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In this paper, we examine a compact U(1) lattice gauge theory in (2+ 1) dimensions and present
a strategy for studying the running coupling and extracting the non-perturbative Λ-parameter. To
this end, we combine Monte Carlo simulations and quantum computing, where the former can be
used to determine the numerical value of the lattice spacing a, and the latter allows for reaching the
perturbative regime at very small values of the bare coupling and, correspondingly, small values of
a. The methodology involves a series of sequential steps (i.e., the step scaling function) to bridge
results from small lattice spacings to non-perturbative large-scale lattice calculations. Focusing on
the pure gauge case, we demonstrate that these quantum circuits, adapted to gauge degrees of
freedom, are able to capture the relevant physics by studying the expectation value of the plaquette
operator, for matching with corresponding Monte Carlo simulations. We also present results for the
static potential and static force, which can be related to the renormalized coupling. The procedure
outlined in this work can be extended to Abelian and non-Abelian lattice gauge theories with matter
fields and might provide a way towards studying lattice quantum chromodynamics utilizing both
quantum and classical methods.

I. INTRODUCTION

Quantum field theories are very successful in describ-
ing the fundamental laws of nature within the frame-
work of the Standard Model (SM) of particle physics,
which unites three of the four known fundamental forces
of nature. While many phenomena in the SM can be in-
vestigated analytically using perturbation theory, quan-
tum chromodynamics (QCD) is a prominent example of
a theory which requires non-perturbative methods in the
low-energy regime [1]. This concerns, for instance, the
hadron spectrum or the QCD energy scale ΛQCD, which
is related to the running coupling of QCD and is gener-
ated entirely dynamically [2]. Therefore, first-principle
theoretical calculations of such quantities are of high im-
portance.
The standard approach for non-perturbative compu-

tations in quantum field theories is given by the lat-
tice regularization, see e.g. Refs. [3, 4], in combina-
tion with stochastic Monte Carlo (MC) methods based
on the Euclidean path integral, pioneered by Wilson [5]
and Creutz [6]. In this lattice gauge theory (LGT) ap-
proach, the theory is regularized by a finite volume and
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a discretized space-time. In order to make contact with
experimental results, the infinite volume and continuum
limits need to be taken. This approach has allowed the
computation of many phenomenologically highly relevant
quantities, see for instance Ref. [7], due to significant al-
gorithmic and methodological progress, as well as due to
ever-increasing computer power.

Despite these successes, there are still limitations of
the MC approach to LGTs. For example, when the
continuum limit is taken, autocorrelation times diverge
(sometimes even exponentially fast), see e.g. Refs. [7–
9]. In this limit of the bare gauge coupling, g → 0, the
non-perturbative calculation of the running coupling on
the lattice could in principle be matched with perturba-
tion theory, even at one loop. This would in turn allow
the computation of ΛQCD [10, 11]. Even though this
approach would be natural for this purpose, it is pre-
vented because of the above-mentioned large autocorre-
lation times of classical MC methods. Still, it needs to be
pointed out that there are alternative approaches for the
non-perturbative computation of the running coupling
and hence ΛQCD, see e.g. Refs. [12–14].

On the other hand, when working with Hamiltonian
methods, for instance using quantum computing, there
are no autocorrelations. Hence, such methods offer the
potential of following the approach of working in the
regime of very small bare couplings, as proposed in
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Ref. [15]. In recent years, the research field of quan-
tum computing has seen much progress, which resulted in
various proof-of-concept demonstrations of lattice gauge
theory simulations with quantum technologies [16–18].

The goal of this work is to develop a framework to
compute the running coupling by utilizing both quan-
tum and classical methods, in order to enable the above-
mentioned approach. With present noisy intermediate
scale quantum (NISQ) capabilities [19], it is however im-
possible to study (3+1)-dimensional QCD. Therefore, in
this paper, we aim at a proof-of-concept for this idea
in (2 + 1)-dimensional compact U(1) pure gauge the-
ory, with an eventual extension to (2 + 1)-dimensional
QED, which shares important properties with (3 + 1)-
dimensional QCD, such as confinement and asymptotic
freedom. A study of (2 + 1)-dimensional QED has
been performed perturbatively, with both two and four-
components spinors, in Refs. [20–22]. Here, we propose to
combine both quantum computing and MC methods and
exploit the respective strengths of these two approaches:
first, we perform quantum simulations at small values
of the bare coupling, to compute the running coupling at
small distances. Large volume stochastic simulations [15]
then allow to determine the lattice spacing by eventually
making contact with experimental or phenomenological
results, as it is done for Lattice QCD computations [7].
This work will focus mainly on the aspects of the quan-
tum computing approach and the corresponding numer-
ical techniques. A short description of the MC method,
used here, is discussed in Appendix B.

In this paper, we propose a general procedure, based on
a step scaling approach, to compute the running coupling
as a function of a physical scale, by matching quantum
computing and MC techniques in a regime of g where
both methods are reliable. We focus on implementing
and testing the feasibility of the method in compact U(1)
pure gauge theory as an initial demonstration and pro-
pose a follow-up extension to matter fields, which, how-
ever, goes beyond the scope of the present work. The
inclusion of matter fields will lead to a non-trivial β-
function, rendering the system physically meaningful.
The proposed procedure can be directly generalized to
(2+ 1)-dimensional QED but also to non-Abelian lattice
gauge theories, and eventually to QCD.

The paper is structured as follows: in Section II, we
give a concise introduction to the Hamiltonian formula-
tion, the truncation technique for the gauge fields, and
the general step scaling method applied to the computa-
tion of the running coupling, both in the continuum and
on the lattice. In Section III, we provide a detailed de-
scription of the numerical tools used to derive the main
results. In particular, we describe the variational quan-
tum circuits developed for the gauge degrees of freedom
and the encoding considered. In Sections IV and V, we
outline the main findings of the paper. Specifically, in
Section IV we discuss the results of the expectation value
of the plaquette operator for a pure gauge theory on a
3×3 lattice with periodic boundary conditions, obtained

both with a variational quantum algorithm and with ex-
act diagonalization. Section V illustrates the methodol-
ogy considered for the study of the step scaling method
for a pure gauge 3 × 3 system with open boundary con-
ditions. The quantity analyzed is the static force for two
sets of static charge configurations. In Section VA, we
introduce the first static charge configuration and apply
the step scaling, starting from the weak coupling regime
(Section VA1), using a value of the bare coupling where
we have a matching with Monte Carlo (Section VA2).
In Section VB, the second set of charges is studied. The
method of expressing the static force in terms of a phys-
ical scale is presented in Section VC. In Section VI, we
provide a discussion of the results and give an outlook.
Appendix A describes the additional variational quantum
circuits developed in this work. Appendix B outlines the
Monte Carlo simulations that have been carried out for
computing the mass gap, as an eventual alternative for
the matching procedure, with a quantitative estimate of
the coupling range and a study of finite-size effects. An
extension of the step scaling analysis involving two dif-
ferent basis formulations (electric and magnetic basis) is
discussed in Appendix C, with the corresponding method
for data selection. In Appendix D, we present an in-
depth analysis of the (2+1)-dimensional QED fermionic
Hamiltonian, which will be relevant for future follow-up
studies.

II. (2 + 1)-DIMENSIONAL QED

In this section, we present the Hamiltonian describing
the compact U(1) lattice QED and discuss the represen-
tation of the gauge degrees of freedom for quantum sim-
ulations. Additionally, in Section IIC, we introduce the
concept of running coupling and illustrate the methodol-
ogy used in this study to define it.

A. Hamiltonian

We consider a lattice discretization of the U(1) LGT
using Kogut-Susskind staggered fermions [23–25]. A
naive discretization of the fermionic degrees of freedom
leads to the so-called doubling problem [3, 26, 27], i.e. an
incorrect continuum limit of the theory. In the staggered
formulation, the spinor components are distributed on
different lattice sites to avoid this problem. The Hamil-
tonian reads

Ĥtot = ĤE + ĤB + Ĥm + Ĥkin, (1)

where ĤE is the electric energy, ĤB the magnetic energy
contribution, Ĥm the fermionic mass term and Ĥkin the
kinetic term for the fermions. The electric energy is given
by

ĤE =
g2

2

∑

~r

(

Ê2
~r,x + Ê2

~r,y

)

, (2)
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where Ê~r,µ is the dimensionless electric field operator
that acts on the link emanating from the lattice site with
the coordinates ~r = (rx, ry) in direction µ ∈ {x, y}. The
bare coupling g determines the strength of the interac-
tion, playing a pivotal role throughout the work. The
second term in Ĥtot, the magnetic interaction, reads

ĤB = −
1

2a2g2

∑

~r

(

P̂~r + P̂ †
~r

)

, (3)

with a the lattice spacing and P̂~r = Û~r,xÛ~r+x,yÛ
†
~r+y,xÛ

†
~r,y

the so-called plaquette operator consisting of a product of
the operators Û~r,x acting on the links of a plaquette of the
lattice (with the subscripts notation ~r + x ≡ (rx + 1, ry)

or ~r + y ≡ (rx, ry + 1)). The unitary operators Û~r,x are

related to the discretized vector field ~A~r,µ as

Û~r,µ = eiag
~A~r,µ . (4)

They represent the gauge connection between the
fermionic fields, and we choose to work with a compact

formulation where ag ~A~r,µ is restricted to [0, 2π). The
lattice vector field is the canonical conjugate variable to
the electric field, hence one finds for the commutation
relations between Ê~r,ν and Û~r′,µ

[Ê~r,ν , Û~r′,µ
] = δ

~r,~r′
δν,µÛ~r,ν ,

[Ê~r,ν , Û
†
~r′,µ

] = −δ
~r,~r′

δν,µÛ
†
~r′,ν

.

(5)

(6)

The fermionic mass term is given by

Ĥm = m
∑

~r

(−1)rx+ry φ̂†~rφ̂~r, (7)

where m is the bare lattice fermion mass and φ̂~r a
and single-component fermionic field residing on site ~r,
since we start from a continuum formulation with two-
component Dirac spinors (see Appendix D for details).
The kinetic term corresponds to a correlated fermion
hopping between two lattice sites while simultaneously
changing the electric field on the link in between1,

Ĥkin =
i

2a

∑

~r

(φ̂†~rÛ~r,xφ̂~r+x − h.c.)

−
(−1)rx+ry

2a

∑

~r

(φ̂†~rÛ~r,yφ̂~r+y + h.c.).

(8)

From now on, we set the a = 1, unless stated otherwise.
The physically relevant subspace Hph of gauge invariant

1 Note that here we consider a different kinetic Hamiltonian com-
pared to a previous work [15], by including an additional phase
factor and which corresponds to the original Kogut-Susskind for-
mulation.

states is given by those that fulfil Gauss’s law at each site
~r, which reads

[

∑

µ=x,y

(

Ê~r,µ − Ê~r−µ,µ

)

− q̂~r −Q~r

]

|Φ〉 = 0

⇐⇒ |Φ〉 ∈ Hph.

(9)

In the above expression, the operators

q̂~r = φ̂†~rφ̂~r −
1

2

[

1 + (−1)rx+ry+1
]

(10)

correspond to the dynamical charges, and Q~r represent
static charges. The static charges will be particularly
relevant for the computation of the static potential in
Section V. Since in this paper, we are focusing on a U(1)
pure gauge theory, we will study only the Hamiltonian
Ĥtot = ĤE + ĤB .
We remark that instead of working on the full Hilbert

space and enforcing the Gauss’s law a posteriori, in this
work we impose it beforehand and work on a gauge in-
variant subspace [28–31].

B. Implementation of gauge fields

The electric field values on a gauge link are unbounded,
which leads to infinite dimensional Hilbert space for the
gauge degrees of freedom. For a numerical implementa-
tion of the Hamiltonian, the gauge degrees of freedom
have to be truncated to a finite dimension. In Ref. [28],
the continuous U(1) group is discretized, in the electric
basis, to the group of integers Z2l+1, where l introduces a
truncation and dictates the dimensionality of the Hilbert
space. The discretized gauge fields are constrained to in-
teger values within the range [−l, l], resulting in a total
Hilbert space dimension of (2l+1)N , whereN denotes the
number of gauge fields in the system. The eigenstates of
the electric field operator, Ê~r,µ, form a basis for the link
degrees of freedom (see e.g. Section VI C of Ref. [32]),

Ê~r,µ |e~r,µ〉 = e~r,µ |e~r,µ〉 , e~r,µ ∈ [−l, l] . (11)

The link operators Û~r,µ (Û †
~r,µ) act as a raising (lowering)

operator on the electric field eigenstates,

Û~r,µ |e~r,µ〉 = |e~r,µ + 1〉 , Û†
~r,µ |e~r,µ〉 = |e~r,µ − 1〉 . (12)

The link operators have the following form [30],

Û 7→











0 . . . . . . 0
1 . . . . . . 0

0
. . .

... 0
0 . . . 1 0











, Û† 7→











0 1 . . . 0

0
...

. . . 0
0 . . . . . . 1
0 . . . . . . 0











. (13)

With this truncation, unitarity is lost Û †
~r,µÛ~r,µ 6= 1 but

can be recovered in the l → ∞ limit. The commuta-
tion relations between the electric field and link operators
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scaling, we need two values of the static force,

F (r2, g) =
V (r3, g)− V (r2, g)

r3 − r2
,

F (r1, g) =
V (r2, g)− V (r1, g)

r2 − r1
.

(15a)

(15b)

Therefore, it is necessary to involve three distances,
namely r1, r2 and r3, in the calculation of the step scal-
ing function. Note that in this paper we introduce the
step scaling method for a pure gauge U(1) theory, once
we will include matter fields we will have a non-trivial
running coupling.

III. NUMERICAL SETUP

After discretizing and truncating the U(1) gauge group
to the discrete group Z2l+1, the gauge fields can be rep-
resented in the electric basis as

Ê =
l

∑

i=−l

i |i〉ph 〈i|ph ,

Û =

l−1
∑

i=−l

|i+ 1〉ph 〈i|ph ,

Û† =

l
∑

i=−l+1

|i− 1〉ph 〈i|ph .

(16a)

(16b)

(16c)

For numerical calculations, it is advantageous to employ a
suitable encoding that accurately represents the physical
values of the gauge fields. In this work, we consider the
Gray encoding (see, e.g., Ref. [54]). With this approach,
the minimum number of qubits required per gauge vari-
able is qmin = ⌈log2(2l + 1)⌉. Thus, it will be convenient
for the implementation on a quantum circuit to consider
a subset of truncation values (l = 1, 3, 7, 15, ...), which
allows only a single state to be excluded with the same
amount of resources. For instance, three qubits are re-
quired for both l = 2 and l = 3. However, with the
former, only five configurations are considered physical,
whereas with the latter, we can include seven physical
states.
The state of a qubit can be defined as a vector in a 2-

dimensional complex vector space C2, with |0〉 = (1, 0)t

and |1〉 = (0, 1)t as the computational basis [55]. The
quantum operations, or gates, on a single qubit can be
described by 2× 2 unitary matrices. Thus, for numerical
implementations, we express the Hamiltonian in terms of
a sum of Pauli matrices. One can also employ a group-
ing strategy to identify subsets of Pauli strings present
in the Hamiltonian, thereby reducing the necessity for
independent circuit evaluations [56]. In the following, we
also adopt the convention that the least significant qubit
(designated by the zero index, q0) occupies the rightmost
position in the tensor product, as illustrated by |q1q0〉 and
〈q1q0|. Let us now consider, as an example, the case of

smallest truncation l = 1, where we have the three phys-
ical states |j〉ph for j ∈ {−1, 0, 1}. These states can be
encoded using only two qubits in a Gray code way, as
shown in the following equations:

|−1〉ph 7→ |00〉 ,

|0〉ph 7→ |01〉 ,

|1〉ph 7→ |11〉 ,

(17a)

(17b)

(17c)

we then call the state |10〉 “unphysical”, since it is outside
of this truncated Hilbert space. The expressions for the
electric field and link operators then become

Ê 7→ − |00〉 〈00|+ |11〉 〈11| ,

Û 7→ |01〉 〈00|+ |11〉 〈01| ,

Û† 7→ |00〉 〈01|+ |01〉 〈11| .

(18a)

(18b)

(18c)

In this study, we adopt a variational approach to de-
termine the physical quantities of interest. Specifically,
we employ the Variational Quantum Eigensolver (VQE)
method [57] that aims to find the ground state of a given
Hamiltonian. Executing a VQE algorithm requires an
input quantum circuit with parametrized gates, called
Ansatz circuit, and a classical optimizer. The optimiza-
tion starts with an initial set of values for the gate pa-
rameters, that can be randomly chosen, and will be op-
timized in the execution. In the rest of the paper, we
consider a set of parameters, where the probability of
being in a vacuum state (i.e. |0〉ph) is non-zero for ev-
ery gauge field. The essence of the approach considered

|0〉 Ry(θ1)

|0〉 Ry(θ2)

FIG. 3. Variational circuit for Gray encoding with l =
1: Vacuum state is |01〉, and state |10〉 is excluded.

here is to exclude unphysical states directly within the
quantum circuit. This is achieved by implementing a
customized set of parameterized quantum gates designed
to produce the correct final combination of states. With
this method, we aim to efficiently identify the desired
physical results while reducing the computational over-
head2. For the truncation l = 1, we can use the circuit in

2 We also considered keeping the state |10〉 as a higher physical
state |2〉ph and use a generic variational Ansatz. However, the
VQE results did not have a high fidelity. Therefore, we will not
describe this option further. It may be considered in future work.















12

We want to thank Cristina Diamantini, Fernanda Stef-
fens and Georgios Polykratis for helpful discussions.
A.C. is supported in part by the Helmholtz Associ-

ation —“Innopool Project Variational Quantum Com-
puter Simulations (VQCS).” This work is supported with
funds from the Ministry of Science, Research and Culture
of the State of Brandenburg within the Centre for Quan-
tum Technologies and Applications (CQTA).

This work is funded by the European Union’s Horizon
Europe Frame-work Programme (HORIZON) under the
ERA Chair scheme with grant agreement no. 101087126.
This project was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) as part
of the CRC 1639 NuMeriQS – project no. 511713970.
PS acknowledges support from: Europea

Research Council AdG NOQIA; MCIN/AEI
(PGC2018-0910.13039/501100011033, CEX2019-
000910-S/10.13039/501100011033, Plan National
FIDEUA PID2019-106901GB-I00, Plan National
STAMEENA PID2022-139099NB, I00,project funded
by MCIN/AEI/10.13039/501100011033 and by the
“European Union NextGenerationEU/PRTR” (PRTR-
C17.I1), FPI); QUANTERA MAQS PCI2019-111828-2);
QUANTERA DYNAMITE PCI2022-132919, QuantERA
II Programme co-funded by European Union’s Horizon
2020 program under Grant Agreement No 101017733);
Ministry for Digital Transformation and of Civil Service
of the Spanish Government through the QUANTUM
ENIA project call - Quantum Spain project, and by the
European Union through the Recovery, Transformation
and Resilience Plan - NextGenerationEU within the
framework of the Digital Spain 2026 Agenda; Fundació
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Appendix A: Gray encoding variational circuits

As outlined in Section III, the qubit requirements
for the adopted encoding follow a logarithmic scaling.
Specifically, for certain values of l, the exclusion of a sin-
gle state suffices and as a consequence, the complexity
of the required gate set for circuit implementation is sig-
nificantly reduced. The logic of the exclusion of states
outside the reduced Hilbert space H2l+1 for l > 1 mir-
rors that of the l = 1 case. Moreover, when only one state
requires exclusion, a discernible pattern emerges in the
gate structure. In this section, we present the variational
circuits corresponding to l = 3, 7, 15, in Figs. 15, 16, 17
respectively.

|0〉 Ry(θ1)

|0〉 Ry(θ2)

|0〉 Ry(θ3) Ry(θ4)

FIG. 15. Variational circuit for Gray encoding with
l = 3: |010〉 represents the vacuum state and the state |100〉
excluded.

|0〉 Ry(θ1)

|0〉 Ry(θ2) Ry(θ6)

|0〉 Ry(θ3)

|0〉 Ry(θ4) Ry(θ5)

FIG. 16. Variational circuit for Gray encoding with
l = 7: |0100〉 represents the vacuum state and the state |1000〉
excluded.
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|0〉 Ry(θ1)

|0〉 Ry(θ2) Ry(θ8)

|0〉 Ry(θ3) Ry(θ7)

|0〉 Ry(θ4)

|0〉 Ry(θ5) Ry(θ6)

FIG. 17. Variational circuit for Gray encoding with
l = 15: |01000〉 represents the vacuum state and the state
|10000〉 excluded.

The next step is to establish an appropriate pattern
for entangling multiple gauge fields. This task is par-
ticularly important when working with an electric (mag-
netic) basis formulation, especially in regimes character-
ized by weak (strong) coupling. In this paper, we devised
a structure capable of entangling all gauge fields, while
guaranteeing the exclusion of unphysical states.
We remark that integrating Gauss’s law a priori makes

the Hamiltonian non-local, and hence requires more gates
per qubit. See e.g. Ref [63] for a discussion on the effect
on a real noisy quantum device. In this work, the noise is
purely statistical, as we simulate classically the behavior
of a quantum device. In the future, our work will be
devoted to exploring more resource-efficient alternatives.
This will involve an analysis of an efficient mapping of the
square lattice structure to quantum devices with limited
connectivity.
The Python code produced in this study is available

at Ref. [48].

Appendix B: ∆E

In this section, we report our investigation of the mass
gap ∆E with Monte Carlo simulations. We find numer-
ical evidence that the volume L/a = 3 used with the
present Hamiltonian formulation is too small to match
the mass gap of the theory. Nonetheless, we provide
some quantitative estimate of the coupling range needed
for this approach, finding that a slight increase in the
volume size on the Hamiltonian simulations would allow
for such a matching procedure.
A U(1) gauge theory in (2 + 1)-dimensions is a non-

trivial theory only at finite lattice spacing, where it can
be approximated by a plasma of magnetic monopoles in
an external field [64]. It has been shown that the theo-
retical prediction for the gauge coupling dependence of
the mass gap is in agreement also with numerical de-
terminations [65]. In the continuum limit, the theory
becomes equivalent to a free massive scalar theory [66],
whose lightest state is the analogue of a “massive pho-
ton”. At finite lattice spacing, this is found to be a glue-

ball, with JPC = 0−− quantum numbers [67–70]. The
wavefunction of the 0−− state can be interpolated by the
operator [71]:

φ̂(t) =
1

V

∑

~r

ImTr
[

P̂ (t, ~r)− P̂ †(t, ~r)
]

. (B1)

The sum over the spatial coordinates ~r ensures the par-
ticle is at rest. In a Monte Carlo simulation with time
extent T we can find the mass gap from the expectation
value (over the gauge configurations) of the following cor-
relation function [4],

CT (t) = 〈φ̂(t)φ̂(0)〉T . (B2)

We note that φ̂ is hermitian by construction. According
to its spectral decomposition, for large values of t the
above correlator approaches the expression:

CT (t) → |〈0−−|φ̂(0)|0〉|2
(

e−Mt + e−M(T−t)
)

, (B3)

where |0〉 is the interacting vacuum and we have taken
into account also the backward signal from T−t. M is the

mass of the lightest state interpolated by the operator φ̂.
For each ensemble, i.e. volume and coupling constant, we
compute the following effective mass curve for the 0−−

correlator from the following implicit expression,

C(t)

C(t+ 1)
=

cosh (Meff(t) · (t− T/2))

cosh (Meff(t) · (t+ 1− T/2))
. (B4)

Namely, for each t the value Meff(t) is found by numer-
ically solving Eq. (B4). Finally, we consider the time
interval where Meff(t) plateaus within the statistical un-
certainty, and fit it to a constant value.
We have performed Monte Carlo simulations in the

range 1.35 ≤ β ≤ 2.25 and 6 ≤ L/a ≤ 16. A software
implementation for reproducing the Monte Carlo simu-
lations is available at Ref. [72]. In our setup T/a = 16
for all the ensembles. We have checked that this value
of the time extent is compatible with the infinite time
extent limit within the uncertainty. Similarly, we have
verified that in this range of β, the values at L/a = 16
are compatible with their infinite volume limit.
The gauge field configurations have been produced

using the Hybrid Monte Carlo (HMC) algorithm (see
Ref. [73]). The effects of autocorrelation have been taken
into account with the method of Ref. [74] in order to cor-
rectly estimate the uncertainty on the data.
We recall that ultimately our goal consists of matching

the Lagrangian and Hamiltonian results, with the latter
being limited to L/a = 3. A direct evaluation of the
mass gap from euclidean correlators at this volume is
challenging, as the excited states contamination becomes
significant and the signal-to-noise-ratio of the correlator
becomes poor. Therefore, we are interested in the small
volume extrapolations.
In Fig. 18, we show the β dependence of the mass of

the glueball 0−−, while in Fig. 19 we show the volume
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we omit, for simplicity, the operator notation Ô → O.
With a two-components spinor ψ = (ψ1, ψ2)

t and a stag-
gered formulation [23], Eq. (D3) can be recast and the
fermionic fields are selected to have a single component
for each site, with arbitrary choice ψ1 (ψ2) on even (odd)
sites or vice-versa. As a last step, ψ1 and ψ2 can be re-
placed with a single component field φ, obtaining Eq. (7)
and Eq. (8), see main text.
We will now discuss a few properties of this formula-

tion. Starting from the Dirac equation (i/∂ − m)ψ = 0,
we have

iγ0∂0ψ + iγ1∂1ψ + iγ2∂2ψ = mψ, (D4)

or in the Schrödinger form,

i
∂ψ

∂t
= Hψ, H = γ0γ1p1 + γ0γ2p2 + γ0m, (D5)

where pj → −i∂j . Explicitly substituting the γ-matrices
from Eq. (D2), one gets,

iψ̇ = −i

(

0 −1
−1 0

)

∂xψ − i

(

0 −i
i 0

)

∂yψ +m

(

1 0
0 −1

)

ψ,

(D6)

and in terms of the two components,

i

(

ψ̇1(n)

ψ̇2(n)

)

= i∂x

(

ψ2(n)
ψ1(n)

)

+ ∂y

(

−ψ2(n)
ψ1(n)

)

+m

(

ψ1(n)
−ψ2(n)

)

. (D7)

Following Refs. [23, 76], we select only the kinetic part
of Eq. (D7) and rewrite it as

(

ψ̇1(n)

ψ̇2(n)

)

= ∂x

(

ψ2(n)
ψ1(n)

)

+ ∂y

(

iψ2(n)
−iψ1(n)

)

, (D8)

or in compact form,

ψ̇ = σx∂xψ − σy∂yψ. (D9)

We consider the upper components of Eq. (D8) and
place ψ1 on a site. Then shifting one site in the ±x di-
rection couples ψ1 to ψ2. Similarly, a shift of one site
in the ±y direction results in a coupling between ψ1 to
ψ2. Therefore, to yield a coherent geometric interpreta-
tion of Eq. (D8), the components should be arranged as
illustrated in Fig. 25.
Note that each component resides twice within the unit

square: once on a y = const. plane and again on the
subsequent y = const. + a plane. Consequently, in the
continuum limit, two fermion fields will emerge within
this framework. To distinguish between them, we label
the fields on the lower y = const. plane in Fig. 25 as fi,
i = 1, 2, and those on the upper y = const. + a plane

FIG. 25. Geometric interpretation of Dirac equation
for a two-component spinor on a 2D lattice: Each com-
ponent appears twice on the unit square, once on a y = const.
plane (lower sites) and again on a y = const.+a plane (upper
sites).

as gi, i = 1, 2. In this terminology, the Dirac equation,
Eq. (D8), transforms into:

{

ḟ = σx∂xf − σy∂yg

ġ = σx∂xg − σy∂yf.

(D10a)

(D10b)

Now we distinguish two distinct species: the equation of
motion for the sum u = f + g satisfies

u̇ = (σx∂x − σy∂y)u, (D11)

and produces one fermion in the continuum limit. The
difference d̃ = f − g satisfies

˙̃
d = (σx∂x + σy∂y)d̃, (D12)

which is not a Dirac equation because of the different
sign in the last term. However, this can be changed via
a unitary transformation, d = σxd̃, which gives

ḋ = (σx∂x − σy∂y)d. (D13)

In summary, this fermion method generates two massless
fermion fields in the continuum limit. We are, therefore,
free to interpret u and d as the members of an isodoublet,
(u, d)t.
Another interesting property of a formulation with

two-component spinors involves the mass term of the
Hamiltonian. In Ref. [77] it is described how considering
spinors with two components yields parity breaking in
the mass term, where a parity transformation is defined
as,

(

ψ1(x, y)
ψ2(x, y)

)

P
−→

(

ψ2(−x, y)
ψ1(−x, y)

)

, (D14)

and it also acts on the vector fields,

(

A1(x, y)
A2(x, y)

)

P
−→

(

−A1(−x, y)
A2(−x, y)

)

, (D15)

i.e. the U operators will be

Un,n+ex(x, y)
P
−→ U †

n,n+ex
(−x, y)

Un,n+ey (x, y)
P
−→ Un,n+ey (−x, y).

(D16a)

(D16b)
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As also described in Ref. [77], for a parity-conserving the-
ory, one should then consider a study of four-component

spinors. Since this is beyond the purpose of this work,
we will not further discuss it.
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