (the beams
collide with a crossing angle of 83mrad). Polar
angles are defined relative to ẑ, and azimuths rel-
ative to the direction orthogonal to ẑ that points
outside the accelerator ring. Our PID uses like-
lihoods that depend on a particle’s momentum,
p⃗, measured from the curvature of the particle’s
track in the magnetic field, which is reconstructed
from the locations of hits in the PXD, SVD, and
CDC; p, θ, and ϕ are the magnitude, polar angle,
and azimuth of this momentum. When a reference
frame is not explicitly mentioned, variables are
defined in the laboratory frame.

The origin of the coordinate system is the point
at which the beams are expected to collide. The
e+e− interaction region depends on the data-taking
period and is determined from e+e− → µ+µ−

events. It is usually within a millimeter of the
origin.

2 Data

We use data collected in 2019–2022 and simulation
samples that resemble it to develop and study the
PID likelihoods and their performance. We simu-
late the detectors using their conditions as recorded
during data taking and overlay background signals
taken from randomly triggered events. We simulate
the production of quark-antiquark and lepton-
antilepton pairs from the e+e− collision with
KKMC [12], hadronization with PYTHIA 8 [13],
hadron decay with EvtGen [14], and τ decay with
Tauola [15]. For each charged-particle species,
we also generate simulated data with particles
isotropically distributed in the detector and evenly
distributed in the range of momenta produced
at Belle II. Detector response is simulated with
GEANT4 [16], and we reconstruct both real and
simulated data using the Belle II analysis software
framework, basf2 [17, 18].

To develop, test, and evaluate our particle iden-
tification algorithms, we use data from control
channels in which particles can be identified by
context. We reconstruct these channels without
PID information, letting us calibrate PID from
real data. To evaluate hadron-ID performance, it
is especially important to gather pure samples of
pions, kaons, and protons, both positively and neg-
atively charged. We use two-body D0, K0, and Λ

decays to charged particles to isolate such samples.
In such decays, the negative D0 decay product is
almost always a kaon and the positive one almost
always a pion; both K0 decay products are almost
always pions; and one Λ decay product is always
a proton and the other almost always a pion.
To simplify descriptions throughout, we include
charge-conjugated states without explicitly writing
them.

We reconstruct D0 → K−π+ and determine
the D0 flavor by requiring the D0 be produced
from D∗+ decay, D∗+ → D0π+s , where π+s is a soft
pion, which has low momentum due to the small
mass difference between a D∗+ and a D0. We pair
D0 candidates with charged tracks, assumed pions,
to form D∗+ candidates. We assume the D0 decay
product with the same charge as the soft pion
is a pion and that with the opposite charge is a
kaon.1 For each candidate decay chain, we require
the reconstructed D0 mass be in the range [1.80,
1.95] GeV/c2, the difference of the D∗+ and D0

masses be in the range [143.9, 146.9] MeV/c2, and
the D∗+ momentum in the c.m. frame be greater
than 2.5GeV/c.

For K0 → π+π−, we assume both decay prod-
ucts are pions. For each track, the z coordinate of
the point of closest approach to the origin must
be less than 4 cm. We require that the mass of
the reconstructed K0 be in the range [470, 530]
MeV/c2 and remove contamination from Λ → pπ−

and photon conversion, γ → e+e−, by rejecting
any candidate whose mass is in the range [1.11,
1.12] GeV/c2 when we assume that either decay
product is a proton or less than 50MeV/c2 when
we assume both decay products are electrons. For
each K0 candidate, we fit a common production
vertex to information from both tracks and require
the χ2 probability of the fit be above 1%, the vertex
be less than 3.5 cm from the origin, and (to sup-
press random combinations of prompt tracks) the
proper decay time time be greater than 0.007 ns.

For each Λ candidate, we assume that the
decay product with higher momentum is a pro-
ton and the other is a pion. We require that the
mass of the reconstructed Λ be in the range [1.105,

1
The doubly-Cabibbo-suppressed decay D

0 → K
+
π
−

has a
branching fraction that is 0.4% of the Cabibbo favored decay,

D
0 → K

−
π
+
. Candidates reconstructed with the wrong particle

assignment are generally correctly identified as background in
the fit described below, reducing this contamination to below
0.1%.
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1.128] GeV/c2 and the momentum of the proton
be greater than 0.5GeV/c and be 60–100% of the
Λ’s momentum. We remove contamination from
K0 decay and photon conversion by rejecting any
candidate whose mass is in the range [480, 520]
MeV/c2 when we assume that both decay products
are pions or less than 50MeV/c2 when we assume
both decay products are electrons. For each candi-
date, we fit both tracks to a common production
vertex and require that its displacement vector
from the interaction point be within 8◦ of the Λ
momentum vector.

We fit to the mass distributions of recon-
structed D0, K0, and Λ candidates to determine
signal and background fractions and shapes, which
allows us to determine the background-subtracted
distributions of the particles in the control channels.
For D0, we model signal as the sum of two Gaus-
sian functions with a common mean; for the K0,
as the sum of a Gaussian function and a Johnson’s
SU function; and for Λ, as a Johnson’s SU func-
tion. For each channel, we model the background
as a linear function. In the regions of their nomi-
nal masses, the D0, K0, and Λ distributions have
signal-to-background ratios of 28, 20, and 9, respec-
tively. Figure 1 shows the background-subtracted
cos θ and p distributions for pions, kaons, and pro-
tons in the control channels. They cover a wide
momentum range and the entire detectable polar
angle range (cos θ ∈ [−0.86, 0.97]); the small differ-
ences between data and simulation are acceptable,
as our method to measure PID efficiencies does
not require the simulation to perfectly reproduce
the data.

We use four-lepton events, e+e− → e+e−ℓ+ℓ−,
to gather samples of electrons and muons to mea-
sure the probabilities that leptons are misidentified
as hadrons. The colliding electron and positron
exchange virtual photons that produce a charged
lepton pair that is detected, and continue down
the beam pipe undetected. The detected leptons
have predominantly low momenta, allowing us to
precisely determine lepton-as-hadron misID rates
at low momenta, where they are highest.

We trigger the recording of such events with a
purely track-based trigger, requiring the presence
of two tracks that originate from the interaction
region and are back-to-back in the transverse plane.
We do not trigger on ECL information because
that could bias PID performance. We select events
with only two charged tracks, oppositely charged,

each with momentum greater than 0.4GeV/c and
point of closest approach to the interaction point
less than 5.0 cm in z and 2.0 cm in the transverse
plane. To suppress cosmic muons reconstructed as
two tracks, we require the opening angle (in three
dimensions) of the tracks be less than 168◦. In the
c.m. frame, we require that the sum of the energies
of charged and neutral particles detected in the
event be less than 6GeV and the track pair have
longitudinal momentum less than 1.0GeV/c, trans-
verse momentum less than 150MeV/c, and mass
less than 3.0GeV/c2. PID performance is mea-
sured using a tag-and-probe technique, in which
tight PID selection criteria are applied to only one
of the candidate lepton tracks (the tag) while the
other (the probe) is unbiased.

3 Local likelihoods

To identify particles, we use information from all
subdetectors except the PXD. For each subde-
tector, d, and particle species, α, we define the
local likelihood, Ld

α(x⃗
d| p⃗ ), for the subdetector’s

measurements x⃗ d.

3.1 SVD likelihoods

The SVD measures energy loss typically eight
times for each track, twice in each of the four
double-sided layers, from which we can calculate
the specific energy loss, dE/dx . To distinguish
between particle species, the absolute calibration is
not important, so we define a unitless variable pro-
portional to dE/dx , η, as the energy loss divided
by the average energy loss for an electron at the
Fermi plateau [19].

The species-dependent likelihood for all of a
track’s η measurements is calculated using his-
togram templates of the two-dimensional (p, η)

distributions,HSVD
α , determined from control chan-

nels in real and simulated data,

LSVD
α (η⃗ | p) ≡

∏
i

HSVD
α (ηi| p), (1)

where the product runs over all the individual η
measurements available for a track, excluding the
two highest to reduce bias arising from the long
tail of the Landau distribution.
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Fig. 1: Background-subtracted p and cos θ distributions for pions, kaons, and protons from control samples
in data (points) and simulation (lines).

3.2 CDC likelihoods

The CDC measures dE/dx for each drift cell tra-
versed by a track. We average these measurements
and normalize by the mean average for electrons
at the Fermi plateau to calculate a unitless specific
energy loss, η̄. When calculated with the lowest
5% and highest 25% of each track’s measurements
excluded, η̄ is Gaussian distributed, with mean,
Mα(p), that depends on p and α and variance,

V (η̄, θ, n), that depends on η̄, θ, and the number of
sense wires hit n. The species-dependent likelihood
for η̄ is therefore

LCDC
α (η̄, n|p, θ) ≡ exp

[
− [η̄ −Mα(p)]

2

2V (η̄, θ, n)

]
, (2)

where we neglect the species independent normal-
ization of 1/

√
2πV (η̄, θ, n).
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3.3 TOP likelihoods

The TOP’s micro-channel-plate photomultiplier
tubes have fine enough time resolution and short
enough dead time to measure individual Cherenkov
photons. Given an incoming particle’s momentum
and species, we calculate the expected photon den-
sity in each channel, c, of the photon-detector array
as a function of the time since the e+e− collision,
Sc
α(t|p⃗). We account for geometric acceptance, scat-

tering, absorption, and detection efficiency and
model the photon density distribution as a sum of
Gaussian functions, each weighted by its expected
photon count [20]. The expected means, variances,
and expected photon counts of the functions are
analytically calculable from the particle’s species
and momentum. The species-dependent likelihood
for the photons measured is

LTOP
α (c⃗, t⃗ |p⃗) ≡

P(N |να(p⃗))
N∏
i=1

Sci
α (ti|p⃗) +Bci(ti)

να(p⃗)
, (3)

where ci and ti are the channel and time in which
photon i is measured, Bc(t) models background
photons in channel c, and P is the Poisson proba-
bility to detect N photons given we expect να(p⃗),
the sum of expected counts in all channels from
both the particle and background, accounting for
detection efficiencies. In each channel, the expected
count from the particle is the sum of photon-count
weights and the expected count from background
is the integral of Bc(t) over the measurement time.
We assume that the background is uniform in
time and space and normalize Bc(t) for each event
by counting hits in TOP modules that are not
traversed by any tracks.

3.4 ARICH likelihood

The ARICH’s pixelated hybrid avalanche pho-
todiodes record only binary signals: whether a
pixel fired or not. Given an incoming particle’s
momentum and species, we calculate the num-
ber of photons expected to hit each pixel, νcα(p⃗).
We account for geometric acceptance, scattering,
absorption, beam backgrounds, and detection effi-
ciency, and we add effective background photons
to account for electronic noise and photodiode spu-
riously firing. With F the set of pixels that have
fired in a particular event, the species-dependent

likelihood for the states of the pixels is the prod-
uct of Poisson probabilities for each unfired pixel,
c /∈ F , to have been hit by no photon, exp[−νcα(p⃗)],
and for each fired pixel, c ∈ F , to have been hit by
one or more photons, 1 − exp[−νcα(p⃗)], given the
expected number of photons in that pixel,

LARICH
α (p⃗) ≡

∏
c /∈F

e−ν
c
α(p⃗)×

∏
c∈F

[
1− e−ν

c
α(p⃗)

]
. (4)

The products are calculated only over pixels within
a ring on the photodiode plane defined by cones
around p⃗ with opening angles 0.1 rad and 0.5 rad.

3.5 ECL likelihood

The ECL measures the energy deposited by a par-
ticle in its crystals. The ratio of this energy to
p strongly depends on the particle species. The
species-dependent likelihood for this ratio is cal-
culated using Gaussian kernel-density-estimation
templates [21] determined from simulated data of
isotropically distributed particles. They are deter-
mined separately for each region of the Cartesian
product of three θ regions, three p regions, and
the two polarities of electric charge, q. The bound-
aries of the θ regions are 17◦, 32◦, 128◦, and 150◦,
which are the boundaries of the ECL’s forward end
cap, barrel, and backward end cap. The bound-
aries of the two lower p regions are 0.2GeV/c,
0.6GeV/c, and 1.0GeV/c; the third region con-
tains all momenta greater than 1.0GeV/c.

3.6 KLM likelihoods

Muons with momenta greater than 1GeV/c typi-
cally traverse the whole KLM; hadrons typically
stop in its first layers; and electrons rarely reach
it. So we use the depth of hits in the KLM, along
with information about their lateral shape, to
distinguish between particle species.

We extrapolate each track from the CDC into
the KLM using a Kalman filter, assuming it is a
stable muon and accounting for multiple scattering
and ionization energy loss. Extrapolation halts
when the track exits the KLM or the particle’s
energy falls below 2MeV. We associate hits in the
KLM to the track if the distance between the hit
and the extrapolated track is less than 350% of its
uncertainty, which is due to uncertainties on the
hit position and track extrapolation.
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The species-dependent likelihood is the product
of the likelihoods for the observed depth and the
lateral shape, ignoring the potential correlation
between the two. From simulation, we compute the
species-dependent probability that a track with
extrapolated momentum p⃗ex reaches the jth layer,
hjα(p⃗ex). The species-dependent likelihood for the
depths of the hit layers, j ∈ H, and unhit layers,
j /∈ H is therefore

LKLM
α (H|p⃗ex) ≡∏

j∈H

ϵjKLMh
j
α(p⃗ex)×

∏
j /∈H

[
1− ϵjKLMh

j
α(p⃗ex)

]
, (5)

where ϵjKLM is the efficiency to detect a particle
in layer j of the KLM. Only layers through which
the extrapolated track pass are included in the
likelihood. This set of layers is species independent
since the track is extrapolated assuming it is a
muon. The species-dependent likelihoods for the
lateral shape of the hits are template likelihoods
for the χ2 of the Kalman filter, obtained from
simulated data separately for each species.

4 PID probabilities

Assuming the local likelihoods are well-formed and
uncorrelated, we multiply them to form global
species-dependent likelihoods

Lα ≡
∏
d

Ld
α. (6)

Using Bayes’ theorem and the law of total proba-
bility, assuming a uniform prior probability for all
species, we compute the likelihood ratio

Pα =
Lα∑
γ Lγ

, (7)

where the sum in the denominator runs over all
species (e, µ, π, K , p, d). In many analyses, we
need only decide between a subset of possible
species and restrict the values of considered species
γ. The binary likelihood ratio, restricting γ to two
species,

Pα/β ≡ Lα

Lα + Lβ

, (8)

is especially useful. In the special case where all
considered particle species are present with the

same abundance, these likelihood ratios correspond
to the probabilities that the particle under study
is of species α. Throughout the rest of the paper
we will refer to these global and binary likelihood
ratios as simple probabilities.

Most particles do not enter all subdetectors. It
is very rare that a particle enters both the TOP
and the ARICH, and only particles with momenta
greater than 500MeV/c reach the KLM. When a
particle does not enter a subdetector, we assign
Ld
α = 1 for all α.
These probabilities are easy to implement and

maintain in basf2. For example, we can easily
exclude local likelihoods from subdetectors that
were not well calibrated in some period. However,
these probabilities have significant disadvantages
that limit performance. They neglect correlations,
though we expect them, since the likelihoods all
depend on the same track parameters. They also do
not account for inefficient or uninformative detec-
tors, allowing probabilities to possibly favor one
species over another based mostly on statistical
fluctuations. The probabilities also assume that the
local likelihoods are well formed and normalized
such that no species is favored over another.

To quantify some of these effects, we replace
Lα in equation (6) with

L̃α ≡ exp

(∑
d

wα,d logL
d
α

)
, (9)

thus allowing different weights for each local like-
lihood. We use a sample of simulated data to
optimize the weights to best identify pions, though
other goals could be applied. The optimal weights
depend on the momentum and angle ranges of the
training data, which can be chosen to suit each
analysis’s needs.

Table 1 shows an example of the matrix of
weights obtained for particles (in the same amounts
for all species) uniformly distributed in [0.5, 5.0]
GeV/c and in the angular acceptance of the detec-
tor. All CDC, ECL, and SVD likelihoods, except for
the SVD’s electron one, are weighted up; all TOP,
ARICH, and KLM likelihoods are weighted down.
These weights mostly account for the local likeli-
hoods being poorly normalized. For each detector,
all weights are fairly similar. Notably, the KLM’s
muon weight is more than twice the average of the
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KLM weights, demonstrating this subdetector’s
importance for identifying muons.

4.1 Neural-network K -π separation

We can improve PID performance by combining
the log likelihoods in a way that accounts for per-
formance changing with a particle’s momentum,
direction, and charge. We use a neural network to
combine the thirty-six logLd

α and the particle’s p,
θ, ϕ, and q to replace Lπ and LK in equation (8).

We train the network using a sample of simu-
lated particles containing equal amounts of pions
and kaons, both positive and negative, isotropically
distributed and uniformly distributed in momen-
tum in the laboratory frame. Training on this
balanced sample avoids creating a network that
distinguishes species based on kinematic variables
instead of PID likelihoods. We use this sample
instead of a control channel in real data in order
to cover the full momentum and angle ranges.

We train the network using the Adam opti-
mizer [22] with two fully connected hidden layers
and use the training epoch with the largest area
under its receiver-operating-characteristic curve,
calculated using an independent simulated data
set.

5 PID efficiency and misID rate

Most Belle II analyses estimate systematic uncer-
tainties that arise from correcting PID efficiencies
estimated from simulation so that they match the
real efficiencies in data. We use the control channels
to measure PID efficiencies in data and calcu-
late scaling factors to correct the simulation-based
estimations.

To calculate the efficiency for identifying species
α, we inspect tracks that are identified as that
species in the control channels. From the fits to
the mass distributions described in Section 2 (with-
out PID criteria), we calculate sWeights [23] for
control-channel events that are uncorrelated with
the quantities on which PID relies. For a specific
PID criterion, we define the α-ID efficiency to be
the sum of sWeights for events wherein the rele-
vant track passes the criterion divided by the sum
of sWeights of all events considered. Its statisti-
cal uncertainty is computed accounting for the
individual weights of each event.

Similarly, we calculate the probability to misID
a particle of species β as species α by applying the
α-ID criterion to a track assumed to be of species
β in a control channel that gives us such a sample.
The β-as-α misID rate is the sum of sWeights of
events in which the track passes the α-ID criterion
divided by the sum of the sWeights of all the events
considered.

We calculate these efficiencies and misID rates
in subregions of momentum and polar angle.
The efficiency-correction factor is defined as the
efficiency calculated using data divided by the
efficiency calculated from simulation. Statistical
uncertainties on the efficiencies and systematic
uncertainties from the mass fits are propagated
to uncertainties on these correction factors. These
uncertainties are treated as systematic uncer-
tainties from particle identification in Belle II
analyses.

We automate the above calculations using
a systematic-corrections framework inspired by
Ref. [24] and written specifically for basf2. It
manages simulation of the control channels, the
selection of their samples in simulated and real
data, and the fits to the mass distributions and
subsequent sWeight calculation, using Belle II’s
b2luigi workflow management system [25]. The
framework greatly simplifies the calculation of
analysis-specific correction factors and their related
systematic uncertainties. For each Belle II analysis,
one can calculate the systematic uncertainties from
PID and other important sources such as tracking
or π0, K0

S , K
0
L, or Λ reconstruction.

6 Hadron-identification
performance

We often only need to distinguish between two pos-
sible particle species. We evaluate our abilities to
separate kaons from pions, comparing the simple
and neural-network PID probabilities, and to sepa-
rate protons from kaons, using only the simple PID
probability. We also evaluate our lepton-as-pion
misID rates. Hadron-ID performance was stable
over the full data-taking period, except for effects
from beam-induced backgrounds, so we use the full
data set in all the following results.
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e µ π K p
SVD 0.81 1.36 1.06 1.79 1.72
CDC 2.27 1.96 1.43 1.91 1.87
TOP 0.43 0.43 0.43 0.42 0.41
ARICH 0.60 0.61 0.60 0.61 0.65
ECL 2.46 1.96 2.02 1.66 1.96
KLM 0.16 0.48 0.18 0.22 0.22

0 3

Table 1: Local-likelihood weights of the reweighted global PID likelihood for particles uniformly distributed
in [0.5, 5.0] GeV/c and the angular acceptance of the detector.

6.1 K -π separation

We use the D0 control sample to evaluate kaon-
pion separation. To evaluate the performance of
each subdetector, we use the local-likelihood ratio,

P d
α/β ≡ Ld

α

Ld
α + Ld

β

, (10)

which, using Bayes’ theorem and the law of total
probability, assuming equal a priori probabilities
for α and β, is the local binary probability.

Figure 2 shows the K -ID efficiency as functions
of the π-as-K misID rate for PID requirements
using only P d

K/π for d = CDC, TOP, ARICH—
the three subdetectors most important for K -π
separation. In each plot, the points for each data
sample show the efficiency and the misID rate for
the same set of P d

K/π thresholds, from zero (at high
K -ID efficiency) to 0.98 (at low K -ID efficiency)
in steps of 0.02.

For the CDC, we show results separately for
low and high momenta, excluding p ∈ [1.0, 3.0]
GeV/c since kaons and pions in this range have

similar dE/dx in the CDC. For the same PCDC
K/π

requirement, the ID efficiency is always higher and
the misID rate is always lower in the simulation
than in data at low momentum; the opposite is
true at high momentum. This difference originates
mostly from miscalibration of the simulation and
it tends to cancel in samples with a broad momen-
tum distribution extending above and below the
crossing point of the π and K dE/dx bands. The
Belle II CDC dE/dx simulation operates at the
track-level: dE/dx values are randomly generated
using the same parameterizations of mean and
width that are used to calculate a χ2 value for

a given hypothesis. This method relies on high-
quality data calibration, while imperfections in the
data will generally lead to data-MC disagreement.
An example is given by residual dependencies of
the mean on polar angle, or a lack of “βγ univer-
sality” (i.e., the corrected dE/dx should depend
only on βγ = p/m).

For the TOP and ARICH, we show results only
for particles that enter them. The TOP performs
worse in real data than in simulation. This is due to
instrumental effects that are not well simulated and
from the simplified modeling of Bc(t) in equation 3.
The ARICH performs better in real data than in
simulation. This difference originates from a fault
in its digitization software that affects the simula-
tion and that will be corrected in the next cycle of
data reprocessing, improving the performance in
simulation and making it more similar to the data.

There are biases in the CDC’s measurement
of dE/dx that are due to backgrounds related
to beam injection that are not modeled in the
simulation. These biases are prominent in data col-
lected between the end of 2021 and the middle
of 2022, when the backgrounds originating from
freshly injected e+ or e− bunches were particu-
larly high. Figure 3 shows the K -ID efficiency as
functions of the π-as-K misID rate separately for
low and high momenta in data collected at four
different ranges of the time since the last e+- or
e−-beam injection (TSI): [0, 5] ms, containing 7%
of events; [5, 10] ms, containing 10%; [10, 20] ms,
containing 21%; and above 20 ms, containing 62%.
In both momentum ranges, the π-as-K misID rate
decreases with increasing TSI. The K -π separation
performance improves with increasing TSI—that
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Fig. 2: K -ID efficiency as functions of the π-as-K misID rate for the local binary probabilities from
the CDC (for low and high momenta), TOP, and ARICH. The large markers show the results for the
thresholds (from left to right in the plots) 0.9, 0.7, 0.5, 0.3, and 0.1; the lower three thresholds are not
always visible in the ranges shown.

is, as the beam-injection backgrounds fall. The
effect is more pronounced at high momenta.

Figure 4 shows the efficiency as functions of the
misID rate for PID requirements using the simple
and neural-network K -π binary probabilities with
information from all subdetectors in real and simu-
lated data. The performance in real and simulated
data agree better when all subdetectors are used.
K -π separation is better with the neural network.

Figure 5 shows the efficiency and misID rate as
functions of p and cos θ for PK/π > 0.8 for both
the simple and neural-network binary probabili-
ties in data and simulation. Neural-network K -π
separation is consistently more efficient with lower
misID rates everywhere in the ranges of both p
and cos θ, in both data and simulation.

Fig. 6 shows the angular dependencies of the
efficiency and misID rate (with PK/π > 0.8 using
the neural network) in four momentum ranges. At
low momenta, there is reasonable K -π separation
even outside the TOP and ARICH acceptances,
thanks to the CDC. At high momenta, there is
a drop in separation power around cos θ = 0.3.
This stems from the TOP probability density func-
tions for pions and kaons being very similar in that
region of the phase space, from the imperfect cor-
rection of the chromatic error by the optics of the
TOP modules, and from the fact that the number
of detected photons reaches a minimum for that
particular polar angle. In the very forward region,
particularly for p ∈ [1.0, 2.0] GeV/c, there is a
significant drop in performance, which originates
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Fig. 3: K -ID efficiency as functions of the π-as-K misID rate for the local binary probabilities from the
CDC for low momenta (left) and high momenta (right) for four ranges of the time since beam injection.
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Fig. 4: K -ID efficiency as functions of the π-as-K
misID rate for the simple and neural-network K -π
binary probabilities for data and simulation.

from a drop in the ARICH and CDC performance
in this momentum range.

Figure 7 shows the ratio of the K -ID efficiency
in data to that in simulation and its relative sta-
tistical and systematic uncertainty for PK/π > 0.8
using the neural-network probability in subregions
of p and cos θ. The binning in cos θ reflects the
physical boundaries between the TOP and ARICH
and the ECL’s barrel and end caps.

Each systematic uncertainty is the sum in
quadrature of uncertainties from modeling of the
background components in the fits that determine
the sWeights in the control samples. The main

source of uncertainty is obtained by replacing the
baseline linear fit used to model the background
with a second-order polynomial. We include a sys-
tematic uncertainty to account for potential bias
from the sWeights procedure, which is the differ-
ence between the efficiency calculated for simulated
events using sWeights and the efficiency calculated
from knowing the true particle species used in the
simulation.

In subregions where the statistical uncertainty
is smallest—where most events are in data—the
ratios are within 10% of unity. The system-
atic uncertainties are all much smaller than the
corresponding statistical ones.

Figure 8 shows the ratio of the π-as-K misID
rate in data to that in simulation for PK/π > 0.8
using the neural-network probability. This ratio
deviates much more from one than the efficiency
ratio. Its systematic uncertainty, calculated in the
same way as that for the efficiency ratio, is larger
than its statistical uncertainty at low momenta.
This stems from the relatively larger impact of
background modeling on the misID rate, which is
small, compared to the efficiency, which is large.

6.2 p-K separation

We use the Λ control channel to calculate the p-ID
efficiency and the D0 control channel to calculate
the K -as-p misID rate. Figure 9 shows the p-ID
efficiency as functions of the K -as-p misID rate for
PID requirements using only P d

p/K for d = CDC,
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Fig. 5: K -ID efficiency and π-as-K misID rate as functions of p and cos θ for PK/π > 0.8 using the
simple (left) and neural-network (right) probabilities. To aid visibility, the π-as-K misID rates are scaled
by a factor of 3.

TOP, and ARICH, and for the combination of all
subdetectors.

For the CDC, we show results for low momenta,
as the CDC p-K separation power is marginal at
high momenta. For the TOP and ARICH, we show
results only for particles within their acceptance.
As for K -π separation, the CDC and TOP perform
slightly worse in data than in simulation; the oppo-
site is true for the ARICH. Again, performance
in real data and simulation agree better using all
subdetectors.

Figure 10 shows the efficiency and the misID
rate as functions of p and cos θ for Pp/K > 0.8

for the simple binary probability in data and sim-
ulation, and Fig. 11 shows both as functions of
cos θ for three momentum ranges. At low momenta,
the CDC is the most important subdetector for
p-K separation; the boundary of the TOP at
cos θ ∼ −0.5 is not even visible. At high momenta,
just as for K -π separation, the efficiency is rela-
tively lower in the region of cos θ = 0.3. Figure 12
shows the ratio of the p-ID efficiency in data to
that in simulation for Pp/K > 0.8 using the simple
probability in subregions of p and cos θ. Data and
simulation agree within 10% in most subregions.
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Fig. 6: K -ID efficiency and π-as-K misID rate as functions of cos θ for PK/π > 0.8 using the neural-
network probability in four momentum ranges.

6.3 ℓ-as-π misID probability

We use four-lepton events to calculate the e-as-
π and µ-as-π misID rates for Pπ > 0.8 with the
simple probability. Figures 13 and 14 show them in
subregions of p and cos θ in data and simulation. In
general, the results in data and simulation agree in
their features. The data-simulation ratio, excluding
some very forward and backward subregions, is
below 3, which is acceptable for analyses.

7 Future developments and
conclusions

Work is in progress to improve particle identifi-
cation, especially to mitigate the effects of the
increased backgrounds that will accompany the
higher instantaneous luminosity SuperKEKB will
achieve in the future.

Beam injection briefly increases the number
of particles passing through the CDC, decreasing
sense-wire gain and significantly biasing dE/dx
measurements downwards. We are testing a new
CDC calibration procedure that accounts for the
time since injection. We expect it will improve
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Fig. 7: Ratio of the K -ID efficiency in data to that in simulation and its relative statistical and systematic
uncertainties for PK/π > 0.8 using the neural-network probability in subregions of p and cos θ.

particle identification, particularly at low momenta,
where the TOP and ARICH are ineffective.

The TOP’s likelihoods depend on its geometry
and optical properties, which are based on a simple
model and that we assume are common to all of
TOP modules. We are investigating using machine
learning to train a likelihood on control samples,

which does not rely on these assumptions. Our
preliminary studies are promising.

The current ECL likelihoods depend only on
the energy-momentum ratio. We have developed
new likelihoods that account for the shape of a
particle’s calorimeter shower. They perform better
and will be used for taking new data and reprocess-
ing existing data. We are testing neural networks
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Fig. 8: Ratio of the π-as-K misID rate in data to that in simulation and its relative statistical and
systematic uncertainties for PK/π > 0.8 using the neural-network probability in subregions of p and cos θ.

to analyze energy distributions in the ECL to bet-
ter distinguish particles especially at low momenta,
where the KLM is ineffective.

We have developed a neural-network likelihood
for the KLM that accounts for a particle’s pattern
of hits and gives more weight to the lateral hit

information. Preliminary studies show it misidenti-
fies pions as muons much less frequently than the
current likelihood.

We have extended the PID neural network
to calculate global likelihoods for all six species.
It performs better than simple probabilities and
is comparable to or better than the boosted-
decision-tree probabilities developed for lepton
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identification, which we will describe in a forthcom-
ing publication. This will unify lepton and hadron
identification, greatly simplifying the maintenance
of particle identification. We are investigating
extending the neural network to directly analyze
the variables used in the local likelihoods, bypass-
ing the calculation of the local likelihoods and
directly accounting for correlations.

Though we did not quantitatively compare
the PID performance of Belle II to that of the
first-generation B -factory experiments, we can still
make some general observations. From the perfor-
mance plots available in [3], we see that Belle II’s
pion misID probability is 5% lower than Belle’s,
which was around 7%, at a K -ID effiency of 85%, in
the full acceptance of the detector and in the same

control sample. In the Λ control sample, Belle II’s
p-ID efficiency is high (and its K -as-p misID rate
low) over the whole momentum range, whereas
Belle’s drops steeply above 1.5GeV/c. This most
likely stems from the TOP and ARICH subdetec-
tors, which contribute relevant information in the
high-momentum region where the CDC cannot.
Compared to BABAR, Belle II’s K -π separation
is currently worse. But our performance is still
noteworthy given that Belle II operates in harsher
background conditions than those of Belle and
BABAR.

We will continue working to cure the imper-
fections mentioned above and to use more sophis-
ticated tools based on machine learning. We

17



0.5 1 1.5 2 2.5 3 3.5

p [GeV/c]

0

0.2

0.4

0.6

0.8

1
p 

ID
 e

ffi
ci

en
cy

, K
-a

s-
p 

m
is

ID
 r

at
e

p ID efficiency (data)
p ID efficiency (sim.)

K-as-p mis-ID rate (data)
K-as-p mis-ID rate (sim.)

 > 0.8
p/K

simple P

Belle II preliminary  L dt = ∫ -1426 fb

0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8

θcos 

0

0.2

0.4

0.6

0.8

1

p 
ID

 e
ffi

ci
en

cy
, K

-a
s-

p 
m

is
ID

 r
at

e

p ID efficiency (data)
p ID efficiency (sim.)

K-as-p mis-ID rate (data)
K-as-p mis-ID rate (sim.)

 > 0.8
p/K

simple P

Belle II preliminary  L dt = ∫ -1426 fb
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anticipate that these improvements will signifi-
cantly improve our results in the next data taking
period and data reprocessing cycle.
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data (top) and simulation (middle) and their ratio (bottom).
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Fig. 14: µ-as-π misID rate for Pπ > 0.8 using the simple probability for subregions of p and cos θ in
data (top) and simulation (middle) and their ratio (bottom).
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