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A search is presented for hadronic signatures of beyond the Standard Model (BSM) physics,

with an emphasis on signatures of a strongly-coupled hidden dark sector accessed via resonant

production of a / ′ mediator. The ATLAS experiment dataset collected at the Large Hadron

Collider from 2015 to 2018 is used, consisting of proton–proton collisions at
√
B = 13 TeV and

corresponding to an integrated luminosity of 140 fb−1. The / ′ mediator is considered to decay

to two dark quarks, which each hadronize and decay to showers containing both dark and

Standard Model particles, producing a topology of interacting and non-interacting particles

within a jet known as “semi-visible". Machine learning methods are used to select these dark

showers and reject the dominant background of mismeasured multĳet events, including an

anomaly detection approach to preserve broad sensitivity to a variety of BSM topologies. A

resonance search is performed by fitting the transverse mass spectrum based on a functional

form background estimation. No significant excess over the expected background is observed.

Results are presented as limits on the production cross section of semi-visible jet signals,

parameterized by the fraction of invisible particles in the decay and the / ′ mass, and by

quantifying the significance of any generic Gaussian-shaped mass peak in the anomaly region.
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1 Introduction

The particle nature of dark matter (DM) is one of the most pressing questions in fundamental particle

physics today. There is overwhelming experimental evidence from astrophysical experiments for its

existence [1–3], yet no particle in the Standard Model (SM) has all of its observed characteristics. The

range of experimentally allowed DM candidate masses is vast, from axion-like fields at masses as low as

10−22 eV up to macroscopic galactic objects which can be hundreds of solar masses, and there is a vast

experimental landscape attempting to cover these disparate targets [4, 5]. Further, DM is just one of several

outstanding mysteries in the SM that point to the existence of new physics, motivating a broad search

program without strong reliance on signal priors.

General purpose detectors at the Large Hadron Collider (LHC) [6] can provide sensitivity to key areas of

beyond the Standard Model (BSM) phase space. Past collider-based DM searches have primarily focused on

weakly interacting massive particles (WIMPs), with masses on the O(100) GeV scale, which can naturally

explain the thermal relic density of DM observed today [7]. This abundance calculation depends upon an

electroweak interaction between the SM and dark sector, making the search for a mediator particle viable

at colliders. A prominent collider signature is missing transverse energy (�miss
T

), due to the non-interacting

WIMPs being produced in the proton-proton collision and passing through the detector without interacting.

However, multi-species dark sectors from Hidden Valley theories could yield a more complex picture,

predicting a new set of new particles, forces, and interactions with a small coupling to the SM [8, 9].

The wide variety of potential dark sector manifestations outlined here are representative of the breadth of

phase space that must be considered for a comprehensive search program at colliders. Anomaly detection

(AD) is a strategy that leverages data-driven tools to design search regions that are not designed for a
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specific signal model, but rather isolate events within a dataset based on their deviation from the learned

background distribution [10]. The use of AD-based searches in high energy physics can enable access to

potential discoveries not yet predicted by theories, while their inherently generalized design can also allow

for more efficient traversal of classes of signal models.

The LHC can provide a unique handle on sensitivity to various BSM scenarios, particularly for strongly

interacting dark sectors that produce dark showers and hadronization in LHC detectors, as well as a means

for more generic anomaly-based searches. The theoretical underpinning of focus here is a dark quantum

chromodynamics (QCD) with a gauge group (* (#3) leading to confinement at a scale Λ3 [11, 12]. Dark

particles charged under this gauge group would hadronize and generate dark jet signatures. Some fraction

of the dark sector hadrons escape the detector and thus contribute to �miss
T

, while others can decay back

to Standard Model quarks, which then shower and hadronize according to SM QCD. Depending on the

couplings in this dark sector, a range of jet topologies could be produced, ranging from fully visible or

invisible to the detector, and with fully prompt or very displaced tracks as the shower develops.

This search focuses on a particular signature within this class of models, looking for prompt semi-visible

jets (SVJs), where a fraction of dark hadrons decay back to SM particles while the others remain invisible,

leading to wide jets with high track multiplicity and significant �miss
T

[13]. As the �miss
T

arises from the

showering of dark particles in the jet, it will be distributed across the shower, in some cases leading

to jet clustering inefficiency. This class of dark QCD models and their phenomenology have been

discussed extensively [13–15] and signal models with theoretically motivated parameter values have been

benchmarked in the 2021 Snowmass community planning process [16]. The parameter Rinv controls the

branching ratio of the dark hadron to dark particles, which are non-interacting with the detector, such

that higher values of Rinv lead to larger total missing energy in the jet. A Feynman diagram of the signal

process, along with a graphic depicting the SVJ topology generated upon dark quark decay, can be seen in

the diagram in Figure 1.

The complex detector signature of strongly coupled dark sectors motivates the use of machine learning

(ML) techniques to isolate them from background processes [17, 18]. In particular, strongly coupled

dark sector models present excellent candidates for AD tools due to their sensitive dependence on model

parameters [19–24], with a diverse range of final-state topologies being predicted. This inherent variability

emphasizes the benefit of general and model-agnostic selection strategies to complement more signal

model-specific approaches. Furthermore, the non-perturbative nature of strong dynamics introduces

significant challenges in simulation reliability, making data-driven anomaly detection particularly valuable

for uncovering potential new physics in these scenarios.

Strongly coupled dark matter searches have recently been a significant topic of interest in collider physics.

The ATLAS experiment published previous searches on fully visible dark jets [25], a non-resonant

production of semi-visible jets [26], dark mesons decaying to top and bottom quarks [27], and for emerging

jets where the dark particles decay back to SM particles with a proper length on the detector scale [28].

The CMS experiment has published searches for resonant production of semi-visible jets [29], as well as

for emerging jets [30, 31]. As the extreme cases for semi-visible jets involve resonances with fully visible

dĳet or invisible final states, such searches have potential synergy of exclusions. Additionally, there has

been a broad community effort in the study of anomaly detection methods for model-independent search

programs at collider experiments [32, 33]. Both CMS [34] and ATLAS [35–38] have performed several

anomaly detection searches covering a variety of presentations of BSM physics.

This search focuses on the resonant s-channel production of a / ′ mediator particle decaying to two dark

quarks which subsequently hadronize, leading to a final state of at least two jets. While both jets contain
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typically provides four measurements per track, the first hit generally being in the insertable B-layer (IBL)

installed before Run 2 [40, 41]. It is followed by the SemiConductor Tracker (SCT), which usually provides

eight measurements per track. These silicon detectors are complemented by the transition radiation tracker

(TRT), which enables radially extended track reconstruction up to |[ | = 2.0. The TRT also provides

electron identification information based on the fraction of hits (typically 30 in total) above a higher

energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |[ | < 4.9. Within the region |[ | < 3.2,

electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)

calorimeters, with an additional thin LAr presampler covering |[ | < 1.8 to correct for energy loss in material

upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,

segmented into three barrel structures within |[ | < 1.7, and two copper/LAr hadronic endcap calorimeters.

The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules

optimised for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring

the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets.

The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers

of precision chambers, each consisting of layers of monitored drift tubes, cover the region |[ | < 2.7,

complemented by cathode-strip chambers in the forward region, where the background is highest. The

muon trigger system covers the range |[ | < 2.4 with resistive-plate chambers in the barrel, and thin-gap

chambers in the endcap regions.

The luminosity is measured mainly by the LUCID–2 [42] detector that records Cherenkov light produced

in the quartz windows of photomultipliers located close to the beampipe.

Events are selected by the first-level trigger system implemented in custom hardware, followed by selections

made by algorithms implemented in software in the high-level trigger [43]. The first-level trigger accepts

events from the 40 MHz bunch crossings at a rate below 100 kHz, which the high-level trigger further

reduces in order to record complete events to disk at about 1 kHz.

A software suite [44] is used in data simulation, in the reconstruction and analysis of real and simulated

data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Data and simulated samples

This search is performed with 140 fb−1 of LHC ?? collision data collected by the ATLAS detector from

2015 to 2018. The integrated luminosity of the runs is estimated following the methodology described in

Ref. [45]. It is required that all the relevant elements of the ATLAS detector were fully operational and

efficient while the data were collected [46].

Events are further selected to pass a single-jet trigger selection, where events are required to have a jet at

trigger-level with a transverse momentum ?T exceeding a value that ranges from 360 to 420 GeV depending

on the data-taking year. The lowest ?T unprescaled single-jet trigger is used across data-taking periods.

Selections on jet ?T (described in Section 6) ensure these triggers are only used after reaching an efficiency

plateau, avoiding the effect of the trigger turn-on in the analysis. The data are subject to a blinding

strategy throughout the analysis design so as to mitigate analyzer-induced bias, namely that the data of
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Table 1: Fixed parameters in the semi-visible jet signal model.

Parameter N2� # 5� Λ� [GeV] <c� [GeV] <d� [GeV] <j [GeV] 6q 6j

Value 3 2 10 17 31.77 10 1 0.1

the signal-enriched region are not examined by the analyzers until a full validation of the background

estimation has been performed in signal-depleted regions.

Simulated events are generated with a variety of Monte Carlo (MC) generators. The ?? hard scatter physics

process is simulated first, and the final-state particles are subsequently showered and decayed. This full

description of the event is then propagated through a detailed detector simulation based on GEANT4 [47,

48], and simulated events are reconstructed with the same algorithms run on collision data. The generation

of the simulated event samples includes the effect of pile-up, defined as the mean number of interactions

per bunch crossing. The effect of pile-up is assessed with the inclusion of overlaid simulated inelastic ??

interactions, as well as the effect on the detector response due to interactions from bunch crossings before

or after the one containing the hard interaction. Events in the simulation are weighted by data-taking period

in order to reproduce the observed pile-up distribution.

Signal simulation is generated using Madgraph5 [49] followed by the Hidden Valley module of

Pythia8.244 [50]. The s-channel production of / ′ is governed by a number of parameters. The

mass of the mediator m/ ′ can be set, together with the couplings of the / ′ to the visible and dark quarks

6@ and 6j, respectively. The dark sector shower is governed by the number of dark colors #2� , the number

of dark flavors # 5� , and the dark sector confinement scale Λ� . There is also the characteristic scale of

the dark hadrons <� that determines the mass of the dark hadrons, which can be pseudoscalars c� or

vectors d� , and the mass of the dark quark <j. Finally, each dark hadron coming from the dark quark

decay or subsequent dark shower has a certain branching ratio to dark (invisible) particles, which is set by

Rinv=
#had�

(#had�
+#had+

) , where #had� refers to the number of invisible hadrons and #had+ refers to the number

of visible hadrons. Signals with higher values of Rinv thus have larger missing energy in each dark quark

originated jet, as well as the event overall. Up to two additional partons are considered in the underlying

process. The MLM scheme [51] for merging tree-level matrix elements and partons showers is used with a

:) merging scale of 30 GeV, a cone radius of 0.4, and max jet |[ | of 2.5. The NNPDF2.3LO set of parton

distribution functions (PDF) [52] is used along with the ATLAS A14 [53] set of tuned parameters (tune).

The values of fixed model parameters are summarized in Table 1. Choices of these values are informed

by theoretical considerations and described in detail in Refs. [16, 54], among others. The mediator mass

m/ ′ and the per-dark hadron invisibility probability Rinv vary, and are used to define the search grid. The

value of m/ ′ varies between 2000 and 5000 GeV, while Rinv ranges from 0.2 to 0.6.

The anomaly detection region of the analysis is evaluated and studied with the use of alternate signal models,

which do not have SVJ topologies, but share some similar features such as high �miss
T

and resonance in <T.

One such model is the pair production of new heavy scalars - , which each decay to a quark and a dark

quark, the latter showering into an emerging jet, where the dark hadrons in the jet have a non-negligible

lifetime leading to the presence of displaced tracks within the shower. The emerging jet signal model

consists of five key signal parameters with the following values set: confinement scale Λ� = 1.6 GeV,

dark pion mass <c� = Λ�/ 2, dark d mass <d� = 2Λ� , dark scalar mass <- = 1000 GeV, and decay

length of the dark pion 2gc� = 1 mm. It is generated with the Hidden Valley module in Pythia8.230

with the NNPDF2.3LO PDF set and the ATLAS A14 tune, and filtered to have at least four jets with

?T > 100 GeV and |[ | < 2.7 before detector-level reconstruction. Additionally, the analysis considers a
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split-supersymmetric model [55] with pair production of long-lived gluinos, each decaying to an R-hadron

and a lightest supersymmetric particle (LSP) which escapes the detector as �miss
T

. Two points are evaluated

from this model, one with a gluino mass of 2000 GeV and another with a gluino mass of 3000 GeV; both

points share an LSP mass of 100 GeV and a gluino lifetime of 0.03 ns. The gluino signals are generated with

MadGraph 2.6.2 [49], interfaced to Pythia8.24 to simulate decays, parton showering, and the underlying

event, using the NNPDF2.3LO PDF set and the A14 tune.

While the background estimation for the analysis is fully data-driven, simulations of multĳet SM backgrounds

are used to train the ML tools, study modeling of key observables, and develop the statistical treatment.

Multĳet processes are generated using MadGraph5 2.9.9 interfaced to Pythia8.235 for shower and

hadronization with the NNPDF2.3LO PDF set and the A14 tune. The samples are generated in bins of

transverse momentum, to ensure good statistics across the momentum spectrum.

4 Object selection

Jets are reconstructed from constituent particles via the anti-:C algorithm [56] with a radius parameter of

0.4 using the FastJet package [57]. The constituents are particle-flow objects, which are built using a

combination of charged particle tracks and calorimeter clusters [58, 59]. Tracks must be matched to the

nominal primary vertex 2 with the requirement |I0 sin\| < 2.0 mm. The particle-flow construction uses ID

track observables to reconstruct the charged particles’ four-momentum for ?T <100 GeV and calorimeter

observables at higher ?T where the momentum resolution of the tracker deteriorates.

Baseline jets are required to have a minimum ?T of 20 GeV and |[ | < 4.5. The absolute jet energy scale

(JES) calibration is used to correct the jet four-momentum to the particle-level energy scale, as derived

using simulated jets in dĳet MC events. Finally, the jet resolution is corrected by applying a Gaussian

smearing to simulated jets to match the resolution observed in data [60].

The machine learning methods described in Section 5 train over jets using an input modeling of their

ghost-associated tracks. In the ghost-association process, tracks are treated as infinitesimally soft particles

by setting their ?T to 1 eV [61]. Starting from the jet built with the particle-flow algorithm, these

infinitesimally soft tracks are clustered in and can then be ghost-associated to a particular jet. Ghost

association is generally superior to geometric matching in dense subjet environments. For the ML tools,

the tracks are required to have ?T > 1 GeV and |[ | < 2.1. To ensure good modeling, jets are required to

have at least 3 ghost-associated tracks.

While leptons are not used for signal selection, lepton requirements are established for the purposes

of vetoing events that contain leptons and for removal of overlapping objects. Electron candidates are

built from the matching of a reconstructed track in the ID with an energy deposit in the electromagnetic

calorimeter that has �) > 7 GeV. Baseline electrons are required to have a minimum ?T of 20 GeV and

|[ | < 2.47. Requirements on the transverse and longitudinal impact parameters, defined with respect

to the primary vertex, are applied, specifically |30 |/f(30) < 5 (where f(30) is the per-track estimated

uncertainty on 30) and |I0B8=(\) | < 0.5 mm. Electrons are also required to pass the Tight identification

and Tight_VarRad isolation criteria [62].

Muons are reconstructed from combined tracks that incorporate information from both the ID and the muon

spectrometer. The combination involves the fitting of ID hits, calorimeter energy loss, and muon spectrometer

2 The primary vertex is defined as the one with the largest Σ ?T
2 of its associated tracks.
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tracks. Baseline muons must have ?T > 20 GeV and |[ | < 2.5, as well as |30 |/f(30) < 3 and |I0B8=(\) | <
0.5 mm. Muons are further required to pass the Medium identification and PflowTight_VarRad isolation

criteria [63].

The �miss
T

is computed from the jets, muons, and electrons which pass the baseline requirements. It

comprises a term based on hard objects, specifically the negative vectorial sum of the transverse momenta

of all baseline reconstructed objects, added to a soft term constructed from tracks associated with the

primary vertex that are not matched to any hard object [64]. After the initial selection, an overlap removal

(OR) is applied to deal with the case of a single object being reconstructed as multiple different objects by

the detector. The OR is applied on selected objects before isolation requirements are imposed. The key

overlaps between leptons and jets are resolved in two steps: first, jets within Δ' < 0.2 of electrons are

rejected. Following this, if a reconstructed lepton (electron or muon) is found to be within Δ' < 0.4 of a

jet, the lepton is rejected in favor of the jet.

5 Machine learning methodology

The signal models pursued in this search are particularly well-suited to ML-based selection tools to enrich

the signal-to-background ratio in analysis regions. Two different ML approaches are used in this search,

both providing a per-event score that is subsequently used in the event selection to define the relevant

analysis regions (see Section 6 for details).

5.1 ParticleFlow Network

The first ML-based region uses a method built to maximize sensitivity to the generated SVJ signal models.

The specific choice of ML model is motivated by two primary considerations: permutation invariant

input modeling given that collider events are inherently unordered sets of particles, and a low-level input

modeling (over tracks) to take advantage of the available high-dimensional information to best exploit

correlations within the event.

These requirements are satisfied with a Particle Flow Network (PFN) [65], which is used to model input

events as a DeepSet [66], in this case an unordered set of tracks. Given the unordered and variable-length

nature of particles in an event, this choice of modeling as a set can enable the ML tool to better learn the

most important features of the dataset that enable a signal-to-background classification. For the specific

case of SVJs, track-level modeling further allows the ML model to use the distinctive pattern of particles and

�miss
T

within the jet shower, which is a key topological feature to discriminate from multĳet background.

Constructing the PFN first involves the learning of a new unordered representation Φ for each particle.

Permutation invariance is then enforced by summing over the per-particle Φ representation to create a

new permutation invariant, symmetric, and fixed length latent space basis O. A masking layer is used

to suppress any zero-padded inputs, making the architecture length agnostic as well. Finally, a classifier

is trained over this latent space basis to distinguish signal from background, where truth event labels are

used to facilitate training. The trained PFN can then be used to provide an output score for each event

that indicates its probability of being from signal or background processes, enabling the definition of a

signal-enriched region.
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The PFN is trained to separate SVJs from background considering events using a track-level input modeling.

An event-level picture is built by modeling events by the 80 highest-?T tracks each of the leading and

subleading jet, where the value of 80 is chosen to capture the most significant information of the jet

while reducing the input multiplicity with respect to the full track content. Each track is described using

six variables: its four-vector (?T, [, q, E) assuming the track has the pion mass, and the track impact

parameters 30 and I0. These tracks (up to 160 total) are given to the PFN as a single object. The two

leading jets and their associated tracks are rotated in q and shifted in [ so that the center of the system

is aligned with ([, q) = (0, 0). Each track is scaled to its relative fraction of the total system energy and

transverse momentum, enforcing agnosticism to the total energy and transverse momentum of the event.

Finally, each of the six track variables is scaled so that its range is [0,1].

The PFN model used in this analysis consists of two dense layers with 75 nodes each with rectified linear

unit (ReLU) activation [67], a Φ latent space dimension of 64, followed by three more dense layers of

dimension 75 with ReLU activation, and a final softmax layer [68] to determine the event-level classification

with categorical cross-entropy loss. The Adam optimizer is used with an initial learning rate of 10−3 [69].

The model is developed using 500,000 events at preselection (defined in Section 6) of both signal and

background divided into a split of train/test/validation corresponding to 78%:20%:2%. The signal sample

consists of an unweighted combination of all SVJ simulated signal points, and the background consists

of simulated multĳet processes, both described in Section 3. Optimization studies were performed to

determine the optimal values for best classification performance considering the number of training epochs,

batch size, learning rate, number of neurons, and dimensions of the Φ space; this model represents the

optimal choice across these parameters.

After training, the performance of the PFN is evaluated on the test set. Figure 2 shows distributions of the

PFN score in data, background multĳet simulation, and signal. The PFN is able to achieve an average

area-under-curve of the receiver operating characteristic (ROC) of 0.93 for the combined signal including

all simulated points. This performance was benchmarked against alternate approaches, namely the use

of high-level jet variables with a boosted decision tree, which does not perform as well as the PFN and

introduces a stronger correlation to energy scale. As the PFN score shape is not directly used in the analysis,

qualitative shape differences between multĳet background and data do not impact the analysis. The crucial

metric for agreement between data and simulation is the selection efficiency; here a difference of < 5% is

assessed for the signal region selection of at least 0.6 on the PFN score as defined in Section 6. A diagram

of the PFN can be seen in the upper half of Figure 3.

5.2 Semi-supervised anomaly detection

To broaden the coverage of the analysis, an anomaly detection tool is developed as a companion to the

model-focused PFN tool described above. Anomaly detection involves the application of algorithms

that identify abnormalities within a dataset based on their incompatibility with learned Standard Model

properties, offering a data-driven way to pursue the unknown unknowns in the BSM landscape and thus

expand discovery reach at high energy physics experiments.

A typical component of an AD analysis is the use of data-driven classification tools, which mitigates

reliance on simulation. However, this requires an approach to training the ML model that does not require

full and true labeling of training inputs. The training metholodogy here is a hybrid approach between full

labeling (supervised) and no labeling (unsupervised) known as semi-supervised, where only some training

events have correct labels. This approach informs the AD tool with partial knowledge of the signal model,
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Figure 4: Distribution of the ANTELOPE score in data, SVJ signals, and alternate signal models at preselection,

where higher values of the ANTELOPE score indicate higher likelihood of anomaly. All histograms are normalized

to unity. Though the ANTELOPE training never sees emerging jet or gluino R-hadron signals in its training, it is still

able to distinguish them as more anomalous than the data.

deTEction on particle fLOw latent sPacE (ANTELOPE) [70], to perform particle-level and permutation-

invariant AD on collider events. In this way, the ANTELOPE model is trained in two stages. The first is the

fully supervised PFN that was already trained to classify the combined SVJ signal from simulated multĳet

background. The pre-trained PFN is subsequently used to encode data events into the basis O, and in this

format they are given as input to the training of a variational autoencoder (VAE) [71]. A VAE is a common

tool that can perform AD via fully unsupervised training by learning to reconstruct data events after forcing

them through a lossy compression that motivates the model to extract the most salient features of the

inputs, thus learning the underlying data distribution. The ANTELOPE technique leverages permutation

invariance and a signal model to learn a new representation for the events. Embedding each data event into

this representation for VAE training thus leads to a more performant AD method, as compared to a VAE

using an input modeling based on fixed-length track features.

Figure 3 provides a diagram of the ANTELOPE architecture. The specific ANTELOPE model used here

takes the same inputs as the PFN described in the previous section, namely the 80 highest ?T tracks

from each of the leading jets, each described by six variables. The VAE model used for the ANTELOPE

architecture is trained (tested) with 80% (20%) of a subset of 200,000 data events subject to preselection

requirements (detailed in Section 6). The loss L is that of the standard VAE, namely the sum of two

terms: the mean-squared error (MSE) of the output and the input to test reconstruction quality, and the

Kullback-Leibler divergence (KLD) measuring the distance between the learned and tested distributions in

the latent space. The VAE is trained for 50 epochs with a learning rate of 10−5 on data events only. The

final ANTELOPE score is produced by applying a log followed by sigmoid transformation function to the

total evaluated L. Figure 4 shows the distribution of the ANTELOPE score in data and signal simulation

with all preselection requirements imposed.

The performance of the ANTELOPE tool is evaluated through its sensitivity breadth to a wide variety

of signal models rather than its depth to the SVJ signal in particular. To quantify this, several additional

simulated signals are considered as test sets, and a selection of > 0.7 is imposed on the ANTELOPE

score to maximally enrich the signal sensitivity for the SVJ simulated samples (defined in Section 6).
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This threshold for the ANTELOPE SR, determined with no awareness of the alternate signal models, is

found to enrich the signal sensitivity to the emerging jet signal by over three times, and to the gluino

R-hadron signals by greater than a factor of five. While it is inherently difficult to interpret the outcomes

of a less-than-supervised ML tool, studies of the ANTELOPE score along with traditional observables

indicate that it is correlated to track displacement variables, as well as event-level kinematic quantities such

as missing energy and <T.

6 Event selection

Events are required to have at least one ?? interaction vertex with at least two tracks with ?T greater than

500 MeV [72]. An event-level jet cleaning is applied to reduce the presence of beam-induced background,

cosmic rays, and calorimeter noise bursts [73]. A tight working point explicitly designed to provide higher

background rejection is used given the similarity of the semi-visible jet signal to non-collision backgrounds.

In addition to the standard cleaning, events containing jets in the bad hadronic calorimeter tiles have been

removed from the data sample [46].

A common preselection is applied to all events considered in the analysis. In order to reconstruct the

resonance mass, events must have at least 2 jets, each containing at least 3 tracks to ensure good modeling.

Since the signal process for this analysis does not directly produce leptons, events containing leptons

are vetoed from the data sample. To ensure full efficiency of the jet trigger, a requirement on the ?T of

the leading jet of at least 450 GeV is imposed. The subleading jet is required to have ?T > 150 GeV; in

conjunction with a selection that the Δq between the leading two jets be greater than 0.8, this is found to

suppress contributions from non-collision background. Both leading jets must have |[ | < 2.1, to ensure

full tracking coverage. The absolute value of the difference in rapidity between the two leading jets, |Δy|,
must be < 2.8 to ensure final state objects that are central in [, an event characteristic that is associated

to heavy resonance production. A selection of �miss
T

> 200 GeV is imposed to focus on events with the

key semi-visible jet characteristic of high missing energy due to dark particles in the shower. Finally,

<T is required to be greater than 1.5 TeV, to ensure that signal fits are performed on a smoothly falling

background.

A signal region (SR) is defined to enrich the presence of signal and remove SM background processes. The

background estimation in the SR is constructed using a control region (CR), which is defined to provide an

orthogonal set of data events enriched in background and similar in kinematic phase space to the SR. A

validation region (VR) is further defined to provide additional validation of the background estimation

strategy. A diagram summarizing the analysis regions and demonstrating the analysis flow can be seen in

Figure 5, with details of the selections provided below.

Three sensitive analysis variables are used to define the various analysis regions. Dark showers tend

to have higher track multiplicty and broader showers than SM multĳet processes, resulting in good

signal-background discrimination from the jet width, defined by the distance between the calorimeter

clusters and the jet axis scaled by the cluster energy:

,j =
Σ8?

8
T
× Δ'8,jet

Σ8?
8
T

where 8 refers to a sum over calorimeter clusters and Δ'8,jet is the distance in [-q space between calorimeter

cluster 8 and the jet axis [74].
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8 Systematic uncertainties

As the background estimation procedure relies on fitting a functional form to the data, any smooth variation

on the <T spectrum itself is absorbed by the background fit and the impact on the residuals is expected to be

small. Any remaining sources of systematic uncertainty apply to either the signal shape or normalization.

A background uncertainty is ascribed to the possible fitting of spurious signal from fluctuations in the

<T spectrum. This systematic is assessed as a normalization uncertainty on the signal model shape by

performing a signal-plus-background fit on blinded data events from the signal-depleted CR. Beforehand

the CR data is subject to a smoothing procedure based on functional decomposition to accommodate

statistical fluctuations at high <T [77]. The amount of fitted spurious signal varies with Rinv and m/ ′ , but

is consistently below a level of 0.5f, in line with recommendations [78]. This value is added as a number

of events that can be attributed to the spurious signal, which is custom for each simulated signal point.

A second normalization uncertainty is ascribed to the impact of theoretical modeling effects, of which

three sources are considered. The first arises from variations to the strong coupling constant UB and parton

distribution functions (PDFs), and the corresponding uncertainty is estimated through study of the signal

<T distribution under alternate PDF sets and taking an envelope of these variations in the <T window

corresponding to the signal / ′ mass, as prescribed by the PDF4LHC group [52]. Second, effects of

generator-level variations of the A14 tune on the initial-state and final-state radiation as well as multiple

parton interactions, are estimated by varying the strong coupling constant (Us), the renormalization scale

(`r), and the factorization scale (`f) and similarly evaluating the envelope in the relevant <T window for a

given signal. Both of these theoretical sources of uncertainty are modeled as a flat 20% variation on the

signal model. The uncertainty in the combined 2015–2018 integrated luminosity is 0.83%, obtained using

the LUCID-2 detector [42] for the primary luminosity measurements, complemented by measurements

using the ID and calorimeters.

Systematic uncertainties that affect the shape of the signal in <T come from instrumental effects, namely in

the small-R jet ?T scale. Such uncertainties are potentially impactful on an analysis that looks for localized

excesses on top of a smoothly falling background because they can shift the peak of the resonance. Jet

?T scale uncertainties are estimated using a methodology that compares track-to-calorimeter ?T double

ratios from data to simulation, from which baseline differences are ascribed to systematic effects [60]. In

this analysis, the total jet ?T scale uncertainty has a very small effect on the shape of the <T spectrum, but

variations are nonetheless incorporated into the final signal-plus-background fits as nuisance parameters

with Gaussian constraints.

9 Statistical analysis

The statistical treatment of both the SRPFN and SRAD are developed through functional fitting of the

<T spectrum. Studies of the signal mass peak in <T using double-sided Crystal Ball functions reveal

that the mass resolution varies from approximately 200 GeV for m/ ′ =2000 GeV and up to 800–1000

GeV for higher m/ ′ , depending on the Rinv value. Each <T fit is performed with the five functional

parameters of the background function floating, including the background normalization. The CR and VR

are used to validate and test the function’s capability to fit different <T spectra, but the final SRPFN and

SRAD functions are obtained from a new fit of each corresponding SR <T distribution. Systematics are
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modeled as nuisance parameters with Gaussian constraints, and can be either yield or shape uncertainties,

as discussed in Section 8.

A variety of fit tests are performed with the CR and VR data samples to ensure good quality of the

background expectation. The functional form in Section 7 is used to perform a background-only fit on

both simulated background and data in the CR and VR selection. To ensure that the fit tests are done on a

region with similar expected statistics to that of the SR, the SR yield is unblinded and the fit test region

is randomly downsampled to match the SR event yield. As the overall event count in the SR does not

incorporate the sensitive <T shape information, this can be considered to not fully unblind the analysis

during fit development and risk the introduction of bias.

To further validate the fit in more instances, pseudo-data is created from the CR/VR data distributions.

It is created following the Asimov prescription with smoothing to accommodate fluctuations in the high

<T tail. The smoothing applied follows the procedure for functional decomposition described in Ref. [77].

Toys thrown from the resulting smoothed template produce distributions of background-only p-values

that are consistent with good modeling. A final fit check is performed by injecting signal into the CR

data template. These injections range in significance in the / ′ mass window from 1f to 5f, and a good

linearity is observed of the post-fit extracted number of signal events with respect to the injected number.

SRPFN Signal interpretations are extracted from SRPFN only via signal-plus-background fits using the

SVJ signal template. The parameter of interest in the statistical analysis is the signal strength `, defined as

a scale factor multiplying the nominal yield predicted by a 1 pb signal cross section so as to match the

observed number of signal events. The background-only hypothesis corresponds to ` = 0. To accurately

perform the fit, equidistant narrow-width bins are required as the fit function is performed with RooPDF

and evaluates the function at the center of the bin rather than integrating across the bin [78]. Therefore, a

narrow binning (90 across the <T spectrum) is chosen to perform the functional form background-only and

signal-plus-background <T fits for SRPFN.

SRAD As SRAD is built using an anomaly detection tool, it is not used to perform any signal-plus-

background fits. However, the generality of the tool used in its construction results in a region with broad

expected sensitivity to new physics producing resonances in <T. Therefore, BumpHunter [79] is used to

quantify the significance of adjacent bins in<T without a particular signal model shape. BumpHunter looks

for significant excesses in the <T spectrum incorporating only the statistical uncertainty of the data and

the adjacency of bins that disagree between data and expectation. It outputs a p-value that provides a

goodness-of-fit metric to quantify the most significant excess across the spectrum, along with a window in

<T corresponding to this excess. To do this, the 180 narrow bins used for the functional fit are subsequently

rebinned to a wider variable binning that reflects the expected signal mass resolution, informed by the

double-sided Crystal Ball mass peak fits, and thus increases in width for higher <T. There is potential for a

spurious signal in the SRAD <T spectrum that can be found by the BumpHunter procedure. To evaluate

this, BumpHunter fits are performed over Asimov data in the ANTELOPE CR and VR. In 100 trials, no

fits are found with BumpHunter ?-values less than 0.01, indicating a small impact of potential spurious

signal effects.

The unblinded <T distributions for the PFN and ANTELOPE signal regions can be seen in Figure 7. The

fit quality of the background function to the data is good, with ?-values of 0.26 and 0.74 for the SRPFN and

SRAD respectively. No significant excesses of the data with respect to the background-only model are

observed. BumpHunter is run on the SRAD <T distribution rebinned according to expected signal mass
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Figure 7: Distribution of data in the <T spectrum of the (a) PFN and (b) ANTELOPE signal regions. No significant

excesses are found and good fit quality is obtained.

resolution as described in Section 9 allowing for excesses with widths of at least 2 and at most 6 bins. The

BumpHunter interval of the SRAD <T spectrum with the most significant excess is found to be between

1700 and 1900 GeV, with a corresponding BumpHunter p-value of 0.81, indicating that no significant

Gaussian resonance shape can be found in the data.

Upper limits on the signal production cross section f times branching ratio �, are set at 95% confidence

level (CL) using the CLB method [80]. Figure 8 shows the 95% CL observed and expected limits obtained

from fitting the unblinded SR. As the data were found to be compatible with background prediction, a good

agreement of observed and expected limits is seen. The analysis delivers the best limits for low Rinv signal

points, with a loss of exclusion power at higher Rinv points due to the very broad signal shape in <T. Values

of m/ ′ from 2000 to 3200 GeV are excluded to varying Rinv fractions ranging from 0.37 to 0.2, respectively.

Figure 9 shows the expected and observed exclusion to 95% confidence in the two-dimensional plane of

m/ ′ and Rinv. The analysis has the strongest exclusion power for low values of Rinv, where the signature is

more visible, and lower masses, where the production cross section of the signal is higher. These exclusions

are the first set by ATLAS on / ′-mediated semi-visible jet signals.

While the ANTELOPE region is not used to set limits on the signal grid, it can still be used to compare the

reach of the PFN SR to a less model-dependent approach. This is done through signal injection into the

ANTELOPE data to determine the 95% upper limit on the signal strength ` of both the SVJ and alternate

signal models discussed in Section 3. The background is taken to be the background-only functional fit.

The 95% upper limit is defined as the amount of signal at which BumpHunter returns a 2f significance.

As this check uses only BumpHunter, none of the signal systematics are applied, meaning these limits

cannot be compared to dedicated analyses for theses signals. Figure 10 shows the resulting limit plot

comparing the PFN and ANTELOPE SRs. As expected, the dedicated PFN region designed for the SVJ

signals provides the better limit on the SVJ grid points by approximately a factor of two. However, the

ANTELOPE region takes over with nearly an order of magnitude improvement on the emerging jet and

gluino R-hadron alternate signals. This demonstrates the generality of the ANTELOPE tool and its utility
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Figure 8: Observed (solid) and expected (dashed) limits at 95% CL on the production cross section f times branching

ratio � of the / ′ mediator as a function of / ′ mass in GeV, for simulated Rinv of (a) 0.2, (b) 0.4, and (c) 0.6. The dark

(light) band around the limits represents the ±1 (2) uncertainty band. The predicted theoretical cross section is also

included in red obtained from the model discussed in Section 3.

to provide anomaly detection capability in this search.
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10 Conclusions

A search has been presented for strongly coupled dark sector particles in semi-visible jet signatures. The

SVJ signal is generated through the resonant production of a heavy / ′ mediator decaying to two dark

quarks which decay to jets with a fraction Rinv of constituent particles that are invisible to the detector.

Signal-like events are selected with the assistance of two machine learning tools which focus on track-level

permutation invariant modeling of the events. One of these, a ParticleFlow Network, provides the highest

sensitivity to the simulated SVJ signal, while the second tool ANTELOPE focuses on anomaly detection

through generalized sensitivity to a wide variety of signal models. The analysis searches for excesses

on top of a smoothly falling <T spectrum, which is estimated with a five-parameter functional fit. No

significant excesses are observed in the unblinded PFN and ANTELOPE regions, and upper limits are

set on the production cross section of the / ′. Signal points with m/ ′ between 2000 and 3200 GeV are

excluded at 95% CL for Rinv ranging from 0.2 to 0.37.
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