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The solution of strongly-interacting quantum field theories remains a major challenge in theoretical

physics, often requiring numerical solutions. A first-principles approach in this direction is the lattice

formulation, where spacetime is approximatedwith a finite grid. In this work, we examine the case of a

compact pure-gauge U(1) lattice gauge theory in (2 + 1) dimensions, presenting a strategy to

determine the running coupling of the theory and extracting the non-perturbative Λ-parameter. This is

achieved by combining Monte Carlo simulations and quantum computing techniques, matching the

expectation value of the plaquette operator. We also present results for the static potential and static

force, which can be related to the renormalized coupling. The outlined procedure can be extended to

other Abelian and non-Abelian lattice gauge theories with matter fields, and might provide a way

towards studying lattice quantum chromodynamics utilizing both quantum and classical methods.

Quantum field theories are very successful in describing the fundamental
laws of nature within the framework of the StandardModel (SM) of particle
physics, which unites three of the four known fundamental forces of nature.
While many phenomena in the SM can be investigated analytically using
perturbation theory, quantum chromodynamics (QCD) is a prominent
example of a theory which requires non-perturbative methods in the low-
energy regime1. This concerns, for instance, the hadron spectrum or the
QCD energy scale ΛQCD, which is related to the running coupling of QCD
and is generated entirely dynamically2. Moreover, the running of the cou-
pling enters all analysis of experimental data of particle accelerators, see e.g.,
Section 9 in ref. 3. Therefore, first-principle theoretical calculations of such
quantities are of high importance. The standard approach for non-
perturbative computations in quantum field theories is given by the lattice
regularization, see e.g., refs. 4,5, in combinationwith stochasticMonteCarlo
(MC) methods based on the Euclidean path integral, pioneered byWilson6

and Creutz7. In this lattice gauge theory (LGT) approach, the theory is
regularized by afinite volume and a discretized space-time. In order tomake

contact with experimental results, the infinite volume and continuum limits
need to be taken. This approach has allowed the computation of many
phenomenologically highly relevant quantities, see for instance ref. 8, due to
significant algorithmic and methodological progress, as well as ever-
increasing computer power.

Despite these successes, there are still limitations of the MC approach
to LGTs. Among them we recall the sign problem9 and critical slowing
down. The former prevents from simulating, e.g., real-time evolutions or
actions with non-zero matter density, while the latter manifests in a (often
exponential) increase of autocorrelation times towards the continuum limit
g→ 0 (see e.g., refs. 10,11). In this limit, the non-perturbative calculation of
the running coupling on the lattice could, in principle, be matched with
perturbation theory, allowing for the determination of ΛQCD

12,13. Some
attempts in this direction have been explored already in e.g., refs. 14–16. In
this work, however, we advocate the joint use of MC together with the
Hamiltonian formulation of LGTs. In fact, in the latter formulation, one can
use, for instance, quantum computing techniques, avoiding the issues
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related to autocorrelation. Hence, such methods offer the potential of fol-
lowing the approach of working in the regime of very small bare couplings,
as proposed in ref. 17. In recent years, the research field of quantum com-
puting has seen much progress, which resulted in various proof-of-concept
demonstrations of lattice gauge theory simulations with quantum
technologies18–20.

The goal of this work is to develop a framework to compute the run-
ning coupling by utilizing both quantum and classical methods, in order to
enable the above-mentioned approach. With present noisy intermediate
scale quantum (NISQ) capabilities21, it is, however, impossible to study
(3+ 1)-dimensional QCD. Therefore, in this paper, we aim at a proof-of-
concept for this idea in (2+ 1)-dimensional compact U (1) pure gauge
theory, with an eventual extension to (2+ 1)-dimensional QED, which
shares important properties with (3+ 1)-dimensional QCD, such as con-
finement and asymptotic freedom.

The final goal is to compute the Λ-parameter for (2+ 1)-dimen-
sional QED, which sets the scale where perturbation theory breaks down.
To give a quantitative value, the perturbative running of the coupling
needs to be confronted with a non-perturbative calculation. In principle,
this can be already achieved with a perturbative calculation at the one-
loop level. This would, however, require very small values of the coupling,
where MC calculations are facing severe problems of autocorrelation
when considering large volumes. Therefore, to determine the Λ-para-
meter, higher order loops are included in the corresponding lattice
perturbation theory, to be able to go to larger values of g where MC
simulations can be performed. This, in turn, requires very demanding
perturbative calculations, which can be considered a substantial and
independent project in its own right12. Therefore, it would be a major
simplification if we could employ only the one-loop order theory. We
propose here to test whether such a scenario can eventually be realized
with a quantum computing approach.

A study of (2+ 1)-dimensional QED has been performed perturba-
tively, with both two and four-component spinors, in refs. 22–24. Here, we
propose to combine both quantum computing and MC methods and
exploit the respective strengths of these two approaches: first, we perform
quantum simulations at small values of the bare coupling to compute the
running coupling at small distances. Large volume stochastic simulations17

then allow to determine the lattice spacing by eventually making contact
with experimental or phenomenological results, as it is done for Lattice
QCD computations8. This work will focus mainly on the aspects of the
quantum computing approach and the corresponding numerical techni-
ques. A short description of the MC method, used here, is discussed in
Supplementary Note 2. As outlined in a previous work ref. 17, we employ a
quantum variational technique. Variational quantum algorithms, such as
the Variational Quantum Eigensolver25, have been extensively used in the
past years to study lattice gauge theories, see again refs. 18,20. A benefit of
these methods is the possibility of achieving physically meaningful results
already with the current NISQ devices. However, they also present some
limitations.Aknownphenomenon is the appearanceof BarrenPlateaus, see
e.g., refs. 26,27, which can lead to slow convergence or even complete failure
of the optimization process. Another example is their scalability to larger
systems, since the variational quantum algorithms involve a classical opti-
mization. Here, we introduce a scheme for designing a quantum circuit that
leads to a substantial reduction of the computational cost required in the
quantum simulation. In contrast to ref. 17, here we perform an actual
implementation of the proposed strategy, developing a feasible computa-
tional method to realize a non-perturbative evaluation of the running
coupling.

In this paper, we propose a general procedure, based on a step
scaling approach, to compute the running coupling as a function of a
physical scale. We then consider a matching between MC and quantum
computing, through suitable observables, such as the plaquette expec-
tation value, as we employ in this work. This matching is carried out in a
regime of g � Oð1Þ, where both methods are reliable. MC can, in
principle, be used to obtain the physical value of the lattice spacing from

large-volume calculations. The so obtained physical scale can then be
transferred to the quantum computing analysis. The step scaling function
has been considered, e.g., in O (3) sigma model in (1+ 1) dimensions in
refs. 28–32. Here we focus on implementing and testing the feasibility of
the method in compact U (1) pure gauge theory at a fixed 3 × 3 lattice
volume as an initial demonstration, and propose a follow-up extension to
matter fields. The latter, however, goes beyond the scope of the present
work. The inclusion of matter fields will lead to a nontrivial β-function,
rendering the system physically meaningful. The proposed procedure can
be directly generalized to (2+ 1)-dimensional QED but also to non-
Abelian lattice gauge theories, and eventually to QCD. Furthermore, to
study the continuum limit, large-scale computations are required. This
would, in principle, be possible with access to quantum devices with a
large number of qubits33. Moreover, this matching procedure is inde-
pendent of the way we get the quantum state to compute the expectation
value of the physical observables relevant to this work. For example, the
quantum simulation could be performed on cold atom quantum simu-
lators or trapped ions quantum simulators34.

Results
Hamiltonian
We consider a lattice discretization of theU (1) LGT using Kogut-Susskind
staggered fermions35–37. A naive discretization of the fermionic degrees of
freedom leads to the so-called doubling problem4,38,39, i.e., an incorrect
continuum limit of the theory. In the staggered formulation, the spinor
components are distributed on different lattice sites to avoid this problem.
We present the full Hamiltonian, including matter fields, for completeness,
even though it is not used in the present work. The Hamiltonian reads

Ĥtot ¼ ĤE þ ĤB þ Ĥm þ Ĥkin; ð1Þ

where ĤE is the electric energy, ĤB the magnetic energy contribution, Ĥm

the fermionic mass term and Ĥkin the kinetic term for the fermions. The
electric energy is given by

ĤE ¼ g2

2

X

r

Ê
2

r;x þ Ê
2

r;y

� �

; ð2Þ

where Êr;μ is the dimensionless electric field operator that acts on the link
emanating from the lattice site with the coordinates r = (rx, ry) in direction
μ∈ {x, y}. The bare coupling g determines the strength of the interaction,
playing a pivotal role throughout the work. The second term in Ĥtot, the
magnetic interaction, reads

ĤB ¼ � 1

2a2g2

X

r

P̂r þ P̂
y
r

� �

; ð3Þ

with a the lattice spacing and P̂r ¼ Û r;xÛrþx;yÛ
y
rþy;xÛ

y
r;y the so-called

plaquette operator consistingof aproduct of the operators Ûr;x actingon the
links of a plaquette of the lattice (with the subscripts notation
r+ x≡ (rx+ 1, ry) or r+ y≡ (rx, ry+ 1)). The unitary operators Ûr;x are
related to the discretized vector field Âr;μ as

Ûr;μ ¼ eiagÂr;μ : ð4Þ

They represent the gauge connection between the fermionic fields, and we
choose to work with a compact formulation where agÂr;μ is restricted to
(0, 2π). The lattice vector field is the canonical conjugate variable to the
electric field, hence one finds for the commutation relations between Êr;ν

and Ûr0;μ

½Êr;ν; Ûr0;μ� ¼ δr;r0δν;μÛr;ν; ð5Þ

½Êr;ν; Û
y
r0;μ� ¼ �δr;r0δν;μÛ

y
r0;ν: ð6Þ

https://doi.org/10.1038/s42005-025-02243-6 Article

Communications Physics |           (2025) 8:367 2



The fermionic mass term is given by

Ĥm ¼ m
X

r

ð�1Þrxþry ϕ̂
y
r ϕ̂r; ð7Þ

wherem is the bare lattice fermion mass and ϕ̂r a and a single-component
fermionic field residing on site r, since we start from a continuum
formulationwith two-componentDirac spinors (see SupplementaryNote 4
for details). The kinetic term corresponds to a correlated fermion hopping
between two lattice sites while simultaneously changing the electric field on
the link in between,

Ĥkin ¼
i

2a

X

r

ðϕ̂yr Ûr;xϕ̂rþx � h:c:Þ

� ð�1Þrxþry

2a

X

r

ðϕ̂yr Û r;yϕ̂rþy þ h:c:Þ:
ð8Þ

Note that here we consider a different kinetic Hamiltonian compared to a
previous work17, by including an additional phase factor and which corre-
sponds to the original Kogut–Susskind formulation. From now on, we set
the a = 1, unless stated otherwise. The physically relevant subspaceHph of
gauge invariant states is given by those that fulfill Gauss’s law at each site r,
which reads

P

μ¼x;y
Êr;μ � Êr�μ;μ

� �

� q̂r � Qr

" #

∣Φi ¼ 0

()∣Φi 2 Hph:

ð9Þ

In the above expression, the operators

q̂r ¼ ϕ̂
y
r ϕ̂r �

1

2
1þ ð�1Þrxþryþ1
� �

ð10Þ

correspond to the dynamical charges, and Qr represent static charges. The
static charges will be particularly relevant for the computation of the static
potential in the Section “Step scaling approach”. Since in this paper, we are
focusing on a U (1) pure gauge theory, we will study only the Hamilto-
nian Ĥtot ¼ ĤE þ ĤB.

We remark that instead of working on the full Hilbert space and
enforcingGauss’s law a posteriori, in thisworkwe impose it beforehand and
work on a gauge invariant subspace40–43.

Implementation of gauge fields
The electric field values on a gauge link are unbounded, which leads to
infinite infinite-dimensional Hilbert space for the gauge degrees of
freedom. Therefore, for a numerical implementation of the Hamiltonian,
the gauge degrees of freedom have to be truncated to a finite dimension.
In ref. 40, the continuousU(1) group is discretized, in the electric basis, to
Z2lþ1, where l introduces a truncation and dictates the dimensionality of
the Hilbert space. The discretized gauge fields are constrained to integer
values within the range [−l, l], resulting in a total Hilbert space
dimension of (2l+ 1)N, where N denotes the number of gauge fields in
the system. The eigenstates of the electric field operator, Êr;μ, form a basis
for the link degrees of freedom (see e.g., Section VI C of ref. 44),

Êr;μ∣er;μ

E

¼ er;μ∣er;μ

E

; er;μ 2 ½�l; l� : ð11Þ

The link operators Ûr;μ (Û
y
r;μ) act as a raising (lowering) operator on the

electric field eigenstates,

Ûr;μ∣er;μ

E

¼ ∣er;μ þ 1
E

; Û
y
r;μ∣er;μ

E

¼ ∣er;μ � 1
E

: ð12Þ

The link operators have the following form42,
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With this truncation, unitarity is lost Û
y
r;μÛr;μ≠1 but is recovered in the

l→∞ limit. The commutation relations between the electric field and link
operators from Eqs. (5) and (6) are preserved even for the truncated
operators. Other approaches for the definition of the gauge field operators
have been considered in refs. 45–48 andwith qudits49. The errors introduced
by finite truncation l have been studied in refs. 50,51.

In SupplementaryNote 3, wewill explore an alternative representation
of the Hamiltonian known as the magnetic basis or dual basis, recently
explored in refs. 40,41,52. This approach becomes relevant when the cou-
pling constant g decreases and the magnetic term of the Hamiltonian
becomes dominant. In this regime, the electric basis cannot provide a good
approximation of the system with small values of l. However, by exploiting
the discrete Fourier transform, we can obtain a diagonal expression for the
plaquette terms, thus reducing the resources needed for the calculations.
With the magnetic formulation introduced in ref. 40, the group under
consideration changes toZ2Jþ1, where J serves as an additional parameter
dictating the discretization. Thedimensionality of theHilbert space remains
defined by the truncation parameter l. An alternative formulation for the
magnetic basis implementationhas been explored in ref. 43.We remark that
the Hamiltonian formalism can be extended to non-Abelian gauge groups,
like SU(2) (see e.g., refs. 35,53). For this case, the discretization in the
magnetic basis has been investigated more recently in refs. 54–56. Further
approaches can be found e.g., in refs. 57–59.

Running coupling and step scaling
The step scaling approach is a computational method employed for the
determination of the running coupling, introduced in ref. 12 and used also
for instance in refs. 60,61. For a general description based on the Schrö-
dinger functional approach see refs. 62,63. Let us assume we define a run-
ning, renormalized coupling αren(rph) at a physical scale rph(g). We then
define the step scaling function σs in the continuum from

σsðαrenðrphÞÞ ¼ αrenðsrphÞ ; s 2 R
þ; ð14Þ

which can be understood as an integrated form of the β-function of the
theory. Starting from αren(rph), we then apply the function in Eq. (14). The
step then is repeated, going to αren(s

2rph) and subsequent values, by creating
the steps in Fig. 1a.

This method can be iterated up to arbitrary N+ 1 steps, obtaining
αren(s

Nr1,ph) and thus getting the running coupling as a function of the
physical scale. The goal of this work is to compute the step scaling function
non-perturbatively on the lattice, by starting with some distance r in lattice
units and with a bare coupling g. The lattice spacing is encoded in the
coupling which is an implicit function of a in physical units. We fix two
scales, r1 and r2≡ s ⋅ r1 in lattice units and compute the renormalized
coupling at a fixed value of g, i.e., αren(r1, g0) and αren(sr1, g0), which cor-
responds to σs(αren(r1, g0)) on the lattice.We tune g, finding the value where
αren(r1, g1) = αren(sr1, g0). The corresponding sequence of steps can be illu-
strated in Fig. 1b.

In this paper, we consider a lattice calculation and thenwe convert the
lattice distances into physical ones with an artificial value of a in physical
units and rph = ar (see the Section “Towards defining a physical scale”).
Where, as mentioned in the introduction, the numerical value of the lattice
spacing can be obtained in principle with large-volume Monte Carlo
computations. Since a in physical units is a function of the bare coupling, by
decreasing g, we change the physical distance to smaller values. In this way,
we get the running of the coupling as a function of the physical scale. Results
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of the application of this method are discussed in the Section “Towards
defining a physical scale”. We use the static force, F(r, g), as the physical
quantity of interest, focusing in particular on the dimensionless quantity
r2F(r, g), with g the bare coupling at which the force is computed and r the
distance between two static charges. The calculation of the static force
involves the application of a discrete derivative, approximated as
∂V
∂r

’ Vðr2Þ�Vðr1Þ
r2�r1

, where V(ri) denotes the static potential between two static
charges separated by ri. This potential is, for short distances, proportional to
a logarithmicCoulomb termVðrÞ � αren log r

64on the lattice.Thus, r2F(r, g)
can be related eventually to the renormalized coupling. For the analysis of
the step scaling, we need two values of the static force,

Fðr2; gÞ ¼
Vðr3; gÞ � Vðr2; gÞ

r3 � r2
; ð15aÞ

Fðr1; gÞ ¼
Vðr2; gÞ � Vðr1; gÞ

r2 � r1
: ð15bÞ

Therefore, it is necessary to involve three distances, namely r1, r2, and r3, in
the calculation of the step scaling function. Note that in this paper, we

introduce the step scalingmethod for apure gaugeU(1) theory.Oncewewill
include matter fields, we will have a non-trivial running coupling.

Matching strategy for 3 × 3 PBC system
In this section, we describe thematching between the Variational Quantum
Eigensolver (VQE) approach and Markov Chain Monte Carlo (MCMC).
For our study, we consider the pure gauge case, i.e., the theory without
fermionic fields, on a 3 × 3 lattice with periodic boundary conditions (PBC)
(see Fig. 2a for an illustration). The quantity we analyze is the expectation
value of the plaquette operator,

hPi ¼ 1

~V

X

r

P̂r þ P̂
y
r

2

 !* +

; ð16Þ

where ~V is the number of plaquettes in the lattice.
We focus on bare couplings in the interval corresponding to

0.8 ≤ β = 1/g2 ≤ 2.6, selected to be in a regime accessible with MCMC
methods. We analyze the convergence behavior of the results with exact

Fig. 1 | Step scaling in the continuum theory and on the lattice. a Step scaling in

the continuum. Themethod applies the step scaling function σs to the renormalized

coupling at a physical scale rph(g), where g is the bare coupling. The resulting

renormalized coupling is at a new scale αren(srph). The process is repeated N times

and the running coupling is obtained. b Step scaling on the lattice. The method

computes the renormalized coupling at a fixed value of the bare coupling g0 and

scales r1 and r2≡ s ⋅ r1 in lattice units, αren(r1, g0) and αren(sr1, g0). The latter

corresponds to σs(αren(r1, g0)) on the lattice. The value where

αren(r1, g1) = αren(sr1, g0) can be found by tuning g. The steps are repeated to find the

sequence in the figure.
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diagonalization (ED) with respect to the truncation parameter l, as illu-
strated by the lines in the upper panel of Fig. 2b. The results from ED show
that with increasing values of lwe observe convergence, and for the range of
couplings chosen here l = 3 is sufficient to reliably determine the plaquette
expectation value, as the results for l = 3 and l = 4 are essentially indis-
tinguishable. For a truncation l = 2, we see slight deviations for larger values
of β. While for l = 1 deviations towards larger values of β are noticeable, the
data still qualitatively reproduce the behavior observed for larger values of l.
For the VQE approach, we have developed a quantum circuit with an
entanglement structure connecting all gauge fields. The resources required
for running the circuit are shown in Table 1.

Due to the limited resources available on current quantum devices, we
focus on truncation l = 1 for a proof of principle. In order to benchmark the
approach, we classically simulate the VQE, assuming a noise-free quantum
device. For the optimization,we employ the SLSQP65 classical optimizer and
infinite shots, i.e., number ofmeasurements, setting as the first goal only the
expressivity of the quantum circuit. After applying Gauss’s law, only 10 of

the 18 links remain dynamical, thus, we need 20 qubits for the computation.
As illustrated in Fig. 2b, the top panel shows the VQE results for this
truncation, indicated by circles, along with the relative error with respect to
the exact values in the bottom panel. These results are in line with the
plaquette curve from ED.

For the future, a closer examination of the entanglement structure
couldhelp to improve the accuracy of the data andoptimize the scalability of
the gate number. Such exploration should focus on three main purposes: to
improve our understanding of the interplay between circuit and lattice
structure, to extend the results to higher truncation while preserving the
depths of the circuits and to prepare for analysis on quantum hardware
platforms.

Part of the authors are involved in aMCcalculationof theHamiltonian
limit of the theory analyzed in this work, namely the continuum limit in the
time direction at fixed spatial lattice spacing, within the Lagrangian form-
alism. Preliminary account of the latter can be found in ref. 66. This pro-
cedure returns a βMC-value for which we know the corresponding bare
coupling value of the discretized theory. Thus, the spatial lattice spacing is
identical up to lattice artefacts. At this value of the coupling, we can then
perform large-volume Monte Carlo simulations and set the physical scale.
Since this analysis was still ongoing at the time of writing, in this work we
adopt the preliminary value βMC = 1.4, corresponding to the vertical line
in Fig. 2b.

Step scaling approach
In this section, we illustrate the methodology for the pure gauge case on a
3 × 3 lattice with Open Boundary Conditions (OBC). Two static charges of
opposite values are placed on two sites, as in Fig. 3. The choice of boundary
conditions allows us to obtain more distinct lattice distances than the per-
iodic case. We focus on two sets of distances to generalize any findings
regarding the coupling behavior.We have tested all the combinations of the
five possible distances for two static charges on a pure gauge lattice,
Cð5; 3Þ ¼ 5!

3!ð5�3Þ!, and have chosen the two combinations with more points
in the step scaling procedure below a certain threshold for the bare coupling,
i.e., β ≤ 102. Note that with a system size of 3 × 3 sites and a range of βs
considered here, we always work at distances below the confinement scale,
and the correlation length is given by the small system size63.

In the following analysis, a variational quantum algorithm is used to
calculate the static potential at different distances, and the results are
compared with those derived from exact diagonalization. The data pre-
sentedhere are computedwith a combinationof two classical optimizers:we
performed a first minimization with NFT67, which gave us fidelities of up to
~95% (noise-free simulations with � Oð104Þ shots). As the coupling
decreases, higher precision in the VQE results becomes necessary. Conse-
quently, we have used the final optimal parameters as a starting point for a
new optimization with COBYLA68 and a larger number of shots
ð� Oð106ÞÞ. This aspect is crucial for our objectives, as the values of the
static forces in the weak coupling regime are almost equivalent. A better
understanding of the entanglement structure may be helpful for increasing
the precision with fewer shots.Wewill consider amore in-depth analysis of
this in future work. In Table 2, we show the resource estimation for three
values of the truncation parameter l.

Fig. 2 | Lattice and plaquette expectation value. a Illustration of a lattice with

periodic boundary conditions. 3 × 3 lattice with PBC. The spheres represent the

matter sites, where blue dashed (orange solid) circles indicate sites with even (odd)

parity. The lines connecting the vertices represent the gauge links, where the arrows

indicate the orientation of the lattice. The links sticking out on top (to the right)

indicate the periodic boundary conditions and connect to the vertices on the bottom

(left). b Plaquette expectation value for pure-gauge system. Results for a 3 × 3 lattice

with PBC found with exact diagonalization with truncation l∈ [1, 4] (lines with low

triangles or solid line) and VQE results (noise-free simulations with infinite shots)

with l = 1 (circles). The dotted vertical line corresponds to βmatching with MC. We

also show the relative error ϵ - comparison between VQE data and exact results. The

error depends on the convergence of the optimization reaching a given tolerance and

the initial set of parameter values in the quantum gates.

Table 1 | Resources required for the variational circuit for Gray
encoding

Resources estimation 3 × 3 PBC system

l # Qubits # CNOTs CNOT depth # Parameters

1 20 1280 1152 200

3 30 2200 1748 445

In a pure gauge 3 × 3 PBC system, the ten dynamical gauge fields can be simulated with the

specified total number of qubits. Additionally, we quantify the total count of CNOT gates and the

CNOTdepth, representing the layersofCNOTgates in thecircuit. The rightmostcolumndisplays the

total number of parameters in the variational Ansatz
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Step scaling results for static forces F(r1 = 1, g) and Fðr2 ¼
ffiffiffi

5
p

;gÞ
In this section, we focus on illustrating the step scaling method using a
variational approach and exact diagonalization as a reference, for the con-
figuration with charges placed as in Fig. 3a, c, d and relative distances on the
lattice r1 = 1, r2 ¼

ffiffiffi

5
p

andr3 ¼
ffiffiffi

8
p

, respectively.

Illustration of step scaling from β = 102. We show the step scaling
procedure starting from a weak coupling regime. As explained in the
Section “Running coupling and step scaling”, we repeat the steps until we
reach a certain value of the bare coupling. In Fig. 4, we follow the step
scaling procedure starting from β = 102 and moving to the left with a
variational Ansatz (up(down)ward-pointing triangles) and exact results
(empty circles/squares). One can see that the precision required for small
couplings increases because of the small values required in the step
scaling function. Considering only the electric basis becomes more dif-
ficult, as the superposition within the ground state expands significantly
towards weaker couplings. It is thus advisable to start at large β-values
with the magnetic basis and monitor the convergence of results
throughout the process towards smaller β-values.

Start from β = 1.4 to perturbative regime. Here, we discuss the varia-
tional results for the step scaling method, starting from the value of the
bare coupling where we have a matching with MC, see the Section
“Matching strategy for 3 × 3 PBC system,” and continuing towards a
weaker regime. We first illustrate the procedure with a fixed truncation,
l = 1, and then discuss higher truncations, involving also a magnetic
representation. Starting from βMC = 1.4, we compute r21Fðr1; g0Þ and
r22Fðr2; g0Þ. Next, using the result of the static force at a distance r1, the

bare coupling g is adjusted to a reduced value until a new r22Fðr2; g1Þ is
obtained. This step scaling process is then repeated using a similar
approach as in the previous paragraph, but aimed at the weak coupling
regime. The comparison between variational results (denoted by up/
downward-pointing triangles) and exact results (denoted by empty circles/
squares) is illustrated in Fig. 5a.

To give physical meaning to the data, it is essential to increase the
truncation parameter l applied to the gauge operators until independent
solutions are obtained. Given the limited resources, we adopt a strategy
involving an interplaybetweenelectric andmagnetic basis. Starting from the
electric formulation, we progressively increase l until convergence is
achieved within the desired range, 1.4 ≤ β ≤ 102. Once a reference value is
established, we restrict ourselves to l = 7, which will result in a total of
16 qubits, which seems feasible on current quantum hardware. Next, fol-
lowing the procedure described in Supplementary Note 3, we find the value
of the bare coupling where the accuracy of the electric basis is not sufficient

Fig. 3 | Illustration of the static charge configurations. blue spheres with a− (red

spheres with a+ ) correspond to sites carrying a negative (positive) static charge, gray

spheres to sites where no static charge is present. The solid arrows indicate the

dynamical links, and the dashed arrows are the nondynamical ones. The different

panels correspond to different distances of the charges with r = 1.0 (a), r ¼
ffiffiffi

2
p

¼
1:414 (b), r ¼

ffiffiffi

5
p

¼ 2:236 (c), and r ¼
ffiffiffi

8
p

¼ 2:828 (d). Fig. 4 : Step scaling results

for the static forces from the weak coupling region. F(r1 = 1, g) and Fðr2 ¼
ffiffiffi

5
p

; gÞ
computed in the electric basis at truncation l = 1. Here, we used the smallest

truncation to illustrate themethod. From theweak coupling regime β = 102, the static

forces are computed following a steps procedure, both with ED and VQE (noise-free

simulations with shots). ED results for r21Fðr1 ¼ 1; gÞ (r22Fðr2 ¼
ffiffiffi

5
p

; gÞ) are dis-
played with circles (squares) and corresponding VQE results with up(down) ward-

pointing triangles. In the simulations, a combination of NFT and COBYLA opti-

mizer was considered and a finite number of shots defines the error bars, which are

smaller than the markers. These uncertainties (standard deviation) are computed

with the combination of the variances of the Pauli terms in the Hamiltonian.

Table 2 | Resources required for the variational circuit for Gray
encoding

Resource estimation 3 × 3 OBC system

l # Qubits # CNOTs CNOT depth # Parameters

1 8 176 168 32

3 12 304 260 70

7 16 456 354 120

In a pure gauge 3 × 3 OBC system, the four dynamical gauge fields can be simulated with the

specified total number of qubits. Additionally, we quantify the total count of CNOT gates and the

CNOTdepth, representing the layersofCNOTgates in thecircuit. The rightmostcolumndisplays the

total number of parameters in the variational Ansatz.

Fig. 4 | Step scaling results for the static forces from the weak coupling region.

F(r1 = 1, g) and Fðr2 ¼
ffiffiffi

5
p

; gÞ computed in the electric basis at truncation l = 1. Here

we used the smallest truncation to illustrate the method. From the weak coupling

regime β = 102, the static forces are computed following a steps procedure, both with

ED and VQE (noise-free simulations with shots). ED results for r21Fðr1 ¼ 1; gÞ
(r22Fðr2 ¼

ffiffiffi

5
p

; gÞ) are displayed with circles (squares) and corresponding VQE

results with up(down)ward-pointing triangles. In the simulations, a combination of

NFT and COBYLA optimizer was considered and a finite number of shots defines

the error bars, which are smaller than the markers. These uncertainties (standard

deviation) are computed with the combination of the variances of the Pauli terms in

the Hamiltonian.
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anymore (i.e., exceeding a relative error of ϵ ≥ 0.01). At this point, we move
on to the magnetic basis with l = 3 and discretization J = 200, parameters
that give us reliable results. Initially, we conducted testswith l = 7 also for the
magnetic basis, maintaining an equal number of qubits for each register as
for the electric one. The outcomes proved to be comparable to those
obtained with l = 3. Consequently, we can decrease the computational
resources requiredwhile preserving a high level of accuracy in the solutions.
Fig. 5b illustrates the step-scaling method employing the technique
described, with exact diagonalization. Similarly, we proceed through the
weak coupling regime by increasing β and constructing the steps
accordingly.

Step scaling results for static forces Fðr1 ¼
ffiffiffi

2
p

;gÞ
and Fðr2 ¼

ffiffiffi

5
p

;gÞ
In this section, the analysis is repeated for a new set of distances,r1 ¼

ffiffiffi

2
p

,
r2 ¼

ffiffiffi

5
p

and r3 ¼
ffiffiffi

8
p

, Fig. 3b–d. Here, we solely explore the step scaling
starting from βMC. The results are then combined in the the Section
“Towards defining a physical scale” with the previous set of distances, in
order to show the dependence of r2F(r, g) in terms of a physical scale.

Start from β = 1.4 to perturbative regime. The step scaling procedure is
illustrated in Fig. 6a in the fixed bare coupling interval. In this case, four
steps are observed within the range 1.4 ≤ β ≤ 102.

Fig. 5 | Step scaling results for static forces. a Step scaling results for static forces at

low truncation. F(r1 = 1, g) and Fðr2 ¼
ffiffiffi

5
p

; gÞ, electric basis and l = 1. From

βMC = 1.4 and in a range of couplings within β ≤ 102, the static forces are computed

following a steps procedure, both with ED and VQE (noise-free simulations with

shots). ED results for r21Fðr1 ¼ 1; gÞ (r22Fðr2 ¼
ffiffiffi

5
p

; gÞ) displayed with circles

(squares) and corresponding variational results with up(down)ward-pointing tri-

angles. In the simulations, a sequential combination of two optimizers NFT and

COBYLA was considered and a finite number of shots defines the error bars, which

are smaller than themarkers. These uncertainties (standard deviation) are computed

with the combination of the variances of the Pauli terms in the Hamiltonian. b Step

scaling results for static forces at higher truncation. F(r1 = 1, g) and Fðr2 ¼
ffiffiffi

5
p

; gÞ,
electric (magnetic) basis. In contrast to Fig. 5a, we consider here a higher truncation

and show ED results with electric basis for r21Fðr1 ¼ 1; gÞ (r22Fðr2 ¼
ffiffiffi

5
p

; gÞ) with
truncation value l = 7 displayed with circles(squares) and with magnetic basis for

r21Fðr1 ¼ 1; gÞ (r22Fðr2 ¼
ffiffiffi

5
p

; gÞ) with l = 3 and discretization values J = 200 dis-

played with up(down)ward-pointing triangles.

Fig. 6 | Step scaling results for static forces. a Step scaling results for static forces for

the second pairs of distances, low truncation. Fðr1 ¼
ffiffiffi

2
p

; gÞ and Fðr2 ¼
ffiffiffi

5
p

; gÞ
computed in the electric basis at l = 1. Similar approach as in Fig. 5a, with a different

set of distances. From βMC = 1.4 and in a range of couplings within β ≤ 102, the static

forces are computed following a steps procedure, both with ED and VQE (noise-free

simulations with shots). ED results for r21Fðr1 ¼
ffiffiffi

2
p

; gÞ (r22Fðr2 ¼
ffiffiffi

5
p

; gÞ) displayed
with circles (squares) and corresponding variational results with up(down)ward-

pointing triangles. In the simulations, a sequential combination of two optimizers

NFT and COBYLA was considered and a finite number of shots defines the error

bars, which are smaller than the markers. These uncertainties (standard deviation)

are computed with the combination of the variances of the Pauli terms in the

Hamiltonian. b Step scaling results for static forces at higher truncation in the

electric and magnetic basis. Fðr1 ¼
ffiffiffi

2
p

; gÞ and Fðr2 ¼
ffiffiffi

5
p

; gÞ computed in the

electric (magnetic) basis. In contrast to we consider here a higher truncation and

show ED results with electric basis for r21Fðr1 ¼
ffiffiffi

2
p

; gÞ (r22Fðr2 ¼
ffiffiffi

5
p

; gÞ) with
truncation value l = 7 displayed with circles(squares) and with magnetic basis for

r21Fðr1 ¼
ffiffiffi

2
p

; gÞ (r22Fðr2 ¼
ffiffiffi

5
p

; gÞ) with l = 3 and discretization values J = 200 dis-

played with up(down)ward-pointing triangles.
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We apply the same technique with higher truncations for this set of
distances, Fig. 6b. Also in such a case, we consider l = 7 for the electric
basis and l = 3, J = 200 for the magnetic, obtaining a total of five pairs
of points.

Towards defining a physical scale
We are not aware of any real experiment which can be described by the
effective (2+ 1)-dimensional compact pure gauge theory considered in this
paper. Therefore, we cannot extract the physical value of the lattice spacing
with large-volume MC calculations. See Section V C in ref. 17 for the
illustration of the principle to determine the value of the lattice spacing.
Thus, for the sake of demonstrating our method, we consider an artificial
value for the lattice spacing, e.g., a = 0.1 fm, and we use the data in the
previous sections to identify the physical value for the scales. With two sets
of distances, we have two scale factors s to connect r1 and r2, (r2 = s ⋅ r1), i.e.,
r2 ¼

ffiffiffi

5
p

� r1 and r2 ¼
ffiffi

5
2

q

� r1.We thencombine the results in a singleplot.
Let us first consider the set r1 = 1, r2 ¼

ffiffiffi

5
p

, r3 ¼
ffiffiffi

8
p

. Our aim is to
startwithβMC and invert the sequenceby changing the scale by s and include
the physical value of the lattice spacing, a = 0.1 fm. At βMC≡ βN we have,

βN 7!
r2;ph ¼ r2 � a ¼ 0:223 fm; ð17aÞ
r1;ph ¼ r1 � a ¼ 0:1 fm: ð17bÞ

(

Then, we go to the next value of the bare coupling, where we have,

βN�1 7!
r2;ph ¼ r2 � a=s ¼ 0:1 fm; ð18aÞ
r1;ph ¼ r1 � a=s ¼ 0:045 fm: ð18bÞ

(

The procedure iterates through multiple steps, and eventually, the static
force values can be written in terms of a physical scale, as depicted in Fig. 7,
with data fromFigs. 5a and 6a. Note, for example, that Eqs. (17b) and (18a),
correspond to the same physical scale (rightmost full circle and second
rightmost full downward-pointing triangle).

In compact pure gaugeU(1) theory, the β-function of the dimensionful
coupling is trivial and therefore there is no renormalization of the coupling.
Consequently, there is, in principle, no scale dependence. Nevertheless, in
Fig. 7, we observe a non-trivial behavior of the dimensionless quantity
r2F(r, g) as a function of the physical distance22–24. However, since the results
are at non-zero lattice spacing, we cannot control the uncertainties from a
non-zero a and, currently, we cannot compare directly with the continuum
perturbation theory.

Note that, when including matter fields, the β-function becomes
nontrivial, see again ref. 22.

We can replicate the procedure using the outcomes from the variational
quantum algorithm (again Figs. 5a and 6a), as depicted in Fig. 8. Despite
fluctuations in the results, attributed in part to the finite number of shots and
the limited convergence of the optimization, the data effectively captures the
dependence of the coupling as a function of the physical distance.

The procedure is repeated also for the analysis with electric and
magnetic basis, using the data from Figs. 5b and 6b and combining them
in Fig. 9.

As a final remark, without going into details, we mention a possible
strategy to reach the continuum limit for the discussed analysis. The idea is
to keep the physical distance between two static charges fixed while chan-
ging the lattice size and, correspondingly, the distance of two static charges
on the lattice. The step scaling function parameter s is defined by the fixed
ratio (s = r2/r1). One computes r22Fðr2; gÞ until the same value as in smaller
lattice size is found and then applies the step scaling function. The results are
studied as a function of ða=r1Þ

2. The process is repeated for more steps and
the data are subject to a fit, reaching thus the limit ða=r1Þ

2 ! 0. Carrying
out this process will be considered in future work.

Discussion
In a previous work17, part of the authors outlined the idea of computing the
running of the coupling and the Λ-parameter through a step scaling
approach in (2+ 1)-dimensionalQED.To this end, the combination ofMC
and quantum computing methods was proposed.

Fig. 7 | Step scaling results with exact diagonalization (electric basis at low

truncation) as a function of physical distances.Data calculated at l = 1. Set of static

forces F(r1 = 1, g) (Fðr2 ¼
ffiffiffi

5
p

; gÞ) displayed as full circles (full downward-pointing

triangles) and for Fðr1 ¼
ffiffiffi

2
p

; gÞ (Fðr2 ¼
ffiffiffi

5
p

; gÞ) displayed as empty circles (empty

downward-pointing triangles).

Fig. 8 | Step scaling variational quantum results (electric basis and low trunca-

tion) as a function of physical distances. l = 1 data for set of static forces F(r1 = 1, g)

(Fðr2 ¼
ffiffiffi

5
p

; gÞ) found with the VQE, displayed as full squares (full upward-pointing
triangles) and for Fðr1 ¼

ffiffiffi

2
p

; gÞ (Fðr2 ¼
ffiffiffi

5
p

; gÞ) displayed as empty squares (empty

upward-pointing triangles). The error bars (standard deviation) are computed with

the combination of the variances of the Pauli terms in the Hamiltonian. They are

defined by the finite number of shots and are smaller than the markers.

Fig. 9 | Step scaling exact diagonalization results (electric basis and magnetic

basis) as a function of physical distances. Data for set of static forces F(r1 = 1, g)

(Fðr2 ¼
ffiffiffi

5
p

; gÞ) displayed as full circles (full downward-pointing triangles) and for

Fðr1 ¼
ffiffiffi

2
p

; gÞ (Fðr2 ¼
ffiffiffi

5
p

; gÞ) displayed as empty circles (empty downward-pointing

triangles). l = 7 has been used in the electric basis and l = 3, J = 200 in the mag-

netic one.
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Here, we performed a step towards this final goal by analyzing a
compactU(1) gauge theory. We designed tailored quantum circuits for the
implementation of gauge degrees of freedom.We showed that our program,
based on a variational quantum simulation, can be carried out. This is
illustrated in Fig. 8, which shows the dimensionless quantity r2F(r, g), related
to the renormalized coupling, as a function of a physical scale. We remark
that at the moment an artificial value of the lattice spacing was employed.
Our results provide a successful test for the capability of variational quantum
simulations for studying the step scaling function on the lattice, with the
potential for further applications of this approach in the future, in particular,
with existing and emerging quantum hardware.

The Hamiltonian formalism, discussed in this work, can be related to
the action formalism by taking the continuum limit in time of the action
with a fixed physical condition. This allows us to determine the relation of
the bare couplings in both cases by matching, e.g., the corresponding pla-
quette expectation values. In this work, we used a preliminary value of the
bare coupling for this matching, obtained byMonte Carlo simulations for a
periodic 3 × 3 system in refs. 66,69. On the quantum computing side, we
were able to achieve results for the expectation value of the plaquette within
the same range of bare couplings, see Fig. 2b. In the same figure, it is
demonstrated that, employing exact diagonalization, a truncation l = 3 is
sufficient to see convergence. There, we also provided VQE results for a
truncation l = 1, which could be simulatedwith current quantum resources.

In Supplementary Note 2, through a detailed finite-size MC study, we
demonstrated that with a system size of 6 × 6, matching with the mass gap
becomes possible, which opens the road for future quantum computations.

In Supplementary Note 4, we discuss the theoretical details of the
fermionic Hamiltonian, building the ground for future calculations,
including matter fields. This will then lead to a situation where the running
of the coupling is non-trivial and thus can provide ameaningful value of the
QED Λ-parameter in (2+ 1) dimensions.

In the work presented here, we set the basis of variational quantum
simulation of (2+ 1)-dimensional QED. The methodology developed here
can be utilized for extensions of the theory, including, e.g., topological terms
or non-zero matter density and even an analysis of real-time evolution.

Methods
Numerical setup for quantum computation
For numerical calculations, it is advantageous to employ a suitable encoding
that accurately represents the physical values of the gauge fields. In this work,
we consider the Gray encoding (see, e.g., ref. 70). With this approach,
the minimum number of qubits required per gauge variable is
qmin ¼ dlog2ð2l þ 1Þe:. Thus, it will be convenient for the implementation
on a quantum circuit to consider a subset of truncation values
(l = 1, 3, 7, 15, . . . ), which allows only a single state to be excluded with the
same amount of resources. For instance, three qubits are required for both
l = 2 and l = 3. However, with the former, only five configurations are con-
sidered physical, whereas with the latter, we can include seven physical states.

The state of a qubit can be defined as a vector in a 2-dimensional
complex vector spaceC2, with ∣0i ¼ ð1; 0Þt and ∣1i ¼ ð0; 1Þt as the com-
putational basis71. The quantumoperations, or gates, on a single qubit can be
described by 2 × 2 unitary matrices. Thus, for numerical implementations,
we express the Hamiltonian in terms of a sum of Pauli matrices. One can
also employ a grouping strategy to identify subsets of Pauli strings present in
the Hamiltonian, thereby reducing the necessity for independent circuit
evaluations72. In the following, we also adopt the convention that the least
significant qubit (designated by the zero index, q0) occupies the rightmost
position in the tensor product, as illustrated by ∣q1q0

�

and q1q0
�

∣. Let us
now consider, as an example, the case of smallest truncation l = 1, where we
have the three physical states ∣j

�

ph
for j∈ {−1, 0, 1}. These states can be

encodedusing only twoqubits in aGray codeway, as shown in the following
equations:

∣� 1iph 7! ∣00i; ð19aÞ

∣0iph 7! ∣01i; ð19bÞ

∣1iph 7! ∣11i; ð19cÞ

we then call the state ∣10i “unphysical”, since it is outside of this truncated
Hilbert space. The expressions for the electric field and link operators then
become

Ê 7! � ∣00i 00h ∣þ ∣11i 11h ∣; ð20aÞ

Û 7!∣01i 00h ∣þ ∣11i 01h ∣; ð20bÞ

^Uy 7!∣00i 01h ∣þ ∣01i 11h ∣: ð20cÞ

In this study, we adopt a variational approach to determine the physical
quantities of interest. Specifically, we employ the VQEmethod that aims to
find the ground state of a given Hamiltonian. Executing a VQE algorithm
requires an input quantumcircuit with parametrized gates, called anAnsatz
circuit, anda classical optimizer. Theoptimization startswith an initial set of
values for the gate parameters, that can be randomly chosen, and will be
optimized in the execution. In the rest of the paper, we consider a set of
parameters, where the probability of being in a vacuum state (i.e., ∣0iph) is
non-zero for every gauge field. The essence of the approach considered here
is to exclude unphysical states directly within the quantum circuit. This is
achieved by implementing a customized set of parameterized quantum
gates designed to produce the correct final combination of states. With this
method, we aim to efficiently identify the desired physical results while
reducing the computational overhead.We also considered keeping the state
∣10i as a higher physical state ∣2iph and use a generic variational Ansatz.
However, theVQE results did not have a highfidelity. Therefore, wewill not
describe this option further. It may be considered in future work. For the
truncation l = 1, we can use the circuit in Fig. 10 to represent a gauge field.
The action of the circuit is straightforward: starting from the state ∣00i,
setting both parameters θ1 and θ2 to zero allows for the exploration of the
physical state ∣� 1iph. The introductionof anon-zerovalue forθ1 allows the
state to change to ∣01i, which represents the vacuum state∣0iph, with a
certain probability. A complete rotation occurs if θ1 = π, resulting in the
exclusivepresence of the second statewith aprobability of 1.0. Subsequently,
the second controlled gate operates only when the first qubit is ∣1i, limiting
the exploration to ∣11i (i.e., ∣1iph) and excluding ∣10i.

This procedure canbe expanded to arbitrary l, allowing the exclusionof
unphysical combinations, and tomultiple gaugefieldswith entangling gates.
For further details, refer to Supplementary Note 1, which provides an
extension to three additional values of truncation (l = 3, 7 and 15).

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request. The source data of the
figures are available in ref. 73.

Fig. 10 | circuit for Gray encoding at low truncation. Results from the variational

circuit at l = 1. In the circuit rotational parameterized gates around the y-axis, Ry(θ)

have been used. The parameter θ defines the angle of the rotation. With this circuit

vacuum state is ∣01i, and state ∣10i is excluded.
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Code availability
A python code implementation for the truncation scheme as well as
quantum circuit construction is available at ref. 74. Reference 75 provides a
software library written in c++ and python for reproducing the Monte
Carlo simulations and measurements over gauge configurations.
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