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1 Introduction

The observation of the Higgs boson at the Large Hadron Collider (LHC) was a great success
of the ATLAS and CMS collaborations [1, 2]. Following its discovery, numerous studies have
been performed to establish whether it is a Standard Model (SM) particle or rather the first
observed physical state of an extended scalar sector.

Searches for an extended scalar sector are crucial as numerous models of new physics
beyond the SM require additional scalar states. For example, two Higgs doublets [3, 4] are
required in the minimal supersymmetric extension of the SM, while Higgs triplets [5–9] are
required in models with a type-II seesaw mechanism. In addition, an extended scalar sector
can modify the electroweak phase transition and facilitate baryogenesis [10, 11], enhance
vacuum stability, provide a dark matter candidate [12] or provide a solution to the strong CP
problem (i.e. predict axions) [13]. In short, extending the scalar sector provides solutions
to some of the open questions in the SM.

Various theories predicting an extended scalar sector postulate also the existence of at
least one set of charged Higgs bosons in addition to the observed neutral one, such as models
that add a second doublet or one or more triplets to the scalar sector. The main production
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and decay modes of these new particles are strongly model dependent. For example, in
the alignment limit of the two-Higgs-doublet model (2HDM) [14], the dominant production
mode, for charged Higgs boson masses larger than the sum of the top and the bottom quark
masses, is expected to be in association with a top quark and a bottom quark (tbH±),1

while the dominant charged Higgs boson decay modes are via H± → tb or H± → τ±ν.
However, there are also several models such as the next-to-minimal two-Higgs-doublet model
(N2HDM) [15, 16], the three-Higgs-doublet Model (3HDM) [17] or the Georgi-Machacek
model [18] in which other decay and production modes become important. The studies
presented in this article search for charged Higgs bosons decaying via H± → W ±h, where h

is a Higgs boson with mass mh = 125 GeV. This decay mode is predicted to have significant
branching ratios by various extended scalar sector models [19–22].

The ATLAS and CMS collaborations searched for charged Higgs bosons in proton-proton
(pp) collisions at

√
s = 7, 8 and 13 TeV with data samples corresponding to integrated

luminosities ranging from 2.9 up to 140 fb−1, probing the mass range below the top-quark
mass in the τ±ν [23–28], cs [29, 30], and cb [31, 32] decay modes, as well as above the
top-quark mass in the τ±ν [33] and tb [34–36] decay modes. Searches for H± → W ±Z

decays have been performed in the vector-boson-fusion (VBF) production mode [37–39].
Searches for doubly-charged Higgs bosons have also been performed [39–43]. Charged Higgs
boson decays via H± → W ±h have been so far not yet searched for by either the ATLAS
or CMS collaborations.

This article describes a first search for a charged Higgs boson produced in association
with a top quark and a bottom quark with subsequent decays of the charged Higgs boson
via H± → W ±h → ℓ±νbb̄ or H± → W ±h → qq̄bb̄. The search is performed in events that
are consistent with the final state ℓ±νbb̄bb̄qq̄ (with ℓ = e, µ), where the charged lepton can
originate either from the decay chain of the charged Higgs boson or of the associated top quark.
Representative lowest-order Feynman diagrams of these processes are shown in figure 1.

To ensure high sensitivity to both low- and high-mass resonances, two different analysis
techniques are used. At low charged Higgs boson masses, when the final state particles have a
relatively low Lorentz-boost, the decay products of the neutral Higgs boson and hadronically
decaying W boson are reconstructed via individual small-radius jets (such decays are referred
to as ‘resolved’). At high charged Higgs boson masses, when the final state particles have
a relatively large Lorentz-boost, the neutral Higgs boson and the hadronically decaying W

boson are reconstructed as single large-radius jets (such decays are referred to as ‘merged’).

The search for charged Higgs bosons is performed by probing for a localised excess of
events in the invariant mass distribution of the reconstructed ℓ±νbb̄ and qq̄bb̄ systems. This
is achieved through a simultaneous profile likelihood fit on the invariant mass distribution
obtained in selected signal and control regions. The signal and control regions are defined
based on requirements on kinematic properties of the final-state particles and event-level
quantities. Multivariate analysis techniques are used to improve the background rejection and
to reconstruct the decays of the charged Higgs boson candidates. The major backgrounds are
modelled using simulation, while their normalisations are determined by a profile-likelihood

1The notation tbH± is used to represent the t̄bH+ and tb̄H− processes. In general, the difference between

particles and antiparticles is to be understood from the context.
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The calorimeter system covers the pseudorapidity range |η| < 4.9. Within the region
|η| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity
lead/liquid-argon (LAr) calorimeters, with an additional thin LAr presampler covering
|η| < 1.8 to correct for energy loss in material upstream of the calorimeters. Hadronic
calorimetry is provided by the steel/scintillator-tile calorimeter, segmented into three barrel
structures within |η| < 1.7, and two copper/LAr hadronic endcap calorimeters. The solid
angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter modules
optimised for electromagnetic and hadronic energy measurements respectively.

The muon spectrometer (MS) comprises separate trigger and high-precision tracking
chambers measuring the deflection of muons in a magnetic field generated by the
superconducting air-core toroidal magnets. The field integral of the toroids ranges between 2.0
and 6.0 T m across most of the detector. Three layers of precision chambers, each consisting
of layers of monitored drift tubes, cover the region |η| < 2.7, complemented by cathode-strip
chambers in the forward region, where the background is highest. The muon trigger system
covers the range |η| < 2.4 with resistive-plate chambers in the barrel, and thin-gap chambers
in the endcap regions.

The luminosity is measured mainly by the LUCID-2 [47] detector that records Cherenkov
light produced in the quartz windows of photomultipliers located close to the beampipe.

Events are selected by the first-level trigger system implemented in custom hardware,
followed by selections made by algorithms implemented in software in the high-level trigger [48].
The first-level trigger accepts events from the 40 MHz bunch crossings at a rate below 100 kHz,
which the high-level trigger further reduces in order to record complete events to disk at
about 1 kHz.

A software suite [49] is used in data simulation, in the reconstruction and analysis of
real and simulated data, in detector operations, and in the trigger and data acquisition
systems of the experiment.

3 Data and simulated event samples

The pp collision data at
√

s = 13 TeV used in the analysis were recorded with the ATLAS
detector between 2015 and 2018, and correspond to a total integrated luminosity of
140.0 ± 1.2 fb−1 [50]. The data are required to satisfy criteria that ensure that the detector
was in good operating condition [51]. Monte Carlo (MC) simulation samples were used to
model the background and signal processes, as well as to derive modelling uncertainties. The
MC simulation samples were processed using either the Geant4-based simulation of the
ATLAS detector geometry and response [52, 53] or fast simulation [54], where the Geant4

simulation of the calorimeter response is replaced by a detailed parameterisation of shower
shapes. The simulated events were reconstructed using the same algorithms as were used
for the data events.

The signal process, i.e. the associated production of a charged Higgs boson, a
bottom quark and a top quark, was simulated using the matrix element (ME) generator
MadGraph5_aMC@NLO 2.7.3 [55] in the 4-flavour scheme (4FS) at next-to-leading-order
(NLO) accuracy in QCD and the NNPDF3.0nlo [56] set of parton distribution functions
(PDFs). Pythia 8.244 [57] with the A14 set [58] of tuned parameters is used to decay the
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charged Higgs boson and to model the parton shower (PS), hadronisation, and underlying
event. The renormalisation and factorisation scales µR and µF were set to 1

3

∑

i

√

m2
i + p2

T,i,
where i runs over all final state particles used in the matrix element calculation. The signal
process is simulated using the FeynRules [59] model 2HDMtypeII [60] using a narrow-width
approximation. The choice of model is expected to have only small impact on the results
of this search as long as the narrow-width approximation is valid. While specific models
may alter the cross-section times branching ratio values, they typically do not affect the
event kinematics of the tbH± process. Seventeen signal samples were generated covering a
mass range between 250 GeV and 3 TeV.3 Fast detector simulation was employed for mass
points below 500 GeV and the Geant4-based simulation of the ATLAS detector was used
otherwise.4 In the simulation of the signal processes, only the H+ decay into W +h and
Higgs boson decaying to pairs of b-quarks were considered assuming a Higgs boson mass
of mh = 125 GeV. Other decay modes of the 125 GeV Higgs boson were neglected, as their
contributions to the signal and control regions (cf. section 5) were an order of magnitude
lower than those for the h → bb̄ decay.

The production of top-quark pair (tt̄) events was modelled using the Powheg Box v2 [61–
64] generator in the five-flavour scheme (5FS) to calculate the ME at NLO accuracy in QCD,
and the NNPDF3.0nlo PDF set. The hdamp parameter5 was set to 1.5 mt [65], where mt

is the top-quark mass. The top-quark decays are modelled using MadSpin [66, 67]. The
PS, hadronisation, and underlying event were modelled with the Pythia 8.230 generator
using the A14 set of tuned parameters and the NNPDF2.3lo [68] PDF set. The top-
quark pair events are normalised to the state-of-the-art cross-section prediction calculated
with Top++ 2.0 [69–75] at next-to-next-to-leading order (NNLO) in QCD, including the
resummation of next-to-next-to-leading logarithmic (NNLL) soft-gluon terms.

The tt̄h sample was generated at NLO accuracy in QCD using the Powheg Box v2
generator in the 5FS, and the NNPDF3.0nlo PDF set. The hdamp parameter was set to
3
4 · (2mt + mh) = 352.5 GeV and the events were showered with Pythia 8.230, which used
the A14 set of tuned parameters and the NNPDF2.3lo PDF set. The tt̄h production
cross-section is calculated at NLO accuracy in both QCD and electroweak (EW) using
MadGraph5_aMC@NLO, as reported in ref. [76]. The production of tt̄V (with V = W ±

or Z) events was modelled using the MadGraph5_aMC@NLO 2.3.3 generator, which
provides MEs at NLO in QCD with the NNPDF3.0nlo PDF set. The events were interfaced
to Pythia 8.210 using the A14 set of tuned parameters and the NNPDF2.3lo PDF set.

The associated production of a top quark and W boson (Wt), and the s- and t-channel
single-top-quark production were modelled with the Powheg Box v2 generator at NLO

3In the mass range between 250 GeV and 400 GeV, the signal samples are produced in 50 GeV steps, while

in the ranges from 400 GeV to 1000 GeV and 1000 GeV to 2000 GeV step sizes of 100 GeV and 200 GeV were

chosen. In addition, signal masses of 2500 GeV and 3000 GeV are considered.
4The decision to employ Geant4-based simulation for masses above 500 GeV was motivated by the onset

of the merged analysis at this mass point and the limitations of the fast detector simulation to accurately

describe the properties of large-radius jets, which are essential to the merged analysis.
5The hdamp parameter is a resummation damping factor and one of the parameters that control the

matching of Powheg MEs to the parton shower, effectively regulating the high-pT radiation against which

the tt̄ system recoils.
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in QCD using the 5FS and the NNPDF3.0nlo set of PDFs. The diagram-removal (DR)
scheme [77] was used to remove interference and overlap with the production of top-quark pairs.
The events were interfaced to Pythia 8.230, which used the A14 set of tuned parameters
and the NNPDF2.3lo set of PDFs.

Rare processes including top-quarks, such as tZq, tWZ, thjb, tWh, and tt̄tt̄, were also
simulated and accounted for, even though their contribution to any analysis region is lower
than 1% of the total background yields. The MadGraph5_aMC@NLO generator and
the NNPDF PDF set were used to calculate the MEs for these processes. The events were
interfaced to Pythia 8.2 using the A14 set of tuned parameters and the NNPDF2.3lo set of
PDFs. The MEs of the tZq process was calculated at leading-order (LO) accuracy in QCD,
while the MEs of the other four processes were calculated at NLO accuracy in QCD.

A sample of V +jets events was simulated using Sherpa 2.2.11 [78] with the
NNPDF3.0nnlo [56] PDF set. The ME was calculated based on the Comix [79] and
OpenLoops [80–82] libraries at NLO accuracy in QCD for diagrams with up to two additional
parton emissions, and LO accuracy in QCD for diagrams with three, four or five additional
parton emissions. The MEPS@NLO prescription [83–86] was used to merge the ME and
the Sherpa PS [87], which is based on a set of tuned parameters developed by the Sherpa

authors. The V +jets event sample was normalised to match cross-section predictions at
NNLO accuracy in QCD calculated with FEWZ [88].

Diboson (V V ) events with decays into semileptonic final states were simulated using
Sherpa 2.2.1, while events with decays into fully leptonic final states were simulated using
Sherpa 2.2.2. Both samples include off-shell effects and Higgs boson contributions where
appropriate. Diagrams with up to one additional emission were calculated at NLO accuracy
in QCD, while diagrams with two or three parton emissions were described at LO accuracy.
The ME calculations were matched and merged with the Sherpa PS using the MEPS@NLO

prescription. Virtual QCD corrections for the ME at NLO accuracy were provided by the
OpenLoops library. Loop-induced diboson processes initiated via the gg production mode
were simulated at LO in QCD for diagrams with up to one additional parton emission in the
ME using OpenLoops in Sherpa 2.2.2. For electroweak V V jj production, the calculation
of the ME was performed in the Gµ-scheme [89] to describe the pure electroweak interactions
at the electroweak scale. All diboson events were generated using the NNPDF3.0nnlo

PDF set, along with the Sherpa PS.

Finally, the production of a SM Higgs boson in association with a vector boson (V h) was
simulated using Powheg Box v2, interfaced with Pythia 8.212 for PS and non-perturbative
effects. The Powheg prediction is accurate to NLO in QCD for the production of V h plus one
jet. The loop-induced gg → Zh process was generated separately at LO. The PDF4LHC15

PDF set [90] and the AZNLO set of tuned parameters [91] of Pythia 8.212 were used. The
gg → Zh production cross-section was calculated at NLO accuracy in QCD, including the
resummation of next-to-leading logarithmic (NLL) soft-gluon terms [92]. For the generation
of V h events, the Higgs boson mass was set to 125 GeV.

All simulated event samples include the effect of multiple pp interactions in the same
and neighbouring bunch crossings (pile-up) by overlaying simulated minimum-bias events
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Process Matrix element UEPS PDF set Perturbative accuracy

of total cross-section

tbH±(→ W ±h → ℓ±νbb̄, qq̄bb̄) MadGraph5_aMC@NLO 2.7.3 Pythia 8.244 NNPDF3.0nlo NLO (QCD)

tt̄ + jets Powheg Box v2 Pythia 8.230 NNPDF3.0nlo NNLO+NNLL (QCD)

tt̄W ± MadGraph5_aMC@NLO 2.3.3 Pythia 8.210 NNPDF3.0nlo NNLO (QCD) and NLO (EW)

tt̄Z MadGraph5_aMC@NLO 2.3.3 Pythia 8.210 NNPDF3.0nlo NLO+NNLL (QCD)

tt̄h Powheg Box v2 Pythia 8.230 NNPDF3.0nlo NLO (QCD) and NLO (EW)

single top quark (s- and t-channels) Powheg Box v2 Pythia 8.230 NNPDF3.0nlo NLO (QCD)

single top quark (Wt-channel) Powheg Box v2 Pythia 8.230 NNPDF3.0nlo approx. NNLO (QCD)

tZq MadGraph5_aMC@NLO 2.3.3 Pythia 8.210 NNPDF3.0lo NLO (QCD)

tWZ MadGraph5_aMC@NLO 2.3.3 Pythia 8.212 NNPDF3.0nlo NLO (QCD)

tt̄tt̄ MadGraph5_aMC@NLO 2.6.2 Pythia 8.230 NNPDF3.1nlo NLO (QCD)

thjb MadGraph5_aMC@NLO 2.6.2 Pythia 8.230 NNPDF3.0nlo NLO (QCD)

tWh MadGraph5_aMC@NLO 2.6.2 Pythia 8.235 NNPDF3.0nlo NLO (QCD)

qq̄ → Wh Powheg Box v2 Pythia 8.212 PDF4LHC15 NNLO (QCD) and NLO (EW)

qq̄ → Zh Powheg Box v2 Pythia 8.212 PDF4LHC15 NNLO (QCD) and NLO (EW)

gg → Zh Powheg Box v2 Pythia 8.212 PDF4LHC15 NLO + NLL (QCD)

W ± → ℓ±ν, Z → ℓ±ℓ∓ Sherpa 2.2.11 NNPDF3.0nnlo NNLO (QCD)

qg/qq̄ → V V → ℓ±ℓ∓/ℓ±ν/νν + qq̄ Sherpa 2.2.1 NNPDF3.0nnlo NLO (QCD)

qg/qq̄ → V V → ℓ±ℓ∓ℓ±ℓ∓/ℓ±νℓ±ℓ∓/ℓ±ℓ∓νν/ℓ±ννν Sherpa 2.2.2 NNPDF3.0nnlo NLO (QCD)

gg → V V Sherpa 2.2.2 NNPDF3.0nnlo NLO (QCD)

V V jj Sherpa 2.2.2 NNPDF3.0nnlo LO (QCD)

Table 1. Overview of the simulation tools used to generate signal and background processes, and
to model the underlying event and parton shower (UEPS). The PDF sets are also summarised. The
perturbative accuracy (in QCD and if relevant in EW corrections) of the total cross-section is stated for
each process. Alternative event generators and configurations used to estimate systematic uncertainties
are discussed in section 7.

on each generated signal and background event.6 The minimum-bias events were simulated
with the single-, double- and non-diffractive pp processes of Pythia 8.186 using the A3 set of
tuned parameters [93] and the NNPDF2.3lo PDF set. Geant4-based simulations of the
ATLAS detector were used for the production of the background samples (unless otherwise
stated). For all samples produced with MadGraph and Powheg Box, the EvtGen 1.6.0
programme [94] was used to model the decays of bottom and charm hadrons. Simulated
events were corrected to compensate for differences between data and simulations regarding
the energy (or momentum) scale and resolution of leptons and jets, the efficiencies for the
reconstruction, identification, isolation and triggering of leptons, and the tagging efficiency
for heavy-flavour jets.

A summary of MC generators and programs used to model the signal and background
processes is provided in table 1.

4 Event reconstruction

Charged-particle tracks are reconstructed in the ID. They are required to have a transverse
momentum (pT) larger than 500 MeV, |η| < 2.5, and at least seven hits in the pixel and SCT
detectors. A maximum of one (two) of the expected hits may be missing from the pixel (SCT)
detector sensors, and no more than one hit may be shared with other tracks [95]. Collision
vertices are reconstructed from at least two ID tracks [96]. Among all vertices, the one with
the highest p2

T sum of associated tracks is chosen to be the primary vertex (PV) of the event.
The properties of ID tracks are calculated relative to the PV.

6An average of 34 interactions per bunch crossing were observed during Run 2 data taking.
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Electrons are reconstructed from ID tracks originating from the PV that are matched to
clusters of energy deposits in the electromagnetic calorimeter [97]. The compatibility of the
track and the PV is satisfied by a requirement on the transverse impact parameter significance
|d0|/σd0 < 5, and on the longitudinal impact parameter |z0 sin θ| < 0.5 mm. Electron
candidates must satisfy requirements on the electromagnetic shower shapes, track quality,
and track-cluster matching, using a likelihood-based approach [97], where the Tight operating
point is used for this study. Electrons are also required to have a pT larger than 27 GeV
and |η| < 2.47, with the transition region between the barrel and endcap electromagnetic
calorimeters, 1.37 < |η| < 1.52, being excluded. Finally, to reduce contributions from hadrons
mimicking electron signatures or non-prompt electrons from heavy-flavour decays or photon
conversions, a multivariate classifier is used. This classifier considers the energy deposits
and charged-particle tracks in a cone around the electron direction and information from
secondary vertices [98].

Muon reconstruction [99] is based on matching MS tracks to ID tracks. A combined fit
is then performed incorporating the information from the ID, MS and the energy deposits
in the calorimeter system. Similar to electrons, muon candidates have to satisfy selection
requirements on the impact parameters: |d0|/σd0 < 3 and |z0| < 0.5 mm. Muon candidates
are required to have a minimum pT of 27 GeV and lie within |η| < 2.5. Furthermore, they
are required to satisfy the Medium identification operating point. However, candidates with
pT > 300 GeV must satisfy tighter identification requirements in the MS to improve the pT

resolution [99]. To reduce contributions from non-prompt muons from heavy-flavour decays,
muon candidates are required to be isolated in the ID system using the TightTrackOnly

operating point [99]. A muon is considered to be isolated if the pT sum within a cone around
the combined track is smaller than 0.06 times the muon’s transverse momentum, pµ

T. The size
of the isolation cone is ∆R = min(0.3, 10 GeV/pµ

T) for pµ
T < 50 GeV, and remains constant

at ∆R = 0.2 for pµ
T > 50 GeV.

Three jet types are reconstructed, using the anti-kt [100] algorithm as implemented
in the FastJet package [101]: small-radius (denoted small-R) jets, large-radius (denoted
large-R) jets, and variable-radius jets. The small-R jets are built using a radius parameter
of R = 0.4 and particle-flow objects as input [102]. They are required to have pT > 25 GeV
and |η| < 2.5. To reduce the contamination from jets originating from pile-up interactions, a
selection requirement on a multivariate classifier is applied to the selected jets. This classifier
is based on calorimeter and tracking information and is applied to jets with pT < 60 GeV
and |η| < 2.4 [103]. Large-R jets are used to reconstruct high-momentum Higgs or W -boson
candidates, for which the hadronic decay products are emitted with small angular separation.
These jets are built using a radius parameter of R = 1.0 and topological calorimeter clusters
with noise suppression as input [104]. The clusters are locally calibrated [105] before being
combined into jets. Trimming [106] is used to minimise contributions from initial-state
radiation, pile-up interactions or the underlying event. This is done by reclustering the
constituents of the initial jet, using the kt algorithm [107, 108], into subjets with a radius
parameter of Rsub = 0.2 and then removing any subjet with a pT less than 5% of the pT of the
parent jet [109]. The trimmed large-R jets are required to have pT > 250 GeV and |η| < 2.0.
The momenta of both the small-R and large-R jets are corrected for energy losses in passive
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material and for the non-compensating response of the calorimeter. Small-R jets are also
corrected for the average additional energy due to pile-up interactions [110, 111]. A third type
of jets is clustered from ID tracks using a variable radius (VR) parameter that shrinks with
increasing pT of the studied proto-jet [112]. VR track-jets are used in this analysis to identify
decays of boosted Higgs bosons into a pair of bottom quarks. The VR track-jets must contain
at least two ID tracks compatible with the PV and must have pT > 7 GeV as well as |η| < 2.5.

Small-R jets containing b-hadrons are identified (b-tagged) using the DL1r b-tagging
algorithm [113] based on a deep neural network that combines information from displaced
tracks and reconstructed secondary and tertiary vertices inside jets. A jet is b-tagged if
the response value of the DL1r algorithm exceeds a predefined threshold. Four operating
points are defined with efficiencies of 60%, 70%, 77%, and 85% for b-jets, as measured in
simulated tt̄ events. These operating points divide the DL1r response score distribution into
five intervals. The lower edge of the lowest interval corresponds to a b-tagging efficiency of
100%, and the upper edge of the highest interval corresponds to an efficiency of 0%. These
intervals are referred to as pseudo-continuous operating points. The number of b-tagged
jets per event is evaluated at a fixed b-tagging efficiency of 77%. Applying the b-tagging
algorithm at this operating point reduces the number of light-flavour and gluon jets, and jets
containing c-hadrons, by a factor of 192 and 5.6, respectively [113]. The pseudo-continuous
operating points are used as input to the machine learning algorithms that are designed
to reconstruct the charged Higgs boson’s decay chain. For this purpose, a score, wDL1r, is
defined for each jet as the number of pseudo-continuous operating points the jet satisfies,
where zero corresponds to failing and four to satisfying all operating points.

Boosted h → bb̄ decays are identified exploiting the kinematics of the large-R jet as well
as the flavour-tagging information of up to three VR track-jets that are spatially matched via
ghost-association [114] to the reconstructed large-R jet [115]. The identification algorithm
is based on a feed-forward neural network which is trained using the probabilities of the b-,
c- and light-flavour hypotheses of the three leading VR track-jets7 and the pT and η of the
large-R jet. The neural network is trained to separate boosted h → bb̄ jets from boosted
top-quark jets and jets arising from multijet processes. The network maps the input vector
to a three-dimensional output layer. The three output nodes quantify the probabilities for
a large-R jet to correspond to the signal class, and to either of the two background classes.
The three output nodes of the neural network are combined into a single discriminant:

DXbb = ln
pHiggs

ftop · ptop + (1 − ftop) · pmultijet
,

where ftop determines the fraction of top-quark jets, which is set to ftop = 0.25 [115].
Furthermore, pHiggs, ptop, and pmultijet are the probabilities for the Higgs boson jet, top-quark
jet, and multijet hypotheses. An operating point that corresponds to a selection efficiency of
60% for large-R jets containing h → bb̄ decays is chosen for this analysis. The h → bb̄ tagging
algorithm reduces contributions from multijets and boosted top-quark jets by a factor of 92
and 31, respectively [115], as measured in simulated tt̄ events.

7If there are fewer than three associated track-jets with pT > 7 GeV, the inputs corresponding to any

missing subjets are replaced with the mean input values.
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Electrons, muons, and jets are reconstructed and identified independently. This can lead
to ambiguous identifications when these objects are spatially close to each other. Therefore,
an overlap removal procedure is applied to uniquely identify these objects. First, the closest
small-R jet within a cone of size ∆R = 0.2 around an electron is removed. Furthermore, a
small-R jet with fewer than three associated tracks is removed if the jet is within a cone
of ∆R = 0.2 around a selected muon. Finally, electrons and muons are discarded if they
are within a cone of size ∆R = min(0.4, 0.04 + 10 GeV/pℓ

T) around the axis of any surviving
jet, where pℓ

T is the transverse momentum of the electron or muon. The latter requirement
reduces the background contribution from semileptonic decays of heavy-flavour hadrons.

The missing transverse momentum (with magnitude Emiss
T ) is computed as the negative

vector sum of the pT of selected electrons, muons and jets, plus a track-based soft term,
i.e. all tracks compatible with the PV and not associated with any lepton or jet used in
the Emiss

T calculation [116].

5 Analysis strategy and event selection

This analysis selects events consistent with the ℓ±νbb̄bb̄qq̄ final state. The pp collision events
are retained for further analysis using single-lepton triggers [117, 118]. The transverse
momentum thresholds range from 24 GeV to 26 GeV for single-electron triggers and from
20 GeV to 26 GeV for single-muon triggers, depending on the data-taking period. The trigger-
level lepton is required to match within ∆R = 0.07 (0.1) a reconstructed electron (muon)
with pT > 27 GeV.

Two different analysis strategies are applied to ensure high sensitivity to both low- and
high-mass resonances. One analysis strategy targets the ‘resolved’ event topology, in which the
final state objects are well separated from each other. The second analysis strategy targets the
‘merged’ event topology, in particular events containing hadronic decays of strongly boosted
Higgs and W bosons. These decays are reconstructed using large-R jets.

Events are required to contain one prompt electron or muon with pT > 27 GeV and a
missing transverse momentum of Emiss

T > 30 GeV. Events with an additional lepton with
pT > 10 GeV that satisfies the Medium (Tight) identification criteria for muons (electrons) are
vetoed to reduce contributions from top-quark pair events and Z+jets production. In addition,
events for the resolved categories are required to contain at least five small-R jets of which at
least two have to be b-tagged. For the merged categories, events are required to contain at
least one large-R jet. Among all large-R jets in the event, exactly one has to be identified as
a h → bb̄ candidate using the boosted h → bb̄ identification technique described previously.

This analysis targets two charged Higgs boson decay channels: H± → W ±h → ℓ±νbb̄

(referred to as the ℓ±νbb̄ channel) and H± → W ±h → qq̄bb̄ (referred to as the qq̄bb̄ channel).
Leptons from charged Higgs boson decays generally tend to have higher momenta and are
more centrally located in the detector compared with those from top-quark decays. This
allows to exploit the differences in the event kinematics to separate the two decay channels.
The ℓ±νbb̄ and qq̄bb̄ channels are created to be mutually exclusive using distinct selection
criteria. Dedicated analysis techniques including machine learning are employed to reconstruct
the targeted charged Higgs boson decay modes. These techniques are detailed in sections 5.1
and 5.2 for the resolved and merged analyses, respectively.
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To fully reconstruct the H± → W ±h → ℓ±νbb̄ decay chain, the four-vector of the neutrino
has to be determined. The px and py components of the neutrino momentum are directly
obtained by the pmiss

x and pmiss
y , while the longitudinal component of the neutrino momentum

is calculated by applying an on-shell W -boson mass constraint to the charged lepton plus
neutrino system. This approach leads to a quadratic equation, which provides either two, one,
or zero real solutions. If it does not have an existing real solution, the missing momentum
vector ~p miss

T is rotated until a real solution is found. If this procedure leads to ambiguities,
the rotation which provides the minimal change in the ~p miss

T is chosen. If two real solutions
are obtained, the solution with the smallest |pν

z | is used [119].

Both the resolved and merged analyses are applied to all events, and the same events can
be selected by either analysis. Hence, the final search result is reported using the analysis
that is most sensitive to the specific mass hypothesis being tested (cf. section 8).

5.1 Reconstruction and classification of resolved charged Higgs boson decays

For low charged Higgs boson masses, the ℓ±νbb̄ and qq̄bb̄ decay channels produce identical
detector signatures, as indicated in figure 1. To differentiate between them, events are
classified based on a requirement on the reconstructed leptonic top-quark mass, mlep

top. This
observable is calculated from the four-vector sum of a selected b-tagged jet, the charged lepton,
and the neutrino candidate. Since several b-tagged jets are present in the event, the selected
b-tagged jet is chosen to minimise |mℓνj − 172.5 GeV|, where mℓνj is the invariant mass of
the combined b-tagged jet, charged lepton, and neutrino system. While mlep

top is distributed
around the top-quark pole mass for events containing a leptonically decaying top quark (as
in the qq̄bb̄ channel), it exhibits broader distributions at higher values for true ℓ±νbb̄ events.
Consequently, events with mlep

top > 225 GeV are classified into the ℓ±νbb̄ analysis channel,

while those with mlep
top ≤ 225 GeV are classified as qq̄bb̄ candidates. Distributions of the mlep

top

observable are presented in figure 2 for a representative charged Higgs boson mass.

The accuracy of the classification requirement on mlep
top varies as a function of the charged

Higgs boson mass. For a mass of 250 GeV, around 40% (45%) of the signal events are
correctly classified into the qq̄bb̄ (ℓ±νbb̄) analysis channel. The success rates increase with
increasing charged Higgs boson mass, reaching values around 75% (90%) for the qq̄bb̄ (ℓ±νbb̄)
analysis channel.

The charged Higgs boson decays are reconstructed either via a charged lepton, a neutrino
candidate, and two small-R jets (for the ℓ±νbb̄ decay mode) or via four small-R jets (for the
qq̄bb̄ decay mode). Reconstructing the decay of the charged Higgs boson is challenging due
to the large number of objects produced in association with it. To address this challenge,
sets of boosted decision trees (BDTs) are used to identify the correct decay products of the
charged Higgs boson. This allows the four-momentum, and thus the invariant mass, of the
heavy scalar to be reconstructed. One set of BDTs is applied to events in the ℓ±νbb̄ category,
and another set of BDTs is applied to events in the qq̄bb̄ category. The BDTs are trained
to distinguish between the correct pairings of the final state objects, i.e. leptons and jets,
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Figure 2. Distributions of the mlep
top observable for H± → W ±h → ℓ±νbb̄ and H± → W ±h → qq̄bb̄

decays as well as the sum of backgrounds after the preselection requirements of the resolved analysis.
The distributions are presented for a representative charged Higgs boson mass of mH± = 800 GeV.
All distributions are normalised to unit area. The dashed vertical line indicates the threshold of the
selection requirement on mlep

top used to define the ℓ±νbb̄ and qq̄bb̄ analysis regions.

labelled as signal, and the incorrect pairings labelled as background.8 All available signal
samples are used to train the BDTs. However, the BDT performance remains stable when
adding or removing individual mass points.

The BDTs are implemented into the analysis using the TMVA package [120]. Both sets
of BDTs contain a total of 400 decision trees, using the Gradient Boost algorithm with a
learning rate of 0.1 and a maximum depth of five.

The BDTs dedicated to reconstruct the charged Higgs boson in the resolved ℓ±νbb̄

category are trained on seven input features built from the four-vectors of the charged
lepton, the neutrino candidate and the two jets used to construct the W and Higgs boson
candidates. These features are the invariant mass of the Higgs boson candidate (mj1j2), the
azimuthal angular difference and the pseudorapidity difference between the Higgs boson
candidate and the W -boson candidate (∆Φ(ℓν, j1j2) and |∆η(ℓν, j1j2)|), the ratio of the
Higgs boson transverse momentum to the invariant mass of the reconstructed charged Higgs
boson candidate (pj1j2

T /mℓνj1j2), the ratio of the W -boson transverse momentum to the
invariant mass of the reconstructed charged Higgs boson candidate (pℓν

T /mℓνj1j2), and the
pseudo-continuous b-tagging intervals of the two jets used to build the Higgs boson candidate
(wj1

DL1r and wj2

DL1r).

These BDTs are iteratively applied to all possible lepton, neutrino, and dijet pairings
of events in the resolved ℓ±νbb̄ category. The pairing with the largest BDT score, wmax

BDT, is
used to construct the four-momentum vector (and hence the invariant mass) of the charged
Higgs boson candidate. Furthermore, the wmax

BDT distribution is used to define signal and

8To determine whether a pairing is correct, generator-level particles (i.e. the decay products of the Higgs

and W bosons) are spatially matched to the reconstructed objects. A dijet system is considered correctly

associated with the generator-level Higgs or W boson if its angular distance to the combined four-vectors of

the decay products of the Higgs or W boson is smaller than 0.3. The matching between the charged lepton +

neutrino system and the corresponding generator-level particles is based on the same criteria.
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control regions, motivated by the fact that the dominant backgrounds tend to have lower
wmax

BDT values than the signal process.
The BDTs dedicated to the resolved H± → W ±h → qq̄bb̄ decay are trained on ten

input features built from the four-vectors of the four jets used to construct the W and
Higgs boson candidates. These features are the invariant mass of the Higgs boson and W -
boson candidates (mj1j2 and mj3j4), the azimuthal angular difference and the pseudorapidity
difference between the Higgs boson candidate and the W -boson candidate (∆Φ(j1j2, j3j4)

and |∆η(j1j2, j3j4)|), the ratio of the Higgs boson candidate’s transverse momentum to the
invariant mass of the reconstructed charged Higgs boson candidate (pj1j2

T /mj1j2j3j4), the ratio
of the W -boson transverse momentum to the invariant mass of the reconstructed charged
Higgs boson candidate (pj3j4

T /mj1j2j3j4), and the pseudo-continuous b-tagging intervals of
the four jets (wj1

DL1r, wj2

DL1r, wj3

DL1r, and wj4

DL1r).
These BDTs are iteratively applied to all possible four-jet pairings of events in the

resolved qq̄bb̄ category. The pairing with the largest wmax
BDT value is used to construct the

four-momentum vector and the invariant mass of the charged Higgs boson candidate. Again,
selection requirements on the wmax

BDT observable are used to define signal and control regions.
To protect against potential biases due to overtraining, a two-fold cross-validation is

employed. Events are randomly divided into two equal-sized subsamples, A and B. Two
independent boosted decision trees are trained on the two subsamples. The BDTs trained
on sample A are evaluated with sample B and vice versa. Half of the data are analysed
with the BDTs trained on sample A, and the other half with the BDTs trained on sample
B. Finally, the output distributions from both BDTs are merged for both simulated and
collision data. This approach results in four sets of BDTs: two for the ℓ±νbb̄ channel and
two for the qq̄bb̄ channel.

The sets of BDTs perform well in reconstructing the targeted final states. At a charged
Higgs boson pole mass of 500 GeV, the final state is reconstructed correctly in about 55% (45%)
of the time for the H± → W ±h → ℓ±νbb̄ (H± → W ±h → qq̄bb̄) decay mode.9 The success
rates increase with increasing charged Higgs boson mass values, reaching around 90% for both
decay modes at masses above 1 TeV. The reconstruction efficiency drops to around 12% for
the lowest considered Higgs boson masses, as the decay products tend to fail the kinematic
selection requirements and the charged Higgs boson decay cannot be fully reconstructed.

The invariant masses of the reconstructed charged Higgs bosons are determined with a
resolution10 below 10% for both decay chains and all event categories. The corresponding
invariant mass distributions of the reconstructed final states are shown in figure 3, separated
by decay mode and for different signal mass hypotheses.

Finally, events are further categorised according to the overall number of jets (j), and
the number of b-tagged jets (b) in the event. In this context, four exclusive categories are
defined: 5j3b, 5j ≥ 4b, ≥ 6j3b, and ≥ 6j ≥ 4b.

9This reconstruction efficiency is defined as the ratio of the number of correctly reconstructed ℓ±νbb̄ (qq̄bb̄)

decays to the number of true ℓ±νbb̄ (qq̄bb̄) events satisfying the preselection and classification requirements.
10The mass resolution is determined by fitting the convolution of a Gaussian and an exponential function

(i.e. a Bukin function [121]) through the distributions of (mW ±h − mtruth
W ±h

)/mtruth
W ±h

, where mW ±h and mtruth
W ±h

represent the reconstructed and generator-level invariant masses of the W ±h system, respectively. The

extracted mass resolution values are given by one standard deviation of the Gaussian component.
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Figure 3. Distributions of the invariant mass of the (a) H± → W ±h → ℓ±νbb̄ and
(b) H± → W ±h → qq̄bb̄ signal hypotheses presented for a selection of different charged Higgs boson
pole masses. The final states are reconstructed by applying boosted decision trees to events satisfying
the resolved preselection requirements. All distributions are normalised to unit area.

5.2 Reconstruction and classification of merged charged Higgs boson decays

For sufficiently high charged Higgs boson masses, the ambiguities between the ℓ±νbb̄ and qq̄bb̄

decay channels are largely reduced due to their distinct detector signatures. Thus, the events
in the merged analysis are classified based on the number and properties of selected large-R
jets. The qq̄bb̄ category requires one large-R jet tagged as a h → bb̄ candidate and another
large-R jet with a mass mJ within the W -boson mass window, 50 GeV < mJ < 110 GeV
(NW −tags = 1). Events lacking a second large-R jet with mass around the W boson pole
mass (NW −tags = 0) are classified as ℓ±νbb̄. Consequently, the charged Higgs boson decays
are reconstructed using a charged lepton, a neutrino candidate, and one large-R jet (for the
ℓ±νbb̄ channel) or two large-R jets (for the qq̄bb̄ channel). Events are further categorised
based on the number of additional b-tagged jets (b), considering only small-R jets that are
spatially separated from any large-R jet used in the analysis. Two exclusive categories are
defined, 0b and ≥ 1b, based on the number of b-tagged small-R jets.

A neural network (NN) algorithm is used to further distinguish between the signal and
background processes. Its architecture is sequential with three (two) fully connected dense
layers of 128 nodes for the merged ℓ±νbb̄ (qq̄bb̄) category. The NNs are implemented with the
Python-based deep learning library, Keras [122]. The networks are trained and optimised
separately for the ℓ±νbb̄ and qq̄bb̄ decay modes, due to differences in the event kinematics.
Both networks use the Adam optimiser [123] to minimise a Binary Cross Entropy loss function
and seven input features. All signal samples with charged Higgs boson masses greater than or
equal to 1200 GeV are used to train the NNs. Lower mass hypotheses were excluded from the
training to optimise the NN performance for the high-mass hypotheses. Consequently, the NNs
tend to assign lower scores to lower mass hypotheses due to their inherent mass dependence.

The NN for the merged ℓ±νbb̄ category is trained on input features built from the
leptonically decaying W boson (W lep) obtained from the four-vector sum of the charged
lepton and the neutrino candidates and the large-R jet used to construct the boosted
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Figure 4. Distributions of the invariant mass of the (a) H± → W ±h → ℓ±νbb̄ and
(b) H± → W ±h → qq̄bb̄ signal hypotheses presented for a selection of different charged Higgs boson
pole masses. The final states are reconstructed using either a charged lepton, a neutrino candidate,
and one large-R jet (for the ℓ±νbb̄ channel) or via two large-R jets (for the qq̄bb̄ channel) for events
entering the merged analysis regions. All distributions are normalised to unit area.

Higgs boson candidate. These features are the angular separation between the charged
lepton and the Higgs boson candidate (∆R (ℓ, h)), the azimuthal angular difference and the
pseudorapidity difference between the Higgs boson candidate and the reconstructed W boson
(∆φ

(

W lep, h
)

and |∆η
(

W lep, h
)

|), the ratio of the Higgs boson transverse momentum to
the invariant mass of the reconstructed charged Higgs boson candidate (pT,h/mW h), the ratio
of the W -boson transverse momentum to the invariant mass of the reconstructed charged
Higgs boson candidate (pT,W lep/mW h), the reconstructed leptonic top-quark mass (mlep

top),
which is calculated in the same way as for the resolved analysis, and the ratio of the W -boson
transverse momentum to the transverse momentum sum of all the decay products of the
charged Higgs boson candidate (pT,W lep/

(

pT,W lep + pT,h

)

).

The NN for the merged qq̄bb̄ category is trained on input features built from the
charged lepton and neutrino candidates and the two large-R jets used to reconstruct the
hadronically decaying W -boson (W had) and the Higgs boson candidates. Similar to the
NN trained for the merged ℓ±νbb̄ category, the ∆R (ℓ, h), ∆φ

(

W had, h
)

, |∆η
(

W had, h
)

|,
pT,h/mW h, and pT,W /mW h observables are used in the training. In addition, the angular
separation between the charged lepton and the hadronically decaying W -boson candidate
(∆R

(

ℓ, W had
)

), and the ratio of the transverse momentum of the leptonically decaying
W -boson candidate to the transverse momentum sum of the leptonically decaying W -boson
candidate, the hadronically decaying W -boson candidate and the Higgs boson candidate
(pT,W lep/

(

pT,W lep + pT,W had + pT,h

)

), are used as input features.

The same two-folded cross-validation approach as used in the BDT training is employed
in the NN training to mitigate any bias due to overtraining.

The invariant mass of the charged Higgs boson candidates is reconstructed in all event
categories with a resolution below 9% for the ℓ±νbb̄ category and below 6% for the qq̄bb̄

category. The corresponding charged Higgs boson invariant mass distributions are shown
in figure 4, separated by decay mode and for various signal mass hypotheses.
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Resolved analysis Merged analysis

Decay channel ℓ±νbb̄ qq̄bb̄ ℓ±νbb̄ qq̄bb̄

Preselection

N ℓ = 1

Emiss
T > 30 GeV

N small−R jets ≥ 5 N large−R jets ≥ 1

N b−tags ≥ 2 Nh−tags = 1

Classification requirement
mtop > 225 GeV mtop < 225 GeV NW −tags = 0 NW −tags = 1

5j3b, 5j ≥ 4b, ≥ 6j3b, and ≥ 6j ≥ 4b 0b and ≥ 1b

Table 2. Topological and kinematic selections for each channel and category as described in the text.
Events are further classified according to the number of b-tagged jets in the events.

5.3 Definition of signal and control regions

The topological and kinematic preselection requirements of the resolved and merged event
categories and the classification requirements used to distinguish the ℓ±νbb̄ and qq̄bb̄ decay
chains are summarised in table 2. The signal and control regions are finally defined by applying
additional selection criteria on top of the preselection and event classification requirements.

The signal and control regions of the resolved analysis are obtained based on selection
requirements on the wmax

BDT observable. A dedicated signal and control region is defined for
each of the four 5j3b, 5j ≥ 4b, ≥ 6j3b, and ≥ 6j ≥ 4b categories. Hence, eight regions
are used in the resolved ℓ±νbb̄ channel:

• Signal regions (SRs) are defined by wmax
BDT ≥ 0.7,

• Control regions (CRs) are defined in the range of −0.5 ≤ wmax
BDT < 0.5.

Twelve regions are used in the resolved qq̄bb̄ channel:

• High-purity signal regions are defined by wmax
BDT ≥ 0.9,

• Low-purity signal regions are defined by 0.0 ≤ wmax
BDT < 0.9 for events with exactly three

b-tagged jets and by 0.6 ≤ wmax
BDT < 0.9 for events with at least four b-tagged jets,

• Control regions are defined in the range of −0.5 ≤ wmax
BDT < 0.0 for events with exactly

three b-tagged jets and by −0.5 ≤ wmax
BDT < 0.6 for events with at least four b-tagged

jets.

Events enter the signal regions of the merged analysis, if the mass of the h → bb̄ tagged
large-R jet (mh) is in a window around the Higgs boson pole mass, 95 GeV ≤ mh < 140 GeV.
The signal regions are further split based on the NN output score. A dedicated signal
region is defined for each of the 0b and ≥ 1b categories. Hence, six regions are used for
the merged ℓ±νbb̄ channel:

• High-NN-score signal regions are defined by wNN ≥ 0.83,
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• Medium-NN-score signal regions are defined by 0.4 ≤ wNN < 0.83,

• Low-NN-score signal regions are defined by wNN < 0.4.

In the merged qq̄bb̄ channel four regions are used:

• High-NN-score signal regions are defined by wNN ≥ 0.2 (wNN ≥ 0.1) for events with
(without) additional b-tagged jets,

• Low-NN-score signal regions are defined by wNN < 0.2 (wNN < 0.1) for events with
(without) additional b-tagged jets.

Furthermore, two sets of sideband control regions are defined in the merged event
categories by inverting the selection requirement on mh. Low-mass sidebands (50 GeV ≤
mh < 95 GeV) are defined to constrain the W+jets background, while high-mass sidebands

(140 GeV ≤ mh < 250 GeV) are defined to target backgrounds containing boosted top quarks.
Again, a dedicated region is defined per 0b and ≥ 1b category. The various signal and control
regions are summarised in table 3.

The products of kinematic acceptance and reconstruction efficiency for
pp → tbH±(→ W ±h) is presented in figures 5 and 6 separately for all signal regions
of the resolved and merged ℓ±νbb̄ and qq̄bb̄ decay channels. In this context, the acceptance is
defined as the fraction of simulated signal events for which the expected final state particles
satisfy all relevant object definition requirements. The denominator of the acceptance is
calculated considering simulated signal events with inclusive decays of the W boson, and
h → bb̄ decays of the 125 GeV Higgs boson. The reconstruction efficiency is defined as the
ratio of simulated signal events that satisfy all selection criteria for a given signal region to
the total number of simulated signal events that satisfy the acceptance requirements.

6 Background modelling

The background composition in the signal and control regions depends on the event categories
and b-jet multiplicities. In the resolved analysis categories, the dominant background source
is tt̄ + jets production, contributing between 81% and 95% of the total background. Other
backgrounds such as W/Z + jets or Wt production are significantly smaller. In the merged
categories, the most significant background contributions stem from tt̄ + jets and W + jets
production. Contributions from diboson, SM V h, tt̄h, tt̄V , and from the rare top-quark
processes (i.e. tZq, tWZ, tHjb, tWh, and tt̄tt̄) are small in all channels. Background
contributions from events containing non-prompt leptons are found to be negligible. These
findings are consistent with previous studies in the same and similar final states [34, 124].

Backgrounds are estimated from samples of simulated events, where the normalisation
of the dominant backgrounds is obtained from data. In addition, shape corrections are
derived for the tt̄ + jets production process. These corrections are necessary because the
additional jets in the tt̄ + jets events are produced by the parton shower, which leads
to a mis-modelling of high jet multiplicities and the hardness of additional jet emissions.
Hence, in the resolved analysis channels, the simulated tt̄ + jets events are reweighted as
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Figure 5. Product of acceptance and efficiency for pp → tbH±(→ W ±h) as a function of the charged
Higgs boson mass for (a) the resolved qq̄bb̄ low-purity signal regions, (b) the resolved qq̄bb̄ high-purity
signal regions, and (c) the resolved ℓ±νbb̄ signal regions.
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Figure 6. Product of acceptance and efficiency for pp → tbH±(→ W ±h) as a function of the charged
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Region Requirement ℓ±νbb̄ channel qq̄bb̄ channel

Resolved

Signal regions
Jet & b-tag multiplicity 5j3b, 5j ≥ 4b, ≥ 6j3b, ≥ 6j ≥ 4b

BDT score wmax
BDT ≥ 0.7 wmax

BDT ≥ 0.9

Low-purity signal regions

Jet & b-tag multiplicity 5j3b, 5j ≥ 4b, ≥ 6j3b, ≥ 6j ≥ 4b

BDT score –
0.0 ≤ wmax

BDT < 0.9 (for events with 5j3b or ≥ 6j3b)

0.6 ≤ wmax
BDT < 0.9 (for events with 5j ≥ 4b or ≥ 6j ≥ 4b)

Control regions

Jet & b-tag multiplicity 5j3b, 5j ≥ 4b, ≥ 6j3b, ≥ 6j ≥ 4b

BDT score −0.5 ≤ wmax
BDT < 0.5

−0.5 ≤ wmax
BDT < 0.0 (for events with 5j3b or ≥ 6j3b)

−0.5 ≤ wmax
BDT < 0.6 (for events with 5j ≥ 4b or ≥ 6j ≥ 4b)

Merged

High-NN score signal region

b-tag multiplicity 0b, ≥ 1b

Mass window 95 GeV ≤ mJ < 140 GeV

NN score wNN ≥ 0.83
wNN ≥ 0.2 (for events with 0b)

wNN ≥ 0.1 (for events with ≥ 1b)

Medium-NN score signal region

b-tag multiplicity 0b, ≥ 1b

Mass window 95 GeV ≤ mJ < 140 GeV

NN score 0.4 ≤ wNN < 0.83 —

Low-NN score signal region

b-tag multiplicity 0b, ≥ 1b

Mass window 95 GeV ≤ mJ < 140 GeV

NN score wNN < 0.4
wNN < 0.2 (for events with 0b)

wNN < 0.1 (for events with ≥ 1b)

Low-mass control region

b-tag multiplicity 0b, ≥ 1b

Mass window 50 GeV ≤ mJ < 95 GeV

NN score –

High-mass control region

b-tag multiplicity 0b, ≥ 1b

Mass window 140 GeV ≤ mJ < 250 GeV

NN score –

Table 3. Summary of signal and control regions considered in the statistical analysis for the resolved
and merged channels.

a function of the Hall
T observable.11 The reweighting function is obtained from fits to the

data-to-simulation ratio in events with one charged lepton, Emiss
T > 30 GeV, and at least five

jets of which exactly two are b-tagged (≥ 5j2b) following the approach detailed in ref. [34].
This reweighting procedure is performed separately for different jet multiplicity intervals,
distinguishing events with five, six, seven, or at least eight jets. The reweighting factors
are expressed as a function of the Hall

T observable:

ri

(

Hall
T

)

=
NData

i

(

Hall
T

)

− NMC,non−tt̄
i

(

Hall
T

)

NMC,tt̄
i

(

Hall
T

)

,

where Ni is the number of events in a Hall
T interval and the i-th jet bin. The ensemble of

ri

(

Hall
T

)

is fitted per jet bin with an exponential plus sigmoid functional form,12 which is
then used as a correction function applied to the 5j3b, 5j ≥ 4b, ≥ 6j3b and ≥ 6j ≥ 4b regions

11The Hall
T observable is defined as the scalar sum of the transverse momenta of all jets and the charged

lepton in the event.
12In addition a hyperbola plus sigmoid functional form and a 2nd order polynomial plus first order

exponential functional form were tested. However, the exponential plus sigmoid functional form was found

to fit the data best.
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of the ℓ±νbb̄ and qq̄bb̄ analysis channels. In contrast, the merged analysis channels are more
inclusive in jet multiplicity, making them less dependent on the modelling of the additional
jet activity. While a similar correction procedure was tested for the merged analysis, it did
not significantly improve the modelling of relevant observables. Thus, no such correction
procedure is applied in the merged analysis.

Events containing top-quark pairs are categorised according to the flavour of jets produced
in association with the tt̄ system. This categorisation procedure is based on generator-level
information, where jets are reconstructed from stable particles (i.e. particles with a mean
lifetime τ > 3 × 10−11 s) using the anti-kt algorithm with the radius parameter set to R = 0.4.
These jets are required to have pT > 15 GeV and |η| < 2.5, and their flavour is determined by
counting b- or c-hadrons with pT larger than 5 GeV within a cone of ∆R = 0.4 around the
jet axis. Jets including b-hadrons are labelled as b-jets, while jets that do not include any
b-hadron, but do include one or more c-hadrons are labelled as c-jets. Events that include at
least one b- or c-jet, not considering heavy-flavour jets from top-quark, W -boson, Z-boson
or Higgs-boson decays, are labelled as tt̄ + HF (with HF denoting ‘heavy flavour’). Events
not containing any heavy-flavour jets, aside from those from top-quark or W -boson decays,
are labelled as tt̄ + LF (with LF denoting ‘light flavour’).

The subdominant background processes are grouped into four components: single-top-
quark production (including s- and t-channels, Wt production, tZq, and tWZ), V V & V +
jets (including W/Z + jets, WW , ZZ, and WZ), tt̄ + X (including tt̄h, tt̄W , and tt̄Z), and
the remaining backgrounds referred to as ‘Others’ (including tHjb, tWh, tt̄tt̄, and SM V h).

7 Systematic uncertainties

The distributions of the mW ±h observable and the event yields in the signal and control
regions are affected by both experimental and modelling uncertainties, which enter the final
fits as nuisance parameters (NPs) [125]. Uncertainties in the modelling of physics objects
are correlated between signal and background processes, channels, kinematic regions and
distributions of observables. The modelling uncertainties are evaluated separately for the
signal and all relevant background processes.

7.1 Experimental systematic uncertainties

All experimental uncertainties, except for the luminosity uncertainty, impact both the
normalisation and shape of the simulated distributions. The dominant experimental
uncertainties are uncertainties in the flavour-tagging performance, in the jet energy scale
and resolution calibration, and in the modelling of the pile-up activity.

Uncertainties in the trigger selection, the charged lepton reconstruction, identification
and isolation criteria, as well as the lepton momentum scale and resolution are measured in
data applying tag-and-probe techniques to Z → ℓ+ℓ− events [97, 99]. These uncertainties
have only a small impact on the charged Higgs boson search.

The uncertainties in the small-R jet energy scale and resolution have contributions from
in situ calibration measurements, from the dependency on the pile-up activity and from
the flavour composition of the jets [110]. The uncertainty in the scale and resolution of
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the large-R jet energy and mass is derived by comparing the ratio of calorimeter-based to
track-based measurements in dijet data and simulation, as described in ref. [111].

Dedicated measurements are performed to calibrate the jet flavour-tagging efficiency
for b-jets and the mis-tagging rates for c- and light-flavour jets to the performance in data.
The results of these measurements are expressed as pT dependent correction factors that
are derived for b-jets in tt̄ events with dilepton final states [126], for c-jets in tt̄ events with
single-lepton final states [127] and in Z+jets events for light-flavour jets [128]. Uncertainties
in these correction factors are decomposed into uncorrelated components and then propagated
to the charged Higgs boson search. Additional uncertainties are considered to extrapolate the
measured efficiencies to high jet pT [129]. These terms are calculated from simulated events by
considering variations of the quantities affecting the b-tagging performance, such as the impact
parameter resolution, percentage of tracks from random combinations of measurements in
the ID, description of the detector material, and track multiplicity per jet.

The h → bb̄ identification efficiencies and the corresponding mis-identification rates for
boosted top-quark jets are corrected to data using dedicated measurements. Correction
factors and their corresponding uncertainties in the h → bb̄ identification efficiencies are
obtained from events containing Z → bb̄ decays [130]. The correction factors are dependent
on the large-R jet pT and vary from approximately 0.96 to 1.34 with uncertainties ranging
from around 30% to 35%. The mis-identification efficiency scale factors for boosted top
quarks are measured in top-quark pair events. They vary from 1.10 ± 0.12 at low pT to
1.00 ± 0.16 at high pT. Mis-identification efficiency uncertainties for light-quark and gluon
jets were estimated in the sideband control regions of the merged analysis by performing a
three-component fit to data: one component describing events in which the h → bb̄ tagged
jet originates from the decay of a boosted top quark, one component describing events in
which the h → bb̄ tagged jet originates from a light-quark or gluon, and a third component
describing events in which the tagged jet stems from a boosted Z, W , or Higgs boson. The
large-R jet mass distributions of these three components are fitted to data across different
jet pT intervals, excluding the Higgs boson mass region. In these fits, the normalisation
factors of the top-quark jet and light-quark or gluon jet components were allowed to vary
freely, while the third component was fixed to the SM prediction. The final uncertainties are
determined by summing the deviation of the central value from unity and the uncertainty
of a given normalisation factor. These uncertainties range from 7% at low large-R jet pT

to 41% for jets with pT exceeding 500 GeV.

The uncertainties in the energy scale and resolution of the small-R jets and leptons
are propagated to the calculation of Emiss

T , which also has additional uncertainties from
the modelling of the underlying event and the momentum scale, momentum resolution and
reconstruction efficiency of the tracks used to compute the soft-term [116].

Finally, a global luminosity uncertainty of 0.83% is applied to the normalisation of the
simulated signal and background samples [47, 50].

7.2 Modelling systematic uncertainties

Modelling uncertainties are taken into account for all simulated signal and relevant background
processes and cover three areas: shape uncertainties that account for uncertainties in the
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mW ±h template shapes used for the statistical analysis; absolute normalisation uncertainties;
and relative acceptance uncertainties (referred to as extrapolation uncertainties), that account
for differences in the acceptance between regions with a common floating normalisation factor,
e.g. migration effects between the signal and control regions, the ℓ±νbb̄ and qq̄bb̄ channels,
and the different jet multiplicity regions. While normalisation and shape uncertainties may be
described by a common nuisance parameter, extrapolation uncertainties are always described
by separate nuisance parameters. The modelling uncertainties are assessed by comparing
nominal and alternative event generators and the underlying event and parton shower models.
In general, the perturbative accuracy and the PDF sets used in these alternative configurations
match those of the nominal generators (unless explicitly stated). Uncertainties due to the
modelling of PDF sets are evaluated following the PDF4LHC recommendations [90], and
uncertainties due to missing higher orders are evaluated by varying the renormalisation and
factorisation scales, µR and µF , as described below.

For the signal processes, uncertainties in the acceptance are derived by comparing the
predictions of the nominal PDF set with those from the CT14 [131] and MMHT2014 [132]
PDF sets and then comparing the larger variation with the difference from the root-mean-
square spread of the nominal replica sets. The variation with the largest impact on the
results is taken as the final uncertainty. Further uncertainties are obtained by replacing
Pythia 8.244 by Herwig 7.2.2 for the showering and hadronisation, and by varying the
renormalisation and factorisation scales. The total acceptance uncertainties show substantial
variation across different charged Higgs boson masses, decay channels, and event categories.

The modelling uncertainties of the top-quark pair production processes are derived as
follows. To assess the uncertainties in the matching of the matrix element to the parton
shower, the nominal tt̄ + HF and tt̄ + LF samples are compared with samples where
Powheg Box is replaced by MadGraph5_aMC@NLO. The parton shower modelling
uncertainties are determined by replacing Pythia 8.230 by Herwig 7.0.4 and switching to the
H7UE set of tuned parameters [133]. The uncertainties in the modelling of the initial-state
radiation (ISR) and the final-state radiation (FSR) are addressed by varying the strong
coupling constant αS independently at the matrix element and the parton shower generation
stage. In the matrix element, the parameter αS is increased (decreased) to 0.140 (0.115)
instead of the nominal value 0.127, while in the parton shower αS is increased (decreased)
to 0.142 (0.115) instead of the nominal value. Uncertainties related to missing higher-order
terms in the perturbative expansion are estimated by scaling µR and µF independently
up and down by a factor of two. Additional uncertainties in the associated production of
top-quark pairs and b-quarks are estimated by comparing the predictions of the nominal
Powheg Box + Pythia sample, in which the extra b-quarks arise from the PS, to the
predictions of an alternative Powheg Box + Pythia sample simulated using the four-flavour
scheme. In the latter sample, an additional b-quark pair is produced in association with
the top-quark pair (tt̄bb̄) in the matrix element, which is calculated at NLO accuracy in
QCD. Furthermore, an uncertainty in the relative composition of the additional c- and b-jet
contributions in the tt̄ + HF sample is taken into account. This uncertainty is evaluated
by varying the relative normalisations of the tt̄+ ≥ 1b and tt̄+ ≥ 1c contributions according
to the predictions of the alternative MC generators relative to the predictions of the nominal
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MC generator configuration. These variations range from 10% to 30% in the regions of the
resolved analysis and from 3% to 30% in the regions of the merged analysis. While varying
the tt̄+ ≥ 1b and tt̄+ ≥ 1c contributions, the overall normalisation of the tt̄ + HF background
is kept constant. When calculating the modelling uncertainties for the tt̄ + HF and tt̄ + LF

processes, the same HT reweighting is applied to the nominal and alternative models.

A 5% uncertainty is considered on the cross-section of the Wt production mode and the
s- and t-channel production of single top quarks [134]. Uncertainties associated with the
matching of the matrix element and the parton shower and the choice of the parton shower
and hadronisation models, are estimated by comparing, for each of these three processes,
the nominal Powheg Box + Pythia 8.230 sample with alternative samples produced
using MadGraph5_aMC@NLO 2.62 + Pythia 8.140 and Powheg Box + Herwig 7.0.4,
respectively. Uncertainties associated with the interference between top-quark pair and Wt

production at NLO are evaluated by comparing the predictions of the nominal Wt sample
with those from an alternative sample generated with Powheg Box and Pythia 8.230 using
the diagram subtraction (DS) scheme [135] instead of the diagram removal scheme. Finally, an
8% uncertainty is considered on the cross-section of the tZq process, and a 50% uncertainty
is considered on the tWZ cross-section [34].

An uncertainty of +9%
−12%

in the tt̄h production cross-section is considered, including effects
from varying the factorisation and renormalisation scales, the PDF set, and αS [76, 136]. The
nominal Powheg Box + Pythia 8.230 sample is compared with a sample produced with
MadGraph5_aMC@NLO 2.60 + Pythia 8.230 to assess the uncertainty associated with
the matching of the matrix element and the parton shower, and to a sample generated with
Powheg Box + Herwig 7.0.4 for the uncertainty in the modelling of the parton shower.

The uncertainties in the normalisation of the tt̄Z and tt̄W ± backgrounds are +10.4%
−12.0%

and
+13.4%
−12.0%

, respectively and include effects from varying the factorisation and renormalisation
scales and the PDF set [137]. In addition, uncertainties in the choice of the parton shower and
hadronisation models and matching scheme for the tt̄Z and tt̄W ± processes are estimated
by comparing the nominal MadGraph5_aMC@NLO 2.33 + Pythia 8.210 samples to
alternative samples simulated using Sherpa 2.2.1 with the NNPDF3.0nnlo PDF set. For
the alternative tt̄W ± event samples, diagrams with up to one additional parton emission are
generated at NLO accuracy in QCD, and diagrams with two, three or four additional parton
emissions are generated at LO accuracy in QCD. For the production of tt̄Z events, diagrams
with up to four additional parton emission are generated at LO accuracy in QCD. In both
samples, the CKKW matching scale of the additional emissions was set to 30 GeV.

An overall 50% uncertainty is considered in the normalisation of the four-top-quarks
background [55, 138], while uncertainties of +7.5%

−15.4%
and +9.1%

−9.2%
are assigned to the thjb and

thW backgrounds [55]. These uncertainties cover effects from varying the renormalisation
and factorisation scales, the PDF set and αS .

In the merged event categories, the modelling uncertainties in the W +jets background are
determined as follows: uncertainties related to missing higher order terms in the perturbative
expansion are estimated by individually varying µR and µF by a factor of 2 or 0.5. Six
combinations are considered: (µR, µF ) = (0.5, 0.5), (0.5, 1.0), (1.0, 0.5), (1.0, 2.0), (2.0, 1.0),
and (2.0, 2.0) times their nominal value. The final uncertainty is derived as the variation
of µR and µF that has the largest impact on the results. Additionally, variations of the
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Sherpa merging scale are taken into account, where the nominal value, 20 GeV, is changed
to 30 GeV and 15 GeV. Furthermore, uncertainties in the parton shower evolution’s upper
cutoff scale are assessed by varying the resummation scale by factors of 1/

√
2 and

√
2 from

its nominal value. Additional modelling uncertainties are derived by comparing the nominal
W+jets sample to an alternative sample simulated using MadGraph5_aMC@NLO 2.6.5
with the NNPDF3.1nnlo PDF set. The alternative sample includes vector bosons with up
to three additional partons at NLO accuracy in QCD. Pythia 8.240 with the A14 set of tuned
parameters is used for showering and hadronisation, and the different jet multiplicities were
merged using the FxFx procedure [139]. In the resolved event categories, where the W+jets
background is nearly negligible, a flat 40% uncertainty is considered on the normalisation
of the W+jets background.

Both the resolved and merged analyses assign an uncertainty of 35% to the Z+jets
background normalisation, and a 50% uncertainty in the normalisation of the diboson
backgrounds. These normalisation uncertainties account for effects from varying the
renormalisation and factorisation scales, the merging scale and the PDF set and αS .

Additional uncertainties in the HT reweighting of the tt̄ + jets background in the resolved
analysis regions (cf. section 6) are evaluated by independently varying the fitted parameters
of the exponential plus sigmoid functional form within their uncertainties and reapplying the
reweighting procedure. The resulting differences in the normalisation and mW ±h shape of the
tt̄ + jets background compared with the nominal reweighting are assigned as a systematic
uncertainty. These uncertainties are evaluated separately for each jet multiplicity bin. In
addition to the nominal reweighting function, two other functional forms (cf. section 6) were
considered for the reweighting procedure. The differences in results between the nominal
and alternative functions are negligible compared to the MC statistical uncertainties of the
tt̄ + jets sample. Therefore, no additional uncertainty due to the choice of the reweighting
function is assigned.

Residual mismodelling (i.e. non-closure in the comparison between data and simulation)
of the transverse W -boson momentum, pT,W , distribution in the resolved analysis regions
and the pT,W /mW h, ∆Φ (W, h) and Emiss

T distributions in the merged analysis regions are
observed in the respective control regions. The non-closure uncertainties are derived by
parameterising the data-to-simulation ratios of mis-modelled observables. These parametric
functions are then used to reweight the observables and assess the impact on the shape of
the mW ±h distribution. The magnitude of the mW ±h shape differences reach up to 30% in
the tails of the distributions. The final uncertainty is quantified as the variation between the
reweighted and nominal mW ±h distributions, and is incorporated as an additional nuisance
parameter affecting all processes.

The relative modelling systematic uncertainties (at the pre-fit stage), impacting the
normalisation, cross-region extrapolation, and shape of the signal and background processes
are summarised in table 4.

8 Results

To test for the presence of a massive charged Higgs boson in data, the mW h templates
obtained from the simulated signal and background event samples are fitted to data using a
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tt̄ + HF tt̄ + LF tt̄ + X Single Top V V & V + jets Others Signal

Norm. float fixed 0.8%– 12% 1.1% – 4.7% 2%–34% 2.9%–47% float

PDF S 0.2%–0.5%, S — — — — 0.5%–6%

ISR S 0.7%–5%, S — — — — —

FSR S 1.3%–19%, S — — — — —

ME-PS matching S 2.0%–40%, S 0.6%–7%, S 0.6%–53%, S — — —

Parton shower S 3.3%–22%, S 1.7%–13%, S 2.2%–61%, S — — 1.0%–50%, S

4FS vs. 5FS S — — — — — —

Heavy-flavour composition S — — — — — —

DS vs. DR scheme (Wt) — — — 3.3%–68%, S — — —

Renormalisation/factorisation scales S 0.5%–3.0%, S — — — — 1.0%–13%, S

HT reweighting S 0.5%–6%, S — — — — —

pT,W non-closure S 0.5%–0.9%, S 0.7%–1.6%, S 2.7%–4%, S 1.8%–3.3%, S 1.1%–2.0%, S 3.0%–30%, S

5j ↔ ≥ 6j 17%–34% — — — — — —

SRs ↔ CRs 11%–33% — — — — — —

SRs ↔ low-purity SRs 6.8%–17% — — — — — —

Low-purity SRs ↔ CRs 5.2%–12% — — — — — —

ℓ±νbb̄ ↔ qq̄bb̄ 5.1%–17% — — — — — —

(a) Relative acceptance and normalisation uncertainties for the resolved analysis channels.
tt̄ + HF tt̄ + LF tt̄ + X Single Top V V & V + jets Others Signal

Norm. float float 0.5%-11% 5% – 50% float 0.5%- 50% float

PDF S S — — — — <0.5%

ISR S S — — — — —

FSR S S — — — — —

ME-PS matching S S 0.5%-28%, S 0.5%-26%, S S — —

Parton shower S S 0.5%-18%, S 0.5%-60%, S S — 0.8%-60%, S

4FS vs. 5FS S — — — — — —

Heavy-flavour composition S — — — — — —

DS vs. DR scheme (Wt) — — — 13%-86%, S — — —

Renormalisation/factorisation scales S S — — S — 0.5%–11%, S

pT,W /mW h non-closure S S 1.0%-4%, S 0.8%-9%, S S 0.7%-9%, S 0.5%-21%, S

∆Φ (W, h) non-closure S S 0.6%-1.2%, S 0.5%-1.2%, S S 0.5%-0.6%, S 0.5%-3.2%, S

Emiss
T non-closure S S 0.8%-8%, S 0.6%-8%, S S 4%-10%, S 0.5%-12%, S

0b ↔ ≥ 1b 4%–24% 11%–18% — — 8%–70% — —

ℓ±νbb̄ ↔ qq̄bb̄ 18%–35% 18%–50% — — 16%–60% — —

High-mass CRs ↔ low-mass CRs 3.4%–19% 3.7%–16% — — 10%–32% — —

CRs ↔ high-score SR 13.1%–22% 6%–30% — — 4%–28% — —

CRs ↔ medium-score SR 11%–17% 6%–22% — — 4%–12% — —

CRs ↔ low-score SR 6%–13% 2.7%–23% — — 6%–40% — —

Low-score SR ↔ high-score SR 17%–27% 7%–30% — — 11%–35% — —

Low-score SR ↔ medium-score SR 13%–19% 7%–23% — — 11%–14% — —

Medium-score SR ↔ high-score SR 7%–34% 11%–26% — — 14%–20% — —

(b) Relative acceptance and normalisation uncertainties for the merged analysis channels.

Table 4. Relative modelling systematic uncertainties (at the pre-fit stage) in the normalisation,
cross-region extrapolation, and shape of signal and the background processes included in the fits
described in the text. An ‘S’ indicates that a shape variation is included for the listed sources. ‘A ↔ B’
indicates relative acceptance uncertainties that account for the relative normalisation differences
between two regions, A and B, with a common floating normalisation factor (i.e. these are extrapolation
uncertainties). Furthermore, ‘norm.’ is the product of cross-section and acceptance variations, and a
value of ‘float’ indicates that the parameter is not constrained in the fit. A range of values means
that the size of the uncertainties vary between the regions included in the fit, where the minimum
and maximum relative uncertainties in the predicted yields are stated. No dedicated normalisation
uncertainty is taken into account for the tt̄ + LF background given that the normalisation of this
process is fixed by the HT reweighting. Each of the listed uncertainties is treated as uncorrelated
in the fits. The uncertainties are listed separately for (a) the resolved analysis channels and (b) the
merged analysis channels.
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binned maximum-likelihood approach based on the RooFit/RooStats framework [140–142].
Fits are simultaneously performed on the signal and control regions defined in section 5.3 to
constrain the normalisation of the main backgrounds and the nuisance parameters describing
the systematic uncertainties detailed in section 7. Each systematic variation is incorporated
in the fit as an individual nuisance parameter using a Gaussian constraint, while nuisance
parameters describing statistical uncertainties are incorporated using a Poisson constraint.
Systematic variations that are impacted by large statistical fluctuations are smoothed, while
systematic variations with negligible impact on the final results are pruned away. Asimov
data sets [143] are used to evaluate the expected performance of each fit.

As no significant excess over the SM expectations is found, the results of this search are
expressed as upper limits at the 95% confidence level on the production cross-section times
branching ratio of charged Higgs bosons for a wide range of resonance masses. The largest
deviation from the SM expectations is found for a charged Higgs boson mass of 900 GeV and
corresponds to a local significance of about 0.9 standard deviations (or equivalent a p-value,
i.e. the probability that the background can produce a fluctuation greater than the excess
observed in data, of 0.184). The limits are evaluated using the CLs method [144] and the
profile-likelihood-ratio test statistic in the asymptotic approximation [143].

Two separate likelihood fits are performed to search for charged Higgs bosons: one for the
resolved analysis and the other for the merged analysis. Each fit includes dedicated signal and
control regions for qq̄bb̄ and ℓ±νbb̄ decays (cf. section 5.3) and the fit models differ between
the analyses. The resolved fit has the signal cross-section and the global normalisation factor
of the tt̄+HF background as free parameters, while the merged fit has the signal cross-section
and the global normalisation factors of the tt̄ + HF, tt̄ + LF, and V V & V + jets backgrounds
as free parameters. Common normalisation factors are applied across all regions used in a
fit. However, dedicated nuisance parameters address extrapolation uncertainties between the
signal and control regions, decay channels, and the different jet multiplicity regions. The
corresponding extrapolation uncertainties are detailed in table 4. Normalisation factors and
uncertainties from background-only fits13 in the resolved and merged analysis categories are
summarised in table 5. The normalisation factors for the tt̄ + HF background exceed unity in
both resolved and merged analyses. The normalisation factors are consistent within about
one standard deviation across the two analyses. Furthermore, the normalisation factor for
the tt̄ + LF background component in the merged analysis is below unity, consistent with the
corrections obtained from the Hall

T reweighting in the resolved analysis.

13When performing signal-plus-background fits, the corresponding normalisation factors show minor

deviations from those obtained in the background-only fits. However, these differences are insignificant

in comparison to the uncertainties in the normalisation factors.
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Background Resolved analysis Merged analysis

tt̄ + HF 1.39 ± 0.18 1.20 ± 0.17

tt̄ + LF — 0.75 ± 0.08

V V & V + jets — 1.17 ± 0.13

Table 5. Post-fit normalisation factors and their uncertainties obtained from a combined background-
only fit to the various signal and control regions of the resolved and merged analyses. Numbers are
presented for the background components that are allowed to float in the likelihood fit. Uncertainties
in the cross-section times branching ratio and the overall acceptance are not considered in the
denominators of these normalisation factors.

In addition to constraining the normalisation of the dominant backgrounds, the fit
also constrains several modelling uncertainties. Significant constraints are observed in the
resolved analysis for nuisance parameters associated with the flavour composition, parton
shower modelling and matrix element to parton shower matching of the tt̄ + HF background.
Furthermore, nuisance parameters associated with the parton shower modelling of the tt̄ + LF

background and the comparison between the DS and DR schemes of the Wt background are
constrained substantially. The nuisance parameter corresponding to the flavour composition
of the tt̄ + HF background is constrained to 20% of its initial value, while the other nuisance
parameters listed above are constrained to about 40%-60% of their initial values. These
constraints are evident in fits on both Asimov and real data. In addition to the constraints,
a few significantly pulled nuisance parameters are observed in both analyses. In the resolved
analysis, the nuisance parameter associated with the pT,W non-closure uncertainty is pulled
by about one standard deviation. In the merged analyses, the nuisance parameters associated
with the Emiss

T non-closure uncertainty, the uncertainties related to missing higher order
terms in the perturbative expansion of the W + jets background, and the matrix element
to parton shower matching of the tt̄ + LF background are each pulled by around 0.7 to
0.8 standard deviations.

The mW ±h distributions after a background-only fit to data are shown in figures 7 to 8
for the control regions of the resolved and merged analyses. The corresponding signal region
distributions are shown in figures 9 to 11 for the signal regions of the resolved analysis
and in figures 12 to 14 for the signal regions of the merged analysis. Additionally, the
expected and observed event yields after fits of the backgrounds to data performed under
the background-only hypothesis are shown in table 6.
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Figure 7. Distributions of the mW ±h observable in the control regions of the resolved (a) qq̄bb̄ and
(b) ℓ±νbb̄ event categories. The term ‘Others’ summarises events from tHjb, tWh, tt̄tt̄, and SM V h

production. The distributions are presented after a background-only maximum-likelihood fit to data.
The lower panels show the ratio of the observed to the estimated SM background. The shaded bands
show the total post-fit uncertainty in the background.
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Figure 8. Distributions of the mW ±h observable in the control regions of the merged (a) qq̄bb̄ and
(b) ℓ±νbb̄ event categories. The term ‘Others’ summarises events from tHjb, tWh, tt̄tt̄, and SM V h

production. The distributions are presented after a background-only maximum-likelihood fit to data.
The lower panels show the ratio of the observed to the estimated SM background. The shaded bands
show the total post-fit uncertainty in the background.
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Figure 9. The mW ±h distributions in the low-purity signal regions (LP SR) of the resolved qq̄bb̄

event categories. The term ‘Others’ summarises events from tHjb, tWh, tt̄tt̄, and SM V h production.
The background prediction is shown after a background-only maximum-likelihood fit to data. The
lower panels show the ratio of the observed to the estimated SM background. The shaded bands
show the total post-fit uncertainty in the background. The expected signal contribution assuming
mH± = 700 GeV, normalised to a cross-section times branching ratio (σsig × B) of 6.4 pb, is shown as
a dashed histogram.
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Figure 10. The mW ±h distributions in the high-purity signal regions (HP SR) of the resolved qq̄bb̄

event categories. The term ‘Others’ summarises events from tHjb, tWh, tt̄tt̄, and SM V h production.
The background prediction is shown after a background-only maximum-likelihood fit to data. The
lower panels show the ratio of the observed to the estimated SM background. The shaded bands
show the total post-fit uncertainty in the background. The expected signal contribution assuming
mH± = 700 GeV, normalised to a cross-section times branching ratio (σsig × B) of 6.4 pb, is shown as
a dashed histogram.
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Figure 11. The mW ±h distributions in the signal regions (SRs) of the resolved ℓ±νbb̄ event categories.
The term ‘Others’ summarises events from tHjb, tWh, tt̄tt̄, and SM V h production. The background
prediction is shown after a background-only maximum-likelihood fit to data. The lower panels
show the ratio of the observed to the estimated SM background. The shaded bands show the total
post-fit uncertainty in the background. The expected signal contribution assuming mH± = 700 GeV,
normalised to different values of the cross-section times branching ratio (σsig × B), is shown as a
dashed histogram.
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Figure 12. The mW ±h distributions in the low-NN-score signal regions (low-NN-score SRs) and
high-NN-score signal regions (high-NN-score SRs) of the merged qq̄bb̄ event categories. The term
‘Others’ summarises events from tHjb, tWh, tt̄tt̄, and SM V h production. The background prediction
is shown after a background-only maximum-likelihood fit to data. The lower panels show the ratio of
the observed to the estimated SM background. The shaded bands show the total post-fit uncertainty in
the background. The expected signal contributions assuming mH± = 900 GeV and mH± = 2000 GeV,
normalised to cross-section times branching ratio (σsig × B) values of 1.8 pb and 27 fb respectively, are
shown as dashed histograms.
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Figure 13. The mW ±h distributions in the low-NN-score signal regions (low-NN-score SRs) and
medium-NN-score signal regions (medium-NN-score SRs) of the merged ℓ±νbb̄ event categories. The
term ‘Others’ summarises events from tHjb, tWh, tt̄tt̄, and SM V h production. The background
prediction is shown after a background-only maximum-likelihood fit to data. The lower panels show
the ratio of the observed to the estimated SM background. The shaded bands show the total post-fit
uncertainty in the background. The expected signal contribution assuming mH± = 900 GeV, normalised
to a cross-section times branching ratio (σsig × B) values of 1.8 pb, is shown as a dashed histogram.
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Figure 14. The mW ±h distributions in the high-NN-score signal regions (high-NN-score SRs) of the
merged ℓ±νbb̄ event categories. The term ‘Others’ summarises events from tHjb, tWh, tt̄tt̄, and SM
V h production. The background prediction is shown after a background-only maximum-likelihood
fit to data. The lower panels show the ratio of the observed to the estimated SM background. The
shaded bands show the total post-fit uncertainty in the background. The expected signal contribution
assuming mH± = 2000 GeV, normalised to a cross-section times branching ratio (σsig × B) of 27 fb, is
shown as a dashed histogram.

This search probes for charged Higgs bosons in the mass range from 250 GeV to 3 TeV.
In total, 17 signal mass hypotheses are tested. The resolved and merged analyses show
complementary sensitivities to different charged Higgs boson mass regions. The resolved
analysis is more sensitive for masses up to (and including) 900 GeV, while the merged analysis
dominates at higher masses. Instead of performing a statistical combination of the two
analyses, the analysis with the more stringent expected upper limit on the production
cross-section times branching ratio is used at each mass point.

The 95% CL upper limits on the production cross-section times branching ratio for a
charged Higgs boson decaying via H± → W ±h are presented in figure 15 as a function of the
charged Higgs boson mass. The observed limits range from 2.8 pb for a mass value of 250 GeV
to 1.2 fb for a mass of 3 TeV. The limits on the signal hypotheses with mH± ≥ 0.7 TeV were
also calculated using pseudo-experiments to validate the asymptotic approximation approach
in a phase-space region strongly limited by a low number of data events. It was found that
the asymptotic approximation is valid within 10%.

The expected exclusion limits are dominated by the ℓ±νbb̄ channel except for the 250 GeV
mass hypothesis, where the qq̄bb̄ channel is stronger. In the resolved analysis, the ℓ±νbb̄

channel provides a cross-section times branching ratio limit that is 1.1 times lower at 350 GeV
and 2.5 times lower at 800 GeV. In the merged analysis, the ℓ±νbb̄ channel provides a limit
that is 1.4 times lower at 900 GeV and 2.5 times lower at 3000 GeV.
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5j3b CR (qq̄bb̄) 9000 ± 500 8400 ± 600 770 ± 190 500 ± 150 64 ± 11 5.0 ± 0.6 18720 ± 150 18737

5j ≥ 4b CR (qq̄bb̄) 470 ± 80 3640 ± 130 160 ± 50 69 ± 20 100 ± 15 5.3 ± 0.6 4450 ± 70 4449

≥ 6j3b CR (qq̄bb̄) 2200 ± 400 4100 ± 400 250 ± 80 180 ± 60 41 ± 8 6.0 ± 2.4 6790 ± 90 6788

≥ 6j ≥ 4b CR (qq̄bb̄) 330 ± 110 5140 ± 150 160 ± 60 87 ± 25 147 ± 18 22 ± 9 5890 ± 80 5889

5j3b low-purity SR (qq̄bb̄) 57000 ± 4000 38000 ± 4000 3300 ± 900 1600 ± 500 500 ± 80 23.4 ± 1.4 100970 ± 330 100957

5j ≥ 4b low-purity SR (qq̄bb̄) 330 ± 60 1650 ± 90 67 ± 24 32 ± 9 66 ± 10 2.44 ± 0.22 2140 ± 50 2145

≥ 6j3b low-purity SR (qq̄bb̄) 42000 ± 6000 53000 ± 6000 2500 ± 700 1600 ± 500 960 ± 160 79 ± 31 100500 ± 500 100485

≥ 6j ≥ 4b low-purity SR (qq̄bb̄) 530 ± 140 6830 ± 200 190 ± 80 94 ± 27 290 ± 40 29 ± 13 7960 ± 90 7963

5j3b high-purity SR (qq̄bb̄) 5800 ± 700 5600 ± 700 450 ± 160 140 ± 40 110 ± 19 5.53 ± 0.29 12130 ± 140 12130

5j ≥ 4b high-purity SR (qq̄bb̄) 64 ± 16 357 ± 28 14 ± 11 4.5 ± 1.7 16.0 ± 2.9 0.58 ± 0.16 456 ± 21 456

≥ 6j3b high-purity SR (qq̄bb̄) 8000 ± 1400 14000 ± 1400 610 ± 220 270 ± 80 390 ± 60 26 ± 10 23260 ± 160 23258

≥ 6j ≥ 4b high-purity SR (qq̄bb̄) 190 ± 60 2850 ± 100 80 ± 40 30 ± 10 182 ± 27 16 ± 7 3340 ± 60 3343

5j3b CR (ℓ±νbb̄) 820 ± 80 1310 ± 130 230 ± 90 220 ± 70 14 ± 4 1.22 ± 0.16 2600 ± 50 2599

5j ≥ 4b CR (ℓ±νbb̄) 5.2 ± 2.2 34 ± 6 3.0 ± 1.9 5.0 ± 1.7 0.60 ± 0.15 0.05 ± 0.05 48 ± 6 49

≥ 6j3b CR (ℓ±νbb̄) 710 ± 120 1870 ± 180 140 ± 70 240 ± 70 33 ± 7 5.0 ± 2.2 3000 ± 50 2991

≥ 6j ≥ 4b CR (ℓ±νbb̄) 6.2 ± 2.7 121 ± 14 7 ± 5 8.9 ± 2.7 2.5 ± 0.4 0.68 ± 0.32 146 ± 12 147

5j3b SR (ℓ±νbb̄) 1380 ± 140 1060 ± 180 350 ± 80 190 ± 60 42 ± 8 2.72 ± 0.24 3030 ± 50 3026

5j ≥ 4b SR (ℓ±νbb̄) 16 ± 4 130 ± 15 13 ± 6 8.8 ± 2.7 6.2 ± 0.9 0.43 ± 0.08 175 ± 13 175

≥ 6j3b SR (ℓ±νbb̄) 1060 ± 170 2060 ± 220 210 ± 100 260 ± 80 89 ± 16 10 ± 4 3690 ± 60 3703

≥ 6j ≥ 4b SR (ℓ±νbb̄) 16 ± 5 403 ± 32 23 ± 18 27 ± 8 21.7 ± 2.9 3.5 ± 1.7 494 ± 22 495

(a) Post-fit event yields of the resolved event categories.
tt̄ + LF tt̄ + HF Single top V V & V + jets tt̄ + X Others Total bkg. Data

High-mh ≥ 1b CR (qq̄bb̄) 39 ± 9 86 ± 14 5.0 ± 3.5 4.6 ± 0.8 4.0 ± 1.5 0.6 ± 0.3 139 ± 10 138

Low-mh ≥ 1b CR (qq̄bb̄) 33 ± 7 82 ± 11 9 ± 5 11.4 ± 1.9 3.2 ± 0.9 0.24 ± 0.11 139 ± 9 142

High-mh 0b CR (qq̄bb̄) 300 ± 50 202 ± 35 50 ± 30 92 ± 16 12.0 ± 2.5 0.9 ± 0.3 659 ± 22 632

Low-mh 0b CR (qq̄bb̄) 180 ± 30 187 ± 28 70 ± 40 281 ± 42 6.4 ± 1.2 1.0 ± 0.4 724 ± 24 728

Low-NN-score 0b SR (qq̄bb̄) 203 ± 29 152 ± 24 53 ± 27 77 ± 16 11.1 ± 2.2 3.0 ± 1.2 499 ± 17 511

Low-NN-score ≥ 1b SR (qq̄bb̄) 32 ± 10 58 ± 11 4.6 ± 1.3 3.6 ± 1.8 6.2 ± 1.3 0.64 ± 0.20 105 ± 8 110

High-NN-score 0b SR (qq̄bb̄) 102 ± 16 68 ± 17 28 ± 17 83 ± 22 4.4 ± 0.9 1.8 ± 0.8 286 ± 14 293

High-NN-score ≥ 1b SR (qq̄bb̄) 21 ± 4 39 ± 7 3.5 ± 2.7 3.0 ± 0.8 2.9 ± 0.8 0.27 ± 0.08 70 ± 6 58

High-mh ≥ 1b CR (ℓ±νbb̄) 2230 ± 240 1870 ± 250 110 ± 40 78 ± 13 79 ± 16 7.6 ± 2.8 4380 ± 60 4414

Low-mh ≥ 1b CR (ℓ±νbb̄) 1840 ± 200 1860 ± 220 190 ± 60 278 ± 53 48 ± 9 5.0 ± 1.2 4220 ± 60 4202

High-mh 0b CR (ℓ±νbb̄) 2480 ± 240 1160 ± 170 420 ± 160 940 ± 240 50 ± 9 14 ± 7 5060 ± 70 5063

Low-mh 0b CR (ℓ±νbb̄) 1950 ± 250 930 ± 130 560 ± 160 3840 ± 280 23 ± 5 34 ± 17 7340 ± 80 7357

Low-NN-score 0b SR (ℓ±νbb̄) 3210 ± 310 1360 ± 200 480 ± 130 1820 ± 250 50 ± 9 160 ± 80 7070 ± 80 7066

Low-NN-score ≥ 1b SR (ℓ±νbb̄) 3120 ± 310 2260 ± 310 160 ± 50 137 ± 19 127 ± 25 15.3 ± 3.0 5810 ± 70 5785

Medium-NN-score 0b SR (ℓ±νbb̄) 101 ± 28 46 ± 12 36 ± 22 230 ± 30 3.3 ± 0.7 16 ± 8 435 ± 20 442

Medium-NN-score ≥ 1b SR (ℓ±νbb̄) 121 ± 16 92 ± 18 16 ± 8 18 ± 6 6.9 ± 1.4 1.2 ± 0.4 255 ± 14 249

High-NN-score 0b SR (ℓ±νbb̄) 30 ± 12 11 ± 5 11 ± 11 82 ± 18 1.1 ± 0.2 9 ± 5 145 ± 11 144

High-NN-score ≥ 1b SR (ℓ±νbb̄) 30 ± 13 19 ± 6 8 ± 7 8 ± 6 2.1 ± 0.3 0.62 ± 0.25 68 ± 8 71

(b) Post-fit event yields of the merged event categories.

Table 6. Event yields in the various signal and control regions of the (a) resolved and (b) merged
analyses after a background-only fit to data. The quoted uncertainties are the total post-fit uncertainties.
The uncertainties in the individual background predictions are larger than the total background
uncertainty due to correlations resulting from the fit to data.
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Figure 15. Upper limits at 95% CL on the product of the cross-section for pp → tbH± and the
branching ratio B (W ±h) × B

(

h → bb̄
)

from the combined fit to all signal and control regions of the
resolved and merged analyses. The bands surrounding the expected limit correspond to the ±1 and
±2 standard deviation (s.d.) intervals around the expected limit. The results of the resolved analysis
are used up to a mass of 900 GeV and those of the merged analysis are used at higher masses.

The dominant uncertainties for low charged Higgs boson masses (e.g. mH± = 0.4 TeV)
are related to the modelling of the tt̄ + HF and tt̄ + LF backgrounds, while at high charged
Higgs boson masses (e.g. mH± = 2.0 TeV) the dominant uncertainties are related to the data
statistical uncertainty. The relative impact of the dominant uncertainties on the best-fit
signal-strength parameter µ, i.e. the ratio of the extracted to injected signal cross-section
times branching ratio, are detailed in table 7.

– 37 –



J
H
E
P
0
2
(
2
0
2
5
)
1
4
3

mH± = 0.4 TeV mH± = 2 TeV

Category Relative contribution Category Relative contribution

Modelling uncertainties

tt̄ + HF modelling 74% Extrapolation/migration 25%

tt̄ + LF modelling 34% tt̄ + LF modelling 17%

Extrapolation/migration 20% Non-tt̄ modelling 16%

Non-tt̄ modelling 9% MC statistical uncertainty 12%

Signal modelling 5% tt̄ + HF normalisation 10%

tt̄ + HF normalisation 5% Non-closure 7%

Non-closure 5% tt̄ + LF normalisation 6%

MC statistical uncertainty 4% tt̄ + HF modelling 6%

V V modelling 4%

Signal modelling 3%

V V normalisation 1%

Experimental uncertainties

Small-R jets 15% h → bb̄ tagging 12%

Flavour tagging 14% Larger-R-jets 4%

Pile-up 7% Small-R jets 4%

Electrons 4% Flavour tagging 3%

Muons 1% Pile-up 1%

Luminosity 0.3% Electrons 1%

Missing transverse momentum <0.1% Missing transverse momentum 0.1%

Muons <0.1%

Luminosity <0.1%

Total systematic uncertainty 93% Total systematic uncertainty 49%

Data statistical uncertainty 37% Data statistical uncertainty 87%

Table 7. Breakdown of the relative contributions to the uncertainty in the best-fit signal-strength
parameter µ of the hypothesised production of a charged Higgs boson for two signal mass hypotheses:
mH± = 0.4 TeV and mH± = 2.0 TeV. The contributions are obtained by fixing the relevant nuisance
parameters to their post-fit values in the likelihood fit to data. The relative impact is determined as
the square-root of the difference of the squares of the nominal uncertainty and the varied uncertainty,
divided by the nominal uncertainty. The sum in quadrature of the individual components differs
from the total uncertainty due to correlations between uncertainties in the different groups. The
uncertainty from data statistical uncertainties is determined from fits with all nuisance parameters
fixed to their post-fit values. The breakdown of uncertainties for the mH± = 0.4 TeV mass point
corresponds to the resolved analysis, while for the mH± = 2.0 TeV mass point, the breakdown of
uncertainties corresponds to the merged analysis. The signal cross-section times branching ratio is
assumed to be 0.6 pb at 400 GeV and 2.7 fb at 2 TeV, corresponding to the expected upper limits for
these two mass hypotheses.
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9 Conclusion

A search for a heavy charged Higgs boson produced in association with a top quark and a
bottom quark and decaying into a W boson and a 125 GeV Higgs boson is performed in the
mass range from 250 GeV to 3000 GeV. This search uses pp collision data at

√
s = 13 TeV

collected with the ATLAS detector at the LHC from 2015 to 2018, corresponding to an
integrated luminosity of 140 fb−1.

Two different analysis strategies are applied to ensure high sensitivity to both low- and
high-mass charged Higgs bosons. The mass range up to 900 GeV is probed in final states
with exactly one charged electron or muon, missing transverse momentum and at least five
small-R jets. Events are classified based on kinematic requirements and the multiplicity of
b-tagged jets per event. Finally, two sets of boosted decision trees are used to reconstruct
the four-momentum of the charged Higgs boson candidate. The mass range above 900 GeV
is probed in final states with exactly one charged electron or muon, missing transverse
momentum and at least one large-R jet. A recently developed boosted h → bb̄ tagging
technique is used to identify the decay of boosted Higgs bosons and sets of neural networks
are employed to further separate between the signal and the background processes.

Both analyses search for a localised excess in the distribution of the reconstructed
invariant mass of the charged Higgs boson. Neither analyses observe a significant excess
of events above the SM prediction and upper limits at 95% CL are set on the production
cross-section times branching ratio. The upper limits range from 2.8 pb for mH± = 250 GeV
to 1.2 fb for mH± = 3000 GeV.

This search is performed for the first time at the LHC, complementing previous searches
for H± → tb and H± → τ±ν decays by the ATLAS and CMS collaborations. While the
H± → W ±h decay mode is predicted to be subdominant in common two-Higgs-doublet
models, its branching ratio is predicted to be significant in other extended scalar sector
models such as the Georgi-Machacek model, or the three-Higgs-doublet model.
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