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We present the first extraction of transverse-momentum-dependent distributions of unpolarized quarks

from experimental Drell-Yan data using neural networks to parametrize their nonperturbative part. We

show that neural networks outperform traditional parametrizations providing a more accurate description of

data. This Letter establishes the feasibility of using neural networks to explore the multidimensional

partonic structure of hadrons and paves the way for more accurate determinations based on machine-

learning techniques.
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Introduction—Transverse-momentum-dependent (TMD)

distributions provide an important window to investigate

the partonic structure of hadrons, enabling a deeper under-

standing of the three-dimensional dynamics of quarks and

gluons within them. TMDs consist of both perturbative

and nonperturbative components. While the perturbative

part can be calculated from first principles using quantum

chromodynamics (QCD), the nonperturbative part, which

encapsulates long-distance physics, by definition cannot be

evaluated using perturbative methods and must be extracted

from experimental data. An accurate parametrization of the

nonperturbative contribution to TMDs is therefore essential

for reliable extractions. The abundance of experimental

measurements and the development of a robust theoretical

framework have favored a remarkable progress of TMD

studies in recent years. Indeed, accurate phenomenological

extractions for unpolarized quark TMDs in the proton are

now available [1–9].

Despite this active research landscape, explorations of

different parametrizations of the TMD nonperturbative part

were limited to models based on a small set of functions,

such as exponentials and (weighted) Gaussians. While

these parametrizations are effective, they carry a significant

bias that may limit the accuracy of the models. This rigidity

can hinder the ability to fully capture the underlying

physics and extract information from experimental data.

To overcome these limitations, a promising alternative is

given by neural networks (NNs).

In this Letter, we present the first extraction of the

unpolarized quark TMD parton distribution functions

(PDFs) in the proton using NNs to parametrize their

nonperturbative component, achieving next-to-next-to-

next-to-leading logarithmic (N3LL) accuracy. This consti-

tutes a proof-of-concept extraction, as it is based on

Drell-Yan (DY) production data only and neglects flavor

dependence of the intrinsic transverse momentum of
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quarks. Nevertheless, it demonstrates that NN-based TMD

extractions outperform traditional nonperturbative para-

metrizations. Indeed, we provide evidence that current

experimental data encode complexities beyond the reach

of traditional parametrizations. We remark that NNs have

been used in the past to study other partonic distributions

(see, e.g., Refs. [10–14]), but never unpolarized TMDs.

Our Letter paves the way for improved TMD extractions,

leveraging the flexibility of NNs to extract information on

the multidimensional structure of hadrons using data from

current and future experiments.

Formalism and parametrization—We consider the DY

process hA þ hB → l
þ þ l

− þ X, where two hadrons with
mass M and four-momenta PA and PB collide with center-

of-mass energy squared s ¼ ðPA þ PBÞ2, and inclusively

produce a lepton pair with total four-momentum q and

invariant mass Q ≫ M. If the transverse momentum

component qT with respect to the collision axis satisfies

the condition jqT j≡ qT ≪ Q, the differential cross section

can be written as

dσDY

dqTdydQ
¼ 8πα2qT

9Q3
PxAxBH

DYðQ; μÞ
X

a

caðQ2Þ

×

Z

∞

0

dbTbTJ0ðbTqTÞf̂a1ðxA; b2T ; μ; ζAÞ

× f̂ā1ðxB; b2T ; μ; ζBÞ; ð1Þ

where y ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq0 þ qzÞ=ðq0 − qzÞ
p

is the lepton-pair

rapidity, α is the electromagnetic coupling, P is a phase-

space-reduction factor accounting for possible lepton cuts

(see Appendix C of Ref. [5] for details), xA;B ¼ Qe�y=
ffiffiffi

s
p

are the longitudinal momentum fractions carried by the

incoming quarks, HDY is a perturbative hard factor encod-

ing the virtual part of the scattering, and the sum runs over

all active quark flavors a with ca the quark electroweak

charges.

In Eq. (1), f̂a1 is the Fourier transform of the unpolarized

TMD PDF of quark flavor a. It depends on the quark

longitudinal momentum fraction x and on the variable

bT ¼ jbT j, where bT is Fourier-conjugated to the quark

intrinsic transverse momentum k⊥. It also depends on the

renormalization scale μ and on the rapidity scale ζ (with

the constraint ζAζB ¼ Q4). Such dependence arises from

the removal of ultraviolet and rapidity divergences [15] and

is controlled by corresponding evolution equations. The

complete set of equations (omitting unessential variables

and indices) is given by

∂f̂1

∂ ln μ
¼ γðμ; ζÞ; ∂f̂1

∂ ln
ffiffiffi

ζ
p ¼ KðμÞ;

∂K

∂ ln μ
¼ ∂γ

∂ ln
ffiffiffi

ζ
p ¼ −γKðαsðμÞÞ; ð2Þ

where γ and K are the anomalous dimensions of renorm-

alization group and of Collins–Soper equations, respec-

tively, and γK is the so-called cusp anomalous dimension

which relates the cross derivatives of f̂1.
Given a set of initial scales (μi; ζi), the solution to these

differential equations allows us to determine the f̂1 at any
final scales (μf; ζf). In addition, in the region of small

transverse separations bT , the TMD PDF f̂1 can be matched

onto unpolarized collinear PDFs f1 through a convolution

with perturbatively calculable matching coefficients C.
The resulting expression for the TMD PDF at the final

scales (μf; ζf) is

f̂1ðx; bT ; μf; ζfÞ

¼ ½C ⊗ f1�ðx; bT ; μi; ζiÞ exp
�

KðμiÞ ln
ffiffiffiffiffi

ζf
p

ffiffiffiffi

ζi
p

þ
Z

μf

μi

dμ

μ

�

γFðαsðμÞÞ − γKðαsðμÞÞ ln
ffiffiffiffiffi

ζf
p

μ

��

; ð3Þ

where γFðαsðμÞÞ ¼ γðμ; μ2Þ and ⊗ indicates the Mellin

convolution over the longitudinal momentum fraction x.

A convenient choice for the initial scales is μi ¼
ffiffiffiffi

ζi
p

≡
μb ¼ 2e−γE=bT , with γE the Euler constant, in that it avoids

the insurgence of large logarithms in the anomalous

dimension K and in the matching coefficients C.
The TMD PDF in Eq. (3) includes the resummation of

large logarithms of bT to all orders in perturbation theory. A
given logarithmic accuracy implies that each ingredient in

Eq. (3) must be computed to the appropriate perturbative

accuracy. The present extraction incorporates all the nec-

essary ingredients to reach N3LL accuracy [3].

The introduction of the scale μb ∼ 1=bT requires a

prescription to avoid integrating in Eq. (1) over the

QCD Landau pole (ΛQCD) in the large-bT region. To this

purpose, we adopt the same choice of Refs. [1,5,7,9,16] and

replace μb with μb� ¼ 2e−γE=b�, where

b�ðbT ; bmin; bmaxÞ ¼ bmax

�

1 − e−b
4
T
=b4max

1 − e−b
4
T
=b4

min

�

1=4

; ð4Þ

with

bmax ¼ 2e−γEGeV−1bmin ¼ 2e−γE=μf: ð5Þ

This choice guarantees that the variable b� rapidly saturates
to bmax at large values of bT , preventing μb� from reaching

ΛQCD. However, b� also introduces spurious power cor-

rections that scale like ðΛQCD=qTÞk [17–20], with k > 0. In

the region qT ≃ ΛQCD, these power corrections become

sizeable and can be modeled by including in Eq. (3) the

nonperturbative function fNP as follows:
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f̂1ðx; bT ; μf; ζfÞ

¼ ½C ⊗ f1�
	

x; bT ; μb� ; μ
2
b�




exp

�

Kðb�; μb�Þ ln
ffiffiffiffiffi

ζf
p

μb�

þ
Z

μf

μb�

dμ

μ

�

γF
	

αsðμÞ



− γK
	

αsðμÞ



ln

ffiffiffiffiffi

ζf
p

μ

��

× fNPðx; bT ; ζfÞ: ð6Þ

The nonperturbative function must satisfy the condition

fNP → 1 for bT → 0 in order to recover the perturbative

regime. It must also grant that the TMD PDF is suppressed

for large values of bT and ζf. We parametrize fNP using a

NN but enforcing these physically required constraints.

We explored several different NN parametrizations and will

report on them in a future work. As a proof of concept, in

this Letter we focus on the following model:

fNPðx; bT ; ζÞ ¼
NNðx; bTÞ
NNðx; oÞ exp

�

−g22b
2
T log

�

ζ

Q2
0

��

; ð7Þ

where, as customary, we split fNP into an “intrinsic” non-

perturbative part, entirely parametrized by the NN (denoted

as NN), and the nonperturbative contribution to the rapidity

evolution, encoded in the exponential function. The NN

is taken with architecture ½2; 10; 1�, i.e., with two inputs

corresponding to x and bT , 10 hidden nodes, and one output
node. The activation function associated to the nodes of the

hidden layer is

σðzÞ ¼ 1

2

�

1þ z

1þ jzj

�

; ð8Þ

which resembles the more traditional sigmoid function

but offers a significant reduction of computational burden

while granting an excellent quality of the final result. The

activation function for the outer layer is instead chosen to

be quadratic. The reference scale for the rapidity evolution

is set to Q0 ¼ 1 GeV. The parametrization of the func-

tion fNP in Eq. (7) is engineered to match the con-

straints mentioned above, namely, fNP → 1 for bT → 0

and fNP ≪ 1 for large bT and ζf. With this setup, we have a

total of 42 free parameters, 41 associated to the NN and one

(g2) to the evolution.

The values of the best-fit parameters are obtained by

minimizing a χ2 that accounts for all sources of exper-

imental uncertainties. The minimization is performed using

the Levenberg–Marquardt algorithm as implemented in

the Ceres-Solver package [21]. An important aspect of our

analysis is that the gradient of the χ2 with respect to the free

parameters is evaluated analytically by exploiting the

ability to compute the derivatives of the NN with respect

to its parameters in a closed form [22]. This feature is

crucial to ensure a fast and stable convergence of the

minimization procedure.

Finally, overfitting is a well-known problem of phenom-

enological analyses based on NNs [23,24]. We avoid it by

using the cross-validation method [25]. Specifically, the

data set is split into two subsets: one for training and one

for validation. The training set is used to determine the

best-fit parameters, while the validation set is used to

monitor the quality of the fit. The best-fit set of parameters

is determined by requiring the χ2 of the validation set to be

minimal. In our analysis, we divided the data set into

validation and training sets of the same size.

Results—In this section, we discuss the results for the fit

of fNP in Eq. (7) to the DY experimental data included in

the most recent analyses of the MAP Collaboration (see

Refs. [7,9] for more details). We consider fixed-target data

from Fermilab (E605 [26], E288 [27], and E772 [28]) and

collider data from Tevatron (CDF [29,30], D0 [31–33]),

RHIC (STAR [34]) and the LHC (LHCb [35–37],

CMS [38–40], ATLAS [41–43]).

The collinear PDFs f1 in Eq. (6) are taken from the

MSHT2020 set [44] of the LHAPDF library [45] at next-to-

next-to-leading order, which is necessary to achieve N3LL.

The strong coupling αs is obtained from the same PDF set.

We propagate the uncertainties of collinear PDFs into

TMD PDFs as in Refs. [7,16]. In order to ensure appli-

cability of TMD factorization, we impose the kinematic

cut qT=Q < 0.2. We exclude all experimental data in the

energy range of the ϒ resonance (9 GeV < Q < 11 GeV).

Moreover, we neglect the PHENIX data of Ref. [46],

originally included in the analyses of Refs. [7,9], because

only two data points survive the qT=Q cut and their

description is typically poor for any parametrization of fNP.
The propagation of the experimental uncertainties into

the TMD PDFs is achieved through Monte Carlo (MC)

sampling: an ensemble of Nrep ¼ 250 fluctuations (repli-

cas) of the experimental data set is generated accounting

for correlated uncertainties, and each replica is used to

extract fNP.
In order to estimate the performance of our NN-based fit,

we performed an additional fit with the same settings (data

set, perturbative order, etc.) but parametrizing fNP with the

functional form used in Ref. [7], which features 12 free

parameters. In Table I, we compare the quality of the

NN-based fit with this latter fit referred to as MAP22 (see

Ref. [47] for the full results). For each data subset (fixed-

target, RHIC, Tevatron, ATLAS, CMS, and LHCb) we list

the number of points included in the fit (Ndat) and the

reduced χ̄2 (¼ χ2=Ndat) of the central replica, i.e., the fit to

the experimental central values without MC fluctuations.

The total χ̄2 is given in the bottom line. For each χ̄2 value,

we also provide separately uncorrelated (χ̄2D) and correlated

(χ̄2λ) contributions (see Appendix B of Ref. [3] for more

details).

It is evident that the NN fit achieves a better description

of data than MAP22, not only at the level of the global χ̄2

(0.97 for NN vs 1.28 for MAP22), but also for almost all
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single subsets, with the only exception being fixed target.

Indeed, the NN χ̄2 for this data set, despite still acceptable,

is larger than the MAP22 one. This result can be ascribed to

a possible tension between fixed-target and ATLAS data. In

fact, when excluding the ATLAS data from the fit, we find

that the quality of the NN fit is better than the MAP22 fit for

all subsets, including the fixed-target ones [48].

Particularly significant is the improvement for ATLAS,

for which the χ̄2 value drops from 3.51 for MAP22 to 1.38

for NN. As the ATLAS measurements are the most precise

ones, this is a clear indication that the NN parametrization

can better capture the information encoded in the data. We

also note that the correlated contributions χ̄2λ for the NN fit

are generally smaller than for MAP22, i.e., the NN fit is

able to describe the data without relying on large correlated

shifts.

A visual representation of this statement is given in

Fig. 1, where we show a comparison between experimental

data and results of the fit for a representative selection of

data: a Q bin from the fixed-target E605 experiment (top

plot) and the ATLAS measurements at 13 TeV (bottom

plot). Blue and red bands correspond to one-σ uncertainties

of NN and MAP22 fits, respectively, while experimental

data points are shown as black dots along with their

uncorrelated uncertainties. The upper panel of each plot

displays the absolute distributions while the lower panel

displays the distributions normalized to the experimental

central values. In order to facilitate visual comparison,

systematic shifts were applied to predictions.

In Fig. 1, it is evident that uncertainty bands are

significantly different between NN and MAP22 fits, with

the former being generally smaller than the latter. This

is a direct consequence of the larger systematic shifts that

affect MAP22 (see Table I). This is especially evident for

the E605 data where correlated uncertainties are particu-

larly large. For the ATLAS data, the size of the bands is

comparable because systematic shifts are bound to be small

due to the small size of experimental uncertainties. We also

observe that the NN fit tends to better reproduce the shape

of the ATLAS data distribution.

In Fig. 2, we show the unpolarized TMD PDF of the u

quark in the proton at μ ¼
ffiffiffi

ζ
p

¼ 2 GeV and x ¼ 0.01 as a

function of the quark transverse momentum jk⊥j. As

before, blue and red bands correspond to NN and

MAP22, respectively. The upper panel displays the actual

TMD distributions, while in the lower panel they are

normalized to the respective central values.

A generally good agreement between NN and MAP22

is observed, with the former featuring a larger relative

uncertainty band. This is a direct consequence of the

flexibility of the NN parametrization. In this respect, it is

interesting to observe that the relative size of the NN un-

certainty band remains fairly stable up to jk⊥j ∼ 0.6 GeV,

while it tends to increase for larger values of jk⊥j because
of the increasingly smaller central value. On the contrary,

the MAP22 relative uncertainty band shrinks as jk⊥j

FIG. 1. Comparison between experimental data (black dots)

and results obtained with NN (blue band) and MAP22 (red band)

fits. The top plot displays the 10.5 GeV < Q < 11.5 GeV bin of

the E605 data set, while the bottom plot displays the ATLAS

measurements at 13 TeV. For each plot, upper and lower panels

show the actual distributions and their ratios to the experimental

central values, respectively. Theoretical uncertainty bands cor-

respond to one-σ uncertainties; error bars on experimental data

display uncorrelated uncertainties only. Predictions include

systematic shifts.

TABLE I. Breakdown of the reduced χ̄2 ¼ χ2=Ndat for each

subset included in the fit and for the total data set. Results

obtained with the parametrization in Eq. (7) (NN) and that of

Ref. [7] (MAP22) are shown. χ̄2D and χ̄2λ correspond to uncorre-

lated and correlated contributions to χ̄2, respectively [3].

Experiment Ndat

χ̄2ðχ̄2D þ χ̄2λÞ
NN MAP22

Fixed-target 233 1.08ð0.98þ 0.10Þ 0.91ð0.70þ 0.21Þ
RHIC 7 1.11ð1.03þ 0.07Þ 1.45ð1.37þ 0.08Þ
Tevatron 71 0.80ð0.73þ 0.06Þ 1.20ð1.17þ 0.04Þ
LHCb 21 0.98ð0.88þ 0.10Þ 1.25ð1.05þ 0.20Þ
CMS 78 0.40ð0.38þ 0.02Þ 0.41ð0.35þ 0.06Þ
ATLAS 72 1.38ð1.09þ 0.29Þ 3.51ð3.03þ 0.49Þ
Total 482 0.97ð0.86þ 0.11Þ 1.28ð1.09þ 0.20Þ
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increases. Moreover, it shows a node at intermediate values

of jk⊥j. This behavior can be traced back to the rigidity of

the parametrization.

The fact that the NN TMD PDF has larger uncertainties

than the MAP22 one may seem to contrast with the results

shown in Fig. 1, where cross sections computed with the

NN model display smaller uncertainties than MAP22. This

can be understood by noting that during the minimization

process the greater flexibility of the NN model enables it to

better adapt to the behavior of data. Consequently, the

minimizer does not need to resort to large correlated shifts

to minimize the χ2, avoiding an inflation of the uncertainty

in the final outcome.

We conclude this section by noting that we have

conducted preliminary closure tests [49], which, albeit not

exhaustive, provide promising evidence supporting the

robustness of our methodology [48]. We plan to produce

a comprehensive documentation of closure testing results in

a future publication.

Conclusions—In this Letter, we presented the first

extraction of the unpolarized quark TMD PDFs in the

proton from a comprehensive set of DY data using a

parametrization for the nonperturbative part based on an

NN. Our results employ state-of-the-art perturbative inputs

reaching N3LL accuracy, and leverage modern numerical

techniques, such as MC sampling for uncertainty propa-

gation, analytic computation of the gradient of the χ2 for a

more accurate exploration of the parameter space, cross

validation to avoid overfitting, and full treatment of

correlated experimental uncertainties.

A key strength of the NN parametrization is its flexi-

bility, which can accommodate tensions between data sets

more effectively than simpler parametrizations, and allows

for a more faithful statistical description of uncertainties.

These advantages are reflected in our findings: we show

that the NN parametrization achieves better fit quality

compared to the traditional functional form of Ref. [7],

particularly for the ATLAS measurements, the most precise

data sets included in the fit. We further showed that the NN

approach improves control over correlated uncertainties.

For data sets with large correlated systematics, such as

the fixed-target measurements, this typically results in a

significant reduction in uncertainties.

This Letter serves as a proof of concept, opening new

and exciting possibilities for future high-precision and

high-impact extractions. One of the main advantages of

NNs is that they scale particularly well with the complexity

of the task. More specifically, extending the data set to

include semi-inclusive deep-inelastic scattering data (which

in turn requires a simultaneous fit of TMD PDFs and TMD

fragmentation functions) and introducing TMD flavor

dependence is a relatively straightforward task when using

NNs. We are currently working along these directions and

plan to release a fully fledged TMD extraction based on

NNs in the near future.
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