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1 Introduction

The discovery of the Higgs boson (H) in 2012 by the ATLAS and CMS Collaborations [1-3]
was a major milestone and provided a crucial missing element of the standard model (SM) of
particle physics. Since then, many measurements of the Higgs boson properties [4-9] have
been performed which further validate the SM predictions.

The four-lepton decay channel (H — ZZ — 44, ¢ = e, ) played a very important role in
the discovery of the Higgs boson in 2012. Despite its low branching fraction (1.3 x 10_4),
it benefits from a clear four lepton signature, large signal-to-background ratio, and the
possibility to fully reconstruct the final-state kinematics. Thanks to these characteristics, the
four-lepton final state has been extensively used to measure the Higgs boson properties. The
measurements performed include the determination of the Higgs boson mass (my), spin and
parity [10-16], width [17-20], inclusive and differential fiducial cross sections [14, 21-26], as
well as the tensor structure for interactions with a pair of gauge bosons [13, 15, 18, 27-29].

Fiducial cross section measurements are one of the most common approaches for the
characterization of the Higgs boson production and decay. They allow less model-dependent
results than total cross sections. The ATLAS and CMS Collaborations measured fiducial



cross sections in the H — yy [30, 31], H - WW [32-34], H — ZZ — 4/ [25, 26, 35],
and H — bb [36, 37] decay channels using the full data set collected in 2016, 2017, and
2018. The CMS Collaboration also reported results in the H — 17 [38] decay channel and
their combination with the H — yy, H - WW, and H — ZZ — 4/ decay channels [39],
while the ATLAS Collaboration presented results from the combination of the H — yy and
H — Z7 — 4¢ decay channels, both with data at 13 TeV [40] and 13.6 TeV [41].

The measurement of the Higgs boson fiducial cross section as a function of the center-of-
mass energy is an important test of the SM. This paper reports the inclusive and differential
fiducial cross sections for Higgs boson production in the H — ZZ — 4¢ decay channel using
data from proton-proton (pp) collisions at /s = 13.6 TeV recorded with the CMS detector at
the CERN LHC in 2022 and corresponding to an integrated luminosity of 34.7 fb~" [42]. The
fiducial phase space region is defined to closely reproduce the experimental acceptance and
reconstruction-level selection criteria, to reduce the model dependence of the results. The
differential cross sections are measured as a function of the transverse momentum (pIT{) and
absolute value of the rapidity (|yy|) of the Higgs boson. The analysis relies on the methods
that have been optimized in previous studies to characterize the Higgs boson properties in
the four-lepton decay channel [22, 26, 35].

This paper is organized as follows. The CMS detector is briefly described in section 2. The
data and simulation used are discussed in section 3. The event reconstruction techniques and
selection criteria are detailed in section 4. The background estimation is discussed in section 5
and the definition of the fiducial phase space region where the differential cross sections are
measured is presented in section 6. The signal modeling and statistical procedure adopted in
the extraction of the results are described in section 7. The systematic uncertainties that
affect the measurement are described in section 8. The results are presented in section 9,
followed by a summary in section 10.

2 The CMS detector

The central element of the CMS experiment is a superconducting solenoid providing a magnetic
field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic
calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL) are placed
within the solenoid volume and each of them is composed of a barrel and two endcap sections.
Forward calorimeters extend the pseudorapidity (1) coverage provided by the barrel and
endcap sections. Muons are reconstructed using gas-ionization detectors embedded in the
steel flux-return yoke outside the solenoid. The CMS experiment relies on a two-tiered
trigger system to select the events of interest. The first level is composed of custom hardware
processors and selects events at a rate of approximately 100 kHz within a fixed latency of
about 4 us [43] using information from the calorimeters and muon detectors. The second level,
called high-level trigger, consists of a farm of processors running a version of the full event
reconstruction software optimized for fast processing, and reduces the event rate to around
5kHz before data storage [44]. A more detailed description of the CMS detector, together
with the definition of the coordinate system used and the relevant kinematic variables, can
be found in refs. [45, 46].



3 Data and simulated samples

Signal samples are simulated at next-to-leading order (NLO) in perturbative quantum
chromodynamics (pQCD) using the POWHEG 2.0 [47-49] generator for the main production
mechanisms of the SM Higgs boson: gluon fusion (gg — H) [50] including quark mass
effects [51], vector boson fusion (VBF) [52], associated production with a vector boson (VH,
where V.= W, Z) [53], and associated production with a pair of top quarks (ttH) [54].
Events produced via the gg — H mechanism are reweighted to match the predictions at
next-to-NLO order (NNLO) in pQCD, including parton shower matching (NNLOPS) [55]
as functions of p¥ and the jet multiplicity in the event. The Higgs boson production in
association with b quarks is not considered as its contribution is negligible with respect
to the other production modes. The decay of the Higgs boson to four leptons is modeled
with JHUGEN 7.0.2 [56-60]. All samples are generated with the NNPDF 3.1 NNLO parton
distribution functions (PDFs) [61]. The simulation of the various production and decay
modes is based on the theoretical predictions from refs. [62-83], which are summarized in
ref. [84]. The signal samples are normalized to the cross sections provided by the LHC Higgs
Working Group for /s = 13.6 TeV [85].

The main background originates from ZZ production via quark-antiquark annihilation
and gluon fusion. The former is simulated at NLO in pQCD with POWHEG 2.0 [86], while
the latter is generated at leading order (LO) with MmcFm 7.0.1 [87-90]. The production via
quark-antiquark annihilation is reweighted to NNLO using a K factor computed as a function
of myyz, relying on the NNLO computation of the qq — ZZ fully differential cross section [91].
An additional NLO electroweak correction is applied as a function of my; according to the
computation presented in ref. [92]. Although no exact calculation exists beyond LO for
the gg — ZZ background, it has been shown [93] that the soft-collinear approximation is
good enough to describe the background cross section and the interference term at NNLO.
Further calculations also show that the K factors are very similar at NLO for the signal and
background [94] and at NNLO for the signal and interference terms [95]. This suggests that
the same K factor can be used for the gg — H — ZZ signal and gg — ZZ background [96].
The current analysis relies on an NNLO/LO K factor computed for the signal process as
a function of the di-boson invariant mass myy, using the HNNLO v2 program [97-99]. The
NNLO and LO gg — H — 202/’ cross sections are computed for a fixed Higgs boson decay
width of 4.07 MeV across the whole my; mass range, and the K factor is defined as their
ratio. The K factor is then applied to the gg — ZZ background process as a function of
myy. We note that the K factors used in this analysis are identical to those of the Run 2
analysis at /s = 13TeV [14] since no noticeable difference is expected between the two
energies in the myy; mass range of relevance.

The additional background contribution arising from the production of Z bosons with
associated jets (Z-+jets) is estimated with the technique based on control samples in data,
as described in ref. [35] and in section 5.2. The Z+jets process is simulated at NLO with
the MADGRAPH5_aMC@QNLO 2.4.2 [100] program and is used for validation studies, for the
training of the boosted decision tree (BDT) adopted for the identification and isolation
requirements on electrons, and for the derivation of data to simulation scale factors.



The Monte Carlo (MC) generators are interfaced with PYTHIA version 8.230 [101] using the
CP5 underlying event tune [102] to simulate the parton showering and hadronization effects.

All MC generated events are processed through a simulation of the CMS detector based
on GEANT4 [103, 104] and are reconstructed with the same algorithms used for the data.
Additional pp interactions in the same and nearby bunch crossings, referred to as pileup,
are also simulated. The distribution of the number of pileup interactions in the simulation
is adjusted to match that observed in data.

4 Event reconstruction and selection

Candidate events are required to have charged leptons passing loose identification and
isolation requirements [105, 106], following the online selection based on dielectron, dimuon,
and electron-muon high-level trigger algorithms. Triggers that require either a single lepton
or three leptons are also used to increase the efficiency, which is larger than 99% for the
events that satisfy the selection requirements presented in what follows, and is in agreement
with that estimated from simulated samples. The trigger efficiency is determined following
the same procedure as in ref. [35].

To reconstruct and identify particles in an event, the particle-flow (PF) algorithm [107] is
used, which employs an optimized combination of information from the various elements of the
CMS detector. The energy of photons is obtained from the ECAL measurement. The energy
of electrons is determined from a combination of the electron momentum at the primary
vertex (PV), as determined by the tracker, the energy of the corresponding ECAL cluster,
and the energy sum of all bremsstrahlung photons spatially compatible with originating
from the electron track. The PV is taken to be the vertex corrsponding to the hardest
scattering in the event, evaluated using tracking information alone, as described in section
9.4.1 of ref. [108]. The momentum of muons is obtained from the combined information of
the tracker and the muon chambers. The energy of charged hadrons is determined from
a combination of their momentum measured in the tracker and the matching ECAL and
HCAL energy deposits, corrected for the response of the calorimeters to hadronic showers.
Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL
and HCAL energy deposits.

Muons with p% > 5GeV and |[n"'| < 2.4 are reconstructed using the information from the
silicon tracker (“inner tracks”) and the muon system (“outer tracks”) [106]. The matching
between inner and outer tracks is performed starting either from the tracks in the silicon
trackers or from those reconstructed in the muon system. To reconstruct very low pp muons
that do not traverse the entire detector, candidates where inner tracks are matched to
segments in only one or two muon detector layers are also considered. Muons are selected
among the reconstructed muon track candidates by applying loose requirements on the track
in the muon system and the inner tracker, taking into account also their compatibility with
small energy deposits in the ECAL and HCAL.

Muons are required to have a relative isolation, 7" < 0.35, to discriminate between
muons from Z boson decays and those originating from hadron decays within jets. Here



7" is defined as:

™ = (Zp%larged 1 max [0’ Zp%eutral I Zpyf _ p%’PU])/p%, (4.1)
where prl?arged is the scalar pp sum of charged hadrons originating from the PV, whilst
> p%eutral and > pyf are the scalar sums for neutral hadrons and photons, respectively.
The isolation requirement is defined using a cone of radius AR = 0.3 around the muon
direction at the PV, with the angular distance between two particles ¢ and j defined as
AR(i,7) = \/(Anm)2 + (A(bm-)z, where An and A¢ are the differences in 1 and azimuthal

angle, respectively. The sums are computed within this isolation cone. The quantity ph PU
gle, p Yy pr p q Y Pr

in eq. (4.1) is defined from the pr sum of all the charged hadrons i not originating from
the PV as pT’PU =05, p%’fU, where the factor of 0.5 corrects for using only the charged
particles in the isolation cone [109], thus accounting for the expected rate of charged and
neutral hadrons. The p%’PU contribution is subtracted in the definition of Z" to correct for
energy deposits arising from pileup interactions.

Electrons with pff > 7 GeV within the geometrical acceptance of the detector, defined
by |n°| < 2.5 [105], are reconstructed by combining the information from the ECAL and the
tracker. Their identification is carried out using a BDT algorithm sensitive to the presence
of bremsstrahlung along the electron trajectory, the geometrical and momentum-energy
matching with the corresponding cluster in the ECAL, the features of the electromagnetic
shower in the ECAL, and observables that discriminate against electrons originating from
photon conversions. The isolation sums for electrons, defined similarly as for muons, are
included in the BDT discriminant as well. The inclusion of isolation sums improves the
suppression of nonprompt electrons from hadron decays and from overlap of neutral and
charged hadrons within jets [105], and has a better performance than a sequential analysis
using the relative isolation. The improvement is of the order of 10-20% depending on the py
and 7 region. The BDT for the electron identification and isolation is implemented using
the XGBOOST library [110] and the training is performed on a dedicated sample of simulated
Z+jets events. Events are divided into six mutually exclusive categories defined by two pr
ranges (7 < peT < 10 GeV and p?r > 10 GeV) and three 7 selections corresponding to the central
barrel (|n°| < 0.8), outer barrel (0.800 < |n°| < 1.479), and endcaps (1.479 < |n°| < 2.500).

Final-state radiation (FSR) photons from leptons are recovered with the following
procedure. Photons reconstructed by the PF algorithm within |5Y| < 2.4 are considered as
FSR objects if they have p% > 2GeV and a relative isolation Z' < 1.8, where Z" is computed
using PF charged hadrons, neutral hadrons, and photon candidates within a cone of AR = 0.3.
Every FSR candidate is associated with the closest lepton in the event and is not retained
if AR(}(,Z)/(p%)2 > 0.012GeV 2 and AR(Y,¢) > 0.5. For each lepton, the FSR candidate
with the lowest value of AR(y,¢)/ (p%)Q, if any, is selected. The photon candidates identified
from the FSR recovery algorithm are excluded from the computation of the muon isolation.
FSR photons are included in invariant mass computations.

The impact parameter significance is used to suppress nonprompt leptons from decays
of hadrons or photon conversions. This variable is defined as the ratio of the 3-dimensional
impact parameter (computed with respect to the position of the PV) to its uncertainty.
Leptons are rejected if the value of this quantity is greater than 4.



The momentum scale and resolution of electrons and muons are calibrated in bins of péT
and ne using the leptonic decays of known dilepton resonances, as described in refs. [105, 106].
A tag-and-probe technique [111] is used to measure the efficiency of the lepton reconstruction
and selection criteria in data and simulation, using samples of Z boson events. The efficiencies
are measured in bins of pff and 172, and the simulated yields are corrected by the ratio of
the efficiencies measured in the data and in the simulation.

The selection targets events containing at least four well-identified and isolated leptons
consistent with H — ZZ — 4/ production. The event selection is described below, and
closely follows that employed in refs. [26, 35].

The Z boson candidates are built from pairs of same-flavor and opposite-sign leptons
(eTe”, uTn™) with an invariant mass in the range 12 < my, < 120GeV. They are then
combined to form ZZ candidates. The Z boson candidate with the invariant mass closest
to the world-average Z boson mass [112] is referred to as Z;, whilst Z, denotes the other
Z boson candidate. The flavors of the four leptons in the event are used to define three
mutually exclusive channels: 4e, 44, and 2e2).

In order to be considered in the analysis, the ZZ candidates must satisfy additional
requirements aimed at improving the sensitivity to Higgs boson decays. The invariant mass
of the Z, candidates is required to be larger than 40 GeV. All lepton pairs (¢;, ¢ j) must be
separated by an angular distance AR(;,£;) > 0.02, in order to avoid overlaps. All selected
events must contain at least two leptons with pp > 10 GeV and at least one lepton with
pr > 20 GeV. In the 4e and 4p channels, where the same four leptons can be used to build an
alternative Z,Z,; candidate, candidates with mz < 12GeV are not considered if Z, is closer
to the nominal Z boson mass than Z,, and in this case the event is rejected. This requirement
removes events with an on-shell Z boson accompanied by a low-mass dilepton resonance (e.g.,
Jy or T). To further suppress events with leptons originating from hadron decays in jet
fragmentation or from leptonic decays of low-mass resonances, the invariant mass of the four
possible opposite-charge lepton pairs (irrespective of flavor), computed without FSR photons,
s+p- > 4GeV. Finally, the ZZ candidates are retained if the
invariant mass of the four-lepton system, my,, is larger than 70 GeV.

must satisfy the condition m

In events where more than one Z7 candidate satisfies the selection requirements above,
the one chosen is that with the largest scalar pr sum of the two leptons defining the Z,
candidate. The signal region considered in the analysis is composed of all the events with
one ZZ7Z candidate passing the selection and satisfying the condition 105 < my, < 160 GeV.

5 Background estimation

5.1 Irreducible backgrounds

The irreducible background to the H — Z7Z — 4/ signal consists of ZZ production from quark-
antiquark annihilation or gluon fusion and is estimated using simulated events. Background
contributions arising from triple vector boson production and from the production of top
quarks associated with vector bosons are negligible in the signal region and thus not considered
in this analysis. The irreducible background contributions are included as binned templates
in the likelihood function separately for each of the reconstructed final states (4e, 4u, and



2e2u). The templates are normalized to the most accurate theoretical calculations for the
qq — Z7Z — 40 and gg — Z7Z — 4¢ ({ = e, |, T) cross sections, as described in section 3.

5.2 Reducible background

The reducible background to the H — ZZ — 4/ signal arises from processes in which decays
of hadrons, or misidentified jets are incorrectly reconstructed as leptons. This contribution,
referred to as “ZX”, is estimated using control samples in data, as described in ref. [35].

The method is based on the lepton misidentification rate, defined as the probability
of a nonprompt lepton to pass also the final selection criteria. The rate is estimated in a
control sample that includes a Z boson and exactly one additional “loose” lepton (Z+¢); the
latter fulfills the pp, 17, and PV requirements, but not those on identification and isolation.
The lepton misidentification rate is then applied to two other control samples, consisting
of a Z boson candidate and two opposite- or same-sign “loose” leptons (Z+£¢), to estimate
the number of events in the signal region.

The reducible background contribution is included as a binned template in the likelihood
function described in section 7 separately for the three considered final states (4e, 4,
and 2e2).

6 Fiducial phase space definition

In order to reduce the impact of specific theoretical models on the acceptance, the cross
sections are measured in a fiducial phase space defined to match closely the experimental
acceptance defined by the reconstruction-level selections. The fiducial phase space is defined at
the generator level, following the strategy adopted in previous H — ZZ — 4¢ analyses [14, 35].
It is defined in terms of the lepton kinematics and isolation, and of the topology of the event.
The fiducial phase space definition is summarized in table 1.

Leptons are used at the generator level; they are obtained by combining the four-
momentum of each lepton after photon FSR with that of the radiated photons found within a
cone of radius AR = 0.3 around the lepton. The events are retained if the leading (subleading)
lepton has pp > 20 (10) GeV. Additional electrons (muons) that may be present in the event
are required to have pp > 7(5) GeV and || < 2.5(2.4). The isolation of the leptons is ensured
by requiring the scalar pt sum of all stable particles, i.e., those particles not decaying in the
detector volume, within a cone of radius AR = 0.3 to be less than 0.35 times the lepton
pr. Neutrinos, FSR photons, and leptons (electrons and muons) are not included in the
computation of the isolation sum to enhance the model independence of the measurements [22].
Events passing these requirements are retained if they have at least two same-flavor, opposite-
sign lepton pairs. The pair with invariant mass closest to the nominal Z boson mass [112]
is labeled as Z; and must have 40 < mz < 120GeV. The second Z boson candidate is
referred to as Z, and must satisfy the requirement 12 < myz, <120 GeV. Each lepton pair
¢;,£; must be separated by AR(C;, ¢ j) > 0.02, while any opposite-sign lepton pair must have
m+ - > 4 GeV, reflecting the selection criteria used at reconstruction level. The signal region
is defined by events satisfying the invariant mass requirement 105 < my4, < 160 GeV. Electrons
and muons produced in the decay of a 7 lepton are excluded from the definition of the fiducial



Lepton kinematics and isolation

Leading lepton pp > 20 GeV
Next-to-leading lepton pp > 10 GeV
Additional electrons (muons) pr > 7(5) GeV
Pseudorapidity of electrons (muons) In| < 2.5(2.4)
pr sum of all stable particles within AR < 0.3 from each lepton < O.35pfF

Event topology

at least two same-flavor, opposite-charge lepton pairs

Inv. mass of the Z; candidate 40 < m(Z1)< 120 GeV
Inv. mass of the Z, candidate 12 < m(Zy)< 120 GeV
Distance between selected four leptons AR(¢;£;) > 0.02 for any i # j
Inv. mass of any opposite sign lepton pair m({T0' ") > 4GeV

Inv. mass of the selected four leptons 105 < my, < 160 GeV

the selected four leptons must originate from the H — 4¢ decay

Table 1. Summary of requirements used in the definition of the fiducial phase space for the H — 4/
cross section measurements.

region. Nonfiducial events, i.e., events at the reconstruction level that do not satisfy the
fiducial requirements, are treated as due to background processes in the fit described below.

7 Measurement strategy

The differential fiducial cross section for pp — H — 44 is measured by performing an
unbinned maximum likelihood fit of the signal and background contributions to the observed
4¢ mass distribution, Ngps(myy), and the fiducial cross section (ogq) is directly extracted
from the fit. The my is fixed to 125.38 GeV [113] in the fit.

The number of expected events in each final state f and in each bin ¢ of a given observable
is expressed as a function of my, as:

) i) f,i f,i f,i
Nobls (m4f) = Nﬁ(;{L (m4€) + Nngnﬁd (m4€) + Nn(;Lnres (m4£) + Nblzg(mlw)
genBin ; f‘ y
= Z €ij (1 + fnlfnﬁd) Uffdjﬁprcs(mu) (7-1)
J
f,3 £
+ Nngnrespnonres (mu) + Nbi:gpbkg(mélf)'

The parameter affi’g is the signal cross section in bin j of the fiducial phase space, defined
at the generator-level (genBin). This is the result of the measurement. The quantities
Nﬁf’j(mu) and Nrfl’(fnﬁd(mu) represent the resonant contributions originating from within and
outside the fiducial volume, respectively. The term Né’gnres(mu) represents the contribution
from combinatorial association of the four leptons in events with more than four leptons,
arising from WH, ZH, and ttH production modes where one of the leptons from the Higgs
boson decay is lost or not selected; the component Ngf(;(mu) is the contribution from the
reducible/irreducible background. The quantities Pyes(147), Pronres(4¢), and Pryg(1m4,) are
the corresponding probability density functions (pdfs), assuming that the resonant fiducial

signal and resonant nonfiducial signal have the same pdf. The Higgs boson resonant signal



distribution, P,es(myy), is parameterized with a double-sided Crystal Ball (DCB) function [114—
116] around my = 125 GeV. The corresponding pdf, P,.s(myy), is scaled by the fiducial cross
section, ogq, and the integrated luminosity £. The DCB function parameters are obtained
from a simultaneous fit of the m,, distributions corresponding to the various mass points in
the my range 105-160 GeV, which allows expressing the dependence of the fitted parameters
on my directly in the fit, following the same strategy of refs. [26, 35].

The shape of the nonresonant signal contribution, P, pres(M4y), is modeled by a Landau
distribution with shape parameters constrained in the fit to be within a range determined
from simulation. This contribution amounts to around 1% of the total signal depending on the
final state and it is treated as background; hereafter, it is referred to as “nonresonant signal”.

An additional contribution ( fi’oinﬁd) is introduced, for each bin i and final state f, to
take into account events not originating from the fiducial volume but satisfying the selection
criteria. This contribution is referred to as the “signal-induced background” and is estimated
from simulation for each production mode. To minimize the model dependence of the
measurement, the value of fi’(fnﬁd is fixed to be a fraction of the fiducial signal component.

Generator-level observables used in the definition of the fiducial phase space are smeared
by detector effects at reconstruction level. The 62 ;j response matrix is obtained from simulation,
for each final state f, and is used to unfold the number of expected events in bin ¢ at the
reconstruction level to the number of expected events of a given observable in bin j at the
fiducial level. These efficiency numbers are obtained under the assumption that the ratios
of the production modes yields are those predicted by the SM and include the per-lepton
corrections and scale factors. The kinematic acceptance is defined as the fraction of signal
events that fall within the fiducial phase space.

Systematic uncertainties are included as nuisance parameters and the fiducial cross section
measurements are obtained using an asymptotic approach [117] with a test statistic based on
the profile likelihood ratio [118]. A maximum likelihood fit is performed simultaneously in all
final states and bins of each observable. Two additional parameters regulating the mixture
of the three different final states (4e, 4y, 2e2u) in the analysis are included in the fit and
left floating to increase the model independence of the measurements, following the strategy
adopted in refs. [26, 35]. A likelihood-based unfolding is performed to resolve the detector
effects from the observed distributions in the fiducial phase space. This approach is the
same as that described in refs. [26, 34, 35, 119, 120] and allows the simultaneous unfolding
of detector effects and the extraction of the fiducial cross section [121].

8 Systematic uncertainties

The systematic effects considered in this analysis closely reflect those studied in ref. [26]. All
systematic uncertainties, which are modeled with nuisance parameters, have been re-assessed
using the 2022 data set, except for those related to K factors used in the modeling of
irreducible background processes.

The integrated luminosity of the 2022 data-taking period considered in the analysis is
known with an uncertainty of 1.4% [42].

Experimental systematic uncertainties due to the trigger, and lepton reconstruction and
selection efficiencies are estimated from data for the different final states. These uncertainties



are derived from a tag-and-probe technique using J/¢ and Z decays into a pair of leptons.
They range from 0.8 to 1.8% in the 4 channel and from 6 to 11% in the 4e channel. The
difference between the two final states reflects the use of J/¢ — up events for the estimate
of the muon uncertainties at low p%, whereas only the Z boson resonance is utilized for the
electron case, leading to larger uncertainties in the lovv-p?F region.

The systematic uncertainties in the lepton momentum scale and resolution are estimated
from dedicated studies on the Z — ¢7¢~ mass distribution in data and simulation. Specifically,
the uncertainty is assessed by propagating to the four-lepton invariant mass the uncertainty
associated to the momentum corrections for each individual lepton. The four-lepton mass
distributions obtained by varying the four-lepton momentum up or down by one standard
deviation are fitted, with only the mean value floating, and the difference between the new
mean value and the nominal one is taken as an estimate of the sensitivity to the lepton energy
scale. In the 4e channel, the scale uncertainty is found to be 0.2%, while the resolution
uncertainty is 12%. In the 4 channel the scale uncertainty is 0.05% and the resolution
uncertainty 5%. In the mixed flavor 2e2u channel, the scale and the resolution uncertainties
are 0.13% and 8.5%, respectively. The effect of these uncertainties is introduced in the
analysis by using additional floating factors added to the corresponding parameters of the
DCB function used to model the resonant signal. These uncertainties are not applied to the
77 backgrounds estimated from simulation since their distribution is almost flat under the
my peak; therefore, shifts in the scale have a negligible effect.

The following systematic effects in the reducible ZX background determination are
studied: the statistical uncertainty in the number of events in the control regions, the effect
of +1 standard deviation variations of the misidentification rates, and the difference in
composition among various processes that contribute to this background. The overall effect
of these three sources ranges between 25% and 46%, depending on the final state, and is
included as a nuisance parameter with a log-normal prior in the fit.

The systematic uncertainty in the K factors used in the modeling of the irreducible
background processes is also considered. A 10% uncertainty is assumed for the K factor
used in the gg — ZZ prediction, while a 0.1% average uncertainty affects the K factor
for the qq — ZZ electroweak corrections. These uncertainties are derived from the theory
predictions of the K factors [26].

Theoretical uncertainties in the renormalization and factorization scales and PDFs used
for the estimate of the irreducible backgrounds are studied, as they may affect the rates
of these processes. The uncertainty from the renormalization and factorization scales is
determined by varying them between 0.5 and 2 times their nominal value, while keeping their
ratio between 0.5 and 2; this yields an overall 4% effect. The uncertainty due to PDFs is
determined following the PDF4LHC recommendations by taking the root mean square of
the variation of the results when using different replicas of the default NNPDF set. The
effect is around 3% for both irreducible background processes considered. The effect of the
renormalization and factorization scale uncertainties range between 0.3% and 6% across the
different production mechanisms, while the effect of the PDF uncertainties is between 1.6%
and 3.6%. The effect of theoretical uncertainties on the signal is negligible for the present
analysis and is not included in the fit.
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Process 4e 4u 2e21 40

Signal 10.697975  12.097039  29.9730 52,6737
Nonfid 0.387001  0.28%501  0.357003  1.01709
Nonres 0111061 0227051 0.33%005  0.66100%
Total signal 11.2719 12597020 305700 54.3739
qqZZ 134716 332738 39.0739  85.670%

077, 1.92702% 3937045 4.00705  9.871%
7X 44113 150732 18073 37512

Sum of backgrounds ~ 19.773%  52.279%  61.0775 132,959

Total expected 30.9i§:g 64.8311:% 91.5i2;§, 187.2J_r?£5

Total observed 32 59 93 184

Table 2. Post-fit yields for the four final states in the signal region (105 < my, < 160 GeV). The
“nonfid” contribution arises from signal events not originating from the fiducial volume but satisfying
the analysis selection, while the “nonres” contribution contains signal events from VH or ttH where
one of the leptons from the Higgs boson decay is lost or not selected (details in section 6). The
contributions of signal, nonfid, and nonres events are estimated assuming my = 125.38 GeV.

9 Results

The results are obtained from a simultaneous fit of eq. (7.1) to the data for the three final
states (4e, 4U, and 2e2u). The numbers of expected events after the fit to data (post-fit) in
the mass range 105 < my, < 160 GeV, for each final state and an integrated luminosity of
34.7fb™! | are shown in table 2. The my, invariant mass distribution for the inclusive 4¢
final state is presented in figure 1. Tabulated results are provided in the HEPData record
for this analysis [122].

The measured inclusive fiducial cross section for the H — ZZ — 4/ process at my =
125.38 GeV is found to be:

(syst) fb

0.53 0.29
ohq = 2.89707 (stat) T3y (9.1)
26 +0.06 +0.06 -\ +0.04 +0.04 :
019 (electrons) ™ o6 (ZX) Ty o5 (lumi) o', (bkg) Zg g3 (muons) b,

= 2.8910%5 (stat) "
in good agreement with the SM expectation of 3.09f8j%£ fb. The SM expectation is obtained
by multiplying the cross section and branching fraction values for the process studied, taken
from [84], by the acceptance. The uncertainties include contributions from factorization
and renormalization scales, variations of PDF and strong coupling constant, and branching
fractions. The dominant source of systematic uncertainty on the measured cross section
is the electron selection efficiency. Figure 2 shows the measured inclusive cross section in
the three final states, while figure 3 shows the evolution of the H — Z7Z — 4/¢ fiducial
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Figure 1. Distribution of the my,, invariant mass in the ranges 70-350 GeV (left), and 105-160 GeV
(right). The black points with error bars represent the data. The colored histograms show the signal
(red histogram) and the background contributions. The post-fit normalization for all the processes is
obtained from the measurement performed in the range 105 < my, < 160 GeV and then ported to
all other distributions and ranges by scaling it by the post-fit/pre-fit yield ratio. The bottom panels
depict the ratio of the data to the post-fit MC distribution.

osa (fb)
2e2u 1.607037 (stat)Jrgzﬁ1 (syst)
o 0462515 (stat) T g3 (syst)
de 0.831039 (stat)fgﬁg (syst)
Inclusive 2.8975:5% (stat)f%%? (syst)

Table 3. Measured fiducial cross sections for different final states for my = 125.38 GeV.

cross section as a function of the center of mass energy. Table 3 summarizes the results
for each of the final states studied.

9.1 Differential cross section measurements

The fiducial cross section of the H — Z7Z — 4/ process is also measured differentially in bins of
p¥ and |yy|. The distribution of these two variables obtained after the full analysis selection
is shown in figure 4 for the inclusive 4¢ final state. To perform the differential production
cross section measurements, an unbinned maximum likelihood fit to the four-lepton invariant
mass is performed in bins of p¥ and |yg|. The distributions of the expected and observed
cross sections in bins of p? are shown in the upper plot of figure 5, while the lower plot shows
the measurement as a function of |yy|. In general, good agreement between the measured
and predicted values is observed.
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T
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Figure 2. Measured inclusive fiducial H — ZZ — 4{ cross section in the various final states at
13.6 TeV. In the upper plot, the acceptance and theoretical uncertainties in the differential bins are
calculated using the gg — H predictions from two different generators normalized to next-to-NNLO
order. The subdominant component of the signal (VBF + VH + ttH) is denoted as XH and is fixed
to the SM prediction. The measured cross sections are compared with the gg — H predictions
from POWHEG (blue) and NNLOPS (dark red). The hatched areas correspond to the systematic
uncertainties of the theoretical predictions. Black points represent the measured fiducial cross sections
in each bin, black error bars the total uncertainty of each measurement, and red boxes the systematic
uncertainties. The lower panel displays the ratio of the measured cross sections to the POWHEG
predictions, as well as the ratio of the NNLOPS predictions to those from POWHEG.

10 Summary

This paper presents the measurement of the fiducial production cross section of the Higgs
boson (H) in the 4¢ (¢ = e, ) final state using the data collected with the CMS detector
in 2022 at a center-of-mass energy of \/s = 13.6 TeV. The H — ZZ — 4¢ inclusive fiducial

cross section is measured to be 2.89"0 5 (stat)fgg? (syst) fb, in agreement with the standard

model expectation of 3.09f8:%£ th. The differential fiducial cross section is also measured in
bins of transverse momentum and absolute value of the rapidity of the Higgs boson. All

results are consistent with the standard model expectation.
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to next-to-NNLO order. The subdominant component of the signal (VBF + VH + ttH) is denoted as
XH and is fixed to the SM prediction. The measured cross sections are compared with the gg — H
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systematic uncertainties of the theoretical predictions. The black points represent the measured
fiducial cross sections in each bin, the black error bars the total uncertainties, and red boxes the
systematic uncertainties. The fiducial cross section in the last bin of the upper plot is measured for
events with pr}fI > 80 GeV and normalized to a bin width of 120 GeV. The lower panels display the
ratio of the measured cross sections to the POWHEG predictions, as well as the ratio of the NNLOPS
predictions to those from POWHEG. The p-value is used to assess the compatibility of the results with
the theoretical predictions and is found to be 0.2 and 0.95 for pffl and |y |, respectively.
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