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photon in p p collisions at
√
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A search for the Higgs boson decay to a / boson and a photon in the ℓℓW (ℓ = 4, `) final

state is performed using ?? collisions at
√
B = 13.6 TeV recorded with the ATLAS detector

at the Large Hadron Collider during 2022–2024, corresponding to an integrated luminosity

of 165 fb−1. The signal yield, normalised to the Standard Model prediction, is measured to

be ` = 0.9+0.7
−0.6

, compared to an expected value of ` = 1.0 ± 0.7. This corresponds to an

observed (expected) signal significance of 1.4 (1.5) standard deviations for the background-only

hypothesis. This result is combined with that of a similar search performed with 140 fb−1

of
√
B = 13 TeV ?? collisions to provide the most stringent expected sensitivity to date to

this rare decay, namely an observed (expected) signal strength of ` = 1.3+0.6
−0.5

(` = 1.0+0.6
−0.5

),

corresponding to an observed (expected) significance of 2.5 (1.9) standard deviations. The

measurement is consistent with the Standard Model expectation.
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1 Introduction

A new boson with properties consistent with those of the Standard Model (SM) Higgs boson (�) was

independently observed in 2012 by the ATLAS and CMS Collaborations [1, 2] at the Large Hadron Collider

(LHC) [3]. Measurements of its couplings to SM particles, its spin, and its parity have, to date, shown no

significant deviation from the SM predictions [4–7]. The combined ATLAS and CMS determination of its

mass from LHC Run-1 data yields <� = 125.09 ± 0.24 GeV [8], a value that is consistent with recent

Run-2 measurements [9–11].

Within the SM, the Higgs boson decay to a / boson and a photon (� → /W) proceeds via loop-

induced processes, leading to a predicted branching ratio of BR(� → /W) = (1.54+0.10
−0.11

) × 10−3 for

<� = 125.09 GeV [12], similar to that for � → WW, BR(� → WW) = (2.27+0.07
−0.06

) × 10−3 [12]. Extensions

to the SM, such as models with additional colourless charged scalars, fermions, or vector bosons, can

alter this rate via contributions in the loops [13–19], making the ratio BR(� → /W)/BR(� → WW) a

particularly sensitive probe of new physics. Similarly, scenarios in which the Higgs boson is composite or

arises from alternative symmetry-breaking sectors may yield significantly different � → /W branching

fractions [20–22]. Moreover, the observation of � → /W decay would complete the suite of established

Higgs boson decays into pairs of electroweak gauge bosons (WW, //∗, ,,∗), consolidating the role played

by the Higgs boson in electroweak symmetry breaking. Consequently, precise measurements of this rare

decay provide a sensitive probe for the SM and its extensions.

The / (→ ℓℓ)W final state (ℓ = 4, `), despite its reduced branching ratio, offers the best sensitivity to the

� → /W process, as it can be efficiently triggered on and clearly distinguished from background events

produced in proton–proton (??) collisions. Furthermore, it benefits from full kinematic reconstruction and

excellent invariant mass resolution. Both the ATLAS and CMS Collaborations have performed searches for

the � → / (→ ℓℓ)W decay using the Run-2 ?? collision dataset, corresponding to an integrated luminosity

of about 140 fb−1 at
√
B = 13 TeV for each experiment. Compared to the background-only hypothesis,

ATLAS observed a signal significance of 2.2f (1.2f expected) with a measured signal strength, defined

by the ratio of the signal yield to the SM prediction, ` = 2.0+1.0
−0.9

[23], while CMS reported a signal

significance of 2.7f (1.2f expected) with ` = 2.4 ± 0.9 [24]. The combination of these searches yielded

the first evidence of � → /W decays with a significance of 3.4f (1.6f expected) with ` = 2.2 ± 0.7 [25].

All results were consistent with the SM expectation.

This letter presents a search for � → /W decays in the ℓℓW final state using ?? collision data collected

with the ATLAS detector at
√
B = 13.6 TeV during 2022–2024 in Run 3, corresponding to an integrated

luminosity of 165 fb−1. Compared to the Run-2 analysis [23], this study benefits from an increased Higgs

boson production cross-section at higher centre-of-mass energy, and from a larger data and simulated

background samples. Furthermore, the event selection is optimised with relaxed transverse-momentum

(?T) thresholds for muons and photons. In addition, 13 mutually exclusive event categories are defined,

including for the first time a dedicated multi-lepton category designed to target Higgs boson production in

association with a vector boson or top quarks. The remaining 12 categories employ a multivariate classifier

based on XGBoost [26] to maximise the sensitivity, replacing the previous approach mostly based on

rectangular selections on simple kinematic variables. A simultaneous fit to the reconstructed /W invariant

mass distributions across all categories is performed to extract the overall � → /W signal yield. Finally,

the result is combined with the Run-2 measurement to increase the sensitivity to this rare decay.
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2 ATLAS detector

The ATLAS experiment [27, 28] at the LHC is a multipurpose particle detector with a forward–backward

symmetric cylindrical geometry and near 4c coverage in solid angle1. It consists of an inner tracking detector

(ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic

(EM) and hadronic calorimeters, and a muon spectrometer (MS). The inner tracking detector covers

the pseudo-rapidity range |[ | < 2.5. It consists of silicon pixels, silicon microstrips, and transition

radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM)

energy measurements with high granularity within the region |[ | < 3.2. A steel/scintillator-tile hadronic

calorimeter covers the central pseudo-rapidity range (|[ | < 1.7). The endcap and forward regions are

instrumented with LAr calorimeters for EM and hadronic energy measurements up to |[ | = 4.9. The muon

spectrometer surrounds the calorimeters and is based on three large superconducting air-core toroidal

magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most

of the detector. The muon spectrometer includes a system of precision tracking chambers up to |[ | = 2.7

and fast detectors for triggering up to |[ | = 2.4. The luminosity is primarily measured by the LUCID-2

detector, which is located close to the beam pipe. A two-level trigger system was used to select events [29,

30]. The first-level trigger is implemented in hardware and uses a subset of the detector information to

accept events at a rate close to 100 kHz. This is followed by a software-based trigger that reduced the

accepted rate of complete events to 3 kHz on average, depending on the data-taking conditions. A software

suite [31] is used in data simulation, in the reconstruction and analysis of real and simulated data, in

detector operations, and in the trigger and data acquisition systems of the experiment.

3 Data and simulation samples

The analysis presented in this letter uses ?? collision data at
√
B = 13.6 TeV collected by the ATLAS

experiment from 2022 to 2024 during LHC Run 3. Events were collected using unprescaled single-

and dilepton triggers [32, 33] with a variety of ?T thresholds. The lowest-threshold single-electron and

single-muon triggers required ?T > 26 GeV and ?T > 24 GeV, respectively. The dielectron trigger required

two electrons with ?T > 17 GeV each. The dimuon triggers employed a symmetric 14 GeV–14 GeV

configuration in 2022–2024 and an asymmetric 22 GeV–8 GeV configuration in 2023–2024. To maintain

high efficiency at high instantaneous luminosity, these low-threshold triggers were supplemented by

higher-?T triggers with looser identification or isolation requirements. The trigger selections yield an

efficiency of 96% for the 44W final state and 93% for the ``W final state for events passing the offline

selection requirements that will be described in Section 4. After data quality requirements, the total

integrated luminosity amounts to 165 fb−1. The average number of inelastic ?? interactions per bunch

crossing (pile-up) increased from 42 in 2022 to 58 in 2024, with the peak instantaneous luminosity reaching

2.3 × 1034 cm−2s−1.

The optimisation of the analysis strategy and the modelling of the relevant physics processes rely on

simulation Monte Carlo (MC) samples that represent both the Higgs boson signal and the dominant

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector

and the I-axis along the beam pipe. The G-axis points from the IP to the centre of the LHC ring, and the H-axis points upwards.

Polar coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The pseudorapidity is

defined in terms of the polar angle \ as [ = − ln tan(\/2) and is equal to the rapidity H =
1
2

ln
(

�+?I
�−?I

)

in the relativistic limit.

Angular distance is measured in units of Δ' ≡
√

(ΔH)2 + (Δq)2.
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background processes. These samples, unless explicitly stated otherwise, undergo the full simulation of the

ATLAS detector response using the Geant4 framework [34], as implemented in the ATLAS simulation

infrastructure [35].

The Higgs boson mass is set to <� = 125 GeV for all simulated samples, with a corresponding total

decay width of Γ� = 4.1 MeV, as recommended in Ref. [12]. The simulated samples are normalised

to the SM production cross-sections, evaluated at a Higgs boson mass of <� = 125.09 GeV. These

include production via gluon–gluon fusion (ggF) [12, 36–47], vector boson fusion (VBF) [12, 48–50],

associated production with a vector boson (VH, where + = ,, /) [12, 51–58], associated production with

a top-quark pair (CC̄�) [12, 59–62], and associated production with a bottom-quark pair (11̄�) [63–65].

Other Higgs boson production mechanisms were not considered, as their contributions to the total Higgs

boson production cross-section are at the level of 0.1% or less. The � → /W branching ratio and its

uncertainty were taken from Ref. [12].

The production of the Higgs boson was simulated using the Powheg Box v2 MC event generator [66–70]

and the PDF4LHC21 parton distribution functions (PDF) set [71], following the setup summarised in

Table 1. The � → /W decay, as well as parton shower, hadronisation, and the modelling of the underlying

event, were performed using Pythia 8 [72]. Contributions from � → `` decays, where the reconstructed

photon originates from QED final-state radiation (FSR), were evaluated using samples produced with a

similar setup and are considered as a potential background in this analysis. The impact of interference

between Higgs boson decays with the same final-state signature (� → ℓℓW with non-resonant dilepton) is

expected to be negligible in the SM [73]. Additional samples of the � → /W signals were generated using

Herwig 7 [74] for decay and parton shower simulation and are used to evaluate uncertainties associated

with the parton shower modelling.

In this analysis, the dominant backgrounds arise from non-resonant production of a / boson in association

with a photon (/W) or jets, where a jet is misidentified as a photon (/ + jets). Additional background

contributions stem from diboson (++) production, where + denotes either a , or a / boson. These

additional background contributions are relevant only for the event category containing additional leptons.

A large /W background sample was generated at next-to-leading-order (NLO) accuracy in QCD using the

Sherpa 2.2.14 generator [75], with one to three additional partons in the final state at LO. The simulation

employed the NNPDF3.0 next-to-next-to-leading-order (NNLO) PDF set [76], and a fast simulation of the

calorimeter response was applied [77].

The EW production of a / boson in association with a photon and two jets (/W 9 9) was simulated at

LO accuracy in EW using MadGraph 3.5.5 [78] with the NNPDF2.3LO PDF set [79], where both jets

originate from partons emitted at EW vertices. QCD-induced diagrams were explicitly excluded, resulting

in no additional partons from QCD in the final state and ensuring orthogonality with the /W sample

generated with Sherpa. The hadronisation, parton shower, and the modelling of the underlying event were

simulated using Pythia 8 with the A14 set of tuned parameters [80].

The background from / + jets was estimated from data using a control region of events in which the photon

candidates fail the nominal criteria and pass looser identification or isolation requirements.

Diboson backgrounds resulting in three- and four-lepton final states were also modelled using Sherpa

2.2.14, employing the NNPDF3.0NNLO PDF set. The sample was generated at NLO accuracy in QCD

with up to three additional partons at LO accuracy.

The effect of pile-up was modeled by overlaying simulated hard-scattering events with inelastic ??

interactions from a mix of Epos 2.0.1.4 [81] and Pythia 8. Epos events were generated with the LHC
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tune[82], and Pythia with the A3 tune [83] and the NNPDF2.3LO PDF set. Pythia simulated pileup

events containing high-?T jets, prompt photons, or leptons from 1-hadron decays, while Epos accounted

for the remaining minimum–bias contribution. The individual samples were first reweighted to ensure

a smooth transition across jet ?T, and the combined sample was reweighted to match the distribution

of the number of interactions per bunch crossing observed in data. To improve the agreement between

simulation and data, correction factors were applied to account for differences in reconstruction and

identification efficiencies. These include corrections to the trigger, reconstruction, identification, and

isolation efficiencies for electrons and muons, as well as the identification and selection of photons and jets.

Additional corrections were applied to the energy and momentum scale and resolution of reconstructed

objects to reflect the detector performance.

Table 1: Higgs boson signal MC samples produced with Powheg Box V2 along with the techniques used to generate

the events and their precision in Us for the event generation (gen.). The version of Pythia 8, its parameter tune, and

the PDF set, which are used for modelling the Higgs boson decay, parton shower, hadronisation, and the underlying

event, are listed. The precision of the total cross-section used in the sample normalisation is also reported.

Process Technique QCD (gen.) Pythia 8 & tune PDF set Normalisation

ggF Powheg [68, 69] NNLO* 8.310 [72], A14 [80] PDF4LHC21 [84] NNLO (QCD), NLO (EW) [36–47]

VBF Powheg NLO 8.310, A14 PDF4LHC21 NNLO (QCD), NLO (EW) [48–50]

@@̄ →ZH
Powheg

& MiNLO [85]
NLO 8.310, A14 PDF4LHC21 NNLO (QCD), NLO (EW) [56, 58, 86]

66 →ZH Powheg LO 8.310, A14 PDF4LHC21 NLO (EW) [58, 87, 88]

WH
Powheg

& MiNLO [85]
NLO 8.310, A14 PDF4LHC21 NNLO (QCD), NLO (EW) [56, 58, 86]

C C̄� Powheg NLO 8.310, A14 PDF4LHC21 NNLO (QCD), NLO (EW) [59–62, 89]

11̄� Powheg (4FS) NLO 8.310, A14 PDF4LHC21 NNLO (QCD), NLO (EW) [63–65, 90]

* NNLO accuracy achieved only for inclusive ggF observables.

4 Event selection and reconstruction

Events passing the trigger selection described in Section 3 are required to include at least one photon

and two same-flavour, opposite-charge leptons, all associated with the primary vertex, defined as the

inner-detector track vertex with the highest
∑

?2
T

of tracks with ?T > 500 MeV [91].

Muon candidates are reconstructed by combining the tracks in the ID and MS [92, 93]. They need to satisfy

medium identification criteria, lie within |[ | < 2.5, and have ?T > 5 GeV. Electrons are reconstructed

from topological clusters of EM calorimeter cells matched to ID tracks [94–96]. They are required to pass

a loose identification selection based on a likelihood discriminant using calorimeter shower shapes and

track parameters, lie within |[ | < 2.47 (excluding the transition region between the barrel and endcap EM

calorimeters 1.37 < |[ | < 1.52), and have ?T > 10 GeV. To ensure leptons originate from the primary

vertex and to suppress heavy-flavour backgrounds, all leptons are required to satisfy |ΔI0 · sin \ | < 0.5 mm,

where ΔI0 is the longitudinal impact parameter relative to the primary vertex and \ is the track polar angle.

Moreover, the transverse-impact-parameter significance |30 |/f30
needs to be < 3 for muons and < 5 for

electrons, with 30 measured relative to the beam line and f30
its fit uncertainty.

Photon candidates are built from topological clusters of EM calorimeter cells [94–96]. They have to

satisfy tight identification criteria based on calorimeter shower shape variables, |[ | < 2.37 (excluding

1.37 < |[ | < 1.52), and have ?T > 10 GeV (relaxed from 15 GeV in Run 2 [23]). To increase the rejection

of background from non-prompt and hadronic production, the lepton and photon candidates are required to
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pass isolation criteria, based on the energy deposits in the calorimeter and the total ?T of charged-particle

tracks from the primary vertex, measured in cones surrounding the direction of the particle candidates.

Jets are reconstructed from particle flow objects [97] clustered via the anti-:C algorithm (' = 0.4) [98–100].

They are required to satisfy ?T > 25 GeV and |H | < 4.4. To suppress jets originating from pile-up, a

central [101] or forward jet-vertex-tagger [102] is applied.

Overlap removal discards the lower-?T electron when two electron candidates share the same track or

satisfy |Δ[ | < 0.075 and |Δq| < 0.125. Electrons within Δ' < 0.02 of muons are also removed. To

suppress bremsstrahlung photons emitted by leptons, photons within Δ' < 0.3 of leptons are discarded.

Finally, jets within Δ' < 0.2 of leptons or photons are removed.

/ boson candidates are reconstructed from opposite-charge and same-flavour lepton pairs. In the muon

channel, the highest ?T collinear FSR photon (Δ' < 0.15) is added to the corresponding muon to improve

the di-muon mass resolution. A kinematic fit [23] then corrects the lepton four-momenta to constrain the

dilepton mass to the known / boson mass, accounting for its finite natural width. This procedure improves

the ℓℓW mass resolution of the signal MC samples by 17% for electrons and 11% for muons, including the

effect of FSR. Candidates must satisfy |<ℓℓ − </ | < 10 GeV, where </ = 91.2 GeV [103]. If multiple

/ boson candidates are found, the dilepton pair with <ℓℓ closest to </ is selected, resulting in a 98%

efficiency for correctly matching to the true / boson in the ggF signal sample. The leptons associated

with the / boson candidate are additionally required to be geometrically matched to the corresponding

trigger-level leptons that fired the event. They are required to satisfy an offline ?T threshold set 1–2 GeV

above the nominal trigger requirement to ensure that the trigger is maximally efficient.

The Higgs boson candidate is reconstructed by combining the selected / boson and the highest–?T photon.

The invariant mass of the ℓℓW system (</W) must lie within 110–160 GeV to suppress contributions from

on-shell / boson events. In addition, the photon ?T is required to be larger than 0.09 times </W . This

requirement further reduces the background, while not introducing a sharp turn-on in the </W spectrum

near <� as would the use of an absolute minimum ?
W

T
requirement with similar background rejection. This

criterion, relaxed from the Run-2 value of 0.12 thanks to the calibrations of identification and isolation

efficiencies for photons with lower ?T, enhances the selection efficiency. The overall reconstruction and

selection efficiency (including detector acceptance) for the SM � → / (→ ℓℓ)W events ranges from 20%

to 26%, depending on the production mode.

5 Event categorisation

To maximise the sensitivity to an � → /W signal, events are classified into 13 exclusive event categories.

Events are first categorised into four primary regions: Lepton, VBF, High relative photon ?T, and Low

relative photon ?T. This classification is based on lepton and jet multiplicities as well as kinematic

properties. The VBF and both the High and Low relative photon ?T regions are further subdivided into

mutually exclusive categories according to the output of XGBoost-based [26] boosted decision trees (BDT)

and the lepton flavour. To avoid sculpting of the </W distribution, the BDT inputs are selected to have

minimal correlation with </W , and the classifiers are trained within narrow mass windows: 120–130 GeV

for the VBF and High relative photon ?T regions, and 123–127 GeV for the Low relative photon ?T region.

This categorisation strategy is designed to maximise the combined number counting significance, while

requiring at least two background events in the signal region (120 < </W < 130 GeV) of each category.

This requirement translates into a minimum number of background events in the full fit region that is
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large enough to ensure sufficient statistical precision for the background estimate. The event classification

scheme is illustrated in Figure 1 and more details are provided in the following paragraphs.

Events with at least three leptons (#lepton ≥ 3) are assigned to the Lepton category. This category is

enriched in VH and CC̄� production modes, accounting for 56% and 35% of the signal yield in this category,

respectively. The dominant backgrounds arise from / + jets, multi-lepton diboson, and non-resonant /W

processes.

Events failing the Lepton region and containing at least two jets (#jet ≥ 2) are selected for the VBF region.

If more than two jets are present in an event, the two highest-?T jets are considered. A dedicated BDT was

trained using 25 kinematic variables to separate the VBF signal from the non-resonant /W, and the EW

/W 9 9 , as well as to reduce the contamination from ggF. The variables are summarised in Table 2. Events

in the VBF region are classified into tight (VBFT) and loose (VBFL) categories based on the BDT score,

with the VBFT category exhibiting higher significance. The VBF fraction of the total signal yield is 89%

and 64%, respectively, in the VBFT and VBFL categories.

Table 2: Summary of input variables used in the BDT training for the VBF, HRelpT-44, HRelpT-``, LRelpT-44, and

LRelpT-`` analysis regions. The same set of input variables is employed in the four relative photon ?T regions.

Input variable Description VBF relative photon ?T

#jet Number of jets X X

?
91
T

, [ 91 ?T, and [ of the leading jet ( 91) X X

< 91 Mass of the leading jet X

q 91 Azimuthal angle of the leading jet X

< 92 , ?
92
T

, [ 92 Mass, ?T, and [ of the subleading jet ( 92) X

< 91 92 , ?
91 92
T

, Δ[ 91 92 Dĳet invariant mass, ?T, and [ separation X

[W Pseudorapidity of the photon X X

?
W

T
Transverse momentum of the photon X

?ℓℓ
T

Transverse momentum of the dilepton system X

[ℓℓ , [ℓℓW Pseudorapidity of the dilepton and ℓℓW systems X X

?
ℓℓW

T
Transverse momentum of the ℓℓW system X

?
ℓℓW

T
/<ℓℓW , ?

W

T
/<ℓℓW Relative ?T of the ℓℓW and the photon X

?ℓℓ
T
/<ℓℓW Relative ?T of the dilepton system X

?C
T

Component of ®?ℓℓW
T

perpendicular to the difference between

®? ℓℓ
T

and ®? W

T
(?C

T
= | ®?ℓℓW

T
× Ĉ |, with Ĉ ∝ ®? ℓℓ

T
− ®? W

T
) [104, 105]

X X

Δqℓℓ,W Azimuthal separation between the ℓℓ system and the photon X X

ΔqℓℓW, 91 Azimuthal separation between the ℓℓW system and the leading jet X X

ΔqℓℓW, 91 92 Azimuthal separation between the ℓℓW system and the dĳet system X

Δ[ℓℓ,W Pseudorapidity separation of the dilepton and the photon X X

Δ'min
W or ℓℓ, 9

Minimum Δ' to 91/ 92 from the photon or the dilepton system X X

cos \∗(ℓ+) Cosine of the polar angle of the ℓ+ in the ℓℓ rest frame X X

cos \ (ℓℓ) in ℓℓW Cosine of the polar angle of the ℓℓ in the ℓℓW rest frame X X

[Zeppenfeld Pseudorapidity difference between the ℓℓW system and

the dĳet system, defined as |[ℓℓW − ([ 91 + [ 92)/2| [106]

X

Events not selected for the VBF region and satisfying ?
W

T
/</W ≥ 0.4 enter the High relative photon

?T region, dominated by ggF production. Separate BDTs are trained for the 44 and `` channels using
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Table 3: Expected signal ((
exp

68
), background (�

exp

68
) and observed event yields in data (#68) in a window of width

F68, expected to contain 68% of the signal. The expected signal and backgrounds are extracted from a signal-

plus-background fit to the Asimov dataset (Section 8). The signal uncertainty reflects the impact in `, while the

background uncertainty accounts for the statistical uncertainty from the fit. The expected sensitivity is given by

(
exp

68
/
√

(
exp

68
+ �

exp

68
. The last row shows the inclusive results, calculated by summing the contributions from all

categories. The inclusive sensitivity is derived by combining the category sensitivities in quadrature.

Category (
exp

68
�

exp

68
#68 F68 [GeV ] (

exp

68
/
√

(
exp

68
+ �

exp

68

Lepton 1.5 ± 1.1 76.3 ± 2.8 78 4.4 0.17

VBFT 1.5 ± 1.1 1.2 ± 0.4 3 3.8 0.91

VBFL 2.8 ± 2.0 27.6 ± 1.8 23 4.0 0.51

HRelpT-44T 1.2 ± 0.8 6.6 ± 0.9 11 3.1 0.43

HRelpT-44L 3.0 ± 2.1 54.10 ± 1.8 77 4.0 0.40

HRelpT-``T 2.4 ± 1.7 20.3 ± 1.7 33 3.9 0.50

HRelpT-``L 2.4 ± 1.7 56.5 ± 1.7 72 4.1 0.31

LRelpT-44T 9 ± 6 234 ± 6 251 3.8 0.57

LRelpT-44M 29 ± 20 2 591 ± 19 3 806 4.1 0.56

LRelpT-44L 24 ± 17 13 260 ± 50 17 435 4.5 0.21

LRelpT-``T 4.9 ± 3.4 96 ± 4 127 3.9 0.49

LRelpT-``M 34 ± 24 2 545 ± 19 3 133 4.1 0.67

LRelpT-``L 37 ± 26 16 960 ± 40 19 331 4.4 0.28

Inclusive 150 ± 110 35 930 ± 70 44 380 4.0 1.81

6 Signal and background modelling

The signal and background yields are determined by an unbinned extended maximum-likelihood fit to the

reconstructed </W spectrum in data, employing analytic functions for both components. The shape of the

� → /W signal is modelled by a double-sided Crystal Ball (DSCB) function, comprising a Gaussian core

with power-law tails on both sides to capture both the detector resolution and non-Gaussian effects [107].

In each category, the DSCB parameters (mean `CB, width fCB, and four parameters describing the tails)

are determined from a fit to a combination of all signal samples. The mean is shifted by 90 MeV to correct

for the generated Higgs boson mass of 125 GeV to the measured value of 125.09 GeV. The overall signal

normalisation and acceptance are taken directly from the same simulation. A small contribution from

� → `` decays (up to 3.8% of � → /W signal in certain categories) is likewise modelled with its own

DSCB template, with normalisation fixed to the SM prediction.

For all selected events, the backgrounds arise primarily from non-resonant /W production and / + jets events

in which a jet is misidentified as a photon. The diboson contribution remains below 0.2% and is therefore

neglected in the inclusive background estimate. The relative fractions of /W and / + jets components

are determined inclusively via a two-dimensional sideband method, applied to a dataset obtained after

loosening the nominal photon identification and isolation requirements. The sideband populations of the

dataset are used to extract the /W purity in data [108]. This yields a /W fraction of 0.49+0.05
−0.10

, compared to

0.78+0.04
−0.09

in Run 2 [23]. The reduction reflects three combined effects: the increased pile-up in Run 3, the

lowered photon ?T threshold in the event selection, which admits more jets faking photons, and the smaller
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ratio of SM /W to / + jets cross-sections at
√
B = 13.6 TeV.

The background </W distribution is modelled based on fits to a dedicated background template that

combines the /W and / + jets components. After the inclusive fractions of /W and / + jets events are

determined, they are extrapolated to each event category using efficiencies from the /W fast-simulation MC

and data-driven / + jets samples. To reduce statistical fluctuations in the control region, the ratio of / + jets

to /W shapes as a function of </W is smoothed by fitting a low-order polynomial or exponential-polynomial

function. This smoothed ratio is applied to the /W template to define the / + jets background shape. In the

VBF categories, a similar smoothing is employed on the ratio of /W + (/ + jets) to the larger EW /W 9 9

simulation to define the total background template. In the Lepton category, the 35% contribution from

diboson backgrounds, taken from simulation, is added to the template. Finally, in each category, the overall

background normalization is scaled to data in the </W sidebands (excluding the interval 120–130 GeV).

The resulting templates are compatible with the </W distribution of data.

To determine the background model that accurately represents the data without inducing artificial signal

features, a spurious signal ((() study [23] is performed. In each category, several analytic function families,

such as power laws, Bernstein polynomials, exponential polynomials, and logarithmic polynomials of

the form (1 − G1/3) 5 GΣ#

8=0
?8 log(G )8 , with G = </W/

√
s and f a free parameter, are fitted to the background

template. Each function is tested over three fit ranges (110–155 GeV, 115–160 GeV, 110–160 GeV). The

function-range combinations are required to satisfy two criteria:

• The |(( | is defined as the absolute value of the maximum fitted signal yield obtained from a

background-only template when varying <� between 120 and 130 GeV in steps of 1 GeV. It is

required that one of |(( − 1f |, ((, or |(( + 1f | is less than 0.2Δ(, where f is the error of the ((,

and Δ( is the expected signal statistical uncertainty.

• The j2-probability of the background-only fit > 1%.

When there is more than one function–range combination that passes these criteria, the one with the

fewest free parameters is chosen. If more than one has the same number of parameters, the one with the

smallest |(( | is chosen. If no candidate satisfies both criteria, the fit window is progressively narrowed

(to a minimum width of 35 GeV) until a valid model is found; if still unsuccessful, the combination with

the lowest |(( | is adopted. A Wald test [109, 110] is then applied to data sidebands to compare nested

functions: if a lower-degree function is statistically compatible without significantly increasing |(( |, it

replaces the nominal model to guard against over-fitting. To account for uncertainties in the relative

/W and / + jets fractions, variations of those fractions by plus or minus their uncertainties are used to

build alternative templates. Repeating the (( study on these templates leaves the chosen function–range

combination unchanged in every category, and the maximum |(( | across the three templates is assigned as

the systematic uncertainty on the background model.

Once the function is selected, a smoothing technique based on Gaussian Process Regression [110,

111] is applied to each category’s template. The |(( | is then re-evaluated. This reduces the effect of

residual statistical fluctuations without introducing any shape bias and does not affect the choice of any

function–range combination in any categories. Unlike the signal models, whose parameters are fixed from

simulation, the background model parameters are extracted directly from a fit to the </W distribution

in data. As an additional validation, a template is built as the sum of the SM signal template and the

background template in each category, and is then fitted. The resulting best-fit signal strength in every

category is compatible with the SM prediction, confirming the robustness of the background models.
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7 Systematic uncertainties

Systematic uncertainties impact the fit results by affecting either the normalization or the shape of the

</W invariant mass distributions. Experimental uncertainties are evaluated using Run-3 data and MC

events. Despite the large simulation background samples and smoothing procedures, the spurious signal,

uncorrelated across event categories, retains a large contribution from statistical fluctuations of the input

samples. It results in an 11% impact on the signal strength `, which is small with respect to the statistical

uncertainty.

Signal shape modelling uncertainties vary by category and are driven by the calibration of the electron

and photon energy, as well as the muon momentum. The uncertainty in the electron and photon energy

resolution and in the muon momentum resolution leads to a less than 5% mass resolution (f��) uncertainty.

The uncertainty in the electron and photon energy scale (and in the muon momentum scale) leads to a less

than 0.3% (0.1%) uncertainty in the peak position (`��). Overall, these uncertainties affect the measured

signal strength by less than 2%.

The 60% uncertainty in the � → `` contribution, taken from the Run-2 ATLAS measurement [112],

contributes a 2% uncertainty in the expected signal strength. Additional uncertainties in the signal yield

arising from reconstruction, identification, and isolation corrections are smaller than 3% for photons,

electrons, and muons [95, 96]. The jet-related uncertainties, including those from jet reconstruction and in

situ calibration, are each below 2%. A conservative uncertainty of 10% is assigned to the reconstruction and

calibration of forward jets. All of the jet uncertainties translate into a 4% impact on the signal strength. The

uncertainty related to the pile-up effects is negligible. The overall uncertainty in the integrated luminosity

for each dataset using the LUCID-2 detector [113] is 4%2 for 2022–2024. Additional uncertainties arising

from the triggers are below 2% across the analysis categories. Combining all experimental systematics,

excluding the spurious signal uncertainty, yields a total 9% uncertainty in the signal strength.

Theory uncertainties affecting the expected signal yield arise from multiple sources. Uncertainties in

the production cross-section and kinematic distributions, primarily due to missing higher-order QCD

corrections, contribute up to 12%, depending on the analysis category, and are dominated by variations in

the renormalisation and factorisation scales. Parton shower modelling introduces additional uncertainties

ranging from 3% to 29%, with the largest values observed in VBF categories; in non-VBF categories, the

uncertainty typically ranges from 0.3% to 10%. The uncertainty in the Higgs boson branching ratio to /W

is 7% [12]. The total impact of theory uncertainties on the signal strength is estimated to be 12%. Table 4

summarises the symmetrised impacts of individual uncertainty sources on the expected and observed signal

strengths. The total uncertainty is dominated by the statistical component, with an expected impact of

0.70. Systematic uncertainties contribute 0.17, the spurious signal and theory modelling effects being the

leading sources.

2 The integrated luminosity for the 2024 dataset is derived from the relative yields of / → 44 and / → `` events relative to

those measured in 2022/2023, yielding a preliminary uncertainty of 5%. When combined with the 2% uncertainty assigned to

the 2022/2023 integrated luminosity [114, 115], a luminosity-weighted uncertainty of 4% is obtained for the Run-3 dataset.
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Table 4: Breakdown of the symmetrised impacts from individual sources of uncertainty on the expected and observed

signal strengths. Uncertainties are grouped by source type to illustrate their relative contributions.

Uncertainty source
Δ`

Expected Observed

Statistical uncertainty 0.70 0.64

Systematic uncertainty 0.17 0.17

Spurious signal (background modelling) 0.11 0.10

QCD scale, PDF+U( , parton shower 0.09 0.06

Branching ratio (� → /W) 0.08 0.05

Luminosity 0.05 0.03

Photon efficiency 0.05 0.03

Jet 0.04 0.07

Electron and photon energy scale and resolution 0.02 0.02

Electron efficiency 0.02 0.02

Muon 0.02 < 0.01

Trigger 0.02 < 0.01

Total 0.72 0.67

8 Results

8.1 Run-3 only

The results are extracted via an unbinned, simultaneous maximum-likelihood fit [116] to the </W

distributions across all categories, each with its own optimised mass window determined as described in

Section 6, following the methodology of previous � → /W searches [23, 117]. The likelihood function

is built by incorporating both the signal strength of � → /W and the nuisance parameters (NPs), which

characterise the effects of systematic uncertainties on the signal normalisation and shape, as well as

background normalisation and shape parameters.

The measured signal strength is ` = 0.9+0.7
−0.6

(stat.)+0.2
−0.1

(syst.) = 0.9+0.7
−0.6

for <� = 125.09 GeV. Under the

SM signal hypothesis, the expected signal strength is `exp = 1.0 ± 0.7(stat.)+0.2
−0.1

(syst.) = 1.0 ± 0.7. The

corresponding Asimov dataset [116] is generated under the hypothesis of SM signal plus background. The

result is statistically compatible with the SM expectation. The observed significance under the background-

only hypothesis is 1.4f, close to the expected significance of 1.5f. Among the event categories, the VBFT

category provides the highest expected sensitivity. In all cases, the uncertainties are dominated by the

statistical contribution, while the most significant systematic uncertainty impact arises from the modelling

of the background (spurious signal). The measurement using individual signal strengths for each category

is consistent with the result obtained from the global signal strength, with a ?-value of 0.37.

Figure 2 (a) presents the</W distribution of selected events in the Run-3 dataset, weighted by ln(1+(68/�68),
where (68 and �68 are the signal and background yields in each category, estimated from the fit to the data,

in an </W window expected to contain 68% of the signal. The combined models, obtained by weighting

the individual category models, are overlaid. The negative profiled-likelihood-ratio values as a function of

the signal strength ` are shown in Figure 3.

Overall, this analysis achieves an expected significance improvement of 28% relative to the previous

ATLAS result [23]. This gain is primarily driven by the advanced event selection and categorisation,
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which contributes 15%. The remaining improvement is from the larger dataset and a more favourable

signal-to-background ratio at
√
B = 13.6 TeV.
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Figure 2: /W invariant mass distributions of weighted data events across all categories for (a) Run-3 only and (b)

the combined Run-2 and Run-3 dataset. The black points represent the data, with statistical uncertainties shown as

error bars. Each event is weighted by ln(1 + (68/�68), where (68 and �68 are the signal and background yields in

each category, estimated from the fit to the data, in an </W window expected to contain 68% of the signal. The

signal-plus-background fit (solid blue curve) and the background model (dashed line) are overlaid. In the bottom

panels, the residuals between the data and the background model (black dots with error bars) are compared to the

signal model (red solid line). All curves represent the weighted sum of the individual category models.
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Figure 3: Profiled likelihood scan of the signal strength for the (a) expected and (b) observed results. Both plots show

the results obtained by this analysis of the Run-3 dataset (dashed blue line), by the previous analysis of the Run-2

dataset [23] (long dashed red line), and their combination (solid black line).

8.2 Run-2 and Run-3 combination

These results based on Run-3 data are combined with those from the previous ATLAS search for � → /W

decays using Run-2 data [23]. The theoretical uncertainties, including branching ratios, QCD scale, and UB
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uncertainties, are treated as fully correlated across both datasets. The PDF uncertainties are uncorrelated

due to the distinct PDF sets used in Run 2 and Run 3. Due to the different data-taking conditions, most

experimental uncertainties are treated as uncorrelated between the two runs, in particular, the uncertainties

related to the trigger, luminosity, electron, photon, and spurious signal. All of the uncertainty sources from

muons and jets are correlated, except for the uncorrelated in situ calibration uncertainties. The impact of

the correlation scheme on the final results was studied and found to be negligible, as the overall uncertainty

is dominated by the statistical contributions. The joint likelihood is constructed as the product of the

individual likelihood functions from the Run-2 and Run-3 analyses. Correlated systematic sources share a

common NP with a Gaussian constraint in the combined fit.

Figure 2 (b) presents the weighted </W distribution with the fitted signal and background models

overlaid, and Figure 3 shows the likelihood scan of the combined signal strength. The observed

combined fit has a best-fit signal strength of ` = 1.3 ± 0.5(stat.) ± 0.2(syst.) = 1.3+0.6
−0.5

with an expected

` = 1.0 ± 0.5(stat.) ± 0.2(syst.) = 1.0+0.6
−0.5

. The significance of the observed (expected) excess above

the background-only hypothesis is 2.5f (1.9f). Relative to the Run-2 analysis, the combined expected

significance improves by 61%. Figure 4 shows the signal strength results in each Run-3 category, the stand-

alone Run-2 and Run-3 measurements, and their combination. The Run-2 and Run-3 measurements are

compatible, with a ?-value of 0.33. Assuming the SM production cross-sections, the combination provides

the most stringent expected sensitivity to date for determining the � → /W branching fraction, surpassing

the ATLAS + CMS Run-2 combination [25]. Under this assumption, the observed (expected) branching

fraction is (2.0+0.9
−0.8

) × 10−3 ((1.5+0.9
−0.8

) × 10−3), compared with the SM prediction of (1.54+0.10
−0.11

) × 10−3.
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9 Conclusion

A search for the Higgs boson decay to /W in the ℓℓW final state is performed using proton–proton collision

data recorded with the ATLAS detector at
√
B = 13.6 TeV during 2022–2024, corresponding to an integrated

luminosity of 165 fb−1. A simultaneous unbinned maximum-likelihood fit to the reconstructed invariant

mass of the /W system across all event categories gives an observed (expected) signal yield normalised

to the SM prediction, ` = 0.9+0.7
−0.6

(` = 1.0 ± 0.7). This corresponds to an observed (expected) signal

significance of 1.4 (1.5) standard deviations. The statistical uncertainty is the dominant source of error.

Compared to a similar search performed with Run-2 data [23], the expected significance improves by 28%,

with 15% arising from the enhanced event selection and categorisation strategies, and the remainder from

increased integrated luminosity and larger cross-sections.

This measurement is further combined with the Run-2 result to yield the most stringent expected sensitivity

to date for the � → /W decay, surpassing the ATLAS + CMS Run-2 combination [25]. In the combined

fit, the observed (expected) signal yield normalised to the SM prediction is ` = 1.3+0.6
−0.5

(` = 1.0+0.6
−0.5

),

corresponding to an observed (expected) signal significance of 2.5 (1.9) standard deviations. The

combination improves the expected significance by 61% with respect to the Run-2 measurement. The

measurement is consistent with the SM expectation, indicating no significant deviation from the predicted

Higgs boson behaviour in the /W channel.
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