000634141 001__ 634141
000634141 005__ 20250721092455.0
000634141 037__ $$aPUBDB-2025-02459
000634141 082__ $$a530
000634141 1001_ $$0P:(DE-H253)PIP1116169$$aEinstein-Curtis, Joshua$$b0$$udesy
000634141 245__ $$aImproved laser-plasma accelerator stability via high-bandwidth longitudinal focal position stabilization of 100 TW-class laser system
000634141 260__ $$aCollege Park, MD$$bAmerican Physical Society$$c2025
000634141 3367_ $$2DRIVER$$aarticle
000634141 3367_ $$2DataCite$$aOutput Types/Journal article
000634141 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753082221_1511718
000634141 3367_ $$2BibTeX$$aARTICLE
000634141 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000634141 3367_ $$00$$2EndNote$$aJournal Article
000634141 520__ $$aLaser-plasma accelerators (LPAs) offer an attractive alternative to conventional accelerators for the development of compact electron sources and next-generation light sources. Due to orders-of-magnitude larger accelerating gradients, LPAs enable the acceleration of high-brightness electron beams to ultra-relativistic energies in millimeter- to centimeter-scale distances. However, LPA stability is limited by shot-to-shot fluctuations of the driving laser system. Specifically, fluctuations in the final-focus longitudinal position result in correlated instability in LPA electron beam qualities, including total beam charge, average beam energy, and energy spread. We demonstrate active stabilization of the longitudinal focal position for a 100 TW-class laser system. This repetition-rate scalable stabilization system leverages non-invasive wavefront monitoring of a copropagating, unamplified kHz pulse train to guide corrective adjustments to the focal position of a 1 Hz amplified drive laser via an upstream telescope on millisecond timescales. In this demonstration, the approach limits standard deviation fluctuations of the amplified drive beam's longitudinal focal position to +- 0.22mm (representing at least a 53% reduction), achieved with a correction bandwidth that reaches the Nyquist frequency limit. Consequently, we observe marked improvements in both long-term and shot-to-shot LPA stability in terms of charge and spectrum.
000634141 536__ $$0G:(DE-HGF)POF4-621$$a621 - Accelerator Research and Development (POF4-621)$$cPOF4-621$$fPOF IV$$x0
000634141 536__ $$0G:(DE-HGF)POF4-623$$a623 - Data Management and Analysis (POF4-623)$$cPOF4-623$$fPOF IV$$x1
000634141 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
000634141 7001_ $$0P:(DE-HGF)0$$aJensen, Kyle$$b1$$eCorresponding author
000634141 7001_ $$0P:(DE-HGF)0$$aBarber, Samuel$$b2
000634141 7001_ $$0P:(DE-HGF)0$$aCook, Nathan$$b3$$eCorresponding author
000634141 7001_ $$0P:(DE-HGF)0$$aEdelen, Jonathan$$b4
000634141 7001_ $$0P:(DE-HGF)0$$aColeman, Stephen$$b5
000634141 7001_ $$0P:(DE-HGF)0$$aDoss, Christopher$$b6
000634141 7001_ $$0P:(DE-HGF)0$$aKohrell, Finn$$b7
000634141 7001_ $$0P:(DE-H253)PIP1008661$$avan Tilborg, Jeroen$$b8
000634141 7001_ $$0P:(DE-HGF)0$$aBerger, Curtiss$$b9
000634141 773__ $$0PERI:(DE-600)2844143-6$$tPhysical review accelerators and beams$$x2469-9888$$y2025
000634141 9101_ $$0I:(DE-588b)2008985-5$$6P:(DE-H253)PIP1116169$$aDeutsches Elektronen-Synchrotron$$b0$$kDESY
000634141 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b1$$kExtern
000634141 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aLawrence Berkeley National Laboratory$$b1
000634141 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aLawrence Berkeley National Laboratory$$b2
000634141 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aRadiaSoft$$b3
000634141 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aRadiaSoft$$b4
000634141 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aRadiaSoft$$b5
000634141 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aLawrence Berkeley National Laboratory$$b6
000634141 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aLawrence Berkeley National Laboratory$$b7
000634141 9101_ $$0I:(DE-HGF)0$$6P:(DE-H253)PIP1008661$$aLawrence Berkeley National Laboratory$$b8
000634141 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aLawrence Berkeley National Laboratory$$b9
000634141 9131_ $$0G:(DE-HGF)POF4-621$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vAccelerator Research and Development$$x0
000634141 9131_ $$0G:(DE-HGF)POF4-623$$1G:(DE-HGF)POF4-620$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMaterie und Technologie$$vData Management and Analysis$$x1
000634141 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV ACCEL BEAMS : 2022$$d2024-12-28
000634141 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000634141 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-14T15:01:02Z
000634141 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-14T15:01:02Z
000634141 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-10-14T15:01:02Z
000634141 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-10-14T15:01:02Z
000634141 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000634141 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-28
000634141 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
000634141 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
000634141 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000634141 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28
000634141 9801_ $$aEXTERN4VITA
000634141 980__ $$ajournal
000634141 980__ $$aTEMPENTRY
000634141 980__ $$aI:(DE-H253)MSK-20120731