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We renormalize the Gross-Neveu-Yukawa model with an O(N) symmetry to O(e°) in d = 4 — ¢
dimensions and determine the anomalous dimensions of the fermion and scalar fields, S-functions as
well as the scalar field’s mass operator. These are used to construct several N dependent critical
exponents relevant for quantum transitions in semi-metals and in particular those connected with
graphene in three dimensions when N = 2. Improved exponent estimates for scalar fermion transitions
on a honeycomb lattice, when N = 1, as well as for N = 5 are also given to compare with results
from other techniques such as the conformal bootstrap.

I. INTRODUCTION

Wilson’s development of the renormalization group equation led to a beneficial and practical tool to study critical
phenomena with applications to phase transitions seen in Nature, [1]. In particular continuum analytic quantum field
theory techniques could be used alongside numerical methods employed in discrete models to study critical points in
the renormalization group flow. The ultimate goal being to estimate the observables which are the critical exponents.
If determined accurately enough the exponents could be tested against experimental values and thereby confirm
symmetry properties of the phase transition that are intrinsic to the underlying continuum or discrete field theory.

One of the more widely known applications of the critical renormalization group equation is that of transitions
in the three dimensional Heisenberg ferromagnet where critical exponents are available at very high precision from
techniques such as perturbation theory, Monte Carlo methods, functional renormalization group together with the
recent incarnation of the conformal bootstrap summarized in [2] for instance. The latter method, for example, has
generally produced exponents to the highest numerical precision. It is founded on exploiting the conformal symmetry
inherent at a fixed point to determine the scaling behaviour of field and operator correlation functions. See [3], for
example, for a comprehensive overview of the current conformal field theory properties of the scalar field theories
underlying the Heisenberg ferromagnet transition.

One key principle of the study of critical phenomena is that seemingly different models used to understand, say the
Heisenberg example, are related in that they lie in the same universality class of the core fixed point. In this Heisenberg
case the three dimensional fixed point is the Wilson-Fisher one, [4], corresponding to the non-trivial critical point of
the underlying field theory. It is known that continuum scalar ¢* theory is one of the members of this universality
class. Although its critical dimension is four it is still possible to derive exponent estimates in three dimensions.
Indeed as the available loop order of ¢? theory renormalization group functions increase, [5-7], there have been several
resummation studies based on the € expansion.

However a second continuum field theory is believed to be present in the same universality class which is the
nonlinear o model whose critical dimension is two. In fact there is in principle an infinite tower of theories in even
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spacetime dimensions which reside in the same class. What they share in common across all dimensions is the same
core interaction with additional spectator interactions included in specific dimensions to ensure renormalizability and
therefore calculability. This concept of tower is not unrelated to the notion of ultraviolet completion.

Although this instance of connecting critical theories across dimensions to extract precision estimates for observables
is well-known it is not an isolated case with physical applications. In more recent years a second main universality
class has emerged which is connected to transitions in recently developed materials. Perhaps the best known example
is that of critical phenomena in graphene. This is a one atom thick sheet of carbon atoms connected at the corners of
a hexagonal lattice. Stretching a sheet of graphene can change its electrical properties and it is believed the critical
properties of the transition from having semi-metal properties to becoming an insulator is described by a resident
theory of what is termed the Gross-Neveu (GN) or Gross-Neveu-Yukawa (GNY) universality class. The two main
continuum field theories connected with the class are the two dimensional Gross-Neveu model, [8], and the four
dimensional Gross-Neveu-Yukawa theory, [9]. Both theories involve an O(N) multiplet of Dirac fermions coupled to
a scalar field. In two dimensions the scalar is an auxiliary field, [8], and the GN model reverts to a quartic fermion
interaction. In the GNY model an extra quartic scalar interaction is required as a spectator interaction to ensure
renormalizability.

Unlike the purely scalar field theory universality class of the Heisenberg model the GNY class is more extensive.
This is because the core scalar-Yukawa interaction can be adapted to include spin-related features as well as different
fermion species. Moreover it is not unrelated to the Standard Model of particle physics which has the same underlying
interactions but decorated with a more intricate general symmetry group. Indeed the GNY model offers itself as a
potential laboratory to test possible beyond the standard model ideas. For instance, in [10-13] it was observed that
for Lagrangians with certain field content critical points can emerge with symmetries that are not present in the
original Lagrangian. In particular supersymmetry can actually emerge in a variety of theories within the broad GNY
universality class at fixed points where the two critical couplings are equivalent. Moreover the scalar and fermion
anomalous dimension exponents become equal at criticality. For example, see [14] for an in-depth discussion.

Since the turn of the century there has been intense activity to produce numerically precise exponent estimates for
the GNY universality class with the graphene example of N = 2 being the primary goal with the connection having
been established in [15, 16]. Other values of N are also studied as they relate to transitions in other materials. A
variety of techniques have been applied such as Monte Carlo or lattice field theory, [17-24], functional renormalization
group, [25-27], conformal bootstrap, [28-30], 1/N expansion, [31-36], and continuum perturbation theory, [37-40].
While different approximations will not always produce exact agreement of exponents, it is generally the case that
the computational direction of travel in recent years is leading towards a consensual picture. Indeed the most recent
conformal bootstrap analysis of [29, 30] has produced the most accurate, with respect to small uncertainties, numerical
estimates for the graphene transition.

One of the other main continuum field theory approaches is that of perturbation theory with calculations to four
loops being carried out in the GNY class in four dimensions in [9, 38-41] as well as in the generalization of that class
recently recorded in [42]. Coupled with the parallel results to four loops in the GN model of [8, 37, 43-47] the authors
of [40] produced a set of three dimensional exponent estimates based on the full four loop universality class data using
several resummation techniques.

With the subsequent advance made in conformal bootstrap technology, [29, 30], it is therefore the purpose of this
article to advance the perturbative information for the GNY theory to five loops. This is not a trivial exercise since it
is beset with a significant increase in the number of Feynman graphs to compute at this order driven by the presence
of two interactions.

Having established all the relevant renormalization group functions at this new order, the second phase of our
investigation is to refine the four loop exponent estimates of [40]. We achieve this by employing two resummation
methods that on the whole produce numerical values that are generally mutually compatible with the more recent
conformal bootstrap values. Our summation methods will allow us to construct an approximation to the d-dimensional
structure of the respective exponents between two and four dimensions from which we extract their values in three
dimensions.

While the graphene application has clearly more general interest, we will consider other values of N. For instance
in the GNY class the N = 1 critical exponents describe the semi-metal to insulator transition for a spinless system.
Although previous activity on this substance is not as extensive as that of graphene, we find a degree of convergence
of the perturbative estimates as well as consensual agreement with other techniques. However in order to try and
understand some of the subtleties of our resummation analysis the case of N = 5 is also considered for comparison
with other approaches. Indeed it appears that exponent estimates in the general GNY class do agree more precisely as
N increases hinting that the situation with lower N exponents would perhaps stabilize were higher loop order data
available.

The article is organized as follows. We describe the salient aspects of the underlying GNY theory Lagrangian in
Section II including our conventions and Feynman rules before summarizing the technicalities behind the extension of



previous results to five loops. The outcome of our computations is recorded in Section III where the two S-functions
and field anomalous dimensions are presented as well as the anomalous dimension of the scalar field mass operator. As
a derivative goal of the five loop work is to establish critical exponents estimates for three dimensional materials we
discuss the derivation of the € expansion for the relevant ones in Section IV. Section V is devoted to establishing and
analysing exponent estimates for several values of IV using two main resummation methods as well as a comparison of
where these new values sit in relation to results from non-perturbation theory techniques. Concluding remarks are
provided in Section VI ahead of Appendix A and B. The former Appendix details the non-trivial consistency check
of the perturbative e expansion of the exponents of Sections III and IV with the same expansion of the exponents
evaluated in the large N approximation. The latter Appendix records the four loop € expansion of the GN model
exponents in the same conventions used in this article.

II. GNY MODEL AND METHOD

We begin by recalling the structure of the basic GNY theory that we renormalize at five loops. The Lagrangian in
d = 4 — € Euclidean spacetime dimensions expressed in terms of renormalized quantities is

- e - 1
L= Zy 0 + Zyguyn® 00 + S $(Zgem® — Zs07)6 + Zy M, (1)

where ¢ is a real scalar and 1 a multiplet of N Dirac fermions. For orientation with other perturbative computations in
the GNY model we will follow the notation used in [39]. As we will employ dimensional regularization throughout the
scale p is introduced to ensure the coupling constants y and A are dimensionless in the regularized Lagrangian. Aside
from the underlying O(N) symmetry of the fermion multiplet the Lagrangian possesses a discrete chiral symmetry

v oY, o — Yyt (2)

We use the short-hand notation ¢ = ¢;v; with four-dimensional Euclidean Dirac matrices fulfilling {v;,v;} = 20;;14.
Treating the boson mass m as a small perturbation we obtain the following Feynman rules:
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To determine the four renormalization constants Zy, Zg, Zgs and Z,,, we respectively consider the fermion and boson
self-energies, the truncated four-boson vertex and the truncated fermion-boson vertex. The remaining renormalization
constant, Z,2, is extracted from the O(m?) contributions to the boson propagator, setting m = 0 everywhere else. We
use QGRAF [48] to generate the Feynman diagrams to five-loop order.

The subsequent stage is to isolate the ultraviolet divergences by introducing an auxiliary mass M [49-51], which is
independent of the boson mass m. This is achieved by adding a term %Z w2 M?$? to the Lagrangian in equation (1).
Next, we turn the Feynman rules for the propagators D, c.f. equations (3) and (4), into iterative equations of the form

D =Dy(1 - Dy '6ZD), (8)



where Dy = ZD is the bare tree-level propagator and Z = Z — 1. We then introduce the auxiliary mass M in the
denominator of the Dy prefactor. The resulting propagator Feynman rules read:
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With this we expand the fermion self-energy to linear order in the external momentum and the O(m°) contributions
to the boson self-energy to quadratic order. In the O(m?) contributions and in the vertices we directly set the external
momenta to zero.

With two mass scales, m and M one might, in principle, expect tadpole contributions to arise. While they are
scaleless in the original formulation with m — 0, this is no longer the case after introducing the auxiliary mass M.
However, the sum of degrees of all vertices forming a tadpole has to be odd, implying that the number of boson-fermion
vertices is odd. Since all fermion loops inside the tadpole are closed, at least one of them has an odd number of fermion
propagators. As the auxiliary mass only occurs in the denominators of the fermion propagators, the trace for this loop
and therefore the whole tadpole vanishes.

Having summarized the algorithm that produces infrared regularized Feynman graphs, we use FORM [52, 53] to
insert the Feynman rules and expand the integrals in the external momentum. With the help of custom code [54]
based on nauty and Traces [55] we identify the resulting 3425333 scalar integrals with four five-loop integral families
of massive vacuum diagrams, depicted in Figure 1.
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FIG. 1. There are four distinct fully massive five-loop vacuum-type integral sectors with 12 propagators. All our integrals can be
mapped onto these (or their sub-sectors that result after contracting a subset of propagator lines) after performing the infrared
regularization as explained in the text.

To reduce the scalar integrals to a small set of 110 basis integrals we use Laporta’s algorithm [56] as implemented in
our custom codes crusher [57] and tinbox [58]. Exploiting integration-by-parts identities [59, 60], we obtain large
systems of linear equations, which we solve via finite-field reconstruction techniques [61-65].

To complete the reduction and map all results onto the minimal set of 110 fully massive vacuum master integrals,
we employ another in-house code Spades [66] which is again based on integration by parts relations and the Laporta
algorithm. This set of 5-loop masters had been evaluated previously to very high numerical precision [66-68], using
difference equations [56] and employing Fermat [69] for fast polynomial algebra. The corresponding numerical results
satisfy a large number of internal consistency checks, and have already contributed to various projects [70-73] and
hence can be regarded as reliable. We note once more that, although our high-precision numerical results exclude
the 12-propagator top-level families shown in Figure 1, for the renormalization constants those contribute only in
three particular linear combinations. It had been observed before that those combinations can be fixed by requiring
consistent pole cancellations in renormalization as well as the absence of certain combinations of group factors, as
explained in detail in [71]; see also [72]. The same mechanism is at play in our present calculation, such that we can
finally employ PSLQ [74] and express all our results in terms of zeta values only.

We close this section by recalling the connection of (1) with the GN model of [8] which has the two dimensional
Euclidean Lagrangian

£ON = v+ hotw + L6 (1)

where h is the coupling constant. Renormalization constants have been suppressed to avoid confusion with those of
the four dimensional Lagrangian. The ¢ field now plays the role of an auxiliary field in two dimensions. Eliminating it
from (11) produces a quartic fermion interaction leading to an asympotically free theory. However it is the shared
scalar-Yukawa interaction of (1) and (11) that drives the Wilson-Fisher critical point equivalence of both theories
between two and four dimensions. The GN Lagrangian also obeys the same discrete chiral symmetry as (2).



III. RESULTS

Having described the field theory side of our computation to effect the full five loop renormalization we record
the results of our mammoth calculation in this section. The five renormalization constants are translated into the
renormalization group functions using standard methods and our expressions have been determined in the MS scheme.

A. [ functions

First we record the two S-functions which are defined by
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and we will suppress the arguments A and y throughout this section. To ease the presentation of the results we have
chosen to give the coefficients of each loop order separately by defining
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where ¢, is the Riemann zeta-function. Equally for 3, we find
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B. Anomalous dimensions

For the field anomalous dimensions we define
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Finally for the scalar mass operator we have
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With such a colossal computation it is important to outline the independent checks we carried out to ensure the
veracity of the five loop contributions.

First the non-simple poles in € of all the new five loop renormalizations constants pass the check that they are all
pre-determined by the simple poles of the lower loop companions due to the basic property of the renormalization
group equation.

A second check is established on the computation algorithm at five loops by realizing that setting y = 0 in (1) produces
a Lagrangian with N free fermions and scalar ¢* theory. Therefore taking the same limit in the renormalization group
functions the expressions for 74, 742 and ) should be equivalent to the direct evaluation of these renormalization
group functions to five loops given in, for example, [5, 75, 76]. It is reassuring to note that this check is also satisfied
after observing that A has to be rescaled by a factor that ensures the same normalization of the quartic interaction is
used in the comparison.



The final check we have undertaken is to compare the critical exponents derived from the renormalization group
functions at the Wilson-Fisher fixed point with the same quantities but evaluated in the large N expansion. The
latter exponents are available to several orders in powers of 1/N with the relevant ones for this check computed in
[31, 33-36, 77, 78]. At criticality the exponents depend on two variables which are e and N. Carrying out a double
Taylor expansion of the large N exponents in powers of € and 1/N produces expressions which overlap with O(€®)
perturbatively determined exponents when these are equally expanded in large N. Moreover this check provides a
test of the five loop results for non-zero y. In summarizing this procedure we note that fuller details are provided for
completeness in Appendix A and record that full consistency was satisfyingly found.

IV. CRITICAL EXPONENTS FOR N = 2

Having constructed the full renormalization group equations for the GNY model the next step is to derive the core
critical exponents at the Wilson-Fisher fixed point in d = 4 — € dimensions. Therefore we have first solved (13) for the
critical couplings y* and A\* as power series in € to O(€®). These values are then substituted into vy, (A, ), 76(\, y)
and 7v42(A,y) to determine the respective e expansions of 1y (€), 15(€) and 742(€). We have carried this out for a
general value of N. As y and A\ appear in 63(,1) and [3/(\1) in a coupled way the critical couplings will involve the quantity
V/(AN2 + 132N +9), [17], which evaluates to 17 when N = 2 but leads to cumbersome expressions for arbitrary N
aside, for example, for N = 3 and 9 when integer values also occur. Therefore we have provided them and results in
[79]. However as one of our main interests is the case of N = 2 we will record the exponents for this value partly for
our subsequent analysis but also because the N dependent square root then reduces to an integer. For the two fields
their anomalous dimensions are

Ll T (232695 18 N (150 27 11100323 111266497289 )
= 14T 10584 158696496 2401 >° 16807 " 4802°* " 555437736 °°  11557548410688
| _SO2T93622179328T7 1905116200933 136650473 . 5643 2004 ,
11783983899150199296  377546581415808 °  2744515872°°  537824°7 8235433
375 11109323\ & ]
T 3361250 T 740583648C4>6 + 0(€)
(21)
and
4 109, 1IT025 144 N o (20091307339 108 1200 1563532 Y
o= 77T 3g2° 26449416 2401°% )€ 481564517112 2401 T 16807°° " 23143239°% )€
B20TOSIITSTITASS 1237285035017  GOSTSOST . 15885 , 5643 (22)
981998658262516608 3146221517984 > 228709656 °° 8235433 ~ 672287
1500 300883\ - .
() .
T Tes07%0 T 7714413C4>6 + 0(e)
Equally the scalar field mass operator exponent is
_ 8 2042, 88644920 144404 _\ 4
Mo* = T 51T 92491 °¢ 2547960408 1102059 )€
1830360272219 36101 . 155735 1707335624 ) 4
_ “ €
835032872672208 367353 ' 1361367 " | 20065188213 > )
3531904200162553649 6505866583 | 24305430575 , 4421707819105
9212848209178400474784 16524272646 > 3277314074793 T 6819435126823032
778675 8001521 426833906\ - .
5145468 T 13714512°7 6688396071<4>€ + o).

While 742 is an exponent that is not ordinarily determined experimentally, it is required as an intermediate step to the
one that is measured which is 1/v and derived from the scaling law

1
S =2 et omge (24)
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Therefore we have
1 20 325 ( 36133009 78308 ¢ >e3
3

v C T 21T 14082°¢
( 58535 19577 351753380 17228234202607 ) .y
€

Z—9_ == _ _
€t 3821940612 1102059

1361367<5 367353 Gt 20065188213 835032872672208
13685649343350298579 5916014759 30626922980
(_ 851392836713601899136 66097090584C5 * 327731407479
292675 9152693 87938345
5445468 *° + 13714512°" + 6688396071

(25)
1249594437836159

2
C3'J“27277740507292128

G

<) + o)

which completes the set of core exponents that are required for our three dimensional analysis.

In addition we have determined the O(e%) correction to scaling exponents which are denoted by w4 and are required
as part of our check with the large NV exponents. They are calculated from the gradients of the S-functions at criticality.
In particular these are encoded in a 2 x 2 matrix

% B B B
U oy O\ _ 11 P12
P = <%‘*} %)= (5 5) (26)

which is then evaluated at y* and A*. The final stage is to construct the € expansion of the two perturbative eigenvalues
of B;; which correspond to w4. In order to make a point of connection of our perturbative expressions for w+ with the
earlier large N conventions of [78] we are required to take

1 1
wx =5 (B11 + B22) F 5\/[(511 — B22)? + 4812521] (27)
as the appropriate definitions. This leads to the two critical exponents

o — HG L ATT25 , 25651541920 n 1219592C e
T 8599366377 367353

77 22491°¢
(<_ 45263181593447273 22241763116 . 2298610 . 304898 ) A

7515205854049872 2866455459 °> 151263 °° | 122451 )€
5560440779 186794373160 ., 4733999225077 . 253430775397933345
('_ 955185153 T 36414600831 ** T 99145635876 > T 13638870253616064
621984099876566907846887 5746525 1467290683  \ 5 .
15075213182534502553344 302526 °° T 20571768 <7>6 + O()

(28)

and

Ww_ =€ —

5933 2 165¢3 6685099 A3
1512 686 34006392
(495@1 61742201¢3 19055 11065294400875) oA

2744 79348248 4802 59438820397824

_ 9525¢¢  61742201¢4 n 195609¢32 n 60312023254291¢5 = 473424095¢5 ~ 46467(7
19208 105797664 941192 93935225916544 196036848 76832

(29)

10290966679190176397 e 1 O
45452509325293625856 '

The mismatch in the respective leading order coefficients in (29) is due to the € term of w_ being N independent unlike
that of wy. In relation to previous work we note that w_ was denoted by w in [39] whereas w, corresponds to w’ of
the same article. Indeed it was noted in [39] that the large N expansion of the former perturbative eigen-exponent
agreed with the e dependence of the O(1/N) exponent directly determined in [77]. The large N expressions for wy at
O(1/N?) appeared subsequently in [78].

V. ANALYSIS

Having constructed the five loop renormalization group functions our aim in this section is to produce refined
estimates for critical exponents in three dimensions for several values of N that correspond to phase transitions in a
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variety of physical applications. For instance the critical exponents for N = 2 relate to the semi-metal CDW (charge
density wave) phase transition of electrons in graphene [15] while the same transition for the spinless fermions on a
honeycomb lattice is described by the N = 1 GNY universality class. While both these cases are of physical interest we
will also analyse N = 5 since there are conformal bootstrap estimates available in [28]. We use this as a guidepost on
the reliability of the resummation techniques we employ. Although the GN and GNY Lagrangians are renormalizable
in two and four dimensions respectively since the models of physical interest are in three dimensions we have to
translate the five loop 4 — € exponents to three dimensions. Naively setting ¢ = 1 is problematic on several grounds.
For instance when N = 2 the numerical evaluation of the exponents gives

ng = 0.071429¢ — 0.006708¢% — 0.024341€ + 0.017584¢* — 0.051782¢° + O(e%)

ng = 0.571429¢ + 0.123583¢? — 0.027849¢> + 0.149112¢* — 0.296922¢° + O(¢%)

1
~ =2 - 0.952381¢ + 0.007225¢2 — 0.094868¢> — 0.012653¢* + 0.823067¢> + O(€%) (30)

where it is evident that the O(e%) terms are the same order of magnitude as the O(¢) coefficients, unlike the intervening
ones, meaning that the series convergence for € = 1 could be questionable. To gauge the situation we have constructed
a set of estimates using [m/n| Padé approximants which are recorded in Table I for N = 2. Padé estimates were not
possible for all choices at four loops. Cases where the approximant was not continuous from four dimensions to below
three dimensions due, for instance, to poles in the range were excluded. The two continuous Padé estimates at four
loops are in reasonable accord. At five loops the [1/4] values for 7y, 14 and w_ are significantly distant from the other
three approximants which is probably related to the fact that they each begin with €. For both 7,4 and w_ the other
five loop estimates are commensurate with the four loop ones. We note that a Monte Carlo estimate for w_ of 0.8(1)
was provided in [22]. For 1/v there is more than a 10% difference from the lowest to the highest value which could be
a reflection that the five loop term of 1/v is around the same size as that at one loop with the intermediate values an
order of magnitude or more smaller. For 7, there appears to be a divergence of values for the three main approximants
meaning that there is no real consensus for an estimate at five loops using this canonical Padé analysis.

N = 2 N N 1/v w—
[2/2] 0.0539 | 0.7079 | 0.931 0.794
3/1] | 0.0506 | 0.6906 | 0.945 | 0.777
[1/4] || 0.03457 | 0.4642 | 1.067 | — 1.242
[2/3] 0.05065 | 0.7251 [0.91917| 0.7876
3/2] | 0.02044 | 0.7291 | 1.039 | 0.7870
[4/1] || 0.04484 | 0.7170 | 0.9598 | 0.7882

TABLE 1. L loop [m/n] Padé critical exponent estimates in d = 3 where L = m + n.

In order to gauge where these naive Padé and later estimates sit from an overall point of view we have provided a
compendium of results from other methods in Table II. The entries are listed in chronological order beginning with
large N estimates where three terms of each exponent are known in d-dimensions in a 1/N expansion. By this we
mean 7, and 1/v have been computed to O(1/N?) as each canonical term is non-zero and 7y, is available at O(1/N3)
since there is no O(1) term. The large N estimates should be regarded as being within the same general framework
as perturbation theory which includes the three sets of four loop estimates from [40]. For 7, there appears to be
consistent agreement with results from more recent methods such as the conformal bootstrap results of [29] and [30]
which represent the highest precision to date with that method. The four loop naive two dimensional Padé estimates in
Table II are the analogues of (30) and the estimates of Table I with the explicit numerical two dimensional e expansions
given in (B2). The [4/1] Padé estimate of Table I is compatible with the four loop 7y, values of Table II. The various
perturbative estimates for 7, in Table II are not far out of line with [29] although the four loop approximants of
Table IT are around 2% lower. For the 1/v Padé estimates the picture is not as concrete in relation to Table II. Given
the degree of consistent estimates of the four loop two-sided Padé and interpolating polynomial estimates with the
most recent conformal bootstrap values of [29] it would seem appropriate to extend that analysis with the new four
dimensional four loop data.

The basic idea behind the two-sided Padé and interpolating polynomial methods is that of ultraviolet completion.
As the spacetime dimension of interest lies between two theories of the same universality class which are the two
dimensional GN and the four dimensional GNY models one can construct a function of d such that the € expansion of
the function near two and four dimensions equate to the e expansion of one of the exponents 7y, 14 and 1/v. Once
constructed the function of d is evaluated for d = 3. First we focus on the two-sided Padé estimate which was used in



Method and source Mo Ne 1/v

Large N [17, 31-36] 0.044 0.743 0.952

Monte Carlo [17] S 0.754(8) | 1.00(4)

Monte Carlo [18] 0.38(1) 0.62(1) 1.20(1)

Functional renormalization group [25] 0.032 0.760 0.982

Functional renormalization group [25] 0.033 0.767 0.978

Functional renormalization group [25] 0.032 0.756 0.982
Functional renormalization group [26] 0.0276 0.7765 0.994(2)

Four loop d = 2 naive Padé [37] 0.082 0.745 0.931

Three loop d = 4 naive Padé [38] 0.0740 0.672 1.048

Conformal bootstrap [28] 0.044 0.742 0.880

Monte Carlo [20] — 0.65(3) 1.2(1)

Monte Carlo [21] — 0.54(6) 1.14(2)

Four loop d = 4 naive Padé [39] 0.0539 0.7079 0.931

Four loop d = 4 naive Padé [39] 0.0506 0.6906 0.945

Four loop two-sided Padé [40] 0.042 0.735 1.004

Four loop interpolating polynomial [40] 0.043 0.731 0.982
Four loop Padé-Borel [40] 0.043(12) 0.704(15) | 0.993(27)

Monte Carlo [22] 0.05(2) 0.59(2) 1.0(1)
Conformal bootstrap [29] 0.04238(11) | 0.7320(27) | 0.998(12)
Monte Carlo [24] 0.043(12) 0.72(6) 1.07(12)
Conformal bootstrap [30] — 0.7339(26) | 0.998(12)

Functional renormalization group [27] 0.032 0.760 0.982

12

TABLE II. Summary of previous exponent estimates for N = 2.

[40] for instance. Its general definition is

E;n:() apd?

P[m/n] (d) = W

(31)

where the choice of unity for the denominator polynomial corresponds to a normalization. This means that like the
canonical Padé approximant the number of possible estimates increases with loop order. What is different here is that
there are more available data to determine the parameters {a,} and {b,}. In particular taking a generic d-dimensional
exponent 7(d) its e expansions around the respective critical dimensions are

n2+e) =Y Pt pla—e = > piPem. (32)
n=0 n=0

where for instance n(()g) and 77%2) are both zero for 1. So amalgamating the known four loop GN model exponents with

the five loop GNY ones means that 11 parameters are available to find the {a,} and {b,} values. More generally if the
exponent series for each critical dimension are known to L loops then 2(L + 1) coeflicients are available leading in
principle to 2(L + 1) possible approximants which are P, 2741-m)(d) where 0 < m < 2L + 1. Like [40] we will follow
the convention that only the diagonal approximants, Pz, /r11)(d) and P11 /r)(d), are reliable and construct estimates
for those. As noted in [40] continuity of each Py, ,)(d) in 2 < d < 4 is not guaranteed.

The second technique we will examine is that of using an interpolating polynomial [40]. Instead of constructing
a d-dependent rational polynomial a canonical polynomial is constructed where the coefficients are fixed from both
€ expansions of a critical exponent. More particularly the polynomial is expressed in powers of (d — 2) so that the
coefficients of the initial terms of the polynomial are given by those of the GN model. Then the higher order coefficients
are determined from the e expansion of the GNY theory in d = 4 — e dimensions. Specifically

i itj+1
Tiz(d) = Z S (d—2)" + Z cn(d—2)" (33)

m=0 n=1+1
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Padé | na ns 1w R e -
/2] || —— | o0.786885 | 1.012048 D - e [v
o | —— | 0812500 | 1.000000 1,1 || 0.017857 | 0.809524 | 1.011905
o3| — |omseiss| — [1,2] || 0.034037 | 0.774943 | 1.025616
/2] || o.ots030 | 0752752 | 2,2] || 0.033636 | 0.753047 | 0.994951
/1 || 0.038780 | 0101041 | 2,3 || 0.036652 | 0.746200 | 1.003792
w3 || o.0donsa | 0727708 | 3,3 || 0.038991 | 0.731170 | 0.976204
3 | oosas | aroars | aarsae B4 | oowors | orests | oseos
[5/4] || 0.041742 | 0.734696 | 1.004079 15 || 001117 | 0.730924 | 1010424
[5/5] || 0.041418 | 0.734530 | 1.021288 ’ ' ' '

TABLE IV. Interpolating polynomial Zj; ;1(3) ex-

TABLE III. Two-sided Padé exponent estimates ponent estimates for N = 2.

Plmyn)(3) for N = 2.

defines the interpolating polynomial [40] where the {¢,} are deduced from the condition that expanding around
d = 4 — e reproduces the known coefficient of the same exponent. It is worth noting that if instead Zj; j1(d) was defined
as a series in (d — 4) then the same polynomial in d would ultimately be produced. One advantage of using Zj; ;(d) is
that the function is continuous and cannot be singular unlike Pp;/;(d). While this means a large number of estimates
can be produced for each exponent from the ranges 1 < i < 4 and 1 < j < 5 we will focus on the estimates Tip1) (d)
and Zjp, 141 (d) at L loops. The former is the natural choice as loop order increases but we include the latter in the
analysis in order to see if any pattern is present when there is a mismatch in the number of terms available in the e
expansion in the respective critical dimensions. For both polynomial constructions we have solved for the respective
unknown parameters in terms of the generic known coefficients of the respective series of (32). This allowed us to
construct procedures, as functions of the generic coefficients n,(f) and n7(14), in the computer algebra package Reduce.

Consequently evaluating the procedures with the explicit coefficients for a particular value of N allows us to quickly
determine estimates. We chose not to construct explicit N-dependent expressions as they would be singular at N = Z.

0.046+
0.041 0.045
0.044
0.031
0.043-
*
0.02- 0-0429
0.041-
0.017 0.0404
0.039
o . : . \ ;
2 2.5 3 3.5 4 2.98
d
[3/2]-- -+ [3/41— —[4/3] [4/5]— = [5/4] [3/2]- -~ [3/41— -—[4/3] [4/51— - —[5/4]
[5/5] [5/51
N=2n_wy N=2n_wy

FIG. 2. Two-sided Padé approximants for 7y with N = 2 in 2 < d < 4 (left panel) and 2.98 < d < 3.02 (right panel)

A. Graphene case N = 2

Having summarized the two techniques employed to obtain exponent estimates we now focus on three particular
cases. The first concerns the CDW transition in graphene [15] corresponding to the value of N = 2. Estimates for the
two-sided Padé and interpolating polynomial are presented in Tables III and IV respectively. The two-sided Padé
approximants for 74 were free from poles while those for 1, were continuous for both approximations from three loops.
For 1/v reliable estimates did not appear until four and five loops. In this case comparing with latest conformal
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bootstrap estimates recorded in the last two lines of Table II the [5/5] value lies two o from the central value whereas
that for [5/4] is within one o. Including two dimensional five loop information for [5/6] and [6, 5] may mean they are
accommodated within the bootstrap uncertainty. This is partly confirmed from the behaviour of ng4 as its estimates
clearly progress with loop order to values within both bootstrap uncertainties. For 7, its progression is not as settled in
comparison with the bootstrap. However we note that as the ultimate value is generally accepted as small this means
it is difficult to precisely measure which is partially reflected in the range of values in Table II. For the interpolating
polynomial estimates of Table IV we recall the L loop estimates correspond to Zjr, ). While the four loops values were
computed in [40] these were prior to [29, 30]. So it is worth commenting on the estimates in relation to that more
recent work. For both 1/v and 74 their [4, 4] values are on the edge of both bootstrap uncertainties. Interestingly that
for ny is also on the periphery of the estimate of [29]. We included Zjz, 741](3) estimates for each loop to gauge the
effect of adding in five loop information. For [4,5] 1/v is on the upper edge of the bootstrap uncertainty whereas 7y is
within that of [29]. For 7, the situation is not as clear being 3% different from the bootstrap value in contrast to the
0.5% difference of the [4, 4] value.

While the tables indicate the numerical estimates with the increase of loop order it is more instructive to appreciate
the consequences graphically. Therefore we have provided a set of plots for the two-sided Padé approximants in Figures
2, 3 and 4 with the analogous plots for the interpolating polynomial approach given in Figures 5, 6 and 7. In each figure
the plot on the left side represents the d-dimensional estimate of the exponent in the full range 2 < d < 4 whereas on
each right hand side we focus on the same plot but where d lies between 2.98 and 3.02. This is because for 14 and 1/v
the lines are virtually indistinguishable in the full range. In addition we include a point in three dimensions which is
the conformal bootstrap estimate of [29]. The error bars are included for each of these points. However in the case of
71y they are relatively small compared to the actual point in the plots even in those focussed on the neighbourhood
of three dimensions. For plots of the Padé approximants we included those for [3/2] and higher loops for 7y and 74
but illustrated all five continuous and pole free ones for 1/v. In the interpolating polynomial plots we present the
behaviour of Z;y, 11(d) as well as Zj4 5(d). In all of the plots the solid line corresponds to the case where five loop
information has been included.

In general terms from the structure of the d-dimensional behaviour of the exponents using both techniques it is
clear that as loop order increases there is at least qualitative convergence to expected properties. For instance 1 is a
free field in both the GN model and GNY theory meaning that 7, in d-dimensions has to have a turning point. In
Figure 2 the absence of the low loop approximants should not cloud the comparison with Figure 5 which includes
the one and two loop polynomials with these corresponding to the lower two of the five lines. The higher loop plots
in that case suggest there is oscillatory convergence towards the conformal bootstrap point which is more apparent
in the focussed plot in Figure 5. Moreover there is no symmetry of the shape of the plots around three dimensions
for either method as expected. For instance the tangents to 7, at two and four dimensions have different slopes.
In the neighbourhood of two dimensions 7, is quadratic. Near four dimensions the gradient has to be negative for
instance since 7y, extends beyond four dimensions towards the fermionic theory in six dimensions that is the ultraviolet
extension of the GNY theory. For the theory in that higher dimension ¢ will also be a free field. In principle if the
renormalization group functions of its Lagrangian were available then additional information could be included in the

0.77
0.76
0.757
0.74
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0.70A

0.69
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— - —15/4] [5/5]1 — - —[5/4] [5/5]1
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FIG. 3. Two-sided Padé approximants for g with N = 2in 2 < d < 4 (left panel) and 2.98 < d < 3.02 (right panel)
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FIG. 4. Two-sided Padé approximants for 1/v with N = 2 in 2 < d < 4 (left panel) and 2.98 < d < 3.02 (right panel)
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FIG. 5. Interpolating polynomials for 7y with N = 2 in 2 < d < 4 (left panel) and 2.98 < d < 3.02 (right panel)

Padé and interpolating polynomial analyses. Although it is not clear if there would be a significant change in our
three dimensional estimates. If one considers the gradient of the tangent to 7, in the region 3.5 < d < 3.9 in Figures
2 and 5 and then extrapolate its trajectory to estimate a value in three dimensions it is evident that it will exceed
the exponent estimates. Repeating this exercise for the tangent in the range 2.3 to 2.6 then a similar overestimate
will result. This in effect lies behind the overshoot of 1, estimates given from the four dimensional one-sided [2/3]
Padé value in Table I as well as the two dimensional equivalent in Table IT. The latter being larger than the former
overshoot is primarily driven by the tangent slopes in the regions either side of three dimensions. The behaviour of n4
and 1/v differs significantly from 7, as both are monotonic functions resulting from their two and four dimensional
values being different integers. Indeed the [2/1] Padé approximant for 1/v is precisely the straight line d — 2. The
plots of each of these exponents from the two techniques show very similar behaviour in that the small differences in
each approximation only become evident in the plots around three dimensions. For 74 the two highest loop order
approximations touch the conformal bootstrap error bar and both lines are virtually on top of each other. While it
is tempting to claim that there is good convergence that would have to wait until there is a five loop GN analysis.
For 1/v the comparison between both techniques is not as concrete. If one ignores the low loop plots of P /9)(d) and
P2/1)(d) in Figure 4 then the bootstrap point is bounded by Py/5)(d) and P54 (d). As Pps;5)(d) lies above P54 (d)
any five loop input from two dimensions to produce P56 (d) and P 5(d) would have to lie within the four loop
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FIG. 6. Interpolating polynomials for 74 with N = 2 in 2 < d < 4 (left panel) and 2.98 < d < 3.02 (right panel)

counterparts to point towards convergence near the value of [29]. By contrast in Figure 7 Z;3 3)(d) and Zj4 4)(d) appear
to be creeping towards the lower edge of the conformal bootstrap estimate but the Zj4 5)(d) curve overshoots. Again a
better understanding of the trend would require a full five loop comparison.

B. Other cases

Although the N = 2 GNY theory has a major physical application several other values of N are of interest and we
briefly summarize a similar analysis to that of graphene for N = 1 and 5. The former governs semi-metal transitions
for spinless fermions on a honeycomb lattice whereas we consider the latter case in order to compare with conformal
bootstrap and functional renormalization group results. First for NV = 1 we provide a summary of exponent estimates
from a variety of techniques in Table V. It has parallels to the N = 2 summary table in that estimates for 7, have
a wide range whereas there is mostly a better consensus for 14 and 1/v. Tables VI and VII record our two-sided
Padé and interpolating polynomial estimates. The former is more sparse than the graphene case which is due to poles
appearing in 2 < d < 4 with only one such instance occurring for ng4. The incompleteness of estimates for all three
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FIG. 7. Interpolating polynomials for 1/v with N = 2 in 2 < d < 4 (left panel) and 2.98 < d < 3.02 (right panel)
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Method and source Mo Ne 1/v
Large N [32-36] 0.1056 0.509 0.961
Four loop two-sided Padé [40] (0.086) (0.480) (0.961)
Four loop interpolating polynomial [40] 0.140 0.397 1.040
Four loop Padé-Borel [40] 0.102(12) 0.487(12) | 1.114(33)
Monte Carlo [19] 0.45(2) 1.30(5)
Functional renormalization group [26] 0.0654 0.5506 1.075(4)
Three loop d = 4 naive Padé [38] 0.102 0.463 1.166
Conformal bootstrap [28] 0.084 0.544 0.76
Monte Carlo [21] e 0.54(6) 1.14(2)
Four loop d = 4 naive Padé [39] 0.0976 0.4969 —
Four loop d = 4 naive Padé [39] 0.0972 0.4872 —
Four loop d = 4 naive Padé [39] — — 1.101
Monte Carlo [23] — 0.51(3) 1.124(13)
Conformal bootstrap [29] 0.08712(32) | 0.5155(30) | 1.101(10)
Conformal bootstrap [30] — 0.5156(30) | 1.101(10)

TABLE V. Summary of previous exponent estimates for N = 1.

exponents prevents any general convergence trends emerging. Instead all we can deduce is that there is a broad general
agreement with results provided in Table V. Although the interpolating polynomial method has by construction no
continuity problems the N = 1 estimates also do not show a convergence path. Only the higher loop estimates for 1/v
are within previous results of Table V. For ng the Zj; ;)(3) values are unsurprisingly more in line with other perturbative
results rather than conformal bootstrap, Monte Carlo and functional renormalization group techniques. It may be the
case that several more orders in perturbation theory would be required to obtain commensurate estimates.

Padé My N 1/v Pol = 1

/2] | —— |o0.615385 | 1043101 ynomiay e v
21 | — | 0625000 | 1.000000 [1,1] || 0.025000 | 0.600000 | 1.041320
2| — |oseisss| 1,2] | 0.052560 | 0.600613 | 1.081212
/2] ||0.107605| 0562831 | 2,2] || 0.079405 | 0.419057 | 0.988436
3/4] ||0.074744| 0.401109 | 0.922860 2,3] || 0.072515 | 0.489743 | 1.042067
/3] l0.000275| 0.479073 | —— 3,3 || 0.116265 | 0.371511 | 0.950413
/5] ||0.0os036| 0470788 | 3,4 || 0.097376 | 0.450625 | 1.005131
s | — | | ogstar [4,4] || 0.130895 | 0.307030 | 1.039686
71 | —— | 050700 | 1120413 14,5 || 0.111856 | 0.435192 | 1.072036

TABLE VII. Interpolating polynomial Zj; ;)(3) ex-

TABLE VI. Two-sided Padé exponent estimates ponent estimates for N = 1.

'P[m/n](S) for N = 1.

Turning to the case of N = 5 there has not been the same volume of activity to extract critical exponents both
analytically and numerically. This is reflected in the summary of the current situation in Table VIII. Unlike the N =1
case there is a greater general consensus as to the rough values of the three exponents. However all estimates employ
continuum field theory approaches as there are no results from lattice field theory or discrete models which would
produce Monte Carlo values. The results of our two-sided Padé and interpolating polynomial methods are displayed in
Tables IX and X respectively. For the former more approximants are continuous and pole free compared to N = 1
with a full set available for n4. From examining the singular Padé approximants for each of our three values of IV it is
generally the case that either a simple pole appears in 2 < d < 4 above two dimensions or there is a pair of poles in
the regions either side of three dimensions. Then by looking at the d dependence for the same approximants as N
increases the poles above two dimensions move towards the origin or evaporate. Equally where there is a simple pole
above three dimensions it translates towards six dimensions. We note that the absence of [3/4] and [5/4] approximants
for 1/v when N = 5 is due to the presence of a zero and simple pole which are located within 10~% or less of each
other. This was an unusual occurrence across all our Padé analyses. For the interpolating polynomial estimates there
were obviously no such hindrances and values listed in Table X show a converging trend for 7, and 7,. For 1/v there
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is a similar direction except that the final value increases indicating that a lower dimensional computation would be
needed to clarify the situation. Both techniques however show good consistency with the various estimates given in
Table VIII except for the 7, functional renormalization group value from [40].

Method and source N N 1/v
Large N [32-36] 0.0152 0.894 0.970
Conformal bootstrap [28] 0.016 0.888 0.97
Four loop two-sided Padé [40] 0.0151 0.893 0.9840
Four loop interpolating polynomial [40] 0.0150 0.893 0.9763
Four loop Padé-Borel [40] 0.0120(48) | 0.893(9) | 0.9580(75)
Functional renormalization group [40] 0.011 0.911 0.980

TABLE VIII. Summary of previous exponent estimates for N = 5.

Padé | e o 1y e :

/2] | —— | o0.906801 | 0.991323 oynoma Uiz UL [v
2/1] 0.925000 | 1.000000 [1,1] | 0.009615 | 0.914530 | 0.991247
2/3) 0'899023 0’990855 [1,2] 0.015642 | 0.896196 | 0.991156
3/2] /0.016010| 0.895482 | 0.989372 [2,2] || 0.013890 | 0.898567 | 0.986445
3/4] ||0.014678]| 0.889395 2,3] | 0.015018 | 0.892908 | 0.980349
i4/3] |[0.014680| 0.891326 | 0.980007 3,3] | 0.014535 | 0.893099 | 0.977654
[4/5] ||0.015218| 0.892547 | 0.976555 [3,4] || 0.015041 ) 0.893362 | 0.977896
i5/4] ||0.015055 0.892462 [4,4] | 0.015013 | 0.892816 | 0.976292
5/5] [l0.015070] 0.892288 | 0.970603 [4,5] | 0.015041 | 0.892008 | 0.980487

TABLE X. Interpolating polynomial Z; ;1(3) expo-

TABLE IX. Two-si Padé st S
wo-sided Padé exponent estimates nent estimates for N — 5.

Plmyn)(3) for N = 5.

VI. CONCLUSIONS

One of the main aims of our study was to establish the five loop renormalization group functions of the four
dimensional GNY model with a multiplet of N fermions. In achieving this level of accuracy we have been able to
apply the results to improve estimates of critical exponents for phase transitions in materials such as graphene by
using several summation approaches. These exploit the d-dimensional connection of the GN and GNY models that
guide the € expansion along a reliable path to three dimensions.

Previous lower loop results, [38-40], had shown an encouraging trend towards agreement with other methods such as
the functional renormalization group technology and the conformal bootstrap approach. In the last few years improved
bootstrap exponents have become available, [29, 30], so that it was necessary to move the perturbative analysis to the
next loop order. The first phase of this has now been completed here with updated two-sided Padé approximant and
interpolating polynomial constructions in d-dimensions. The second phase would require five loop GN renormalization
group functions to fully refine the new dimension four based analysis carried out here.

In respect of that the general picture for N = 2 appears to be similar to the conclusions of the four loop analysis of
[40] in that there is reasonable agreement with the latest bootstrap exponent estimates. For instance for 74 and to a
slightly lesser degree 1/v the estimates are on the edge of the uncertainty bands of [29, 30]. The situation with 7, is
harder to pin down given that its value is small being of the magnitude of a few hundredths. Despite this our two
perturbative summations, especially the interpolating polynomial one, are edging closer to the latest n, conformal
bootstrap value. This is an encouraging motivation to complete the five loop analysis of the universality class started
here by renormalizing the GN model to the same order.

Data Availability Statement. The data that support the findings of this article are openly available [79].
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Appendix A: Large N critical exponents

In order to carry out the large N check of the exponents by comparing with those derived from the five loop results,
we record the explicit expressions for the relevant large N critical exponents. These have been determined in d = 2u
dimensions in a variety of articles. For instance the fermion anomalous dimension is available to O(1/N?3) [31, 33, 36]
being given by

_m (L 1 1 3 4 (2u—1) - n
vt (G T T T T m s e W) 3
(1_9_7_ 5 3 5L 19 9 . 15 1§
20 2 2p Ap-1* (k=13 Ap-1)2 4k-1) (p—2)% 4p-2) (2p-3)?
52 5 3 12 27 1\ 32 ..
_m ‘u+<6+4('u_1)2_(M_1)+(M_2)+2(2M_3)+4M>@(ﬂ)+(u_1)‘1/(ﬂ)@(ﬂ)
3 3 1 2 22 27 48 . B2 _
i <2u2+(u—1)3+(u—1)2(u—1)+(u—2)+(2u—3)“)W(“Hz(u—l)“(“)@(“)
— 12 . . 3
sy (200 +99°00) ) 55+ 0 () (A1)
where [31, 80]
- I'@2p—1) (42)

2l ()T (e — DT (L —p)

The expressions for 7y, and the remaining exponents are recorded with the four dimensional spinor trace convention
for consistency although several of the original results were constructed in relation to the two dimensional GN model
convention. We have introduced the shorthand notation

V() = 0(2p=3) — (1) + $B—p) = v(u-1)

b(p) =9'(2p=3) = V'B-p) — V(-1 + 1)

O(u) =v'(p—1) — ¥'(1) (A3)
where the € expansion of each function near four dimensions involves ¢, only. At O(1/N?) the function =(u) appears

which is related to a specific two loop Feynman integral introduced in [81] and given in equation (4.13) of [36] in
relation to the GN universality class. When 1 = 2 — 1¢ then the combination Z(u)© () has the expansion

()6(n) = 2se + (;cg bl 245) et (;Cs - DGt Gt s+ Zc%) &

(1]

5 121 1 1 1 15 4
+ (24(6 - a@r + 6(5 + §C4 + ECS + 16C3C4> €

9 577 1. 5 1 1 1.9 . ]
+ <8OC5,3 %CS + §C7 + ZSC(S + ECS + 17344 + ﬂCB + 8<3<5) e + O(€) (A4)
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which was deduced from the discussion given in [82, 83] and (5 3 is a multiple zeta. The critical exponent relating to
the scalar field is, [34, 35],

_ 2(2p — 1) m
ne =4 — 2u— Wﬁ
L5 mowm s e gm0 N
+(6 PR ) TS R 7 y Rl i) R i | R e R R VR )>N2

Lo (;) (A5)

at O(1/N?) while the dimension of its mass operator is, [34, 35],

<(u 7 A e R Rk iyl i R i) LR
- 3“z£2f21)_(i1_“$8>é(u) - <38+ v iol)Q + (u1—41) G 342)2 + (M8_02) + 8+ 8M2> U(p)
- I (o) + 020) ) 2+ 05 (46)

The remaining two exponents, wy, correspond to the eigen-anomalous dimensions of the matrix of critical S-function
slopes f3;; discussed earlier. These were computed at O(1/N?) in the large N expansion in [78], where the subtlety of
mixing at the large N critical point was discussed, extending the leading order expression for w_ given in [77]. Although
the d-dimensional O(1/N?) exponents were given implicitly in [78] we record the full expressions here partly for future
reference but also to ensure our trace conventions are consistent in checking large IV results with the perturbative e
expansion for all exponents. We have

42p—1)Br—1)m

2 38 394 1106 48 96 1056 800 9
*(24“ 1P -7 -1 -2 22 -2 " u—s T
- 124 56 68 144 480 )\ -
e P G G e ey e ) )
5407 (20% = T +4) 4 2417 (20— 3) (4 < i 1
Dy O gy (R (“))) v O (N) (A7)
and
B 1= —2)m
w__4—2,u+ (M_l) N
19 9 1 39 20 54 18 32
*(88+ R A e v i A R i Rl i R
C2(2p = 3)(2p® —6p” + 11 —9) | 3u(4p® — 14p° + 160 — 9)(:)( )
(1) —2)(u— 3)m (1) :
14 20 36 N\ i 1
+ <24— TR T R T = ) xp(u)) s+ O<N3> . (AS8)

If we expand each exponent in powers of € near four dimensions and compare with the corresponding exponents from
the explicit five loop computation we find total agreement to the above respective orders in 1/N. Essential for the ny,

check at four and five loops at O(1/N3) were the O(e3) and higher terms of Z(1)O () in (A4). For completeness and
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for future higher order computations we note the € expansion for 7, is
(1 3, 3 £ 3 3 9 3 6
W= (46 16°  64° ( G 256) ( G @ 1024) (64C5 2564~ C“ 4096)
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where the multiple zeta (5 3 first appears at O(€®) in the third order large N term. For the remaining exponents the

analogous expansions are
ng =€+ (—264— ge + % + <11298 - C3> (?)72(3 + 53% - ??2@) e+ (128<3 + 218C + % - ;2(5> b
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Finally the two corrections to scaling exponents are
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where the O(e?) terms of wy were provided in [78]. We note that the leading terms of both w. are the same unlike
their N = 2 perturbative counterparts in (28) and (29). This is because while the leading € term of (28) is solely € the

/(AN2+132N+9)

coefficient of the corresponding term (29) is N dependent being in particular @NT3)
after adjusting for the different N convention. Clearly this tends to unity as N — oo.

as can be seen in [17]

Appendix B: Gross-Neveu model critical exponents

For completeness we record the four loop O(N) GN critical exponents here in the same conventions as the GNY
theory. From [37] we have

_ @AN-1) , (@N-3)4N-1) (4N — 1)(16N? — 44N + 25)
T8RN —1)2° T T 16(2N —1)3 €+ 128(2N — 1) t o)
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AN — 1)(4(8N? + 14N — 21)¢3 — 16N? + 36N + 5
+ ( )( ( + 64(2N_)f)34 + + )64 + 0(65)

B 1 (4N — 3) (4N — 1)(N +3) + 3(22N — 17)C3)

v ¢ 2@N-— 1)62 T 8(aN — 1)263 8(2N — 1) ¢+ 0() (B1)

in d = 2 + € dimensions. Numerically for N = 2 these equate to

Ny = 0.097222¢> — 0.016204¢> + 0.000675¢* + O(°)
ne = 2.000000 — 1.333333¢ — 0.194444€> + 0.129630€®> + 0.270765¢* + O(e°)

1
— = 1.000000¢ — 0.166667¢> — 0.069444€> + 0.612808€¢* + O(€%) . (B2)

The situation for 7, and 1/v is the same as their four dimensional counterparts in that the coefficients of the higher
order terms in € are not decreasing in contrast to 7.
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