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Measurement of the top-quark pole mass in

dileptonic t t̄ + 1-jet events at
√
s = 13 TeV with the
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The ATLAS Collaboration

A measurement of the top-quark pole mass <
pole
C is presented in CC̄ events with an additional

jet, CC̄ + 1-jet, produced in ?? collisions at
√
B = 13 TeV. The data sample, recorded with the

ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of

140 fb−1. Events with one electron and one muon of opposite electric charge in the final state

are selected to measure the CC̄ +1-jet differential cross-section as a function of the inverse of the

invariant mass of the CC̄ + 1-jet system. Iterative Bayesian Unfolding is used to correct the data

to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the

strong coupling. The process ?? → CC̄ 9 (2 → 3), where top quarks are taken as stable particles,

and the process ?? → 11̄;+a;− ā 9 (2 → 7), which includes top-quark decays to the dilepton

final state and off-shell effects, are considered. The top-quark mass is extracted using a j2 fit

of the unfolded normalized differential cross-section distribution. The results obtained with

the 2 → 3 and 2 → 7 calculations are compatible within theoretical uncertainties, providing

an important consistency check. The more precise determination is obtained for the 2 → 3

measurement: <
pole
C = 170.7 ± 0.3 (stat.) ± 1.4 (syst.) ± 0.3 (scale) ± 0.2 (PDF ⊕ US) GeV,

which is in good agreement with other top-quark mass results.
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1 Introduction

The mass of the top quark plays a fundamental role in the Standard Model (SM) of particle physics. The

parameters of the SM Lagrangian — the masses of the elementary particles and the strength of their

interactions — are not predicted by the SM, but must be measured experimentally. In the SM, the masses

of the elementary particles arise from interactions with the Higgs field. The top quark Yukawa coupling is

approximately 1 and the top quark mass strongly affects the evolution of the Higgs quartic coupling to high

scales [1, 2], which determines the shape of the Higgs potential and the stability of the quantum vacuum.

The SM also predicts a relation among the masses of the Higgs boson, the , boson [3], and the top quark.

Precise measurements of these masses and other fundamental parameters allow a test of this important

relation [4, 5].

Direct measurements of the top-quark mass parameter in Monte Carlo (MC) generators, based on fits to the

observed distributions of top-quark decay products, have reached excellent experimental precision [6]. The

results of these measurements are generally identified with the top-quark pole mass. The ambiguity in this

identification, from limitations of the stable-top-quark picture and non-perturbative effects, is estimated

to be a few hundred MeV [7]. Work is ongoing to improve the understanding of the top-quark mass

parameter in Monte Carlo generators [8, 9]. The pole mass definition moreover has an intrinsic renormalon

ambiguity [10, 11].

The top-quark mass can also be extracted from measurements of the top-quark pair production cross-section,

either through inclusive or differential approaches. In this case, the mass scheme is defined by the

fixed-order (FO) prediction for the cross-section in quantum chromo dynamics (QCD). This leaves no

ambiguity when such measurements are used in other phenomenological studies done in perturbation

theory, such as the calculations of the stability of the electroweak (EW) vacuum. The mass extraction

procedure yields an estimate of the theory uncertainty, greater flexibility in the choice of the mass scheme,

and the possibility to take advantage of future theory progress without redoing the measurement.

In this paper, the top-quark pole mass <
pole
C is measured in CC̄ events with an additional jet (CC̄ + 1-jet)

produced in proton–proton (??) collisions at
√
B = 13 TeV. Following the method proposed in Ref. [12],

the dependence of the normalized cross-section of CC̄ + 1-jet production as a function of the invariant

mass
√
BC C̄+1-jet of the CC̄ + 1-jet system on <

pole
C is studied. In the differential cross section, the top quark

pair production threshold region at <C C̄ ≈ 2<C has a pronounced top-quark mass sensitivity which is

further enhanced in the CC̄ + 1-jet final state, as the additional jet allows events from the threshold region

to be experimentally more accessible. At the same time the impact of a bound-state enhancement at

threshold [13–19] not included in fixed-order calculations, is diluted by the presence of the additional jet.

The observable is defined as:

R(ds;<
pole
C ) = 1

fC C̄+1-jet

·
dfC C̄+1-jet

dds

, with ds =
2<0√
BC C̄+1-jet

. (1)

The constant <0 is set to <0 = 170 GeV to ensure that ds is bounded between 0 and 1, as in Ref. [20]. This

convention is arbitrary and has no impact on the final top-quark mass measurement.

Previously, the ATLAS collaboration measured the top-quark pole mass in CC̄ + 1-jet events using√
B = 7 TeV [20] and

√
B = 8 TeV [21] ?? collision data, in the semileptonic CC̄ decay channel, resulting

in total uncertainties of 2.3 GeV (1.3%) and 1.2 GeV (0.7%) on the top-quark pole mass, respectively.

This analysis targets the dilepton decay channel of the CC̄ system and uses the complete Run 2 data sample,

corresponding to 140 fb−1, allowing the dilepton channel to provide competitive sensitivity. The CMS
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collaboration published the first measurement of the top-quark pole mass in CC̄ + 1-jet events in the dilepton

channel [22] at
√
B = 13 TeV using 36.3 fb−1 resulting in a total uncertainty of 1.36 GeV (0.8%).

The final state targeted by this analysis has two charged leptons, two neutrinos, two 1-jets, and an additional

jet with high transverse momentum. Events are selected that have an electron and a muon candidate, at

least three jets and a significant amount of missing transverse momentum. The four-momentum of the CC̄

system is reconstructed using a combination of two methods, as detailed in Section 4.

The dB distribution is corrected to the level of stable top quarks, undoing the impact of top-quark decay,

hadronization, and detector response, using Iterative Bayesian Unfolding (IBU) [23]. The top-quark pole

mass is obtained from a fit of the normalized differential cross-section R(ds;<
pole
C ) to a FO calculation of

the 2 → 3 process ?? → CC̄ + 1-jet at next-to-leading-order (NLO) accuracy in QCD [24].

The data are also corrected to a parton level phase space defined by leptons, neutrinos and jets formed of

quarks and gluons just before hadronization. This enables a comparison of the measured observable with a

FO NLO QCD calculation for the 2 → 7 process ?? → 11̄;+a;− ā 9 that includes top-quark decay effects

and full non-resonant contributions [25]. In this second approach there is no need to correct the data for the

top-quark decay, and hence a smaller reliance on the description of the decay in Monte Carlo generators.

Associated single top-quark production with a , boson is included in the 2 → 7 calculation.

This paper is structured as follows. A brief description of the ATLAS detector is found in Section 2. The

data and MC samples used in this analysis are summarized in Section 3. The object definitions, object

selections, and control distributions are shown in Section 4. The parton-level definitions and the FO

predictions are described in Section 5. The reconstruction of the CC̄ + 1-jet system and the unfolding of the

differential cross-section are described in Section 6, and the estimate of the experimental uncertainties

affecting the measurement is outlined in Section 7. The extraction of the top-quark mass in the pole mass

scheme using a fit to the FO CC̄ + 1-jet predictions is discussed in Section 8, together with a description of

the theoretical uncertainties associated with the mass measurement. The results are then summarized in

Section 9 and conclusions are given in Section 10.

2 ATLAS detector

The ATLAS detector [26] at the LHC covers nearly the entire solid angle around the collision point.1 It

consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic

and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting air-core

toroidal magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle

tracking in the range |[ | < 2.5. The high-granularity silicon pixel detector covers the vertex region and

typically provides four measurements per track, the first hit generally being in the insertable B-layer (IBL)

installed before Run 2 [27, 28]. It is followed by the SemiConductor Tracker (SCT), which usually provides

eight measurements per track. These silicon detectors are complemented by the transition radiation tracker

(TRT), which enables radially extended track reconstruction up to |[ | = 2.0. The TRT also provides

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector

and the I-axis along the beam pipe. The G-axis points from the IP to the center of the LHC ring, and the H-axis points

upwards. Cylindrical coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis.

The pseudorapidity is defined in terms of the polar angle \ as [ = − ln tan(\/2). Angular distance is measured in units of

Δ' ≡
√

(Δ[)2 + (Δq)2.
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electron identification information based on the fraction of hits (typically 30 in total) above a higher

energy-deposit threshold corresponding to transition radiation.

The calorimeter system covers the pseudorapidity range |[ | < 4.9. Within the region |[ | < 3.2,

electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)

calorimeters, with an additional thin LAr presampler covering |[ | < 1.8 to correct for energy loss in material

upstream of the calorimeters. Hadronic calorimetry is provided by the steel/scintillator-tile calorimeter,

segmented into three barrel structures within |[ | < 1.7, and two copper/LAr hadronic endcap calorimeters.

The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules

optimized for electromagnetic and hadronic energy measurements, respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking chambers measuring

the deflection of muons in a magnetic field generated by the superconducting air-core toroidal magnets.

The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. Three layers

of precision chambers, each consisting of layers of monitored drift tubes, cover the region |[ | < 2.7,

complemented by cathode-strip chambers in the forward region, where the background is highest. The

muon trigger system covers the range |[ | < 2.4 with resistive-plate chambers in the barrel, and thin-gap

chambers in the endcap regions.

The luminosity is measured mainly by the LUCID–2 [29] detector that records Cherenkov light produced

in the quartz windows of photomultipliers located close to the beampipe.

Events were selected by the first-level trigger system implemented in custom hardware, followed by

selections made by algorithms implemented in software in the high-level trigger [30]. The first-level trigger

accepted events from the 40 MHz bunch crossings at a rate close to 100 kHz, which the high-level trigger

further reduced in order to record complete events to disk at about 1.25 kHz.

A software suite [31] is used in data simulation, in the reconstruction and analysis of real and simulated

data, in detector operations, and in the trigger and data acquisition systems of the experiment.

3 Data and simulated samples

This analysis is performed using the full Run 2 ?? data recorded with the ATLAS experiment at
√
B = 13 TeV.

Once all quality requirements [32] are applied, the recorded data corresponds to an integrated luminosity of

140.0± 1.2 fb−1 [33], obtained using the LUCID-2 detector [29] for the primary luminosity measurements,

complemented by measurements using the inner detector and calorimeters.

The events in this data sample are required to satisfy the trigger requirements for single electrons or

muons [30, 34–36].

Simulated MC events are used to correct the data and estimate background processes. Detector effects are

simulated fully using Geant4 [37]. A few MC samples used for tests and crosschecks employ a faster

detector simulation (AtlFast2) that makes use of parameterized showers in the calorimeters [38].

The nominal CC̄ MC sample is generated using Powheg-Box-v2 [39–41] with the heavy-quark production

(hvq) process at NLO accuracy in QCD [42], assuming a top-quark mass of <MC
C = 172.5 GeV and

dileptonic top-quark pair decay. The proton structure in the Matrix Element (ME) is modeled using the

NNPDF 3.0 NLO parton distribution functions (PDF) set [43]. The Powheg-Box-v2 event generator is

interfaced with Pythia 8.230 [44] which simulates parton shower (PS), fragmentation, hadronization,
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and the underlying event (UE). The ℎdamp parameter that controls the emission of the first gluon is set to

1.5 · <MC
C , while the factorization scale `r and renormalization scale `f are set to `2

r = `2
f
= (<2

C + ?2
T
),

where the top-quark transverse momentum (?T) is evaluated before radiation [45]. The A14 ATLAS UE

tune [46] together with the NNPDF 2.3 leading-order (LO) PDF set [47] is applied for Pythia 8 showering.

Finite top-quark width effects are implemented by reweighting the simulated events such that the top-quark

mass distribution follows a Breit–Wigner distribution. The inclusive CC̄ cross-section in the simulation is

normalized to the next-to-next-to-leading-order (NNLO) cross-section including the resummation of soft

gluon emissions at next-to-next-to-leading-logarithmic (NNLL) accuracy calculated using the Top++2.0

software [48]. The resulting cross-section for the CC̄ process is fC C̄ = 831.8 pb [49–54]. To estimate the

systematic uncertainty associated with the CC̄ nominal sample, additional simulations are generated, as

detailed in Section 7.2.

The C, production process is simulated using Powheg-Box-v2 interfaced with Pythia 8 with the A14 UE

tune and the NNPDF2.3 LO PDF set. Samples are normalized to the cross-section calculation at approximate

NNLO accuracy [55]. The overlap between CC̄ and C, production is removed using the diagram-removal

procedure [56], and an additional C, simulation employing the alternative diagram-subtraction scheme [57]

is used to study its associated uncertainty.

Further CC̄ and C, samples with varied top-quark mass ranging from <MC
C = 169 GeV to <MC

C = 176 GeV

are used for analysis validation. A MC sample based on the 114; Powheg package [58] interfaced to

Pythia 8, currently under development and scrutiny within ATLAS, is used to validate the 2 → 7 result

obtained with the MC ensemble of CC̄ and C, production.

The /+jets production with / → 4+4−/`+`−/g+g− is modeled using Sherpa 2.2.1 [59]. The matrix

elements are calculated for up to two additional partons at NLO accuracy in QCD and four partons at LO

using the Comix [60] and OpenLoops [61] matrix element generators, merged with the Sherpa parton

shower using the ME+PS@NLO prescription [62]. The NNPDF3.0 NNLO PDF set is used together with

a dedicated parton shower tuning developed by the Sherpa authors. The samples are normalized to the

total /+jets cross-section at NNLO accuracy [63], obtained with the FEWZ program [64], and a 50%

normalization uncertainty is associated to them.

The production of diboson (,,/,////) events in association with jets is simulated using Sherpa 2.2.2

with the dedicated UE tune from Sherpa and the NNPDF3.0 NNLO PDF set. In the simulation, matrix

elements at NLO accuracy in QCD for up to one additional parton and at LO accuracy for up to three

additional parton emissions are employed. A 50% normalization uncertainty is assigned to the diboson

MC samples.

The processes CC̄/ , CC̄, are simulated using MadGraph5_aMC@NLO interfaced with Pythia 8. The

associated Higgs boson and CC̄ production (CC̄�) is simulated using Powheg+Pythia 8 [65]. For the CC̄/ ,

CC̄, , and CC̄� production processes, the NNPDF 3.0 NLO PDF set is used in the ME, while the A14 UE

tune is applied with NNPDF2.3 LO in the parton shower. The production processes are normalized to the

corresponding NLO QCD+EW theoretical cross-sections [66].

All MC samples are overlaid with additional ?? interactions (pileup), generated with Pythia 8.186 [67]

using the NNPDF2.3 LO PDF set and the A3 set of tuned parameters [68], and the average number of

interactions per bunch crossing is reweighted to match that in data. All simulated samples other than

those generated with Sherpa use the EvtGen [69] program to simulate the decays of bottom and charm

hadrons.
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The number of events where at least one of the reconstructed lepton candidates originates from the decay of

a hadron or a jet incorrectly identified as a lepton (fake leptons) is estimated by using the truth information

associated to the reconstructed lepton in MC simulations. If the reconstructed lepton is found not to

originate from a true lepton, the event is marked as a fake-lepton background event. A CC̄ sample with the

same setting as the nominal one, but also including semileptonic top-quark decays, and the C, MC sample

are used for the fake leptons estimation. The fake leptons contribution amounts approximately to 1% of the

total event yield in the dilepton selection and a normalization uncertainty of 50% is associated to it. The

final estimate is found to be compatible within uncertainties with other data-driven estimates [70].

A summary of the MC generators used to simulate the most important processes can be found in Table 1.

Table 1: A summary of basic MC generator settings used to simulate various SM processes and the cross-section

uncertainty used in their normalization.

Sample Generator ME PDF Shower Normalization Cross-section [pb] Norm. unc. [%]

CC̄ Powheg NNPDF3.0 Pythia 8 NNLO+NNLL 831.8 [51–54] 6.1

Single-top (C,) Powheg NNPDF3.0 Pythia 8 (Approx)NNLO 71.7 [55, 71] 5.3

/+jets Sherpa 2.2.1 NNPDF3.0 Sherpa 2.2.1 NNLO 2107.0 [63, 64] 50

Diboson Sherpa 2.2.2 NNPDF3.0 Sherpa 2.2.1 NLO 176.0 [72] 50

CC̄/ MG5_aMC@NLO NNPDF3.0 Pythia 8 NLO(QCD+EW) 0.88 [66] 14

CC̄, MG5_aMC@NLO NNPDF3.0 Pythia 8 NLO(QCD+EW) 0.60 [66] 13

CC̄� MG5_aMC@NLO NNPDF3.0 Pythia 8 NLO(QCD+EW) 0.51 [66] 13

4 Object reconstruction and event selection

Electron candidates are identified by matching energy deposits in the electromagnetic calorimeter with a

corresponding track in the inner tracking detector. Electrons are required to satisfy the Tight identification

criteria [73] and to lie within |[ | < 2.47, with the calorimeter transition region of 1.37 < |[ | < 1.52

being excluded. Electron candidates must pass the Tight isolation requirement [73] that removes fake

and non-prompt electrons from heavy flavor decays. Muon candidates are reconstructed by combining a

track in the inner tracking detector with either a track or hits in the muon spectrometer. Muons fulfilling

Medium track requirements [74] with |[ | < 2.5 and satisfying the Tight isolation requirement of Ref. [74]

are selected. The performance of lepton reconstruction and identification efficiency is measured in data

and used to calibrate the performance in the simulations [73–76].

Both electrons and muons are required to have ?T > 20 GeV. The transverse impact parameter divided

by its estimated uncertainty is required to be less than five (three) for electron (muon) candidates and the

longitudinal impact parameter must be smaller than 0.5 mm for both lepton flavors.

Jets are reconstructed using the anti-:C algorithm [77] with a radius parameter ' = 0.4 from particle flow

objects [78] that combine information from topological clusters [79] and the track information for the

charged component. The jet response is calibrated with MC simulations and in situ measurements [80].

Only jets with ?T > 25 GeV and |[ | < 2.5 are considered. To suppress jets from pileup, the jet vertex

tagger (JVT) [81] must satisfy JVT > 0.50 for jets with ?T < 60 GeV and |[ | < 2.4. Jets containing

1-hadrons are identified using the DL1r algorithm [82] at the 85% tagging efficiency working point.

Measurements of the efficiency of the 1-tagging algorithm in data are used to adjust the simulation to

match the performance measured in data [83–85].
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An overlap removal procedure is applied to avoid double-counting the same reconstructed objects. Jets

within Δ' = 0.2 of an electron or muon are discarded and electrons within 0.2 < Δ' < 0.4 of the

remaining jets are rejected. Jets with less than three tracks are removed if they overlap with a muon within

Δ' = 0.4.

The missing transverse momentum (�miss
T

) is computed as the negative vectorial sum of the transverse

momenta of all identified and calibrated objects in the detector, including a track-based term to account for

the energy from particles not associated with a reconstructed lepton or jet [86, 87].

4.1 Event selection

Events are required to have at least one primary vertex with at least two associated tracks with ?track
T

>

0.5 GeV. The selection further requires the presence of exactly one electron and one muon of opposite

electric charge, separated by Δ' > 0.4 . The lepton with the highest ?T is required to have ?T > 28 GeV

to ensure high efficiency of the single-lepton triggers.

A requirement of �miss
T

> 30 GeV is imposed, due to the presence of undetected neutrinos. Exactly two

1-tagged jets with ?T > 30 GeV are required. Among the remaining jets, the ?T-leading one is required

to have ?T > 50 GeV. The relatively high ?T requirement on this jet, referred to as the extra jet in the

following, reduces the uncertainties from the jet energy calibration, the uncertainty due to the choice of

parton-shower model, and the probability that the additional jet used in the CC̄ + 1-jet system reconstruction

originates from pileup. It also reduces the theoretical uncertainties in the FO theory calculations.

Each lepton is associated a 1-jet such that the sum of the invariant masses of the two possible lepton and

1-jet systems (< (ℓ1)1 + < (ℓ1)2) is minimized. A requirement of < (ℓ1)8 < 200 GeV, with 8 ∈ {1, 2}, is

imposed on each of the two lepton and 1-jet pairs, to avoid a region of phase space which is known to be

difficult to model [88].

4.2 Reconstruction of the t t̄ system

The reconstruction of the CC̄ system requires an estimate of the kinematic properties of the two neutrinos from

the, boson decays. The neutrino four-vectors are derived from the observed �miss
T

and the properties of the

other objects in the event. In this measurement, a combination of the loose kinematic reconstruction [89]

and q-weighting reconstruction [90] methods is employed. No top-quark mass assumption is introduced in

these methods, and the combination of the two methods has a high reconstruction efficiency of around

98%.

The loose kinematic reconstruction does not attempt to reconstruct the neutrino and anti-neutrino, but

determines the kinematic properties of the aā system. The transverse momentum of the aā system is

obtained directly from the �miss
T

. The di-neutrino longitudinal momentum and energy are set equal to the

longitudinal momentum and energy of the charged-lepton pair. The CC̄ system is then reconstructed from

the two charged leptons, the two selected 1-tagged jets, and the neutrino system in the selected events.

Around 25% of the events reconstructed with the loose method have the reconstructed invariant mass of

the , boson pair and neutrino pair not satisfying <(,+,−) ≥ 2<PDG
,

and <(aā) ≥ 0, and are hence

not considered as physical solutions. For those events, the CC̄ system is reconstructed with an alternative

approach based on the q-weighting method [90]. For each event, each of the neutrino azimuthal angle

is set to a random value, hence fixing the ?T of each individual neutrino. Then, neutrino longitudinal
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momenta are inferred assuming that each neutrino four-momentum and its pairing with a lepton reconstructs

a , boson with mass <PDG
,

. A 1-jet is assigned to each lepton–neutrino pair to compute the quantity

j2
q = (<aℓ̄1 − < āℓ1̄)/(<aℓ̄1 + < āℓ1̄), where <aℓ̄1 and < āℓ1̄ are the masses of the two reconstructed

top-quark candidates in the event, each obtained summing the four-momenta of one neutrino, one charged

lepton and one 1-jet. The azimuthal angle phase space (q1, q2) of the neutrinos is scanned with 100

random values from a uniform distribution and all the combinations of neutrinos, charged leptons and

1-jets are used in the calculation of j2
q, hence providing 1600 possible values for it2. The solution which

minimizes the difference between the reconstructed mass of top and anti-top quark, as quantified by j2
q, is

taken for the CC̄ system definition.

To form the CC̄ + 1-jet system the extra jet is selected as the highest in ?T among the untagged jets with

|[ | < 2.5, and it is added to the CC̄ system. The ?T requirement on the extra jet is raised to 60 GeV for the

2 → 7 measurement, to match the value chosen for the FO calculation.

Figure 1 illustrates the resolution of ds achieved by the reconstruction algorithm, estimated using the

nominal CC̄ MC simulation based on Powheg+Pythia 8, where the resolution is taken as the root mean

square of the (dreco
s − dtrue

s )/dtrue
s distribution and ds is defined in Eq. (1). The resolution of the combined

loose kinematic and q-weighting reconstruction is compared with that of the individual loose kinematic

and q-weighting methods alone, and to the resolution obtained with perfect neutrino reconstruction, based

on MC truth information. The gain in statistical power from combining the loose and q methods outweighs

the slight reduction in resolution. Although the presence of undetected neutrinos affects the resolution of

the reconstructed observable, the employed CC̄ system reconstruction technique ensures the ds distribution

can be measured accurately, maintaining the observable resolution within the 0.05–0.1 range.

The event yields in the simulation and data after all selection requirements are given in Table 2. The CC̄

signal purity is greater than 95%. The largest background contributions originate from single-top-quark

production, fake leptons from CC̄ and single-top-quark events and associated production of CC̄ with a heavy

boson. Smaller contributions are expected from diboson and /+jets processes. The observed number of

events agrees with the expected yield within 4%, a difference which is covered by the uncertainty in the

SM prediction, as reported in Table 1.

Table 2: Event yields after the final selection for the values of minimum ?
extrajet

T
considered in the analysis.

The uncertainties only contain the cross-section normalization components, while for the CC̄ sample also

statistical and systematic uncertainties, as defined in Section 7.2, are considered.

?
extrajet

T
> 50 GeV ?

extrajet

T
> 60 GeV

CC̄ 103000 ± 7000 86000 ± 6000

Single top 1840 ± 100 1470 ± 80

Diboson 53 ± 27 48 ± 23

/+jets 55 ± 28 48 ± 24

CC̄+ + CC̄� 590 ± 80 530 ± 70

Fake leptons 750 ± 380 640 ± 320

Total MC 106000 ± 7000 89000 ± 6000

Data 102215 85366

Data/MC 0.96 0.96

2 The number of possible neutrino–lepton pairings is 8 due to the two-fold ambiguity in longitudinal momentum for each neutrino

and the two lepton-neutrino combinations. An additional factor two in the possible solutions comes from the pairing with jets.
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Figure 1: Resolution of the ds observable for events reconstructed with the combined loose kinematic and q-weighting

reconstruction methods, in the 4±`∓decay channel of the CC̄ + 1-jet system, simulated using Powheg+Pythia 8.

The resolution obtained from each individual reconstruction method is also shown together with the best possible

scenario, where the neutrino momenta are known from truth information in the MC (blue). Only events satisfying the

respective reconstruction method requirements are considered.

The observed ds distributions for the full Run 2 data set are shown in Figure 2. Overall, reasonable

agreement is observed between the reconstructed distribution in the data and the SM expectation generated

with MC simulations of the signal and background processes.
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Figure 2: Detector level distributions of the ds variable in the CC̄ + 1-jet system after the final selection in the 4±`∓

decay channel, for a cut on the extra jet ?T corresponding to (a) 50 GeV and (b) 60 GeV. Data (filled markers) are

compared with the SM expectation with <MC
C = 172.5 GeV (histogram). The uncertainty band represents the total

uncertainty on the MC prediction, including all statistical and systematic components.

5 Parton-level definitions and fixed-order calculations

To compare the measured observable to FO theoretical predictions, the data is corrected to parton level.

Two FO calculations are considered. The first FO prediction for R(ds;<
pole
C ) is computed at NLO

accuracy in the strong coupling for stable top quarks. Results are obtained using the ttbarj process in

Powheg-Box-v2 [24], with the on-shell top quarks in the pole-mass scheme. This calculation is referred

to as 2 → 3 in the following, as three objects are considered in the final state. The extra jet is defined

from gluons and non-top quarks with the anti-:C algorithm [91] implemented in FastJet [92], with radius

parameter ' = 0.4, and is required to have ?T > 50 GeV and |[ | < 2.5. In a previous mass measurement

in CC̄ + 1-jet events [21], a similar calculation was used where the renormalization and factorization scales

where fixed to the top-quark mass. In the current measurement, dynamic scales are used in the calculation,

which was observed to lead to reduced changes in the observable when scales were varied by factors of

0.5 and 2. The factorization and renormalization scales are set to `f , `r = `0 = �T/2 according to the

recommendations in Ref. [93], with �T =
∑

8∈[C ,C̄ , 9 ]

√

?8
T

2 + <2
8
, where <8 is the invariant mass of the

corresponding object.

The second prediction is a FO NLO QCD of the ?? → 11̄;+a;− ā + 9 process and is referred to as

2 → 7 in the following. This calculation includes contributions from single-resonant and non-resonant

diagrams, as well as the doubly resonant top-quark pair production process hence considering top-quark

decay and full off-shell effects. The predictions for R(ds;<
pole
C ) in the 2 → 7 approach were provided

by the authors of Ref. [25]. Only electrons and muons are considered as leptons. Asymmetric ?T

requirements are imposed on the ?T-leading and ?T-subleading leptons, with both selections matching

the detector level selection. All the objects in the seven-particle final state, excluding neutrinos, are

separated by Δ' > 0.4 and satisfy |[ | < 2.5. A cut on the sum of neutrinos transverse momenta is

set to be (∑a ?
a)T > 30 GeV. Jets containing a 1-quark parton are required to satisfy ?1

T
> 30 GeV,

while the additional jet must satisfy ?
9

T
> 60 GeV. The renormalization and factorization scale are set to
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`r, `f = `0 = �T/2 =
1
2

∑

8∈[ℓ+,ℓ− ,1,1̄,a,ā, 9 ] ?
8
T

as suggested in Ref. [25].

The nominal calculations are performed with the PDF4LHC21 PDF set [94]. For comparisons of PDF

sets, the calculations are also repeated with the CT18 NLO PDF set with Us = 0.118 [95], NNPDF3.0

NLO [43], ABMP16 [96], and the MSHT20 NLO PDF sets [97]. All considered PDF sets describe the

proton content with massless 1-quarks (five-flavor scheme). The impact of missing higher-order corrections

in the calculations is estimated with scale variations of `r, `f = { 1
2
· `0, 2 · `0}, avoiding combinations

where the ratios of `r/`f = {1/4, 4}. The running of the strong coupling constant Us is calculated in the

five-flavor scheme. These variations are assessed for <
pole
C = 172.5 GeV. Additional theory predictions are

calculated for values of <
pole
C ranging from 169 GeV to 176 GeV and are interpolated with second order

polynomials to produce continuous predictions for R(ds;<
pole
C ).

To correct the data to parton level, equivalent definitions are defined in the MC for the 2 → 3 and 2 → 7

calculations. In the CC̄ MC simulation the 2 → 3 parton level is defined as follows: the last stable top

(anti-)quark after initial state (ISR) and final state (FSR) radiation, and before decay is identified with the

on-shell stable top (anti-) quark. The additional parton-level jet is built from all partons after the parton

shower and before the hadronization stage which do not originate from top (anti-)quark decays. The anti-:C
algorithm with radius parameter ' = 0.4 is used for the jet clustering. This parton-level definition is

consistently applied to both the Pythia 8 and the Herwig 7 parton showers considered in the measurement.

A CC̄ + 1-jet event is selected for the 2 → 3 parton-level phase space if at least one additional resolved

parton-level jet in |[ | < 2.5 and with ?T > 50 GeV is found that does not originate from the decay products

of the top (anti-) quarks.

For the definition at parton level in the 2 → 7 approach an ensemble of MC samples is used, as CC̄ production,

single-top production, and di-boson production processes all contribute to the ?? → 11̄;+a;;− ā; + 9

process. Only electrons and muons coming from a ,-boson decay are considered as leptons in the final

state. The jets are clustered with the anti-:C algorithm on the partons after the parton shower simulation

and before the hadronization step. The 1-jets are identified by requiring that the direction of the momentum

of the 1-quark, from which the jet stems from, lies within Δ' = 0.4 of the jet. Selection cuts on the objects

are imposed such that kinematic requirements are synchronized across the FO theory prediction [25], the

MC parton-level definition and the event selection at the detector level. The dB variable in the 2 → 7

parton-level is obtained by adding the four-vectors corresponding to the charged leptons and neutrinos

from the , boson decays, the two ?T-leading 1-jets and the ?T-leading additional jet.

6 Differential cross-section measurement

The differential cross-section dfC C̄+1-jet /dds is obtained by subtracting the background contributions and

unfolding to the 2 → 3 and 2 → 7 parton levels using the IBU algorithm [23]. The background subtraction

removes all the expected non-CC̄ processes in the 2 → 3 measurement. In the 2 → 7 case instead, C,

production is considered as signal and is not subtracted, since C, and CC̄ can produce the same final state

once the , bosons and the top quarks decay3. The correction to parton level is split into three terms

derived from the nominal Powheg+Pythia 8 simulation.

• An acceptance correction considers the events that satisfy the detector-level selection, but do not

fulfill the parton-level definition. This correction is implemented as a bin-by-bin factor, defined as

3 This is also valid for ,+,− boson production, but its contribution is negligible in this analysis.
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the ratio of events selected at the detector level that satisfy the parton-level requirements, divided by

the total number of events selected at the detector level.

• A matrix describes the migration of events that satisfy both detector and parton level selections, from

bins at the detector level to the bins at the parton level.

• An efficiency correction accounts for parton-level events that fail to meet the detector-level selection.

This correction is also implemented as a bin-by-bin factor, computed as the ratio of parton level

events which fulfill both parton and detector level selections over parton level events which only

need to satisfy the parton level requirements.

The binning of the differential cross-section is optimized such that the high-dB region, that has the highest

sensitivity to <
pole
C is isolated. At the same time, this region should have a large enough population to

ensure less than 5% statistical uncertainty in the high-sensitivity bins of the detector-level distribution.

Finally, migrations from bins at detector level to parton level are limited, keeping the diagonal elements of

the migration matrix above 40%. The migration matrix, the efficiency, and the acceptance for the 2 → 3

parton level unfolding are shown in Figure 3. The low values of the efficiency term reflects the fact that

the parton level definition extrapolates for non-dileptonic top-quark pair decays and covers a much more

inclusive phase space than the detector level one.

The IBU procedure starts from the parton-level distribution of the nominal signal simulation. It iteratively

applies a correction to the parton-level based on the unfolding matrix and the measured spectrum at detector

level. These iterations progressively reduce the bias. The number of iterations, and hence the level of

regularization, is chosen such that the unfolding procedure does not depend on the value of the top-quark

mass. To test this, MC samples with the top-quark mass parameter set to values between <MC
C = 169 GeV

and <MC
C = 176 GeV are unfolded. Good convergence with minimal bias is found for all test distributions

with 70 (40) iterations for the correction to the 2 → 3 (2 → 7) parton level. These settings are used for all

the results presented in the following.

The covariance matrix + stat encodes the statistical uncertainty associated with the unfolded differential

cross-section. It is built from 50000 pseudo-data distributions generated by varying background-subtracted

dfC C̄+1-jet /dds distribution within its statistical uncertainty, which are unfolded with the nominal unfolding

procedure. Experimental systematic effects are added to the statistical covariance matrix to build a full

covariance matrix, as explained in detail in Section 7.

The unfolded dfC C̄+1-jet /dds distribution is normalized to unity to obtain the R(ds;<
pole
C ) observable at

parton level which is used to extract the top-quark pole mass. The covariance matrix of the normalized

differential cross-section is obtained using a Cholesky decomposition [98, 99] with 50000 toys, as described

in Ref. [100].

The results for the normalized differential cross-sections at parton level are presented in Figure 4. In the

unfolding to the 2 → 3 parton-level, the measurement reaches a precision of 8% in the dB bin from 0.7 to

0.8 and 30% in the last bin from 0.8 to 1. The 2 → 7 phase space definition is closer to the detector level

one and the measurement reaches a slightly better precision of 7% and 24% in the next-to-last and last bins.

The predictions for two values of the top-quark pole mass are overlaid on the corrected data, showing the

pronounced sensitivity to the top-quark pole mass in these two bins.
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Figure 3: The (a) migration matrix and (b) the acceptance and (c) efficiency factors for events considered in the

unfolding to the 2 → 3 parton level. The matrix and correction factors are built from the nominal simulation of

CC̄ + 1-jet events using the Powheg+Pythia 8 generator. Vertical bars represent MC statistical uncertainties.

7 Systematic uncertainties

To evaluate the systematic uncertainties in the differential cross-section measurement, the nominal unfolding

procedure is repeated on alternative pseudo-data distributions, corresponding to each systematic variation.

The impact of each systematic uncertainty in the bin 8 of the unfolded distribution, Δ
syst

8
, is used to build

a covariance matrix associated with that systematic effect, +
syst

8, 9
= Δ

syst

8
Δ

syst

9
. If the uncertainty source is

obtained by comparing two simulations, the full difference to the nominal result is defined as the uncertainty,
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Figure 4: The measured normalized differential cross-section R(ds;<
pole
C ) unfolded to (a) the 2 → 3 parton level and

(b) the 2 → 7 parton level. The error bars on the marker indicate the statistical uncertainty, the gray band the total

experimental uncertainty. Theoretical predictions at fixed-order NLO QCD for <
pole
C = 169 GeV (dotted line) and

<
pole
C = 171 GeV (dashed line) are also shown, without their associated uncertainties.

and the opposite-sign variation is assumed to be of identical size. For systematic uncertainty sources that

consist of two-sided variations, a symmetric uncertainty is estimated as half of the difference between the

up and down variations. If both variations point in the same direction compared with the central result, the

maximum is taken as the resulting uncertainty and the opposite-sign variation is assumed to be of identical

size.

A separate covariance matrix is constructed for each of the systematic variations and for the statistical

uncertainty. The total covariance matrix is obtained adding up all covariance matrices. In this approach

all the systematic components are independent of the other components and every individual systematic

uncertainty is fully correlated across all bins of the unfolded distribution.

7.1 Experimental uncertainties

Uncertainties originating from the calibration of the objects used in the analysis are evaluated by unfolding

the detector-level distribution obtained from MC simulations where the calibrations are varied within

their uncertainties. The signal CC̄ + 1-jet and background contributions are varied simultaneously for each

experimental uncertainty sources.

The following sources of uncertainties are considered:

• The uncertainty in the integrated luminosity of the Run 2 ?? collision data at
√
B = 13 TeV is

0.8% [33]. The expected yields of all signal and background processes are varied simultaneously.

The uncertainty arising from the imperfect modeling of pileup in the data is estimated by reweighting

the pileup profile in all simulated signal and background processes simultaneously [101].

• To estimate the impact of uncertainties in the lepton reconstruction, identification and isolation

efficiencies, the MC simulation is varied as a function of lepton ?T and [, in a range allowed by

measurements performed in / → 4+4−/`+`− and �/k → 4+4−/`+`− events [74, 75]. Similarly, the

trigger efficiencies are varied to account for uncertainties in the measurements of the efficiencies of the
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lepton triggers [34, 35]. The effects of the uncertainties in the electron (muon) energy (momentum)

scale and resolution are taken into account by varying these within their uncertainties [73, 76].

• Uncertainties in the energy scale of the jets (JES) are taken into account by varying the JES in the

simulation. The JES uncertainty is split into 35 components, originating from the in situ calibration,

the pileup correction, the dependence on the jet particle content, the punch-through modeling, and

the high-?T jet response [102, 103]. The uncertainty due to the jet energy resolution (JER) is

evaluated by varying the resolution within its uncertainties as a function of ?T and [. The total JER

response uncertainty is split into thirteen one-sided sources which are symmetrized to estimate the

effect on the measurement. The efficiency of the JVT tagger is corrected in simulation, following

a measurement which determines the JVT efficiency with a total uncertainty of 1 − 2% using the

tag-and-probe method in / → `+`− events with additional jets [81].

• Uncertainties originating from 1-tagging are obtained from in situ efficiency measurements [83–85]

and are propagated through the analysis. The 1-tagging uncertainties include different sources, split

among 1-tagging efficiency, and the 2- and light-flavor mis-tagging rates.

• The effects of systematic uncertainties in the jets and leptons are propagated to the �miss
T

. Additional

uncertainties for the scale and resolution of the track-based term [86, 87] are also included.

7.2 Modeling uncertainties

To evaluate the uncertainties in modeling of the simulated events, the internal parameters of the nominal

MC simulation are varied and alternative MC generators are employed. To account only for changes in

the response at the detector level and avoid convolution of those effects with any parton-level difference,

the parton-level spectrum of the alternative MC simulations is reweighted to the one of the nominal

Powheg+Pythia 8 simulation.

Many variations are considered to evaluate the uncertainty in the modeling of the CC̄ process.

• The uncertainty due to the choice of the matching procedure between matrix element and the parton

shower is evaluated by varying the hardness criterion (pThard) in the Powheg+Pythia 8 CC̄ simulation

from the event scale (pThard = 0) to the lowest ?T-value between the Powheg emission, and the

inital- and final-state partons (pThard = 1).

• The impact of the choice of the damping parameter value in the Powheg simulation is estimated by

setting ℎdamp = 3 · <MC
C and comparing the results to the ones obtained with the nominal choice of

ℎdamp = 1.5 · <MC
C .

• To evaluate the impact of missing higher orders in the QCD perturbative calculation of the matrix

element, the `r and `f scales in the hard-process MC generator are varied by a factor of 0.5 and 2 in

the Powheg+Pythia 8 CC̄ simulation, independently.

• The dependence of the measurements on the choice of the PS and hadronization models in the

simulation is estimated by interfacing the Powheg CC̄ simulation with Herwig 7.1.3 [104] using the

NNPDF 3.0 NLO PDF set in the ME, and MMHT 2014 LO [105] in the parton shower and the

multi-parton interaction model.
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• The uncertainty of the Us value in the multi-parton interactions and the color-reconnection of

the beam remnants in Pythia 8 is propagated by varying the Var1 set of parameters of the A14

eigentunes [46].

• The uncertainty associated with the modeling of ISR is evaluated by varying the Us value in the

Pythia 8 parton shower Var3c set of parameters, as per the A14 UE tune variations. To estimate

the FSR uncertainty, renormalization and factorization scales in the PS are varied by a factor of 0.5

and 2.

• The uncertainty in the modeling of the radiation in top-quark decays is evaluated by comparing

the results of the recoil-to-top scheme to one implemented from the nominal simulation, where the

second and subsequent gluon emissions recoil against the 1-quark (recoil-to-colored) [106].

• The uncertainty associated with the color-reconnection modeling is estimated from two alternative

models [107], by taking as the alternative sample the one producing the largest difference on the

extracted top-quark mass relative to the nominal simulation.

• The uncertainty related to the modeling of top-quark decay is evaluated by comparing the nominal

sample to a MC simulation with the same simulation settings, but where the decay of the top-quark

is performed with MadSpin [108, 109]. This uncertainty is referred to as line shape uncertainty, as

it impacts the shape of the top-quark mass distribution.

• The uncertainty of the PDFs are computed using the thirty variations and the nominal version of the

PDF4LHC15 PDF set at NLO accuracy [110].

• An additional uncertainty is considered to cover for the effect of CC̄ NNLO corrections, which are

known to be not fully covered by the scale uncertainties of the CC̄ NLO+PS prediction [52–54].

An iterative reweighting procedure is implemented to simulate NNLO+NLL QCD effects in the

parton-level ?C
T
, ?C C̄

T
, and <C C̄ distributions. The difference between results obtained with the

reweighted and the nominal distributions is taken as an uncertainty.

Single top-quark production is the largest non-CC̄ process contributing to the selected events. A systematic

uncertainty in the sample normalization is assigned from C, cross-section uncertainty. In addition, a

dedicated systematic uncertainty is assigned to estimate the impact of the CC̄ and C, overlap removal:

the diagram-subtraction [57] and diagram-removal [111] schemes are compared with each other and the

difference between results is taken as the uncertainty.

As prefaced in Section 3, samples corresponding to other backgrounds are assigned a cross-section normal-

ization uncertainty, indicated in Table 1, while the fake-lepton background is assigned a rate uncertainty

of 50%. These uncertainties are propagated by generating pseudo-data with varied normalizations of

the background processes. The nominal correction procedure is applied and the shift in the corrected

differential cross-section is taken as the uncertainty.

The residual dependence of the unfolding on the top-quark mass parameter in the MC is accounted for by

comparing two MC simulations generated with <MC
C = 171 GeV and <MC

C = 174 GeV. The bin-by-bin

difference between the unfolded distributions is subtracted by the expected difference from the parton

level and the result is used to define an additional systematic uncertainty which covers the residual

<MC
C dependence of the unfolding.

To evaluate the uncertainty due to the limited size of the CC̄ MC samples used in the data correction

procedure, 5000 pseudo-experiments are performed where the unfolding matrix is varied within its statistical

uncertainty.
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8 Top-quark pole mass extraction

To extract the value of the top-quark pole mass, a fit of R(ds;<
pole
C ) as given by the CC̄ + 1-jet calculation

at NLO QCD accuracy to the unfolded normalized differential cross-section RC C̄+1-jet

data
is performed. The fit

uses the least-squares method, where the best-fit value of <
pole
C is the one that minimizes:

j2
=

∑

8, 9

[

RC C̄+1-jet

data
− RC C̄+1-jet

theo
(<pole

C )
]

8

[

+̃−1
]

8 9

[

RC C̄+1-jet

data
− RC C̄+1-jet

theo
(<pole

C )
]

9
, (2)

where indices 8 and 9 refer to the bin number, and +̃ is the covariance matrix of the normalized unfolded

spectrum, which includes experimental and modeling uncertainties. For the nominal fit, the PDF4LHC21

PDF set [94] is used, which combines information from the CT18 [95], NNPDF3.1 [112] and MSHT20 [97]

PDF sets.

Since the R(ds;<
pole
C ) observable is normalized, the entries in the bins are not independent of each other

and the normalized covariance matrices cannot be inverted. To calculate the j2, the matrix is reduced

by removing one column and the corresponding row, as the relative element of the residual vector. As a

nominal choice, the first bin is excluded in the sum of Eq. 2, but the result does not depend on the choice of

the excluded bin.

8.1 Linearity of the unfolding

To ensure that the measurement of the cross-section does not depend on the top-quark mass in the simulation

used to correct the data, Powheg+Pythia 8 simulations are used to generate detector-level ds distributions

corresponding to <MC
C values ranging from 169 GeV to 176 GeV. Each of the mass-varied samples is

then unfolded to parton level with the nominal <MC
C = 172.5 GeV simulation. A MC–based parton-level

template is defined, with a continuous parameterization as a function of <MC
C , constructed similarly to the

FO theoretical template. This template is then used in a fit to the unfolded mass-varied distributions to

extract a value of the top-quark mass, <fit
C , for each distribution.

In Figure 5, the results of this test are shown. To quantify the bias introduced by the unfolding procedure,

a linear fit to the values of <fit
C − <MC

C is performed, considering only MC statistical uncertainties. This

linear fit has a slope covering a ±170 MeV (±300 MeV) range in the 2 → 3 (2 → 7) measurement, at the

extreme mass points considered. Such variations are covered by the residual <MC
C dependence systematic

uncertainties.

8.2 Theoretical uncertainties

Since <
pole
C is extracted from a j2 fit to fixed-order theory calculations at NLO accuracy, additional

uncertainties due to missing higher-order corrections and the proton PDFs and the strong coupling Us

are included. The uncertainties in the theory calculations due to the missing higher order corrections are

estimated with the seven-point variation of the `r, `f scales: `r and `f in the theory calculation are varied

by factors of 0.5 and 2, avoiding ratios of where `r/`f = 4 or `r/`f = 1/4. The <
pole
C result obtained

with the nominal scale choice is compared with all seven variations and the largest upward and downward

variations of the mass are taken as the uncertainty.
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fourth uncertainty components of Eq. (3) cover the impact of missing higher-order corrections, the choice

of the proton PDF set and the QCD coupling constant value in the NLO FO calculation.

A detailed breakdown of the uncertainties in the <
pole
C measurement is presented in Table 3. The dominant

experimental uncertainties are those related to the 1-tagging and jet-response calibration, which amount

to approximately 440 MeV and 650 MeV, respectively. Several aspects of CC̄ modeling lead to significant

uncertainties, in particular the difference between the recoil-to-top and recoil-to-colored schemes in the

parton shower and the parton shower generator choice. The theoretical uncertainties from variations of the

dynamical renormalization and factorization scales amount to 350–450 MeV. The PDF uncertainties in

the calculation, evaluated using the error sets of the PDF4LHC21 combination of PDF sets, add a similar

uncertainty.

Table 3: Summary table of the uncertainties on the measurement of <
pole
C from a least square fit to the 2 → 3

calculation of Ref. [93]. The detector uncertainties grouped under Others correspond to the sum in quadrature of

missing transverse energy, pileup re-weighting, and luminosity uncertainties. The factorization scale is responsible

for the largest changes in the theoretical prediction and its high variations (`� × 2), yield a smaller value of the

top-quark pole mass. The 1-tagging and jet-energy response uncertainties are made up of multiple contributions,

with the leading jet-energy systematic uncertainties coming from the dependence of the jet energy response on MC

modeling and pileup. The MC statistical uncertainty associated with the systematic shift is given in the third column.

Uncertainty source Δ<
pole
C [GeV] MC stat. unc. [GeV]

Data statistics 0.33 -

Detector unc.

1-tagging and mistag 0.44 0.06

Jets 0.65 0.06

Leptons 0.25 0.06

Others 0.18 0.06

Modeling unc.

MC statistical uncertainty 0.08 -

Backgrounds normalization 0.02 -

Single-top modeling 0.03 0.06

<MC
C dependence 0.10 0.09

PS Recoil model 0.68 0.06

Parton shower 0.43 0.14

Underlying event 0.39 0.12

Color reconnection 0.13 0.08

ME+PS matching: ?hard
T

0.09 0.06

ME+PS matching: ℎdamp 0.26 0.06

ME+PS matching: line shape 0.38 0.12

3D NNLO reweight 0.21 0.06

PDF 0.26 0.06

Initial-state radiation 0.24 0.06

Final-state radiation 0.04 0.16

Factorization scales 0.09 0.06

Renormalization scales 0.03 0.06

Theory unc.

Scale variations +0.34 -0.28 +0.05 -0.06

PDF ⊕ US 0.24 +0.06 -0.06

Total +1.47 -1.44 -

The value of the mass is also reported separately for several PDF sets, as recommended by the PDF4LHC
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group [94]:

<
pole
C (CT18 [95]) = 170.94 ± 0.33 (stat.) ± 1.36 (syst.) +0.37

−0.28 (scale) ± 0.28 (PDF ⊕ Us) GeV,

<
pole
C (MSHT20 [97]) = 171.03 ± 0.33 (stat.) ± 1.36 (syst.) +0.33

−0.31 (scale) +0.26
−0.13 (PDF ⊕ Us) GeV,

<
pole
C (NNPDF30 [43]) = 170.70 ± 0.33 (stat.) ± 1.36 (syst.) +0.34

−0.28 (scale) ± 0.22 (PDF ⊕ Us) GeV,

<
pole
C (ABMP16 [96]) = 172.76 + 0.33 (stat.) ± 1.36 (syst.) +0.33

−0.28 (scale) ± 0.24 (PDF ⊕ Us) GeV.

(4)

The central values of the results obtained with CT18 and NNPDF30 agree within approximately 200 MeV

with each other and with the PDF4LHC21 result of Eq. (3).

Several crosschecks are performed to verify the consistency of the results. The <
pole
C mass is extracted from

the 2 → 7 measurement with the calculation of Ref. [25]. Despite the 2 → 7 cross-section measurement

being slightly more precise than the 2 → 3 one, the smaller sensitivity close to the CC̄ threshold leads to an

increase of all uncertainty components on the top-quark mass, yielding:

<
pole
C = 171.69 ± 0.41 (stat.) ± 1.68(syst.) +0.66

−1.34 (scale) +0.49
−0.46 (PDF ⊕ Us) GeV . (5)

The central value of the 2 → 7 result is approximately 1 GeV higher than the 2 → 3 one. The difference

between the two is covered by the scale uncertainty of the theoretical prediction, which grows from

0.3 − 0.4 GeV in the 2 → 3 measurement to approximately 1 GeV in the 2 → 7 one. The result for the

central value was cross-checked by repeating the 2 → 7 analysis with correction factors derived from

the 114; MC simulation instead of the nominal correction factors, and obtaining the same value within

100 MeV.

The differential cross-section measurement and mass extraction are moreover repeated on sub-sets of the

data, splitting the data by data-taking period. In each case, the data is corrected using the Monte Carlo

simulation corresponding to the sub-set in question. Good agreement is found for the measured <
pole
C

values in different data-taking periods, with differences covered by single-period statistical uncertainties.

Finally, the top-quark mass measurement based on the 2 → 3 parton level prediction is repeated with

different choices for the ?T cuts on the additional jet, at 30 GeV and 60 GeV. The ?T cut variation is

synchronized at parton and detector level and the unfolding correction is re-derived for each value. Results

for <
pole
C are found to be stable against the choice of the ?T cut, with changes in the extracted mass value of

±250 MeV.

The results of this analysis are compared with other top-quark mass determinations in Figure 6. The values

of the top-quark pole mass in Eq. (3) and Eq. (4) are in agreement with the determination by CMS using the

same approach [22] and with earlier ATLAS results on Run 1 data [20, 21]. The uncertainty of the result

presented in this paper are slightly larger, mainly due to the more extensive set of modeling uncertainties

considered.

These results agree within uncertainties with determinations of the top-quark pole mass from the inclusive

cross-section [113]. The central value of the latter tends to be somewhat higher: the ATLAS+CMS Run 1

combination [113] yields <
pole
C = 173.4 +1.8

−2.0
GeV with a prediction based on a version of the NNPDF3.1

PDF without considering top-quark measurements as inputs to the PDF fit. The values obtained in

this analysis agree moreover with the precise determination of the top-quark mass obtained from the

combination of ATLAS and CMS Run 1 direct measurements [114], i.e. <C = 172.52 ± 0.33 GeV.

The indirect estimate of the top-quark mass from a recent global electroweak fit [4] is also shown. The indirect

determination of the top quark mass from electro-weak precision observables yields<
pole
C = 176.4±2.1 GeV;

a difference of about 5 GeV from the nominal result of this analysis.
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fit to fixed-order calculations at NLO accuracy in the strong coupling. The top-quark pole mass obtained

with the PDF4LHC21 PDF set, in the stable top-quark approximation, is

<
pole
C = 170.7 ± 0.3 (stat.) ± 1.4 (syst.) ± 0.3 (scale) ± 0.2 (PDF ⊕ US) GeV ,

where the uncertainties represent the statistical uncertainty of the data, the experimental and modeling

uncertainties from the differential cross-section measurement, the theoretical uncertainty estimated from

the choice of renormalization and factorization scales, and the impact of PDF and UB variations on the

theoretical prediction, respectively. The top-quark pole mass is also determined based on cross-section

calculations made with different PDF sets.

Several important cross-checks are performed to verify the stability of the result. The result is found to

be robust within ± 250 MeV against variations of the ?T cut on the additional jet in the interval between

30 and 60 GeV. The result obtained with the 2 → 3 calculation assuming stable top quarks is compared

with a result obtained from a fit of the corrected data to a 2 → 7 prediction where finite top-quark width

and full off-shell effects are considered, hence testing the agreement in the description of top-quark decay

modeling between the perturbative calculation and the Monte Carlo generator. The two results are found

to agree within the theoretical uncertainties of the calculations. The measured values of the top quark

pole mass agrees, moreover, with the result of precise direct mass measurements, where the LHC Run 1

average <C = 172.52 ± 0.33 GeV is taken as a reference. Hence, this result provides a confirmation of the

interpretation of direct mass measurements in terms of the pole mass scheme, within the uncertainty of the

result. The top quark pole mass constitutes an important input to assess the stability of the electroweak

vacuum and to fits testing the compatibility of electroweak precision measurements. The differential cross

section data are publicly available and can be used in the future to repeat the mass extraction with improved

calculations.
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