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Abstract

We explore consistent truncations from 10d/11d supergravity to supergravity theories
on brane worldvolumes. Supersymmetric black-brane solutions to these lower-dimensional
theories can be uplifted to 10d/11d supergravity and interpreted as intersecting-brane
solutions with a particular smearing pattern. We survey this novel family of intersecting-
brane solutions which also includes cases that are not related to previously known con-
sistent truncations. Turning the argument on its head, we argue that the knowledge of
such solutions allows us to generate appropriate embedding ansätze for consistent trun-
cations. We demonstrate this by deriving new consistent embeddings of pure 5d N = 4
supergravity on D4-branes in type IIA theory and of pure 6d N = (1, 1) supergravity on
NS5-branes in type IIB theory.
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1 Introduction

A characteristic feature of superstring and supergravity theories is a higher-dimensional space-
time as the original home of the panoply of solutions: d = 11 for M-Theory or d = 10 for
maximal string theories or supergravities. In proposals for how to relate such solutions to more
practical physics in d = 4, the most common approach is to consider solutions in which the
excess dimensions are compact. A different interesting family of solutions is that of branes:
spacetimes with flat or asymptotically flat sub-spacetimes which can be considered the arena
for lower-dimensional physics, but with non-compact transverse spaces filling the remaining
dimensions back up to 10d/11d.

A related family of supergravity solutions which involves multiple such brane structures of
various dimensions is the general family of “intersecting branes”. A by no means complete set
of references for the study of such solutions is [1–9]. An important feature of these solutions
is summarised in a “harmonic function rule” [1, 2], where the contribution of each brane is
encoded in a harmonic function Hi, depending on some or all of the coordinates transverse to
its worldvolume. For example, the metric of two intersecting branes, extended in dimensions
(x, y1) and (x, y2), respectively, takes the schematic form

ds2 = Hα1

1 Hα2

2 dx2 +Hα1

1 Hβ2

2 dy21 +Hβ1

1 H
α2
2 dy22 +Hβ1

1 H
β2

2 dz2 , (1.1)

where the coefficients αi, βi and the dimensionalities of the various subspaces depend on the
specific setup. An additional aspect of these solutions concerns the domains of dependence
of the various harmonic functions. For the original type of intersecting-brane solutions, the
harmonic functions Hi(z) did not depend on “relative transverse dimensions”, i.e. spacetime
dimensions shared partially as a worldvolume dimension of one component while also appear-
ing as a transverse dimension of another (y1 and y2 in (1.1)). This “smearing” of functional
dependence on relative transverse coordinates is analogous to the smearing imposed on brane
transverse dimensions made prior to “vertical dimensional reduction” [10], although here the
intention is not to actually carry out a dimensional reduction but is rather to build up a com-
plex higher-dimensional spacetime from a variety of component branes of diverse worldvolume
structures.

In this paper we consider a different family of intersecting branes and its relation to the
framework of “consistent truncations”.1 These are ansätze for specific families of higher-
dimensional solutions based on an underlying supersymmetric “skeleton” brane on whose world-
volume one may consistently embed a lower-dimensional supergravity. Consistency in such a
context means that an arbitrary solution of the skeleton worldvolume sub-theory may be rein-
terpreted, or “lifted” to a fully valid solution of the host higher-dimensional theory. Such con-
sistent truncations to pure supergravity theories on brane worldvolumes have been discussed
in Refs [11, 12].

We investigate the uplift of some particular supersymmetric solutions in the lower-dimensional
supergravities, which may be interpreted as a novel type of 1

4
-BPS intersecting-brane solutions

in the higher-dimensional host theory. This type of intersecting-brane solutions can also be
considered ab initio in the higher dimension. They still obey a harmonic function rule analo-
gous to (1.1) but involve three branes and feature a particular coordinate dependence for the
various harmonic functions. The skeleton brane plays a special rôle, being “fully localised”2

while the non-skeleton components contribute harmonic functions dependent only on certain
skeleton-brane worldvolume coordinates while they are smeared in the transverse directions

1Since in this paper, we will be concerned with the relation of lower-dimensional supergravity solutions to a
higher-dimensional family of intersecting branes, we will mostly prefer the term “embedding” to “truncation”.

2In (1.1), “full localisation” would correspond to a harmonic functionH1(y2, z) depending on all its transverse
coordinates.
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of the skeleton brane. This gives an overall set of harmonic functional dependences that is
distinct from the relative-transverse-smeared solutions of Refs [1–9]. From the point of view
of the consistent embedding on the skeleton brane, we may identify these intersections with
supersymmetric black-brane or supersymmetric black-hole solutions.

In Section 2, after a quick review of the traditional harmonic function rule [1, 2], we
present the new family of intersecting-brane solutions with a fully-localised component. These
have a metric structure consistent with the usual harmonic function rule [1, 2], but the func-
tional dependence of the component harmonic functions is different from that of the previous
intersecting-brane solutions, and an additional harmonic function makes its appearance in the
form-fields. One of the component branes will be fully localised, with unsmeared coordinate
dependence in its full transverse space, while the other components are mutually smeared. We
discuss which combinations of three branes preserve one quarter of the supersymmetry and
note that for each such combination, any one of the component branes may be chosen to be
the fully localised one. We thus generate a large catalogue of new intersecting-brane solutions.

In Section 3, we reinterpret these intersecting-brane solutions from the point of view of the
worldvolume theory of the fully-localised component brane. This interpretation relies on the
existence of a consistent embedding of a lower-dimensional supergravity on the worldvolume
of the fully-localised brane, now viewed as a “skeleton” brane in the language of Ref. [12].
Some examples are provided in which the worldvolume embedded solution is a black hole or a
black string. This duality of viewpoints – either as members of the new class of intersecting
branes with a fully-localised component, or as consistently embedded worldvolume supergravity
solutions – also motivates a method for inferring the detailed structure of a consistent embedding
ansatz on the skeleton worldvolume, starting from the host higher-dimensional theory.

In Section 4 we make use of the previously uncovered interplay of intersecting branes and
consistent embeddings to construct new consistent embeddings on brane worldvolumes. This
is followed by a conclusion and an outlook in Section 5. In Appendix A, we present our
conventions, details of 10d type IIA/B, 6d N = (1, 1) and 5d N = 4 supergravities, followed in
Appendix B by the supersymmetry projections of the considered BPS branes. In Appendix C,
we extend the consistent-embedding analysis to include details of the fermionic sector, giving
details of the fermionic ansätze and proofs of consistency.

2 Intersecting-brane solutions with a fully localised com-

ponent

In 10d type II supergravities, there are known flat brane solutions preserving half the super-
symmetry. The metric and the dilaton of a Dp-brane in the Einstein frame3 are given by

dŝ210 = H(y)
p−7

8 ηµν dx
µdxν +H(y)

p+7

8 δIJ dy
IdyJ , eΦ̂ = H(y)

3−p

4 , (2.1)

while the electric or magnetic flux sourced by the brane is

F̂ ele
(p+2) = ∂IH

−1 dx0∧ · · ·∧dxp∧dyI , F̂mag
(8−p) =

1

(8− p)!
εI1···I9−p

∂I1H dyI2 ∧ · · ·∧dyI9−p , (2.2)

respectively. The function H(y) is a harmonic function in the flat underlying transverse space,
i.e.

∂2IH(y) = 0 . (2.3)

3The string frame is related via dŝ2str = eΦ̂/2dŝ2E.
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A classical solution describing a stack of N Dp-branes sitting at transverse radius r = 0 is given
by

H(y) = 1 +
αN

r7−p
, (2.4)

where α is an appropriate constant with dimension [Length]7−p. Similar backgrounds are also
available for the F1-string, the NS5-brane [13] as well as for the M-branes in 11d supergravity
[14, 15].

Intersecting-brane solutions can be constructed using the established harmonic function
rule [1,2]. The spacetime metric and the exponential of the dilaton are obtained by multiplying
the corresponding expressions for each constituent brane given in (2.1), while the fluxes are
determined by summing the individual contributions from each brane. In this class of solutions,
the harmonic functions depend only on the overall transverse space. Physically, these branes
are considered as smeared across the relative transverse directions analogously to the smeared
transverse-space dependence of brane solutions prepared for vertical dimensional reduction [10].
For example, the F1-D5 brane solution given by the harmonic function rule reads

dŝ210 = −H− 3

4

1 H
− 1

4

2 dt2 +H
− 3

4

1 H
3

4

2 dx
2
1 +H

1

4

1 H
− 1

4

2 (dx22 + · · ·+ dx26) +H
1

4

1 H
3

4

2 (dy
2
1 + dy22 + dy23) ,

Ĥ(3) = H−2
1 ∂IH1dt ∧ dx1 ∧ dyI , F̃(3) =

1

2
εIJK∂IH2 dx1 ∧ dyJ ∧ dyK , eΦ̂ = H

− 1

2

1 H
− 1

2

2 .

(2.5)
Here, H1 and H2 are two independent harmonic functions of the overall transverse coordinates
yI only. They are associated to the F1-string and the D5-brane, respectively. Explicitly, we
have the conditions

∂2IH1(y) = ∂2IH2(y) = 0 . (2.6)

In principle, fully localised intersecting-brane solutions may also exist. In that case, each
harmonic function would then depend on all transverse coordinates of the associated brane
and should solve a corresponding curved-space Laplace equation, the direct curved space gen-
eralisation of (2.3). However, solving these Laplace equations in a coupled system of multiple
branes is analytically challenging. To our knowledge, only partially localised solutions have
been constructed in a near-horizon region [8]. In that class of solutions, one brane is fully lo-
calised, while the other is smeared over the relative transverse space of the localised brane. The
curved-space Laplace equation is then solved in the near-horizon limit of the localised brane.

The mutually smeared brane solutions (2.5) can be directly generalised to higher numbers
of intersecting branes. For example, a case of three intersecting M2-branes was discussed in
Refs [1, 2]. In general, such n-brane solutions will preserve 1/2n supersymmetry. However,
supersymmetry can be enhanced in cases where the Killing-spinor projections of the respective
branes are not independent. A well-known example [7] is a configuration of two M5-branes
and one M2-brane sharing one spatial direction. The Killing-spinor projections of the two
M5-branes are

Γ012345ε = c1ε , Γ016789ε = c2ε , (2.7)

where c1, c2 = ±1 are two independent constants labelling the orientations of the M5-branes.
Multiplying these two conditions, one sees that they immediately imply the following projection
condition

Γ01,10ε = c1c2ε , (2.8)

reminiscent of an M2-brane Killing-spinor condition. Hence, if one adds an M2-brane with
the appropriate orientation, the solution still preserves 1

4
of the supersymmetry instead of the

naively expected 1
8
. One may thus add this brane “for free” at no cost to the supersymmetry

of the system. However, if one instead adds an M2-brane with the opposite orientation, all
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supersymmetry is broken. Further discussions of such intersecting-brane solutions can be found
in the reviews [7, 9].

In this paper, we combine the aspects of partial localisation and “free” additional branes.
We accordingly find a new class of partially localised brane intersections involving three branes
that satisfy a generalised harmonic function rule and that preserve eight supercharges, i.e. they
are 1

4
-BPS solutions. Starting from a particular smeared brane intersection of two branes, we

can introduce a third brane, fully localised, whose worldvolume spans the intersection space
and the overall transverse space of the smeared-brane pair. The smeared brane pair may then
be reinterpreted as the 10d/11d uplift of black-brane solutions in the worldvolume supergravity
of the fully localised brane [12]. This perspective will be discussed in Section 3.

IIA IIB 11d

F1-D0-D8 NS5-NS5-F1(1) F1-D3-D5 NS5-D1-D3 M2-M5-M5(1)
F1-D2-D6 NS5-D2-D4(1) F1-D1-D7 NS5-D3-D5(2)
F1-D4-D4 NS5-D4-D6(3) NS5-D5-D7(4)

NS5-D6-D8(5)

Table 1: Possible 3-branes configurations preserving 1/4 supersymmetry

In order to preserve 1
4
of the supersymmetry, we will restrict our attention to the three-

brane intersections in type II theories and 11d supergravity summarised in Table 1. This list
is generated by requiring that the supersymmetry-preserving projections4 associated with any
two of the branes together imply the third one. In particular this implies that the combined
worldvolumes of the three branes extend to cover all spacetime dimensions. The number in
the parenthesis indicates the number of spatial dimensions shared by these branes. Any one
of the three branes can be chosen as the fully localised brane, while the remaining two should
be mutually smeared and fill out the transverse space of the localised brane. The harmonic
functions of the mutually smeared branes should coincide.

As an instructive example, consider the D3-F1-D5 solution, where we have underlined our
choice of the fully localised brane. The associated solution reads

dŝ210 = H
− 1

2

0

[

−h−1dt2 + h(dx21 + dx22 + dx23)
]

+H
1

2

0 (dy
2
1 + · · ·+ dy26) ,

F̃(5) = hH−2
0 ∂IH0 dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dyI − 1

5!
εI1···I6∂I1H0 dy

I2 · · · ∧ dyI6 ,

Ĥ(3) = ∂ah
−1 dt ∧ dxa ∧ dy1 , F̃(3) = − 1

2!
εabc∂ah dx

b ∧ dxc ∧ dy1 ,

eΦ̂ = h−1 , h = h(x1, x2, x3) , H0 = H0(y1, · · · , y6) .

(2.9)

Here, H0 is the harmonic function of the localised D3 brane and h is the harmonic function of
both the F1-string and the D5 brane. These satisfy

∂2IH0(y) = 0 , ∂2ah(x) = 0 . (2.10)

It should be noted that the 5-form flux is not closed but is self-dual and is related to the
form-field potential Ĉ(4) via the covariant expression

F̃(5) = dĈ(4) −
1

2
Ĉ(2) ∧ Ĥ(3) +

1

2
B̂(2) ∧ dĈ(2) . (2.11)

In this system, we have a fully localised D3-brane and a mutually smeared F1-D5 brane-pair
that fills out the transverse space of the fully localised D3-brane. This configuration is shown

4The projections for different branes in type II theory are listed in Appendix B.
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in Table 2, where X labels the worldvolume direction, ∼ indicates smearing directions and •
denotes the localised directions where the unsmeared coordinate dependence is found. To make
this interpretation of the background (2.9) manifest we may rewrite the metric as

dŝ210 = −H− 1

2

0 H
− 3

4

1 H
− 1

4

2 dt2 +H
− 1

2

0 H
1

4

1 H
3

4

2 (dx
2
1 + dx22 + dx23)

+H
1

2

0 H
− 3

4

1 H
3

4

2 dy
2
1 +H

1

2

0 H
1

4

1 H
− 1

4

2 (dy22 + · · ·+ dy26) ,
(2.12)

with H1 = H2 = h being the harmonic function of the F1-string and the D5-brane, respectively.
One can see that the metric (2.12) and the dilaton in (2.9) indeed obey the harmonic function
rule aside from the coordinate dependence of the harmonic functions at play. When we turn
towards the form-fields, however, we observe the appearance of a harmonic function h dressing
the electric component of F̃(5)-flux in (2.9), which is not expected from a näıve application of
the usual harmonic function rule. We therefore need to generalise the harmonic function rule
in this context:

1. Metric: Write the metric following the standard harmonic function rule. The two
smeared branes should share a common harmonic function h that depends on the
worldvolume coordinates of the fully localised brane. The harmonic function H0 of the
localised brane solves the flat-space Laplace equation in its transverse space.

2. Dilaton: Multiply the exponential contributions to the dilaton from the different
branes, as in the standard harmonic function rule.

3. Fluxes: Construct the fluxes following the standard harmonic function rule. When
more than two types of flux are turned on, the highest-rank RR flux (näıvely pro-
portional to the derivative of h or H0), must be multiplied by the opposite harmonic
function (H0 or h, respectively).

The flux corrections have been found to work empirically by considering all possible cases of
brane intersections and adjusting the ansatz to generate a full solution to the 10d/11d theories.
In most cases, they are due to multi-flux terms in the equations of motion and Bianchi identities.
For example, the Bianchi identity of F̃(4) in IIA supergravity is

dF̃(4) = F̂(2) ∧ Ĥ(3) . (2.13)

When all three fluxes are turned on, the F̂(2)∧ Ĥ(3) term contributes non-trivially to the 4-form
flux.

In the special case of D3-branes, which are dyonic by nature, either the electric or magnetic
flux is affected by harmonic factor insertions, depending on the relevant background. The
electric part of the F̃(5)-flux is corrected in the F1-D3-D5 and NS5-D1-D3 configurations (c.f.
(2.9)), while the magnetic part is corrected in the NS5-D3-D5(2) solutions. In these cases, the
corrections to the flux are determined by requiring the F̃(5) self-duality constraint.

A key aspect of the new intersecting-brane solutions conforming to the above rules is the free-
dom of choice of the fully localised component. We have indicated the fully localised component
by underlining. Instead of having the D3-brane fully localised in the D3-F1-D5 intersecting-
brane system above, one can alternatively take either of the other components to be fully

7



localised. For example, instead of the solution (2.9) one can have a D5-F1-D3 solution:

dŝ210 = H
− 1

4

0

[

−h− 5

4dt2 + h
3

4 (dx21 + · · ·+ dx25)
]

+H
3

4

0 h
− 1

4 (dy21 + · · ·+ dy24) ,

F̃(5) = H0 h
−2∂ah dt ∧ dy2 ∧ dy3 ∧ dy4 ∧ dxa − 1

4!
εabcde∂ah dy

1 ∧ dxb ∧ dxc ∧ dxd ∧ dxe ,

Ĥ(3) = h−2∂ah dt ∧ dy1 ∧ dxa , F̃(3) =
1

3!
εIJKL∂IH0 dy

J ∧ dyK ∧ dyL ,

eΦ̂ = h−
1

2H
− 1

2

0 , h = h(x1, · · · , x5) , H0 = H0(y1, · · · , y4) .

(2.14)

The difference between the functional dependences of the D3-F1-D5 and the D5-F1-D3 is illus-
trated in the contrast between Table 2 and Table 3:

t x1 - x3 y1 y2 - y6
D3 X X • •
F1 X • X ∼
D5 X • ∼ X

Table 2: D3-F1-D5 configuration.

t x1 - x5 y1 y2 - y3
D5 X X • •
F1 X • X ∼
D3 X • ∼ X

Table 3: D5-F1-D3 configuration.

Following the generalised harmonic function rule, we can now construct all the solutions
listed in Table 1, with all possible choices of underlinings. To present a few more examples, we
consider the M5-M2-M5(1) solution5 in 11d supergravity:

dŝ211 = H
− 1

3

0

[

h−1
(

−dt2 + dx2
)

+ h(dr2 + r2dΩ2
3)
]

+H
2

3

0 (dy
2
1 + · · ·+ dy25) ,

F̂(4) = − 1

4!
εI1···I5∂I1H0 dy

I2 ∧ · · · ∧ dyI5 − h−2∂rh dt ∧ dt ∧ dr ∧ dy1 − r3∂rh dΩ3 ∧ dy1 ,

h = h(r) , H0 = H0(y1, · · · , y5) ,
(2.15)

the D4-F1-D4 solution in type IIA supergravity:

dŝ210 = H
− 3

8

0

[

−h− 9

8dt2 + h
7

8 (dr2 + r2dΩ2
3)
]

+H
5

8

0 h
− 1

8 (dy21 + · · ·+ dy25) ,

F̃(4) = r3∂rh dy1 ∧ dΩ3 −
1

4!
εI1···I5∂I1H0 dy

I2 ∧ · · · dyI5 ,

Ĥ(3) = h−2∂rh dt ∧ dy1 ∧ dr ,

eΦ̂ = h−
3

4H
− 1

4

0 , h = h(r) , H0 = H0(y1, · · · , y5) ,

(2.16)

and the NS5-D1-D3 solution in type IIB supergravity:

dŝ210 = H
− 1

4

0

[

−h− 5

4dt2 + h
3

4 (dr2 + r2dΩ2
4)
]

+H
3

4

0 h
− 1

4 (dy21 + · · ·+ dy24) ,

F̃(5) = H0 h
−2∂rh dt ∧ dy2 ∧ dy3 ∧ dy4 ∧ dr − r4∂rh dy1 ∧ dΩ4 ,

Ĥ(3) = − 1

3!
εIJKL∂IH0 dy

J ∧ dyK ∧ dyL , F̃(3) = h−2∂rh dt ∧ dy1 ∧ dr ,

eΦ̂ = h
1

2H
1

2

0 , h = h(r) , H0 = H0(y1, · · · , y4) .

(2.17)

Again, H0 is the harmonic function of the fully localised brane defined with respect to the
flat Laplacian in its transverse space. h is the harmonic function of the two mutually-smeared

5This solution is quite similar to the M5-M2-M5 brane solution given in [6, 7], which also preserves 1
4 -

supersymmetry as discussed in (2.7-2.8). However, that scenario introduces three different harmonic functions
for each brane and no brane is fully localised.
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branes with dependence on the worldvolume of the localised brane. In the D4-F1-D4 case, we
only have two types of fluxes, F̃(4) and Ĥ(3), while in the M5-M2-M5 case, we have only one

type of flux F̂(4). Hence, there are no harmonic function corrections in the fluxes in this case.

In the NS5-D1-D3 case, on the other hand, we need to correct F̃(5) due to the appearance of

three different fluxes F̃(5), Ĥ(3) and F̃(3).

3 Interpretation and embedding ansatz inferral from a

worldvolume perspective

The original motivation for investigating such brane intersections was an interest in the world-
volume theory of the fully localised brane. In [16, 17] it was argued that instead of a flat
worldvolume metric such as in the single-brane solution (2.1), one could instead consider more
general Ricci-flat geometries on the worldsheet

dŝ2 = H(y)
p−7

8 gµν dx
µdxν +H(y)

p+7

8 δIJ dy
IdyJ , Rµν(g) = 0 . (3.1)

Extending to greater generality, one can identify an appropriate (p + 1)-dimensional half-
maximal supergravity on the worldvolume [12], determine the uplift of its fields to 10d field
configurations and show that any solution of the (p + 1)-dimensional supergravity fully sat-
isfies the 10d equations of motion. We then call the (p + 1)-dimensional supergravity theory
a “consistent embedding” on the worldvolume of the brane. (The ansatz is the same as for
a consistent truncation, but in this context we are not restricting attention just to the lower-
dimension worldvolume theory.) The brane itself can be called a “skeleton”, suggesting that
the flesh of a resulting combined solution is actually the supergravity solution sitting on top of
the skeleton brane. Although in principle one may also try to construct consistent embeddings
of supergravity theories with certain matter multiplets, the proposal of Ref. [12] was that at
least pure supergravity with no additional multiplets will always be consistent. Explicit exam-
ples of such consistent embeddings were given in [12] and we will extend the catalogue of such
examples in Section 4, making use of the structures unveiled in this paper.

Although the full solution space depends on the worldvolume dimension and on the precise
supergravity at hand, one generically expects 1

2
-BPS solutions such as black holes, black strings

and black branes to appear as possible solutions on the skeleton worldvolume. In particular,
we may consider simple static solutions of the form

ds2p+1 = h(r)α(−dt2 + dx21 + · · ·+ dx2s) + h(r)β(dr2 + r2dΩ2
p−s−1) , (3.2)

which need to be supported by further fields from the supergravity multiplet, capturing the
charge of the 1

2
-BPS object. In order to recognise such solutions as uplifts back to 10d, we

require overall a 10d 1
4
-BPS solution (half of the supersymmetry is broken by the skeleton

brane and another half by the black object) with two harmonic functions H(y) and h(r), where
h depends only on the world-volume coordinates of the skeleton brane, which itself is fully
localised.

It is not hard to see that the brane intersections discussed in Section 2 are natural candidates
for uplifts of such consistently embedded black objects on lower-dimensional worldvolumes. In
fact, we claim that every such intersection may be interpreted as a solution of the worldvolume
supergravity on a fully localised (skeleton) brane, featuring a 1

2
-BPS black object with a spatial

extension according to the number of shared dimensions (as given in parentheses in Table 1).
Now consider the inverse question: Can one use intersecting-brane higher-dimensional solu-

tions as discussed in Section 2 to infer the structure of consistent embedding ansätze onto the
worldvolume of a fully localised component brane, now considered as a skeleton? Indeed we
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find that the structure of such intersecting solutions is highly restrictive and therefore implies
the structure of ansätze for consistent embeddings of pure supergravity on the skeleton branes.

3.1 Pure 4d N = 4 supergravity on the D3-brane

Let us demonstrate this line of thought with the now familiar D3-F1-D5 example. We can
identify the additional geometry on the skeleton D3-brane worldvolume in (2.9) with a four-
dimensional black hole.

Instead of the static R
1,3-worldvolume of the D3-brane, in Ref. [12] it was found that pure

N = 4 supergravity can be embedded on the 4d worldvolume, thus allowing for a curved metric
gµν , 6 U(1) gauge fields Ai

(1) with 2-form fluxes F i
(2) and a complex scalar τ = χ+ ie−φ available

to be turned on. The embedding in type IIB supergravity was given as

dŝ210 = H0(y)
− 1

2 gµνdx
µdxν +H0(y)

1

2 δIJdy
IdyJ , Φ̂ = φ , Ĉ0 = −χ ,

F̃(5) = −volg ∧ dH−1
0 − ∗δdH0 , F̃(3) = −e

−φ

√
2
∗g F I

(2) ∧ dyI , Ĥ(3) =
1√
2
F I

(2) ∧ dyI . (3.3)

Here, the volume form volg and the Hodge star ∗g are associated to the 4d metric gµν , while
the Hodge ∗δ is defined with respect to the 6d flat metric δIJ . The harmonic function H(y)
solves the Laplace equation (2.3) in the D3-brane transverse space. For every solution of the 4d
equations of motion, this ansatz immediately solves the 10d Bianchi identities and equations
of motion [12], making this embedding a consistent truncation from 10d type IIB supergravity
down to pure 4d N = 4 supergravity.

Pure 4d N = 4 supergravity allows for a plethora of supersymmetric black-hole solutions
(see [18–30] for a non-exhaustive list of discussions). A set of particularly simple solutions has
the following non-vanishing field content

ds24 = −h−1 dt2 + hδabdX
adXb , A1

(1) = −
√
2h−1dt , φ = − lnh , (3.4)

where we have renamed {x1, x2, x3} to capital X and h is a harmonic function in this 3d
subspace:

∂2Xh(X) = 0 . (3.5)

We may think of a simple single-center solution h(X) = 1+ q
|X| for visualisation. We chose A1

(1)

here for simplicity, but a global SO(6)-rotation allows us to turn on any linear combination of
the gauge fields. The relevant worldsheet fluxes are

F1
(2) =

√
2dt ∧ dh−1 , ∗F1

(2) = −
√
2

h
∗X dh , (3.6)

and the 10d embedding of this solution takes the form

dŝ210 = H
− 1

2

0 (y)
[

−h−1(X) dt2 + h(X) δabdX
adXb

]

+H
1

2

0 (y) δIJdy
IdyJ , Φ̂ = − lnh ,

F̃(5) = −volg ∧ dH−1
0 − ∗δdH0 , F̃(3) = − ∗X (dh) ∧ dy1 , Ĥ(3) = dt ∧ dh−1 ∧ dy1 . (3.7)

We immediately recognise here the D3-F1-D5 system of Eq. (2.9). The specific choice of turn-
ing on A1 breaks the SO(6) symmetry of the transverse space and determines that the F1
worldvolume is oriented in the dimension parametrised by y1. We thus find a full SO(6) or-
bit of equivalent black-hole/intersecting-brane solutions, which is a strict subspace of the full
parameter space of supersymmetric black-hole solutions [18, 19, 26, 27, 12]. Another simple set
of black-hole solutions is related to this one by S-duality and corresponds to the D3-D1-NS5
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system in Table 1.6 Black holes not falling into one of these two sets uplift to 10d objects that
have yet to be described in a natural 10d language such as that of brane intersections.7

Now consider the inverse question: starting from the D3-F1-D5 system of Eq. (2.9), can
one infer the corresponding consistent reduction ansatz on a skeleton D3 brane? From (3.4),
one immediately recognises the 3-form flux as the wedge product of the black hole flux with
dy1. At the same time, we know that there are 6 gauge fields in the supergravity multiplet
of N = 4 supergravity, transforming in the vector representation of the SO(6)R symmetry.
The R-symmetry corresponds to the SO(6) symmetry in the transverse space of the skeleton
D3-brane. We further have knowledge of an SO(2) symmetry for the dilaton and axion fields
in both N = 4 supergravity and in type IIB supergravity. Hence, it is natural for us to write
the embedding ansatz

dŝ210 = H
− 1

2

0 (y)gµν(x)dx
µdxν +H

1

2

0 (y)δIJdy
IdyJ , Φ̂ = φ(x) , Ĉ(0) = αχ(x) ,

F̃(5) = H−2
0 volg ∧ dH0 − ∗δdH0 , F̃(3) = −e

−φ

√
2
∗g F I

(2) ∧ dyI , Ĥ(3) =
1√
2
F I

(2) ∧ dyI .
(3.8)

which is exactly the embedding ansatz of N = 4 pure supergravity given in [12] up to the
so far unfixed parameter α which relates the scalar field χ to the 10d axion Ĉ(0). One can
determine the coefficient α = −1 by plugging the ansatz into the type IIB equations of motion
and requiring them to reduce to the 4d equations of motion – this is the standard requirement of
a consistent embedding. Another way, motivated instead by the 10d intersecting brane families,
is to find a 10d intersecting-brane solution that is charged under the axion symmetry and to
make an analogous inferral. There is no such solution in the family of solutions investigated in
Section 2 but we may instead investigate an intersecting-brane solution between a D3- and a
single D7-brane given by

dŝ10 =H
− 1

2

0

[

−dt2 + dx20 + h(dx21 + dx22)
]

+H
1

2

0 (dy
2
1 + · · ·+ dy26) ,

F̃(5) =hH
−2
0 ∂IH0 dt ∧ dx0 ∧ dx1 ∧ dx2 ∧ dyI − 1

5!
εI1···I6∂I1H0 dy

I2 ∧ · · · ∧ dyI6

eΦ̂ =h−1 , F̂(1) = −εab∂ah dxb , h = h(x1 , x2) H0 = H0(y) , a, b = 1, 2 .

(3.9)

It is worth noting that this solution is fully localised for both branes and on the skeleton D3
worldvolume it corresponds to a black-string solution which is charged magnetically under the
axion symmetry:

ds2 =− dt2 + dx20 + h(dx21 + dx22) , eφ = h−1 ,

F(1) =− εab∂
ah dxb , a, b = 1, 2 .

(3.10)

Requiring a matching of these solutions through a consistent embedding fixes α = −1.

3.2 Pure 6d N = (2, 0) supergravity on the M5-brane

A second example discussed in [12] was the world-volume theory on M5-branes. PureN = (2, 0)
supergravity may be embedded on an M5-skeleton, allowing for a curved metric and five 2-form
gauge fields AI

(2) with anti-self-dual 3-form flux. The embedding into M-theory was given as

dŝ211 = H
− 1

3

0 (y)gµνdx
µdxν+H

2

3

0 (y)δIJdy
IdyJ , F̂(4) = δIJG

I
(3)∧dyJ−∗δdH0 , GI

(3) = −∗gGI
(3) .

(3.11)

6The remaining intersection D3-D5-NS5(2) system in Table 1 generates domain walls in 4d N = 4 super-
gravity and is thus not relevant for the discussion of black holes.

7More specifically, the black holes investigated here furnish a submanifold of the SO(8, 2)/(SO(6, 2)×SO(2))
coset used in [18, 19, 26, 27, 12] for a sigma-model description of the parameter space of static black holes. It
would be interesting to find the 10d interpretation of the full coset space.
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Here, the Hodge star operator ∗g is associated to the 6d metric gµν , while the Hodge ∗δ is
defined according to the 4d flat metric δIJ . The harmonic function H(y) again solves the
Laplace equation (2.3) in the transverse space. For every solution of the 6d theory, this ansatz
solves the 11d Bianchi identities and equations of motion [12], making it a consistent truncation
of 11d M-theory down to a 6d N = (2, 0) supergravity.

Given that the only gauge field in this theory is a 2-form field, the BPS objects in this
theory are black strings, e.g.

ds26 = h−1 (−dt2 + dx21) + h δabdX
adXb , G1

(3) = − 1

h2
dt ∧ dx1 ∧ dh− ∗Xdh , (3.12)

where we have again relabelled the coordinates {x2, x3, x4, x5} by capital X. As usual, h is a
harmonic function in the X-subspace and we may think of h(X) = 1 + q

|X|2 as the simplest

non-trivial example. The choice of G1
(3) as the only non-trivial gauge flux is arbitrary and we

may perform an SO(5)-rotation to mix different gauge fluxes. The 10d uplift now takes the
form

dŝ211 = H
− 1

3

0 (y)
[

h−1(X) (−dt2 + dx21) + h(X) δabdX
adXb

]

+H
2

3

0 (y)δIJdy
IdyJ

F̃(4) = −
[

1

h2
dt ∧ dx1 ∧ dh+ ∗Xdh

]

∧ dy1 − ∗δdH0 . (3.13)

We recognise here the M5-M2-M5(1) scenario (2.15) where the choice of the gauge field G1
(3)

corresponds to the orientation of the M2 worldvolume. Allowing for generic orientations within
the xµ and yI subspaces, as well as generic harmonic functions h, it seems that in this case the
correspondence of our brane intersections to 1

2
-BPS black-brane solutions in 6d N = (2, 0) pure

supergravity is one-to-one. This striking feature may be credited to the relative simplicity of
M-theory.

Once again, we can extract the consistent reduction ansatz on a skeleton M5-brane. We
recognise that the fluxes supported by the harmonic function h in the intersecting brane solution
(2.15) can be rewritten as the wedge product of the (dual) black-string flux with dy1 . Recall
that there are five 2-form potentials transforming in the vector representation of SO(5)R. After
restoring this SO(5)R symmetry by covariantly replacing the label 1 with I, we recover the
embedding ansatz (3.11).

4 Further consistent embeddings

We now apply the ansatz generation strategies outlined in the previous section to construct
new consistent embedding ansätze for the worldvolume supergravities on the D4 and the NS5
branes. This extends the survey initiated in [12]. Some details on the consistent embedding of
fermion fields and the full proof of consistency are delegated to Appendix C.

4.1 Pure 5d N = 4 supergravity on the D4-brane

Assuming the explicit 10d intersecting brane configurations constructed above are uplifts of
black-brane solutions of a lower-dimensional supergravity, we can construct the relevant em-
bedding ansatz for that supergravity, potentially with the help of additional symmetries. Let
us use this idea to construct the embedding ansatz for 5d N = 4 pure supergravity on the D4
brane in type IIA theory and 6d N = (1, 1) supergravity on the NS5 brane in type IIB theory.
We will show the bosonic ansatz in this section and provide the fermionic completion in Ap-
pendix C.1. We explicitly prove the consistency of the truncation to 6d N = (1, 1) supergravity
in Appendix C.2. The proof for 5d N = 4 supergravity is parallel.
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According to Table 1, we can use the D4-F1-D4, (2.16), or D4-NS5-D2(1) solution to con-
struct black holes in the embedding 5d N = 4 supergravity on the D4-brane, which is described
in Appendix A.4. By comparing (2.16) to the black-hole solution (A.42) , we can immediately
make an initial ansatz

dŝ210 = H
− 3

8

0 (y)e
5

8
√

6
σ
gµν (x) dx

µdxν +H
5

8

0 (y)e
− 3

8
√

6
σ
δIJdy

IdyJ , eΦ̂ = H
− 1

4

0 e
− 9

4
√

6
σ
.

F̃(4) = − ∗δ dH0 −
1√
2
e

2
√

6
σ ∗g F 1

(2) ∧ dy1 , Ĥ(3) =
1√
2
F 1
(2) ∧ dy1 .

(4.1)

Here ∗δ is the Hodge dual with respect to the transverse flat space δIJdy
IdyJ , while ∗g is the

Hodge dual with respect to the metric gµν . We know there are five 1-form gauge fields in
the supergravity multiplet transforming in the 5 representation of USp(4)R. This R-symmetry
group is locally isomorphic (i.e. at the level of the Lie algebra) to the rotational symmetry
group SO(5) in the transverse space of the D4 brane. Hence, we should replace the label for
the flux F 1

(2) with a SO(5)-covariant index I ∈ {1, 2, 3, 4, 5}. There is another 2-form flux G(2)

which is invariant under the USp(4)R, while there is a unique 2-form flux F̂(2) in IIA theory. It
is thus natural to expect

F̂(2) = αG(2) . (4.2)

After a quick check of the consistent reduction of the equations of motion, we deduce the full
bosonic ansatz

dŝ210 = H
− 3

8

0 (y)e
5

8
√

6
σ
gµν (x) dx

µdxν +H
5

8

0 (y)e
− 3

8
√

6
σ
δIJdy

IdyJ , eΦ̂ = H
− 1

4

0 e
− 9

4
√

6
σ

F̃(4) = − ∗δ dH0 −
1√
2
e

2
√

6
σ ∗g F I

(2) ∧ dyI , Ĥ(3) =
1√
2
F I
(2) ∧ dyI , F̂(2) = −G(2) .

(4.3)

This agrees with the bosonic embedding ansatz given in [12], which was inferred via a dimen-
sional reduction of the embedding ansatz for 6d N = (2, 0) supergravity on the M5 brane. We
will also present the embedding of fermions to leading order in Appendix C.1.

Another way to determine the coefficient α in (4.2) is by using the D0-D4 brane solution

ds2 = −H− 3

8

0 [h−
7

8dt2 + h
1

8 (dr2 + r2dΩ2
3)] +H

5

8

0 h
1

8 (dy21 + · · ·+ dy25) ,

F̃(4) = − ∗δ dH0 , F̂(2) = −h−2∂rh dt ∧ dr , eΦ̂ = H
− 1

4

0 h
3

4 ,

H0 = H0(y) , h = h(r) ,

(4.4)

which corresponds to a black-hole solution (A.43) charged under G(2) in 5d. Or, similarly, one
may use a string solution charged under G(2) .

4.2 Pure 6d N = (1, 1) supergravity on the NS5-brane of type IIB

theory

By a similar analysis comparing the NS5-D1-D3 solution (2.17) with the black-hole solution in
6d N = (1, 1) supergravity (A.28), we can obtain an initial ansatz

dŝ210 =H
− 1

4

0 (y)e−
√

2

4
ϕgµν (x) dx

µdxν +H
3

4

0 (y)e
√

2

4
ϕδIJdy

IdyJ ,

Ĥ(3) =− ∗δdH0 , F̃(3) = − 1√
2
F 1
(2) (x) ∧ dy1 , eΦ̂ = H

1

2

0 e
− ϕ

√

2 ,

F̃(5) =
1√
2

[

− 1

3!
H0ε1I2···I4F

1
(2) ∧ dyI2 ∧ dyI3 ∧ dyI4 + e−

√

2

2
ϕ ∗g F 1

(2) ∧ dy1
]

.

(4.5)
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The subscripts δ and g have the same meaning as in the 5d case (4.1). We know there are 4
gauge fields in the supergravity multiplet transforming in the vector representation of SO(4)R,
which is again the rotational symmetry in the transverse space of the NS5 brane. This suggests
again replacing the index 1 with I. In addition, there is an SO(4)R singlet 2-form gauge field
B(2), which can be naturally embedded as

Ĥ(3) = αH(3)(y) . (4.6)

After a quick check of the consistent reduction of the equations of motion, we fix α and get8

dŝ210 =H
− 1

4

0 (y)e−
√

2

4
ϕgµν (x) dx

µdxν +H
3

4

0 (y)e
√

2

4
ϕδIJdy

IdyJ ,

Ĥ(3) =− ∗δdH0 −H(3) (x) , F̃(3) = − 1√
2
F I
(2) (x) ∧ dyI , eΦ̂ = H

1

2

0 e
− ϕ

√

2 ,

F̃(5) =
1√
2

[

− 1

3!
H0εI1···I4F

I1
(2) ∧ dyI2 ∧ dyI3 ∧ dyI4 + e−

√

2

2
ϕ ∗g F I

(2) ∧ dyI
]

.

(4.7)

The fermionic embedding ansatz and the consistency proof are given in Appendix C.
Another way to determine the coefficient α in (4.6) is by comparing the F1-NS5 solution

dŝ210 = H
− 1

4

0 h−
1

4 [h−
1

2

(

−dt2 + dx2
)

+ h
1

2

(

dr2 + r2dΩ2
3

)

] +H
3

4

0 h
1

4 δIJdy
IdyJ ,

Ĥ(3) = − ∗δ dH0 − h−2∂rh dt ∧ dx ∧ dr , eΦ̂ = H
1

2

0 h
− 1

2 (r) ,

H0 = H0(y) , h = h(r) , I, J = 1, 2, 3, 4 ,

(4.8)

with the string solution (A.30), electrically charged under H(3) in 6d.
While studying these examples, we recognise a general strategy: We can use the intersecting-

brane solutions given in Table 1 to construct consistent truncations of type II supergravities to
various supergravities on skeleton branes.

Of course there are further relationships among the various brane solutions which we may
make use of. For example, we can use S-duality to transform 6d N = (1, 1) supergravity on an
NS5-brane to 6d N = (1, 1) supergravity on the D5-brane

dŝ210 =H
− 1

4

0 (y)e−
√

2

4
ϕgµν (x) dx

µdxν +H
3

4

0 (y)e
√

2

4
ϕδIJdy

IdyJ ,

Ĥ(3) =
1√
2
F I
(2) (x) ∧ dyI , F̃(3) = − ∗δ dH0 −H(3) (x) , eΦ̂ = H

− 1

2

0 e
ϕ
√

2 ,

F̃(5) =
1√
2

[

− 1

3!
H0εI1···MI

F I1
(2) ∧ dyI2 ∧ dyI3 ∧ dyI4 + e−

√

2

2
ϕ ∗g F I

(2) ∧ dyI
]

.

(4.9)

One can obtain the same reduction ansatz via an analogous construction starting from the
D5-F1-D3 brane solution (2.14). An interesting result arises when we consider T-duality on
a worldvolume direction of the NS5-brane. We know that T-duality relates NS5-branes in
two type II theories. At the same time, all the configurations including an NS5-brane in
Table 1 are related through T-duality. This implies that pure 6d N = (1, 1) supergravity
on an NS5-brane in type IIB theory and some version of 6d N = (2, 0) supergravity on an
NS5-brane in type IIA theory are related by T-duality. However, the number of degrees of
freedom is 32 + 32 in the supergravity multiplet of N = (1, 1) theory while the N = (2, 0)

8Actually, the sign associated to the flux F I
(2) in the ansatz does not matter for the equations of motion,

because the F I
(2) always appear in pairs. However, the sign does matter in the supersymmetry transformation

and is related to the sign of the intertwiner.
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supergravity multiplet contains only 24 + 24 degrees of freedom. This suggests that the T-
dual 6d N = (2, 0) supergravity contains an additional tensor multiplet, which has 8 + 8
numbers of degrees of freedom. Additional evidence for the appearance of this matter multiplet
is provided by the NS5-D4-D6(3) configuration in Table 1. The 3-brane solution in 6d should
couple magnetically to a scalar which lives in a tensor multiplet. Hence, we conjecture that
one can consistently embed at least one additional tensor multiplet besides the supergravity
multiplet on the NS5-brane in type IIA supergravity. This should be contrasted to the pure 6d
N = (2, 0) supergravity on an NS5-brane that was given in [12] through dimension reduction.
We may interpret the latter as a (secondary) consistent truncation of the former.

Investigating the inclusion of matter multiplets in addition to the supergravity multiplet in
the consistent truncation will be explored in future work.

5 Conclusion and Outlook

We have seen in this paper how the existence of consistent truncation/embedding ansätze from
a higher-dimensional host supergravity down to lower-dimensional supergravities on “skeleton”
brane worldvolumes allows for the construction of a new family of intersecting-bane solutions
of the host theory, and, conversely, how such new intersecting-brane solutions allow one to infer
the details of embedding ansätze.

We started from the perspective of Ref. [12], which focussed on the embedding of a pure
worldvolume supergravity governed by the unbroken supersymmetry of the skeleton brane. By
considering static supersymmetric black-brane solutions on the worldvolume, we found families
of intersecting branes with functional dependences differing from the original intersecting-brane
constructions of Refs [1, 2]. In contrast to such constructions based on a “harmonic function
rule” and mutually smeared branes, the new brane intersections feature the full localisation (i.e.
full unsmeared transverse space dependence) of one special brane. The new family of solutions
agrees in generic metric structure with the original harmonic function rule, but with differing
transverse functional dependences and differing ansatz details for the related form-field field
strengths, as explained in Section 2. In Table 1 we listed the possible brane intersections to
preserve 1

4
supersymmetry. We discussed also the possibility of choosing any one of the three

components in these intersections to be the fully localised one, indicated here by a choice of
underlining such as the distinction between the D5-F1-D3 and the D3-F1-D5 solutions.

Although this family of solutions already captures plenty of black objects in the worldvolume
theories of the respective fully localised branes, it generically probes only a small subset of all
possible 1

2
-BPS solutions in the lower-dimensional theories. This is quite obvious in the case of

the D3-brane worldvolume discussed in Subsection 3.1, where even the set of static black-hole
solutions features many more cases [18, 19, 26, 27, 12]. If we further allow for rotating black
holes, a large landscape of solutions opens up, which can be lifted to 10d and still awaits a full
interpretation in terms of 10d objects such as brane intersections. It would be an interesting
challenge to further explore the higher-dimensional interpretations of black objects in various-
dimensional supergravity theories. So far, only the discussion of black strings in the 6d theory
on an M5-brane seems completed (see Subsection 3.2).

Having understood the higher-dimensional nature of such black objects in lower-dimensional
supergravity theories as brane intersections, a natural question concerns the limit of large
numbers of stacked branes, in particular in the near-horizon limit of the black object. This is
similar in spirit to taking the near-horizon limit of a D1-D5 brane intersection that leads to
the famous AdS3×S3

×T
4 background after compactification. The AdS/CFT correspondence

[31,32] may then be applied to relate the worldvolume supergravity theory to a conformal field
theory on the boundary of the AdS subspace that arises in the near-horizon limit. One may
therefore suspect that our new brane intersections should allow for a holographic description,
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but the dual theories remain to be investigated.

We further elaborated that, given the multitude of new intersecting-brane solutions, the
structure of the related consistent truncation/embedding ansätze could conversely be inferred.
This provides an important guide to the construction of a variety of such ansätze, whose
full consistency can then be checked between the lower-dimensional wordvolume supergravity
equations of motion and the original higher-dimensional host equations of motion. We made
use of this data by consistently embedding pure 5d N = 4 supergravity on the D4-brane and
pure 6d N = (1, 1) supergravity on the NS5 brane in type IIB theory. Further such embeddings
can be investigated in a similar manner.

Of particular interest are solutions with full localisation of the lowest-dimensional compo-
nent such as F1-D5-D3 and its relation to a low-dimensional consistent “supergravity” embed-
ding. The worldvolume of an F1-brane is just two-dimensional, and the corresponding locally
supersymmetric theory does not contain dynamical “gravity” – it is instead an interacting
theory of spinors and scalars. Such low-dimensional theories also have rich duality-symmetry
structures, such as those discussed in Ref. [33]. Interpreting the uplift of solutions to such
low-dimensional theories is another rich domain for further study.

The limitation to pure supergravity on the skeleton-brane worldvolume in this paper most
likely does not capture the complete set of possibilities. An analogous question relates to
dimensional reductions on Calabi-Yau manifolds, where truncation consistency is known for
lower-dimensional pure supergravity [34]. It is known from generalised-geometry considera-
tions, however, that extensions of the reduction ansätze to include certain independent matter
multiplets are also possible [35], although the sorts of explicitly detailed embedding ansätze
that we have used (or inferred) here have not been fully established in such extended cases.
It is likely, moreover, that similar extensions to include some matter multiplets in the brane-
worldvolume embedding ansätze will also exist. We found first hints of such extensions in the
discussion of T-duality of the NS5 brane (at the end of Subsection 4.2), where an additional
tensor multiplet may appear in the dual theory. The related generalised-geometry analysis for
the skeleton brane backgrounds has not yet been developed. Such analysis can also be the basis
of a formal proof of ansatz consistency – both for the purely bosonic sector and also when the
fermions are included. These further developments will be the focus of future publications.
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Appendices

A Conventions

In this appendix we summarise our conventions for supergravity theories in various dimensions.
For clarity, we also outline some initial assumptions and choices made throughout the paper.

• We work in “mostly plus” signature (−,+,+,+, . . . ).

• We discuss 10d supergravity in Einstein frame.

• We denote 10/11d quantities with hats and lower-dimensional quantities without hats
when we are making a consistent truncation/embedding.

• The local Lorentz frame is indicated by the underlined indices (M,N, . . . for 10/11d,
µ, ν, . . . for worldvolume directions, and I, J, . . . for transverse directions).

• The 10/11d Clifford algebra is denoted by Γ. We use γ on the worldvolume directions
and Σ on the transverse directions.

• We define the top rank gamma matrix as Γ(d) ≡ Γ0Γ1 · · ·Γd−1.

• The totally antisymmetric symbol is chosen as ε01...d = 1.

A.1 10d type IIA supergravity

In 10d type IIA supergravity, the field content consists of the graviton êaµ, a Majorana gravitino

Ψ̂µ, a dilaton Φ̂, a Majorana dilatino λ̂, an NS-NS two-form potential B̂(2) with field strength

Ĥ(3) = dB̂(2), and R-R potentials Ĉ(1) and Ĉ(3), with field strengths given by F̂(n+1) = dĈ(n).
The bosonic type IIA action in Einstein frame is [36]

SIIA =
1

2κ2

∫
(

∗R̂− 1

2
dΦ̂ ∧ ∗dΦ̂− 1

2
e−Φ̂Ĥ(3) ∧ ∗Ĥ(3) −

1

2
e

3

2
Φ̂F̂(2) ∧ ∗F̂(2)

−1

2
e

Φ̂

2 F̃(4) ∧ ∗F̃(4)

)

− 1

4κ2

∫

F̂(4) ∧ F̂(4) ∧ B̂(2) .

(A.1)

Here, we have defined F̃(4) = F̂(4) + Ĉ(1) ∧ Ĥ(3) and use a hat to indicate 10d quantities. The
corresponding equations of motion are

d ∗ dΦ̂ =
3

4
e

3

2
Φ̂F̂(2) ∧ ∗F̂(2) −

1

2
e−Φ̂Ĥ(3) ∧ ∗Ĥ(3) +

1

4
e

Φ̂

2 F̃(4) ∧ ∗F̃(4) ,

d
(

e
Φ̂

2 ∗ F̃(4)

)

=− Ĥ(3) ∧ F̃(4) ,

d
(

e−Φ̂ ∗ Ĥ(3)

)

=e
Φ̂

2 F̂(2) ∧ ∗F̃(4) +
1

2
F̃(4) ∧ F̃(4) ,

d
(

e
3Φ̂

2 ∗ F̂(2)

)

=− e
Φ̂

2 Ĥ(3) ∧ ∗F̃(4) ,

R̂MN =
1

2
∂M Φ̂∂N Φ̂ +

1

2
e

3Φ̂

2

(

F̂MAF̂
A

N − 1

8 · 2!gMN F̂
2
(2)

)

+
1

4
e−Φ̂

(

Ĥ P1P2

M ĤNP1P2
− 1

2 · 3! ĝMNĤ
2
(3)

)

+
1

12
e

Φ̂

2

(

F̃ P1P2P3

M F̃NP1P2P3
− 9

4 · 4! ĝMN F̃
2
(4)

)

.

(A.2)
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The supersymmetry transformations are [37]

δΨ̂M =

(

D̂M − 1

4 · 2!ĤMPQΓ
PQΓ(10)

− 1

16
eΦ̂F̂PQΓ

PQΓMΓ(10) +
1

8 · 4!e
Φ̂F̃NPQLΓ

NPQLΓM

)

ǫ̂ ,

δλ̂ =

(

−1

3
ΓM∂M Φ̂Γ(10) +

1

6 · 3!ĤMNPΓ
MNP

− 1

2 · 4e
Φ̂F̂MNΓ

MN +
1

12 · 4!e
Φ̂F̃MNPQΓ

MNPQΓ(10)

)

ǫ̂ .

(A.3)

Here, Γ(10) is the chiral matrix in 10 dimensions. We can separate the 10d Majorana super-
charges into two Majorana-Weyl supercharges with different chiralities

ǫ̂ = ǫ̂L + ǫ̂R , Γ(10)ǫ̂L = ǫ̂L , Γ(10)ǫ̂R = −ǫ̂R . (A.4)

A.1.1 D4-brane solution

The D4-brane solution in type IIA supergravity reads

ds210 = H− 3

8 gµν (x) dx
µdxν +H

5

8 δIJdy
IdyJ , eΦ = H− 1

4 (y) ,

F̃(4) = − 1

4!
∂I1HεI1···I5dy

I2 ∧ · · · ∧ dyI5 , I, J = 1, · · · , 5 .
(A.5)

It admits a Killing spinor ǫ satisfying

Γ01234ǫ = −Γ(10)ǫ , ǫ = H−3/32ǫ0 . (A.6)

where ǫ0 is a constant Majorana spinor. In type IIA theory, We can split the 10d gamma
matrices according to

Γµ = σ1 ⊗ γµ ⊗ 1 , ΓI = σ2 ⊗ 1⊗ ΣI , (A.7)

with Σ5 = Σ1 · · ·Σ4 , and the Pauli matrices σi. We factorise the Killing spinor as

ǫ =

(

1
−i

)

⊗ εi ⊗ ηi , i = 1, 2, 3, 4 , (A.8)

where ηi is a basis of 5d symplectic Majorana spinors and i is the USp(4) index. This factori-
sation automatically satisfies the projection property (A.6), which can be written as

(σ2 ⊗ 1⊗ 1) ǫ = −ǫ . (A.9)

A.2 10d type IIB supergravity

In 10d type IIB supergravity, the field content consists of the graviton êaµ, a Weyl gravitino Ψ̂µ

with positive chirality, a dilaton Φ̂, a Weyl dilatino λ̂ with negative chirality, an NS-NS two-
form potential B̂(2) with field strength Ĥ(3) = dB̂(2), and R-R potentials Ĉ(0), Ĉ(2) and Ĉ(4).
The type IIB theory possesses a rigid SL(2,R)/SO(2) symmetry. The pseudo-action reads [37]

SIIB =
1

2κ210

∫
(

∗R− 1

2
dΦ̂ ∧ ∗dΦ̂− 1

2
e2Φ̂F̂(1) ∧ ∗F̂(1) −

1

2
e−Φ̂Ĥ(3) ∧ ∗Ĥ(3)

−1

2
eΦ̂F̃(3) ∧ ∗F̃(3) −

1

4
F̃(5) ∧ ∗F̃(5)

)

− 1

4κ210

∫

Ĉ(4) ∧ Ĥ(3) ∧ F̃(3) ,

(A.10)
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where F̂(1) = dĈ(0), Ĥ(3) = dB(2), F̃(3) = dĈ(2) − Ĉ(0)Ĥ(3) and F̃(5) = dĈ(4) − 1
2
Ĉ(2) ∧ Ĥ(3) +

1
2
B(2) ∧ dĈ(2) . Varying the action, we get the bosonic equations of motion

d ∗ dΦ̂ =e2Φ̂F̂(1) ∧ ∗F̂(1) −
1

2
e−Φ̂Ĥ(3) ∧ ∗Ĥ(3) +

1

2
eΦ̂F̃(3) ∧ ∗F̃(3) ,

d
(

e2Φ̂ ∗ F̂(1)

)

=− eΦ̂Ĥ(3) ∧ ∗F̃(3) ,

d
(

eΦ̂ ∗ F̃(3)

)

=F̃(5) ∧ Ĥ(3) ,

d
(

e−Φ̂ ∗ Ĥ(3)

)

=eΦ̂F̂(1) ∧ ∗F̃(3) − F̃(5) ∧ F̃(3) ,

d ∗ F̃(5) =− F̃(3) ∧ Ĥ(3) ,

R̂MN =
1

2
∂M Φ̂∂N Φ̂ +

1

2
e2Φ̂F̂M F̂N +

1

4 · 4! F̃MPQRSF̃N
PQRS

+
1

4
eΦ̂
(

F̂MPQF̂N
PQ − 1

12
GMN F̂PQRF̂

PQR

)

+
1

4
e−Φ̂

(

ĤMPQĤN
PQ − 1

12
GMNĤPQRĤ

PQR

)

.

(A.11)

The supersymmetry transformations are

δλ̂ =
1

2

(

∂M Φ̂ + ieΦ̂F̂M

)

ΓM ǫ̂− 1

4 · 3!
(

e−Φ̂/2ĤMNP + ieΦ̂/2F̂MNP

)

ΓMNP ǫ̂c ,

δΨ̂M =D̂M ǫ̂−
i

4
eΦ̂F̂M ǫ̂+

1

96

(

e−Φ̂/2ĤNPQ − ieΦ̂/2F̂NPQ

)(

Γ NPQ
M − 9δNMΓPQ

)

ǫ̂c

− i

16 · 5! F̂NPQRTΓ
NPQRTΓM ǫ̂ .

(A.12)

The gravitino and the supersymmetry parameter have the same chirality

Γ(10)Ψ̂M = Ψ̂M Γ(10)ǫ̂ = ǫ̂ , (A.13)

while the dilatino has the opposite chirality

Γ(10)λ̂ = −λ̂ . (A.14)

We can separate the Weyl supercharges into two Majorana-Weyl supercharges of the same
chirality

ǫ̂ = ǫ̂L + iǫ̂R , ǫ̂c = ǫ̂L − iǫ̂R , Γ(10)ǫ̂L,R = ǫ̂L,R . (A.15)

A.2.1 NS5-brane solution

The NS5-brane solution in type IIB supergravity reads

ds210 =H
− 1

4ηµdx
µdxν +H

3

4 δIJdy
IdyJ ,

Ĥ(3) =− ∗δdH , eΦ = H
1

2 , I, J = 1, 2, 3, 4 .
(A.16)

Here, H is a harmonic function in the transverse flat space. This solution preserves 16 super-
charges. The Killing spinor is

ǫ = −Γ012345ǫ
c , ǫ = H− 1

16 ǫ0 . (A.17)

Here, in the context of type IIB theory, we factorise the 10d gamma matrix as

Γµ = γµ ⊗ 1 , Γm = γ(6) ⊗ Σm , (A.18)
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and rewrite the Killing spinor as

ǫ = εA ⊗ ηA(y) + iεȦ ⊗ ηȦ(y) . (A.19)

The ε are constant symplectic Majorana-Weyl spinors in 4d, while the η are Killing spinors in
the 4d transverse space. A and Ȧ are the SU(2) indices labelling symplectic Majorana spinors
with different chiralities in 6d

εA = −γ(6)εA , εȦ = γ(6)εȦ . (A.20)

On the other hand, A and Ȧ label the basis of the 4d symplectic Majorana-Weyl spinors, i.e.
one can understand A and Ȧ combined as the Spin(4) ≃ SU(2)L ×SU(2)R spinor index in the
transverse 4d subspace. We require

ηA = −Σ(4)ηA , ηȦ = Σ(4)ηȦ (A.21)

to ensure that the Killing spinor (A.19) is positive chiral. One can then see that the factorisation
(A.19) satisfies the projection condition (A.17) automatically.

A.3 Pure 6d N = (1, 1) supergravity

The 6d N = (1, 1) supergravity was constructed in [38–40] based on the F(4) Poincaré super-
algebra. The supergravity multiplet consists of a graviton e m

µ , a pair of symplectic Majorana
gravitini ψµi, four vector fields A

I
µ, a pair of symplectic Majorana dilatini χi, and one real scalar

field ϕ. Here, I, J = 0, 1, 2, 3 label the vector representation 4 of the SO(4)R symmetry, while
i, j label the symplectic Sp(1) ≃ SU(2) doublet. The ungauged pure supergravity action was
given in Refs [41, 40]. The bosonic action reads

S =
1

2κ26

∫

∗R− 1

2
e
− ϕ

√

2 δIJF
I
(2) ∧ ∗F J

(2) −
1

2
e
√
2ϕH(3) ∧ ∗H(3)

− 1

2
dϕ ∧ ∗dϕ+

1

2
δIJB(2) ∧ F I

(2) ∧ F J
(2) .

(A.22)

The equations of motion are

d ∗ dϕ =− 1

2
√
2
e
− ϕ

√

2 δIJF
I
(2) ∧ ∗F J

(2) +

√
2

2
e
√
2ϕH(3) ∧ ∗H(3) ,

d
(

e
− ϕ

√

2 ∗ F I
(2)

)

=H(3) ∧ F I
(2) ,

d
(

e
√
2ϕ ∗H(3)

)

=− 1

2
δIJF

I
(2) ∧ F J

(2) ,

Rµν =
1

2
∂µϕ∂νϕ+

1

2
e
− ϕ

√

2 δIJ

(

F I
µρF

Jρ
ν − 1

8
gµνF

I
ρσF

Jρσ

)

+
1

4
e
√
2ϕ

(

HµρσH
ρσ

ν − 1

6
gµνHρσλH

ρσλ

)

.

(A.23)

For the supersymmetry transformations, instead of the indices I, J , we explicitly use (0, a),
with a being a fundamental SO(3) ⊂ SO(4) index. The supersymmetry transformations are

δψµi =Dµεi +
1

16
√
2
e
− ϕ

2
√

2

[

F 0
ρσǫijγ

(6) − iF a
ρσǫik (σ

a)kj

]

(

γ νλ
µ − 6δνµγ

λ
)

εj

+
1

48
e

ϕ
√

2Hνλργ
(6)
(

γ νλρ
µ − 3δνµγ

λρ
)

εi ,

δχi =− 1

4
γµ∂µϕεi −

1

16
e
− ϕ

2
√

2

[

F 0
ρσǫijγ

(6) + iF a
ρσǫik (σ

a)kj

]

γρσεj

+

√
2

48
e

ϕ
√

2Hµνλγ
(6)γµνλεi .

(A.24)
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The SU(2) doublet indices i, j are raised and lowered by the antisymmetric tensors εij and
εij. In view of an eventual embedding in type IIB supergravity, it will be useful to separate
the symplectic Majorana spinor into two symplectic Majorana-Weyl spinors9 with opposite
chiralities and independent symplectic structures. In particular we choose a splitting of the
form10

ψi
µ = δiAψ

A
µ + iδi

Ȧ
ψȦ
µ , χi = δiAχ

A + iδi
Ȧ
χȦ , εi = δiAε

A + iδi
Ȧ
εȦ , (A.25)

where i, A, Ȧ = 1, 2 are SU(2) indices, respectively. Here, the individual components are
constrained by additional Weyl conditions of the form

εA = −γ(6)ǫA , ǫȦ = γ(6)ǫȦ , ψA
µ = −γ(6)ψA

µ , ψȦ
µ = γ(6)ψȦ

µ , (A.26)

for the gravitini and the supersymmetry transformation parameters and

χA = γ(6)χA , χȦ = −γ(6)χȦ . (A.27)

for the dilatini. The different treatment of the dilatini is chosen to match the initial chirality
difference in an eventual 10d embedding.

We can construct black-brane solutions in 6d following [44]. The black hole background is
given by

ds2 = −H− 3

2dt2 +H
1

2

(

dr2 + r2dΩ2
4

)

,

F(2) =
√
2∂rH

−1dt ∧ dr , eϕ = H
− 1

√

2 ,
(A.28)

while a black 2-brane generates the background

ds2 = H− 1

2

(

−dt2 + dx21 + dx22
)

+H
3

2

(

dr2 + r2dΩ2
2

)

,

F(2) =
√
2r2∂rh dΩ2 , eϕ = H

1
√

2 .
(A.29)

Furthermore, we can construct electric string solutions

ds2 = H− 1

2

(

−dt2 + dx2
)

+H
1

2

(

dr2 + r2dΩ2
3

)

,

H(3) = H−2∂rh dt ∧ dx ∧ dr , eϕ = H
1
√

2 ,
(A.30)

and similarly magnetically charged ones.

A.4 5d N = 4 pure supergravity

The 5d N = 4 supergravity was constructed in [45–48]. The N = 4 supergravity multiplet
consists of a graviton e m

µ , four symplectic Majorana gravitini ψi
µ, six vector fields

(

Aij
µ , aµ

)

,
four symplectic Majorana dilatini χi, and one real scalar field σ. The indices i, j = 1, · · · , 4
correspond to the fundamental representation of USp (4)R. The vector field aµ is USp (4)R
invariant, whereas the vector fields Aij

µ transform in the 5 representation of USp (4)R, i.e.

Aij
µ = −Aji

µ , Aij
µΩij = 0 , (A.31)

9We remind the reader that the 6d Dirac representation is given in terms of complex 8-component spinors,
while the Weyl representation only requires 4 complex components. Charge conjugation in 6d squares to −1
so we can only consider a symplectic Majorana condition, which results in a pair of real 8-component spinors.
Since the charge conjugation in 6d does not change the chirality, both conditions can be superimposed for a
total of 8 real degrees of freedom, see e.g. Refs [42, 43] for details.

10In addition to splitting the chiralities we also introduce a factor of i in the second term. This constitutes
a conventional redefinition of the symplectic structure of the second fermion and will be convenient in the 10d
embedding.
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with Ωij being the symplectic metric of USp (4)R. The USp (4)R indices are raised and lowered
by

T i = ΩijTj , Ti = T jΩji . (A.32)

There is a local isomorphism so (5) ≃ usp (4) . We introduce SO (5) indices I = 1, 2, · · · 5,
the local intertwiner L ij

I between these groups and its inverse L I
ij . The USp (4) connection is

given by
Qij = LIikdL j

Ik . (A.33)

The action of the bosonic sector in minimal 5d N = 4 supergravity11 reads [47]

S =
1

2κ25

∫

∗R− 1

2
e

2
√

6
σ
aIJF

I
(2) ∧ ∗F J

(2) −
1

2
e
− 4

√

6
σ
G(2) ∧ ∗G(2)

− 1

2
dσ ∧ ∗dσ +

1

2
CIJF

I
(2) ∧ F J

(2) ∧ a(1) .
(A.34)

The supersymmetry transformations are

δψµi =Dµεi +
i

6
√
2
e

1
√

6
σ
LIijF

I
ρσ

(

Γ ρσ
µ − 4δρµΓ

σ
)

εj

+
i

24
e
− 2

√

6
σ
Gρσ

(

Γ ρσ
µ − 4δρµΓ

σ
)

εi ,

δχi =− i

2
√
2
Γµ∂µσεi +

1

2
√
6
e

1
√

6
σ
LIijF

I
ρσΓ

ρσεj − 1

4
√
3
e
− 2

√

6
σ
GρσΓ

ρσεi .

(A.35)

Here, the tensors satisfy
aIJ = CIJ = Lij

I LJij , (A.36)

where aIJ acts as a metric on the I, J indices

L ij
I = aIJL

Jij . (A.37)

Actually, supersymmetry requires the symmetric tensor CIJ to be constant. Thus, a natural
choice for the intertwiner between USp(4) and SO(5) is

(LI)
i
j =

1

2
(ΣI)

i
j
, (A.38)

with the gamma matrix ΣI in the Cliff(5) algebra satisfying

{ΣI ,ΣJ} = 2δIJ . (A.39)

Then, we have
aIJ = CIJ = δIJ . (A.40)

In this representation, the equations of motion are

d ∗ dσ =
1√
6
e

2
√

6
σ
δIJF

I
(2) ∧ ∗F J

(2) −
2√
6
e
− 4

√

6
σ
G(2) ∧ ∗G(2) ,

d
(

e
− 4

√

6
σ ∗G(2)

)

=
1

2
δIJF

I
(2) ∧ F J

(2) ,

d
(

e
2

√

6
σ ∗ F I

(2)

)

=F I
(2) ∧G(2) ,

Rµν =
1

2
∂µσ∂νσ +

1

2
δIJe

2
√

6
σ

(

F I
µρF

Jρ
ν − 1

6
gµνF

I
ρσF

Jρσ

)

+
1

2
e
− 4

√

6
σ

(

GµρG
ρ
ν −

1

6
gµνGρσG

ρσ

)

.

(A.41)

11Here, we make a rescaling of the fields in relation to Ref. [47] as AI
µ → 1

√

2
AI

µ , aµ → 1
√

2
aµ , σ → 1

√

2
σ .

Also, we have a different convention for the sign of the Ricci tensor.
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This theory admits black-hole solutions [44]

ds25 = −h−4/3dt2 + h2/3
(

dx21 + · · ·+ dx24
)

, eσ = h2/
√
6 ,

F 1
(2) =

√
2∂ah

−1dt ∧ dxa , ∂a∂ah (x1, · · · , x4) = 0 , a, b = 1, 2, · · · 4 ,
(A.42)

coupling to the F -flux, and another class of solutions

ds25 = −h−2/3dt2 + h1/3
(

dx21 + · · ·+ dx24
)

, eσ = h−2/
√
6 ,

G(2) = h−2∂ah dt ∧ dxa , ∂a∂ah (x1, · · · , x4) = 0 , a, b = 1, 2, · · · 4 ,
(A.43)

coupling to the G-flux. Similarly, we can construct black-string solutions, which magnetically
couple to the fluxes.

B Supersymmetry projections of BPS-branes

The preserved supersymmetry of BPS-brane solutions is encoded in projectors composed of
gamma matrices. The projections on the Killing spinors of the BPS-branes are [7]

M2-brane: ǫ = Γ012ǫ ,

M5-brane: ǫ = Γ012345ǫ ,

F1-string: ǫL = Γ01ǫL , ǫR = −Γ01ǫR ,

IIA NS5-brane: ǫL = Γ012345ǫL , ǫR = Γ012345ǫR ,

IIB NS5-brane: ǫL = Γ012345ǫL , ǫR = −Γ012345ǫR ,

Dp-brane: ǫL = Γ01···pǫR .

(B.1)

In the 10d theories, we act on left-handed and right-handed spinors as defined in (A.4) and
(A.15).

When a brane is added to a system, it imposes a projection condition according to (B.1) on
the Killing spinor. In general, such a projection breaks half of the supersymmetry. However, if
the new projector anti-commutes with the existing ones, it breaks all the supersymmetry. On
the other hand, if the projection of the new brane is implied by the existing ones, the brane
can be added without breaking any additional supersymmetry.

C Fermionic embedding ansatz and proof

C.1 Fermionic embedding ansatz

The key to constructing the fermionic ansatz for embedding supergravity on a skeleton brane is
to promote the Killing spinor of the skeleton brane to a local supersymmetry parameter. As a
first step, we decompose the Killing spinor into a tensor product of spinors on the worldvolume
and transverse spaces

ǫ = εA ⊗ ηA . (C.1)

Here, εA are constant spinors labelled by A, and they satisfy the BPS projection conditions
of the skeleton brane. All spacetime dependence is encoded in the transverse-space spinors
ηA. The index A on ηA can be interpreted in two equivalent ways: it either labels the linearly
independent spinors forming a basis of the transverse Killing spinor space, or it serves as a
spinor index of the tangent space of a point in the transverse space. The fermionic ansatz is
then constructed by promoting the constant worldvolume spinors εA to local functions acting
as supersymmetry generators in lower dimensions, while keeping the transverse Killing spinors
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ηA unchanged. Generically, the ten-dimensional gravitino decomposes into a linear combination
of the lower-dimensional gravitino and dilatino (except for the D3-brane case).

To get the fermionic ansatz for 5d N = 4 supergravity, we need to generalise the Killing
spinor of the D4-brane (A.8). The idea is to promote the constant Killing spinors tangent to
the worldvolume to 5d supersymmetry transformation parameters. This procedure is compli-

cated due to the warping factor, i.e. exp
(

5
8
√
6
σ
)

, but a sufficiently general ansatz allows us to

determine

Ψ̂µ =e
5

32
√

6
σ

{(

1
−i

)

⊗
(

ψi
µ +

5i

16
√
3
γµχ

i

)

⊗ ηi

}

,

Ψ̂I =−
√
3

16
H

3

16

0 e
− 5

16
√

6
σ
eI

J(σ3 ⊗ 1⊗ ΣJ)

{(

1
−i

)

⊗ χi ⊗ ηi

}

,

λ̂ =−
√
3

2
H

3

16

0 e
− 5

32
√

6
σ

(

1
−i

)

⊗ χi ⊗ ηi , ǫ̂ = e
5

32
√

6
σ

(

1
−i

)

⊗ εi (x)⊗ ηi .

(C.2)

The gamma matrices are given in (A.7). The fünfbein eI
J = H

5

16

0 e
− 3

16
√

6
σ
δJI and its inverse

eJ
I = (eI

J)−1 relate Einstein and Lorentz indices in the transverse space (4.3). Both the
worldvolume and the transverse-space spinors are symplectic Majorana spinors transforming
under the 4 representation of USp(4). H0 is the harmonic function of the skeleton brane, i.e.
a D4-brane.

The proof of consistency is similar to the 6d N = (1, 1) case given in the next subsection.
The first step is to substitute (C.2) into the supersymmetry transformation (A.3) in the bosonic
background (4.3). The relation

ΣIηi = 2 ηj (LI)
j
i

(C.3)

satisfied by the local intertwiner between the 4 representations of USp(4) and SO(5), Eq.(A.38),
is vital to split the supersymmetry transformations into worldvolume and transverse spaces.
After a straightforward calculation, the IIA supersymmetry transformations (A.3) reduce to
the 5d ones (A.35).

The fermionic ansatz for the 6d N = (1, 1) supergravity is again generated by the NS5-brane
Killing spinor (A.19). A similar approach to the case above gives

Ψ̂µ =e−
√

2

16
ϕ

{

(

ψA
µ ⊗ ηA + iψȦ

µ ⊗ ηȦ

)

+

√
2

4
γµ

(

χA ⊗ ηA + iχȦ ⊗ ηȦ

)

}

,

Ψ̂I =− 1

2
√
2
H

1

8

0 e
1

8
√

2
ϕ
eI

J
(

γ(6) ⊗ ΣJ

)

(

χA ⊗ ηA + iχȦ ⊗ ηȦ

)

,

λ̂ =
√
2H

1

8

0 e
√

2

16
ϕ
(

χA ⊗ ηA + iχȦ ⊗ ηȦ

)

,

ǫ̂ =e−
√

2

16
ϕε , ε = εA ⊗ ηA + iεȦ ⊗ ηȦ .

(C.4)

Here, the gamma matrices are chosen as in (A.18). The vierbein eI
J = H

3

8

0 e
1

4
√

2
σ
δJI and its

inverse eJ
I = (eI

J)−1 relate Einstein and Lorentz indices in the transverse space (4.7). The
6d spinors are given in (A.25) while the 4d spinors are given in (A.21). H0 is the harmonic
function of the skeleton brane, i.e. an NS5-brane. The proof of consistency is given in the next
subsection.
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C.2 Consistency of the 6d N = (1, 1) embedding ansatz

We now prove that the bosonic ansatz (4.7) is compatible with the bosonic equations of motion
and Bianchi identities. We first take note of some useful identities

∗F̃(5) =
1√
2

[

e−
√

2

2
ϕ ∗g F I

(2) ∧ dyI − 1

3!
H0εI1···I4F

I1
(2) ∧ dyI2 ∧ dyI3dyI4

]

,

∗Ĥ(3) =H
− 3

2

0 e−
√
2ϕ∂IH0dy

I ∧ volg −H
3

2

0 e
√

2

2
ϕ ∗g H(3) ∧ volδ ,

∗F̃(3) =− 1√
2

(

1

3!
H

1

2

0 εI1I2I3I4 ∗g F I1
(2) (x) ∧ dyI2 ∧ · · · ∧ dyI4

)

.

(C.5)

The Bianchi identity for Ĥ(3) reduces to the Bianchi identity for H(3) in 6d

dH(3) = 0 , (C.6)

because H0 is a harmonic function. The Bianchi identity for F̃(3) directly reduces to the Bianchi
identity for F I

(2)

dF I
(2) = 0 . (C.7)

In the Bianchi identity for F̃(5), the LHS reduces to

dF̃(5) = − 1√
2
∂IH0F

I
(2) ∧ volδ +

1√
2
d
(

e−
√

2

2
ϕ ∗g F I

(2)

)

∧ dyI , (C.8)

where we used the Bianchi identity for F I
(2), while the RHS reads

−F̃(3) ∧ Ĥ(3) = − 1√
2
∂IH0F

I
(2) (x) ∧ volδ +

1√
2
H(3) (x) ∧ F I

(2) (x) ∧ dyI . (C.9)

We get the equation of motion of F I
(2) in 6d

d
(

e−
√

2

2
ϕ ∗g F I

(2)

)

−H(3) (x) ∧ F I
(2) (x) = 0 , (C.10)

after combining them. For the individual terms in the dilaton equation, we may use the
identities (C.5) to infer

d ∗ dΦ̂ =− 1

2
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√

2

2
ϕH−2

0 ∂IH0∂IH0volδ ∧ volg −
1√
2
H0d ∗ dϕ ∧ volδ ,

1

2
eΦ̂F̃(3) ∧ ∗F̃(3) =

1

4
H0e

− ϕ
√

2 δIJF
I
(2) (x) ∧ ∗gF J (x) ∧ volδ ,

−1

2
e−Φ̂Ĥ(3) ∧ ∗Ĥ(3) =− 1

2
H−2

0 e
− ϕ

√

2 (∂IH0∂IH0volδ ∧ volg)

− 1

2
H0e

√
2ϕH(3) (x) ∧ ∗gH(3) ∧ volδ .

(C.11)

After combining these, we get the scalar equation in 6d

0 = d ∗ dϕ+
1

2
√
2
e
− ϕ

√

2 δIJF
I
(2) (x) ∧ ∗gF J

(2) (x)−
√
2

2
e
√
2ϕH(3) (x) ∧ ∗gH(3) . (C.12)

The axion equation vanishes trivially. Given the self-duality of F̃(5), which is easy to see from
(C.5), the equation of motion becomes a Bianchi identity and results in the F I

(2) equation of

motion in 6d. In the equation of motion for F̃(3), the LHS is

d
(

eΦ̂ ∗ F̃(3)

)

=− 1√
2
e
− ϕ

√

2∂IH0 ∗g F I
(2) (x) ∧ voly

− 1√
2

1

3!
H0εI1I2I3I4d

(

e
− ϕ

√

2 ∗g F I1
(2) (x)

)

∧ dyI2 ∧ · · · ∧ dyI4 ,
(C.13)
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while the RHS is

F̃(5) ∧ Ĥ(3) =− 1√
2
e−

√

2

2
ϕ∂IH0 ∗g F I

(2) ∧ voly

+
1√
2
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1

3!
H0εI1···I4F
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(2) ∧ dyI2 ∧ dyI3 ∧ dyI4

]

∧H(3) (x) .

(C.14)

These combine to give the F I
(2) equation of motion in 6d. In the equation of motion of Ĥ(3), the

LHS reads
d
(

e−Φ̂ ∗ Ĥ(3)

)

= −H0d
(

e
√
2ϕ ∗g H(3)

)

∧ voly (C.15)

and the RHS is

−F̃(5) ∧ F̃(3) =
1

2
H0δIJF

I
(2) ∧ F J

(2) (x) ∧ voly . (C.16)

Hence, the Ĥ(3) equation of motion reduces to

d
(

e
√
2ϕ ∗g H(3)

)

+
1

2
δIJF

I
(2) ∧ F J

(2) (x) = 0 , (C.17)

which is the 6d H(3) equation of motion.
Finally we have to consider Einstein’s equation. We determine the zehnbein to be

êµ = H
− 1

8

0 e−
√

2

8
ϕeµ , êI = H

3

8

0 e
√

2

8
ϕdyI . (C.18)

After a tedious calculation, one may use the Cartan structure equations and determine the
Ricci tensor

R̂µν =Rµν −
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(C.19)

After another straightforward calculation, one can derive the RHS of the Einstein equation
(A.11)
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(C.20)
We can see that the µI and IJ components of the Einstein equation are satisfied trivially. The
µν components of the Einstein equation reduce to the 6d Einstein equation

Rµν =
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(C.21)
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This concludes the proof of consistency at the bosonic level.

Let us now proceed with proving consistency of the fermionic ansatz (C.4). Substitute the
embedding ansatz (4.7) and (C.4) into the type IIB supersymmetry transformation (A.12).
After a straightforward calculation, the dilatino transformation gives

δλ̂ =
√
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(C.22)
Here we explicitly evaluated the vierbein eI

J and pulled out an overall factor. Similarly, the
µ-component of the gravitino transformation gives
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(C.23)

The I-component of the gravitino transformation gives
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(C.24)

We can see that the summation over F I
(2) and ΣJ prevents us from decoupling the transforma-

tions (C.22-C.24) into 6d and 4d parts.
Pauli matrices naturally serve as the intertwiner between Spin(4) and SU(2)× SU(2),

Σ0 =

(

δA
Ḃ

δȦB

)

, Σa =

(

(σa)AḂ
(σa)ȦB

)

. (C.25)

Here, we use (0, a) indices instead of the indices I, J as in (A.24), where a is a fundamental
SO(3) ≃ SU(2) ⊂ SO(4) index. From this one obtains the key relations

εA ⊗ Σ0ηA = εȦ ⊗ ηȦ , εȦ ⊗ ΣaηȦ = εA ⊗ ηA ,

εA ⊗ ΣaηA = (σa)ȦC ε
C ⊗ ηȦ , εȦ ⊗ ΣaηȦ = (σa)AĊ ε

Ċ ⊗ ηA .
(C.26)
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Then, we need to make a projection in the transverse directions and use the relation (C.26) to
decouple the 6d and 4d parts of the 10d spinor. One obtains
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δχȦ =− 1

4
∂µϕγ

µεȦ +
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(C.27)

from both the transformations of the dilatino and of the I-component of the gravitino. After
combining them with (A.25) we have
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(C.28)

which is related to the 6d dilatino transformation (A.24) by a SU(2) transformation. Similarly,
from (C.23) we get the gravitino transformation

δψi
µ =Dµε
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(C.29)

related to the 6d gravitino transformation (A.24) by an SU(2) transformation.
This concludes the proof of consistency at the fermionic level.
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