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Abstract This paper describes an algorithm for recon-
structing and identifying a highly collimated hadronically
decaying t-lepton pair with low transverse momentum.
When two 7-leptons are highly collimated, their visible decay
products might overlap, degrading the reconstruction per-
formance for each of the r-leptons. A dedicated treatment
attempting to tag the t-lepton pair as a single object is
required. The reconstruction algorithm is based on a large
radius jet and its associated two leading subjets, and the iden-
tification uses a boosted decision tree to discriminate between
signatures from 77~ systems and those arising from QCD
jets. The efficiency of the identification algorithm is mea-
sured in Zy events using proton—proton collision data at
A/s = 13 TeV collected by the ATLAS experiment at the
Large Hadron Collider between 2015 and 2018, correspond-
ing to an integrated luminosity of 139 fb~!. The resulting
data-to-simulation scale factors are close to unity with uncer-
tainties ranging from 26 to 37%.
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1 Introduction

The t-lepton has a mass of 1.77 GeV and a lifetime of
about 2.9 x 10713 s [1]. It is the heaviest lepton in the
Standard Model (SM), and the only lepton that can decay
into hadrons, with a branching ratio to hadronic final states
(Thaq) of approximately 65%, and to each of the light leptons
of approximately 17%. Out of the hadronic decay modes,
approximately 77% involve one charged hadron and 22%
involve three charged hadrons. The visible part of taq-lepton
decays, Thad-vis, 1S defined as the vectorial sum of the decay
products’ four-momenta, excluding neutrinos.' The recon-
struction and identification of th,q.vis 1S essential to many
SM measurements and searches for physics beyond the SM
(BSM) [2].

In the ATLAS experiment [3], the Thaq-vis candidates are
reconstructed from anti-k; jets [4,5] with a radius parameter
of 0.4, built from locally calibrated topological clusters [6].
As aresult, a problem emerges when a pair of 7,9 candidates
originates from the decay of a highly Lorentz-boosted parent
particle (boosted di-t system). In this scenario, the Thag.vis
pair may become too collimated to be individually resolved
using standard reconstruction techniques. When the angu-
lar distance between two Thad.vis 1S smaller than the anti-
k; radius parameter, the seed jet constituents may contain
deposits from both of the thag-vis candidates resulting in a
wrong grouping of these constituents by the anti-k; algorithm

! The vis subscript refers to the quantities involving visible decay prod-
ucts.
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— possibly in conjunction with mis-association of tracks to
the correct jet — and manifesting as a merging of the two
Thad-vis Signatures into a single seed jet. It can lead to a sit-
uation in which either one or both of the Tpa4.vis candidates
are not correctly reconstructed with the proper track mul-
tiplicity, making it difficult to reconstruct the di-t system
from individually resolved thag-vis.- Furthermore, even when
the two Thad-vis are reconstructed, a partial overlap of the jets
can introduce problems in the identification step, possibly
leading to signatures that bear more resemblance to back-
ground. These challenges require dedicated reconstruction
and identification algorithms targeting boosted di-t systems,
referred to as the di-t tagger, to recover the sensitivity to this
topology.

Generally, in a two body decay, the angular distance
between the decay products is approximately proportional
to the ratio of the parent mass to its transverse momentum
(p1)- A high-pT Thag-vis pair tagger has already been devel-
oped by the ATLAS Collaboration [7]. It was used for aheavy,
narrow, scalar resonance search in the high mass regime of
1-3 TeV, decaying into a pair of Higgs bosons, where one
Higgs boson decays into a bb pair and the other one into a
le;d Tjaq PAIT.

However, the case of lower-pr collimated di-t objects,
relevant to BSM searches in the low-mass regime, has not yet
been investigated [8]. Several models predict the existence
of light resonances [9, 10] with masses smaller than half of
the Higgs boson mass, produced either directly or through
decays of SM particles — most commonly via the decay of
the SM Higgs boson into a pair of (pseudo)scalars [11-19].
The di-t tagging method for such final states is hence crucial
for increasing the sensitivities to these signatures.

The method presented in Ref. [7] is not directly appli-
cable to the decays of light parent particles, as it targets a
scenario in which the boosted regime corresponds to par-
ent pt values above approximately 300 GeV. It uses seed
jets with relatively high prt thresholds, does not involve a
dedicated energy-scale correction, and includes an identifi-
cation algorithm trained to discriminate against high-pr jet
backgrounds. This method is thus unsuitable for the case of
low-mass BSM searches and must be adapted to target sig-
natures from the decay of light resonances with p smaller
than 300 GeV.

In this paper, the reconstruction and the identification of
hadronically decaying collimated di-t systems at low pr are
described and their expected performance is assessed in sim-
ulation. The measurement of the di-t tagger efficiency in
data is presented, entailing the extraction of scale factors
(SF), which account for differences in the identification effi-
ciency between simulation and data. The SFs are derived in a
region enriched in properly identified di-t objects, using the
SM process Zy, where the Z boson decays into a boosted
di-t. The reconstruction efficiency measurement in data is
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beyond the scope of this paper. Additionally, the techniques
presented in this paper are not applicable to semi-leptonic
decays of di-t systems, which are handled by other dedi-
cated algorithms [20].

After describing the ATLAS detector in Sect.2 and the
data and Monte Carlo simulated samples in Sect.3, Sect.4
presents the reconstruction of standard physics objects. Sec-
tion 5 introduces the reconstruction, energy-scale calibration
and identification of the boosted di-t, and Sect.6 presents
the SF measurement in Zy events. Finally, conclusions are
given in Sect. 7.

2 The ATLAS detector

The ATLAS detector at the LHC covers nearly the entire solid
angle around the collision point.” It consists of an inner track-
ing detector surrounded by a thin superconducting solenoid,
electromagnetic and hadronic calorimeters, and a muon spec-
trometer incorporating three large superconducting air-core
toroidal magnets.

The inner-detector system is immersed in a 2 T axial mag-
netic field and provides charged-particle tracking in the range
[n| < 2.5. The high-granularity silicon pixel detector covers
the vertex region and typically provides four measurements
per track, the first hit generally being in the insertable B-
layer (IBL) installed before Run 2 [21,22]. It is followed
by the SemiConductor Tracker (SCT), which usually pro-
vides eight measurements per track. These silicon detectors
are complemented by the transition radiation tracker (TRT),
which enables radially extended track reconstruction up to
[n| = 2.0. The TRT also provides electron identification
information based on the fraction of hits (typically 30 in
total) above a higher energy-deposit threshold correspond-
ing to transition radiation.

The calorimeter system covers the pseudorapidity range
In] < 4.9. Within the region |n| < 3.2, electromag-
netic calorimetry is provided by barrel and endcap high-
granularity lead/liquid-argon (LAr) calorimeters, with an
additional thin LAr presampler covering || < 1.8 to cor-
rect for energy loss in material upstream of the calorimeters.
Hadronic calorimetry is provided by the steel/scintillator-
tile calorimeter, segmented into three barrel structures within
Inl < 1.7, and two copper/LAr hadronic endcap calorime-

2 ATLAS uses a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the centre of the detector and the z-
axis along the beam pipe. The x-axis points from the IP to the centre of
the LHC ring, and the y-axis points upwards. Polar coordinates (r, ¢)
are used in the transverse plane, ¢ being the azimuthal angle around
the z-axis. The pseudorapidity is defined in terms of the polar angle 6

as 1 = —Intan(f/2) and is equal to the rapidity y = %ln (gfﬁ) in

the relativistic limit. Angular distance is measured in units of AR =

V(AY)? + (Ag)2.
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ters. The solid angle coverage is completed with forward cop-
per/LAr and tungsten/LAr calorimeter modules optimised for
electromagnetic and hadronic energy measurements respec-
tively.

The muon spectrometer (MS) comprises separate trigger
and high-precision tracking chambers measuring the deflec-
tion of muons in a magnetic field generated by the super-
conducting air-core toroidal magnets. The field integral of
the toroids ranges between 2.0 and 6.0 Tm across most of
the detector. Three layers of precision chambers, each con-
sisting of layers of monitored drift tubes, cover the region
[n] < 2.7, complemented by cathode-strip chambers in the
forward region, where the background is highest. The muon
trigger system covers the range |n| < 2.4 with resistive-plate
chambers in the barrel, and thin-gap chambers in the endcap
regions.

The luminosity is measured mainly by the LUCID-2 [23]
detector that records Cherenkov light produced in the quartz
windows of photomultipliers located close to the beampipe.

Events are selected by the first-level trigger system imple-
mented in custom hardware, followed by selections made by
algorithms implemented in software in the high-level trigger
[24]. The first-level trigger accepts events from the 40 MHz
bunch crossings atarate below 100 kHz, which the high-level
trigger further reduces in order to record complete events to
disk at about 1 kHz.

A software suite [25] is used in data simulation, in the
reconstruction and analysis of real and simulated data, in
detector operations, and in the trigger and data acquisition
systems of the experiment.

3 Data and simulated event samples

The data sample used in this paper were collected by the
ATLAS experiment during the 2015 to 2018 LHC proton—
protonruns at /s = 13 TeV, and corresponds to an integrated
luminosity of 139 fb~! [26]. Data-quality requirements are
applied to ensure that all elements of the detectors were oper-
ational during data-taking [27]. Simulated Monte Carlo (MC)
samples are used to study the di-t reconstruction and to train
the di-t identification algorithm, while for the SF measure-
ment, data samples are used as well. Table 1 shows the sum-
mary of the MC generators.

For the studies of di-t reconstruction, calibration and
the training of the di-t classifier, simulated samples of a
two-Higgs-doublet-model [28] pseudoscalar boson produc-
tion (denoted by X) in association with a top-antitop-quark
pair (17X) are used as the signal. Two representative X
masses (my) are used in the classifier training, my = 20
and 60 GeV. The pseudoscalar X was set to decay into two
T-leptons, which were later set to decay hadronically. The
tf pair was set to either a semileptonic or dileptonic decay

(with only electrons and muons considered). The 77X sam-
ples were simulated at leading order (LO) with MAD-
GRAPH5_AMC@NLO [29] using the NNPDF2.3LO set of
parton distribution functions (PDF) [30], interfaced with
PYTHIA 8.212 [31] to model the parton shower, hadroni-
sation, and underlying event, with parameters set according
to the A14 tune [32] and NNPDF2.3L0 PDF set.

Misreconstructed (fake) di-t objects from simulated ¢7
production (and subsequent fully hadronic decay) events are
used as the background source for training the identification
algorithm and SF measurement. This background is char-
acterised by large jet multiplicities, originating from both
the light- and b-quarks. Additionally, production of high-
pt hadronically decaying W bosons as part of the top-quark
decays can itself result in a pair of collimated jets. The choice
of the ¢ process as a source of fakes is further motivated by its
similarity to 77X . The production of ¢f events was modelled
using the POWHEGBOX v2 [33-36] generator at next-to-
leading-order (NLO) in QCD with the NNPDF3.0NLO PDF
set [37] and the hdamp parameter3 set to 1.5 myop [38]. The
events were interfaced to PYTHIA 8.230 to model the parton
shower, hadronisation, and underlying event, with parame-
ters set according to the A14 tune and used the NNPDF2.3L.0
set of PDFs. The decays of bottom and charm hadrons were
performed by EVTGEN 1.6.0 [39].

For the SF measurement, the signal samples are Z+jets,
Zy,and Zyy where the Z boson decays into two t-leptons.
The Z+jets process was simulated with SHERPA 2.2.14 [40],
with up to two jets at NLO and up to five jets at LO. The
Zy process was simulated with SHERPA 2.2.11, with up
to one jet at NLO and up to four jets at LO. The Zyy pro-
cess was simulated with SHERPA 2.2.10, with zero jets at
NLO and up to two jets at LO. The matrix elements were
calculated with the CoMix [41] and OPENLOOPS [42-44]
libraries, and merged with the SHERPA parton shower [45]
following the MEPS@NLO prescription [46—49] and using
the set of tuned parameters developed by the SHERPA authors.
The Z+jets, Zy and Zyy events were simulated using the
NNPDF3.0NNLO PDF set [37]. Since both the Z+jets and
Zy MC samples are used, event overlap removal was per-
formed to avoid double counting, based on the following
particle-level criteria: events from Z+jets were discarded if
they contained a photon with pt > 140 GeV and if the angu-
lar distance between one of the t-leptons and the photon was
greater than 0.1.

Several SM backgrounds are used for the SF studies. The
dominant SM background is due to prompt single-photon
production, which was simulated with SHERPA 2.2.2. In

3 The hdamp parameter is a resummation damping factor and one of the
parameters that controls the matching of POWHEG matrix elements to
the parton shower and thus effectively regulates the high-pr radiation
against which the 77 system recoils.
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Table 1 Summary of all MC simulated samples used for the di-7 tag-
ger development, the scale factor measurement and the estimates of the
generator uncertainty assigned to the scale factor. Information about the

matrix element generator, QCD perturbative order, parton distribution
function set and the parton shower is provided

Process Matrix element generator QCD order PDF Parton shower
For di-t tagger studies

X MADGRAPH5_AMC@NLO NLO NNPDF2.3NNLO PYTHIA 8.212
tr POWHEGBOX v2 NLO NNPDF3.0NLO PYTHIA 8.230
For scale factor measurement

Z+jets SHERPA 2.2.14 NLO NNPDF3.0NNLO SHERPA

Zy SHERPA 2.2.11 NLO NNPDF3.0NNLO SHERPA

Zyy SHERPA 2.2.10 NLO NNPDF3.0NNLO SHERPA

y+jets SHERPA 2.2.2 NLO NNPDF3.0NNLO SHERPA
W/Z(— qq)y SHERPA 2.1.1 LO CT10 SHERPA
Multijet POWHEGBOX v2 NLO NNPDF3.0NLO PYTHIA 8.245
tr POWHEGBOX v2 NLO NNPDF3.0NLO PYTHIA 8.230
W(— tv)+jets SHERPA 2.2.1 NLO NNPDF3.0NNLO SHERPA

For generator uncertainty estimates

y+ets PYTHIA 8.244+ EVTGEN 1.7.0 LO NNPDF2.3L0 PYTHIA 8.244
Multijet POWHEGBOX v2 NLO NNPDF3.0NLO HERWIG 7

this framework, NLO matrix elements for up to two par-
tons, and LO matrix elements for up to four partons were
calculated with the CoMIX and OPENLOOPS libraries. They
were matched with the SHERPA parton shower using the
MEPS @NLO prescription with a dynamic merging selection
[50] of 20 GeV. Photons are required to be isolated accord-
ing to a smooth-cone isolation criterion [51]. The samples
were simulated using the NNPDF3.0NNLO PDF set, along
with the dedicated set of tuned parton-shower parameters
developed by the SHERPA authors. To estimate generator
systematic uncertainties, an alternative y+jets sample was
used, with events produced at LO via PYTHIA 8.244, using
the NNPDF2.3L0 PDF set and the A14 tune.

The other subdominant SM backgrounds include QCD
multijets with jets misreconstructed as photons or di-t
objects, a prompt photon produced in association with a
hadronically decaying W/Z-boson, tf, and W+jets produc-
tion with the W boson decaying leptonically.

Samples for QCD multijets production were generated
with POWHEGBOX v2 at NLO using the dijet process,
and interfaced to PYTHIA 8.245 with the A14 tune and the
NNPDF2.3L0 PDF set. The pr of the underlying Born con-
figuration was taken as the renormalisation and factorisation
scales and the NNPDF3.0NLO PDF was used. To estimate
generator systematic uncertainties, an alternative multijets
sample was used, with events produced at NLO with the
POWHEGBOX v2 generator interfaced with HERWIG 7.1
[52], using the NNPDF3.0NLO PDF set and the default HER-
WIG 7.1 tune.

@ Springer

The production of W/Z(— ¢gq)y was modelled by
SHERPA 2.1.1 at LO, and the parton distributions were mod-
elled with the CT10 PDF set [53]. The ¢z sample is the same
as the one previously described.

The production of W(— tv)+jets was simulated with
the SHERPA 2.2.1 generator using NLO matrix elements
for up to two partons, and LO matrix elements for up to four
partons calculated with the CoMIX and OPENLOOPS libraries.
They were matched with the SHERPA parton shower using the
MEPS @NLO prescription using the set of tuned parameters
developed by the SHERPA authors. The NNPDF3.0NNLO set
of PDFs was used and the samples were normalised to a
next-to-next-to-leading-order cross-section prediction [54].

The effects of multiple proton—proton interactions in the
same bunch crossing as the hard scatter and in neighbouring
ones (pile-up) were included using simulated events gener-
ated with PYTHIA 8.186 using the NNPDF2.3L0 PDF set
and the A3 tune [55]. Simulated events were weighted to
reproduce the distribution of the average number of interac-
tions per bunch crossing (i) observed in data.

4 Event reconstruction

The following procedures are used to reconstruct photons,
electrons, muons, jets, large-radius (large-R) jets, and the
missing transverse momentum.

Photons and electrons are reconstructed from clusters of
energy deposits in the EM calorimeter, together with tracks
reconstructed in the inner tracking detector [56-58]. Pho-
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ton candidates are required to have pr > 150 GeV and
[n] < 2.37. The identification (ID) of photons is performed
by requiring the photon to satisfy a set of identification
criteria [56] based on shower shapes measured in the first
two longitudinal layers of the electromagnetic calorime-
ter, where the first layer has high granularity and provides
large discrimination between prompt photons and photons
from decays of hadrons inside jets, and the leakage into the
hadronic calorimeter. Two isolation (ISO) working points
(WP) of photons, Tight and Loose [56], are defined based
on the amount of transverse energy deposited in clusters
of calorimeter cells within a cone of radius R = 0.4 and
R = 0.2, respectively, around the photon, excluding the
photon cluster itself, and the track isolation within a cone
of radius R = 0.2 around the photon.

Electron candidates are identified using the likelihood
identification criteria described in Ref. [56]. The VeryLoose
identification criteria are applied to electrons. Candidates are
required to have pt > 10 GeV and |n| < 2.47.

Muon candidates are reconstructed from tracks in the
muon spectrometer that are matched to a corresponding track
in the inner tracking detector [59]. Candidates are required
to have pr > 10 GeV, || < 2.7, and satisfy the Loose
identification criteria.

Jets are reconstructed from particle-flow objects [60]
using the anti-k; jet algorithm with a radius parameter of
R = 0.4. The jets are calibrated following the procedure
described in Ref. [61] and are required to have pr > 30
GeV and |n| < 2.5. Pile-up jets with ptr < 120 GeV are
rejected using the Medium working point of the jet vertex
tagger [62].

Large-R jets are reconstructed using the anti-k; jet algo-
rithm with a radius parameter of R = 1.0 from particle-flow
objects. Candidates are required to have pt > 50 GeV and
[n] < 2.5, to ensure good overlap with the tracking volume
of the ATLAS detector and reduce pile-up jet contamination.

The missing transverse momentum (with magnitude
E%‘iss) is reconstructed as the negative vector sum of the
transverse momenta of all the reconstructed and calibrated
objects in the event, including a soft term that accounts for
all tracks associated with the primary vertex but not matched
to any reconstructed object [63].

A standard overlap-removal procedure is applied to
resolve ambiguities where multiple physical objects are
reconstructed from the same detector signature. Additionally,
in the SF measurement, an overlap removal between photon
and di-t objects is performed, prioritizing the photons within
AR = 1.0 of the di-t candidate. In a more general context,
the di-t object’s priority in the object overlap removal hier-
archy would place it below light leptons and photons, and
above jets.

5 Di-7 reconstruction, energy-scale calibration, and
identification

One of the major challenges facing light resonance searches
[64—66] is the tagging of the resonance decay products. Due
to the low mass of the X resonance, a significant fraction of
the X resonances will be produced with transverse momenta
sizeable enough to result in decay products that are highly
collimated. This is demonstrated in Fig. 1a, showing the dis-
tributions of A Ry, the particle-level visible angular distance
between the tWo Thad-vis, in simulated 17X (X — ThadThad)
events for mx values of 20 and 60 GeV. In the following, the
notations of leading and subleading refer to their ordering in

PT-
5.1 Reconstruction

The tagging of a nearby thag-vis pair relies on the recon-
struction of a large- R jet (seed jet) and its substructure. The
reconstruction algorithm was initially developed for boosted
h — ThadThad decays, in the context of a search for reso-
nant di-Higgs boson production in the bbt 7~ channel [7].
In that case, the Thaq.vis Were expected to be produced with
large individual transverse momenta, and the reconstruction
was only performed for seed jets with pr > 300 GeV. How-
ever, when a light resonance decays into a boosted di-t, the
Thad-vis PT Spectrum is rather soft, as demonstrated in Fig. 1b,
c. In accordance, the seed jet pr threshold is reduced down
to 50 GeV, and the di-t objects reconstructed from those
low-pr seeds are later studied.

During Run 1 and early Run 2 of the LHC, thaq.vis can-
didates reconstructed from R = 0.4 anti-k; jets in the
ATLAS experiment utilised the definitions of an inner cone
of radius R = 0.2 (core cone) and its surrounding annulus
0.2 < R < 0.4 (isolation annulus) [67]. Once a seed jet is
reconstructed, its constituents are grouped into subjets (with
pt > 10 GeV) using the anti-k, algorithm with R = 0.2.
Thus, a consistent definition with the single h,g.vis core cone,
where the signature from its decay products is expected, is
maintained. The seed jet area not included within the radius
of any subjet (containing tracks and energy deposits not asso-
ciated with any subjet) is considered as the isolation region,
analogous to the isolation annulus of a thag.vis candidate. A
core region is also defined for each subjet as the cone of radius
R = 0.1 around its axis. An illustration of the reconstructed
di-t object topology is given in Fig. 2. A hadronic di-t candi-
date is required to have at least two subjets, each with at least
one associated track. A di-t vertex calculation is performed
to find the most likely di-t production vertex, and subjet
kinematics are calculated relative to this vertex. The track
selection and track-to-vertex matching criteria are identical
to those used in Ref. [68]. Impact parameter requirements
used in associating tracks to subjets are calculated relative

@ Springer
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Fig. 1 Distributions of a visible angular distance A Ryis, b leading Thad.vis pr and ¢ subleading Thad.vis pT in X —> ThadThad decays from 77X

events, normalised to unit area, for two different mx values

to the di-t vertex, while for isolation region tracks the ver-
tex with the highest Y (p4¥)? is used. In the following, it
is assumed that the two leading subjets hold the thag.vis Sig-
natures and the sum of their four-momentum defines that of
the th,q pair. This assumption is valid in approximately 90%
of cases for the considered t7 X samples where the particle-
level Thag.vis are both captured by any two unique subjets of
a reconstructed di-t object.

A truth-matched di-7 is defined as a reconstructed di-t
object in which the leading and subleading subjets are each
geometrically-matched to particle-level thag.vis Within AR =
0.2. The di-t reconstruction efficiency is then defined as the
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fraction of events containing a truth-matched di-t object out
of all events satisfying a baseline selection applied at particle-
level.

To satisfy the baseline selection, an event is required to
have a single particle-level hadronically decaying t+ 7~ pair
originating from the X resonance (discarding tp,g leptons
from heavy-flavour hadron decays), with an angular distance
0.2 < ARyis < 1.0 between the twWo Thad-vis, €ach of which is
required to have pryis > 10 GeV. These criteria are selected
to reflect the phase-space defined by the previously described
subjet reconstruction step.



Eur. Phys. J. C (2025) 85:561

Page 70f 35 561

T tracks

/

iso-track

di-T vertex

Fig. 2 Schematic illustration of the reconstructed di-t object topology
[7] for one seed jet with R = 1.0 and two subjets with R = 0.2

The reconstruction efficiencies for the boosted di-t tag-
ger and for two standard (resolved) Thaq.vis are calculated
in 711X events, and are given in Fig.3. It is evident from
the figure that the di-t reconstruction is indeed most effi-
cient in the highly collimated ARy;s < 0.45 regime, where
resolved thagd-vis reconstruction fails, and an overall larger
fraction of events may be successfully reconstructed. How-
ever, its performance is clearly less resilient to increasing
pile-up conditions, degrading by about 20% over the exam-
ined range. This is mainly due to the soft spectrum of the
subleading thaq.vis making it increasingly probable — as con-
ditions become more severe — that pile-up contributions cause
significant shifts in reconstructed seed jet and subjet axes,
such that both the particle-level th,q.vis are not successfully
captured inside the two leading subjets of a single seed jet.
Similarly, as the pr.yis distribution becomes softer and the
angular separation between the two Tpag-vis increases, a sin-
gle R = 1.0 seed jet and its subjets are less likely to cap-
ture both the thag.vis and the reconstruction efficiency corre-
spondingly declines. Additionally, as the individual Thaq.vis
charged-hadron multiplicities increase, the di-t reconstruc-
tion efficiency increases by approximately 10%, while having
an alleviated dependence on pile-up conditions.

5.2 Energy scale calibration

Truth-matched di-t objects from the two generated my
points, with either one or three charged tracks associated
with each of the two leading subjets, are later used to com-
pare reconstructed and particle-level pt values; from this
comparison, corrections are derived to calibrate the recon-
structed momentum to the particle-level th,q.vis scale. The
calibration is conducted individually for each subjet, binned
in reconstructed || (|7reco|) and associated track multiplicity
(Nprong), in a two-step procedure similar to the one described
in Ref. [68]. In the first step, the contribution to the subjet
momentum due to pile-up interactions is estimated and sub-

tracted. In the second step, a detector response correction is
applied, aiming to provide the best estimate of the true Thag.vis
momentum.

As demonstrated in Fig.4a, the subjet pt is found to
increase linearly with the number of reconstructed primary
vertices (Npy) in all |neco| regions, with each vertex adding
around 60 MeV to the measured pt. The pile-up corrected
momentum is thus given by: pi*" = pF® — A(|nrecol) X
Npy. The pile-up-correction coefficients A (|7reco|) are sum-
marised in Fig.4b. In the second step, a detector response
function is derived from the ratio of corrected and gener-
ated visible momentum in each [nreco| and Nprong region.
This function is denoted R(p7™, |Mrecols Nprong), and is
used to derive the calibrated momentum as: p%a“b =

Corr

____ P
R(P"Crm.rv|77reco|»Nprong) :
functions. For pr values greater or lower than the measured

points, the response function is set to a constant value (its
value at the measured limit). Response function values are
mostly below unity due to the underlying EM scale calibra-
tion of constituent particle flow objects. The response gen-
erally displays lower values as |nyeco| increases, except the
1.3 < |Nreco| < 1.6 region, where the transition between bar-
rel and end-cap calorimeters occurs and even lower response
values are observed. The subjet pr threshold implemented in
the reconstruction induces a bias in the response distribution
of very low-pr Thad-vis, favouring candidates reconstructed
with a high response and leading to a larger average response
at ( p%°”> < 20 GeV. As larger associated track multiplici-
ties provide better momentum estimations at low p°", the
response values for 3-prong subjets are closer to unity than

for 1-prong subjets across a larger < p%"”) range.

Figure5 shows the detector response

5.3 Identification

The di-t reconstruction method does not provide back-
ground separation power. Limited rejection can be obtained
from the introduction of selection criteria, for example on
the number of subjets and their associated track multiplic-
ities and charges. To further discriminate genuine boosted
Thad-vis pairs from misreconstructed di-t candidates (orig-
inating from jets), a dedicated identification step is intro-
duced. Identification variables are calculated for each di-t
candidate, using tracking and calorimeter information from
the subjets and the isolation region. These variables are later
used as inputs to train a boosted decision tree (BDT) [69—
71] classifier. The signal for the classifier consists of truth-
matched di-t objects from the previously mentioned 77X
events using the two generated my points, chosen as the
upper and lower limits of the my range. When combined,
these mass points provide a di-t pr,.yis phase space coverage
between approximately 50-250 GeV at the most relevant
0.2 < AR,is < 0.6 range, where the reconstruction effi-
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Fig. 3 Di-t reconstruction efficiency (dots) and two resolved Thad-vis
reconstruction efficiency (triangles) as a function of a the visible angu-
lar separation A Ry;s between the two particle-level Thag.yis and b the
average number of interactions (i), measured in simulated #7 X events.
The ¢7X sample includes events with my =20 GeV and myx = 60 GeV
in equal proportions. The plateau value in b for the two resolved thag-vis
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case depends strongly on the fraction of events with angular distance
smaller than 0.4, which limits the reconstruction efficiency achievable
using the resolved 7had-vis method, and hence represents an averaged
efficiency between the two my values. The error bars account for the
statistical uncertainty in simulation
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Fig. 4 aMean subjet p1™° as a function of the number of reconstructed
primary vertices for 0.8 < |9reco| < 1.3, where the line is the linear
fit from which correction coefficients are derived. b Measured linear
pileup-correction coefficients A (|nreco|). These are obtained for thag-vis

ciency is greatest. The background is composed of fake di-t
objects originating from jets in all-hadronic 77 decay events.
Di-t objects entering the training are required to have either
one or three charged-particle tracks associated with each of
the two leading subjets.

The particular set of BDT input variables was chosen by
reducing a larger set of calculated variables in steps, with con-
sideration taken to include variables that contain information
from all regions of a reconstructed di-7: the core cone of both
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originating from X decays in 7X events, using the two generated mx
values. The error bars in a account for the statistical uncertainty in sim-
ulation, while the error bars in b represent the uncertainty on the linear
fit slope parameter

of the subjets, the full area of both of the subjets, the isolation
region and the entire seed jet. The bulk of signal di-t objects
have pr values in the range of approximately 70 to 150 GeV,
while the background pr spectrum is softer, ranging from
approximately 20 to 80 GeV. To mitigate the dependence of
the BDT output score on the transverse momentum, input
events are reweighted such that the resulting di-t pr spec-
trum (separately for signal and background) is flattened up
to 250 GeV, and exponentially decreasing beyond.
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Fig. 5 Detector response function for a 1-prong and b 3-prong subjets as a function of < DT ) in various |freco| regions, for thyd.vis originating

from X decays in 17X events, generated with my values of 20 and 60 GeV

The 16 variables used as input to the classifier are:*

Nisotracks: the number of tracks associated with the isola-
tion region.

Subjet p fraction fs(jgﬁs)tlead: the ratio between the trans-
verse momenta of the subjet and the seed jet,

(sub)lead
(sub)lead __ Pt
subj et = seed
T

Risotrack: the pr-weighted sum of track distances from
the subjet axis, for isolation-region tracks inside a cone
of AR < 0.4 around the subjets,

AR;<0.4 isotrk .
Z(sub)lead i Pri AR,

AR; <04 jsotrk
Z(sub)lead > Pri

Risotrack =

This definition means the variable considers only tracks
not associated with any subjet, that are within an isolation
annulus similar to that of a single reconstructed Thad-vis-
A value of zero is assigned if no tracks are found.
RuDIead, 1o maximal AR of an associated track to the
subjet axis.

Weighted core track distance RSu2'®*: defined for a
given subjet, this is the pr-weighted sum of track dis-
tances from the subjet axis, for tracks found inside the
core cone of the subjet,

4 The notation (sub)lead refers to the (sub)leading p subjet within the
seed jet.

AR;<0.1 trk )
Risublead _ 2 PrAR;
core = ZARi<0.1 ok

i Pt

A value of zero is assigned if no tracks are found inside
the core cone.

® Ryack: pr-weighted sum of track distances from the sub-
jet axis, for Thag.vis tracks inside a cone of AR < 0.2
around the subjets,

AR;<0.2 ¢k .
_ D (sublead i pr; AR

Rirack =
AR;<0.2 rk
Z(sub)lead > Pt
(sub)lead , . . ..
® fiack . theratiobetween the highest-pr track inside a

subjet, and the respective subjet pr.
(sub)lead, . . . .

o log(m . ): logarithm of the invariant mass calcu-
lated from the four-momenta of tracks associated with
the given subjet.

(sub)lead . . . .

o 102(|d} 1ead-track ) : Iogarithm of the closest distance in the
transverse plane between the primary vertex and the lead-
ing track associated with the appropriate subjet.

e AR(lead, sublead): angular separation between the two

leading subjets.

The resulting BDT distributions for training and test-
ing events (for both signal and background) are presented
in Fig. 6a, showing two well-separated peaks for the signal
and background with no evidence of classifier overtraining.
The resulting separation power is better illustrated through
the Receiver Operating Characteristic (ROC) curve, which
is defined here as the inverse background efficiency (back-
ground rejection) as a function of signal efficiency. The ROC
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Fig. 6 Results of the classifier training, showing the a BDT score dis-
tributions for signal and background events and b background rejec-
tion factor versus signal identification efficiency, corresponding to the
trained BDT score distributions. The two markers represent the Medium

curve for the trained BDT is given in Fig. 6b, corresponding
to an area under curve of 0.976, and showing that for back-
ground rejection about ~50, the signal efficiency is ~75%.
Naturally, lower signal efficiency results in even better back-
ground rejection; for example, further increase of the back-
ground rejection by a factor of ~100 will result in a signal
efficiency reduction by a factor close to three.

Two benchmark WPs, labelled as Medium and Tight, are
defined using constant selections on the classifier scores of
0.35 and 0.5, respectively. The corresponding signal efficien-
cies are approximately 53 and 22% for rejection factors of
300 and 4000, respectively. The dependence of the signal
and background identification efficiencies for these WPs on
several kinematic variables are illustrated in Figs.7 and 8,
respectively. The identification efficiency is approximately
constant relative to the di-t pseudorapidity 7reco, but clearly
decreases as the average number of interactions (i) grows, a
dependency which becomes more severe as the WP tightness
increases. However, a similar behaviour is also observed for
the background, such that the background rejection power
increases as (u) increases. In terms of the angular separa-
tion between the two leading subjets, used as one of the
input variables to the classifier, a decline in the identifica-
tion efficiency as AR increases should be expected and is
observed, with the classifier achieving its peak performance
in the highly-boosted regime where the reconstruction is also
most efficient. As the angular separation is inversely propor-
tional to the transverse momentum at fixed m x, the identi-
fication efficiency increases as the transverse momentum of
the di-t seed jet increases.

@ Springer

Eur. Phys. J. C (2025) 85:561

8 E\ LESLILI INLIL L L L LI L BRI LI IR L L LI L LI LI 1:
B C ATLAS Simulation ]
8 [ Ts=13Tev ® BDT>0.35 .
@ 10°E ™, _ Dir Identiication ® BDT>0.50 E
g S S 3
8 - ..~.. -
5 10°F E
=< E tar E
S E “ve.. 3
o0 B e 1
107 E

10

6ﬁmxmmmxmmmxmm‘
1 02 03 04 05 06 0.7
Signal efficiency
(b)

and Tight WPs. Signal (real) di-t objects originate from X decays in
t1X events, generated with mx values of 20 and 60 GeV in equal pro-
portions, while background (fake) di-t objects originate from jets in
fully-hadronic ¢ events

Signal and background BDT distributions are found to
shift to lower values as the number of prongs in a subjet
increases from one to three, leading to a decrease in both the
signal and background efficiencies for a constant BDT score
selection. This effect results in approximately 20% efficiency
loss per subjet in signal, and approximately a tenfold increase
in rejection per subjet in background. As the shift is more
significant for background than for signal, the overall perfor-
mance of the identification improves with increasing subjet
prongness —in accordance with the performance observed for
the resolved thag.vis identification [2]. Each three-pronged
subjet improves the rejection by approximately a factor of
two over its one-pronged counterpart, for a given constant
signal efficiency.

6 Identification efficiency measurement in Z(— t7)+y
events

A dedicated tag-and-probe measurement is performed to
measure the di-t identification efficiency using Z(— tt)+y
signal events. The identification efficiencies are obtained
from data and simulated events, and their ratio is defined as
the SF, computed for the previously noted Medium and Tight
BDT-based identification WPs. Few SM processes can be
used to assess the performance of the di-t identification algo-
rithm in data. The Zy process was chosen due to its sizeable
production cross-section, the limited SM background con-
tribution in the 7y final state, and the Z boson pt regime
that can be accessed with a photon trigger. However, as the
Z boson mass is larger than the considered mx values, the
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Fig. 7 Signal identification efficiency at constant BDT selections,
measured in 77X events, as functions of a the di-t pseudorapidity Myeco,
b the average number of interactions (u), ¢ the angular distance AR
between the two leading di-t subjets and d the transverse momentum

phase space probed in the tag-and-probe measurement is not
expected to match that of 17X processes. This measurement
is statistically limited and hence performed inclusively in all
di-t kinematic properties.

6.1 Event selection and categorisation

Events are selected using the lowest unprescaled trigger
requiring the presence of a photon with ET > 140 GeV [72].
The photon trigger-matching algorithm, which confirms the
association between the reconstructed photon and the trigger-
ing signal, is applied. Events containing electrons or muons
are vetoed.

Di-t Seed P, [GeV]

(d)

of the di-t seed jet. The error bars account for the statistical uncertainty
in simulation. The ¢z X sample includes events with mx =20 GeV and
my = 60 GeV in equal proportions

At preselection level, events are required to contain at
least one photon passing the Tight identification and isola-
tion working points [56] with pt > 150 GeV and |n| <
2.37. Events with one or more photon candidates passing
looser identification and isolation requirements are also kept
for estimate of the backgrounds. Additionally, events are
required to contain at least one di-t object, which must satisfy
the following requirements:

e The number of subjets is at least two.

e The invariant mass of the di-t object is within the range
40 < m¢r < 130 GeV.

e Each of the two leading subjets contains either one track
(1-prong) or three tracks (3-prong).
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Fig. 8 Background identification efficiency at constant BDT selec-
tions, measured in 77 events, as functions of a the di-t pseudorapidity
Nreco» b the average number of interactions (u), ¢ the angular distance

e The charge product of the two leading subjets is O =
qlead X Gsublead = E1, Where giead (¢sublead) is the charge
of the (sub)leading subjet, defined as the sum of the
charges of the associated tracks.

e The transverse momentum of the seed jet selection is opti-
mised to 90 < pSeed < 360 GeV for achieving further
background rejection.

The leading pt photon and the leading BDT di-t candi-
date are selected, and their angular separation is required to
satisfy AR (di-t, y) > 1.0, selecting events where the di-t
object is well separated from the photon. This requirement
enhances the contribution of events with photons originating
from initial-state radiation.
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Di-t Seed [ [GeV]

(d)

AR between the two leading di-t subjets and d the transverse momen-
tum of the di-t seed jet. The error bars account for the statistical uncer-
tainty in simulation

Events are further divided into control region (CR), vali-
dation region (VR) and signal region (SR), according to the
charge product Q of the two leading di-t subjets, and the
azimuthal angle separation between the di-z and E?iss:

e CR: Q = +1, same-sign charges (SS).

e VR: O = -1, opposite-sign charges (OS); and
Ag (di-t, EFSS) > 2.2,
e SR: O = —1, opposite-sign charges (OS); and

A¢ (di-t, EFSS) < 2.2,

In every region, if more than a single di-t object fulfills the
requirements, the one with the highest BDT score is selected.
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Events from Zy, Zyy and Z+jets simulated samples,
where the Z boson decays into a Tt~ pair, are classi-
fied as signal or background events based on whether the
reconstructed boosted di-t object passes the truth-matching
requirement (indicating a real di-t, as defined in Sect.5.1)
or not (indicating a misidentification), accordingly. Events
from all other samples are classified as background.

6.2 Background estimation

The dominant backgrounds arise from processes containing
a real photon that satisfies the trigger requirement, together
with a quark- or gluon-initiated jet that is misidentified as
a di-t object. Another source is processes containing mul-
tiple energetic jets, one being misidentified as a photon and
another as a di-t object. These two sources correspond to
y+jets and multijet events respectively, and as QCD pro-
cesses they are challenging to simulate. The y+jets sample
has as large as 20% theory uncertainty in its cross-section
[73], compared with only 5% for the other samples [74].
Therefore, a data-driven method is used to estimate their
contribution, extrapolating the amount of background in the
signal region from the yields observed in control regions.

The general strategy is as follows. A data-driven back-
ground estimate method is used to obtain the y+jets and mul-
tijet normalisations, while distribution shapes are obtained
from simulation. To correct for the mismodelling of the BDT
score distribution shape, events from y-+jets and multijet
samples are reweighted to match the data according to a func-
tion that is obtained from the CR and tested in the VR. The
contribution of all other background components is taken
from simulation, and normalised to their respective theoret-
ical predictions.

Background normalisation

The contribution from the y+jets and multijet processes is
estimated by using a sideband counting method [75], also
referred to as the ABCD method. This method relies on
counting events with photon candidates in four regions of a
two-dimensional plane, defined by the photon isolation and
identification criteria. A prompt photon region (region A)
is defined by photon candidates that are isolated and sat-
isfy the Tight identification, as explained in Sect.4. Three
fake-photon regions are defined in the isolation-identification
plane, consisting of photon candidates that are non-7ight and
isolated (region B), Tight and non-isolated (region C), or non-
Tight and non-isolated (region D). A non-isolated photon
candidate is defined by inverting the isolation requirement.
A photon candidate is classified as non-Tight if it fails at
least one of four selections associated with the shower-shape
variables but passes all the other selections of the Tight iden-
tification [56].

Assuming negligible correlation between the photon iden-
tification and isolation would imply that the number of
events with non-prompt photon candidates in the four regions
(Na, Np, Nc and Np) satisfy the condition Ng/Np =
Nc/Np, particularly considering the multijet sample. The
residual correlation between the photon isolation and identi-
fication is accounted for using the correlation factors defined
as R. = (Na/Np) / (Nc/Np), and estimated from the mul-
tijet MC simulation. A further correction is included to take
into account the contamination from real photons in the three
regions (B, C, or D) that are supposed to be dominated by fake
photons. This contribution is evaluated using the y+jets MC
simulation and is parameterised through the leakage coeffi-
cients, representing the number of real photons in each of the
aforementioned regions relative to the number of real pho-
tons in region A, i.e. f, = N /N, with « indicating region
B, C, or D. Values for these two corrections are provided
in Table 2. While MC simulations are used to estimate the
leakage coefficients and correlation factor, different genera-
tor combinations for both the y +jets and multijet samples are
considered and corresponding uncertainties on these quanti-
ties are assigned.

In the ABCD method, the total SM prediction is nor-
malised to data in each of the four regions, with the contribu-
tion from real photons and jets misidentified as photons, the
y+jets and multijets samples respectively, being unknown.
By assumption, the ABCD normalisation preserves the ratio
represented by the leakage coefficients. Therefore, the y +jets
contribution in regions B, C, and D can be expressed via its
normalised contribution in region A.

The method determines the contribution of real pho-
tons N in region A using the relation NYU/NM = R, .
Ng” /NW  with Ng}“ being the estimated multijet contri-
bution in region «. Along with the previously mentioned
constraints, a single equation is obtained,

data MC 14
NA B NA - NA _
data MC 2
Ng™ — Ng'~ = faNy

Ngata _ N(l}/lc _ fCNK
Ngata _ NIIS/IC _ fDNX

c

where N2 and NMC refer to the number of events in data
and all signal and background MC samples excluding y +jets
and multijets events, respectively, in region «.

Due to lack of statistical precision, the ABCD method is
performed inclusively in each of the analysis regions, result-
ing in total yields predictions for y+jets and multijet back-
ground samples in region A. The fractions relative to data are
summarised in Table 3, according to which in the SR, 0.1%
of data consists of multijet background, and nearly 96% cor-
responds to prompt single photon production. Similar frac-
tions for the real photons component are obtained for the CR
and VR. This composition is indeed expected, as region A
requires photons to satisfy the 7Tight requirements for both
identification and isolation, aiming to ensure the presence of
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Table 2 Input to the ABCD
method in the form of the CR VR SR
leakage coefficients fp. fc. fo [ eakage coefficients [%] fs 3.96 + 0.32 2.83 +0.54 3.42 +027
given in percentages and the
correlation factor R,. obtained fe 11.52 £0.52 93+ 1.1 13.56 =+ 0.61
from y+jets and multijet MC o 0.61 & 0.13 0.67 & 0.37 0.60 £ 0.10
samples, respectively, for the Correlation factor R, 118+ 0.89 43431 0.57 +0.38
CR, VR, and SR. Statistical -
uncertainties are given
Table 3 Background estimate CR VR SR
results in the form of
ABCD-estimated y+jets and y+ets fraction [%] 948+ 1.6 91+ 10 96.0 + 1.2
multijet contributions relative to 07 029
data, for the CR, VR and SR. Multijet fraction [%] 12411 43437 0.0910%0
Statistical uncertainties are
given
prompt photons; those naturally exist at particle-level in the S 10° Lt ‘D‘ LT,
. . .. g t
y+jets sample, but are suppressed in the multijet sample. * ?TL%ST v 139 b * S:;:m (Z5>11 truth-matched)
. L . = s=13TeV, . -
Furthermore, the multijet sample shows significant statis- S 10° cr Hets Multijet
. L . o v fi
tical loss upon the application of the preselection criteria. To o ABCD-norm V\;gc(j/);-?ets = 7 yue fakes
S . Pre-RW ‘
ensure a smooth distribution of the di-t BDT score, all pho- 100 ~ Stat. unc. X Total unc.
ton selections are omitted in this simulated sample, retaining T
only the di-t pr selection, while the expected multijet back- 10° R == .
ground yield is estimated from data events and not directly | et
. . o 2
obtained from the MC sample. The di-t BDT score distri- 10 <=
bution was compared for different photon selections applied, X

and found to only weakly depend on selections associated
with the photon.

The ABCD-normalised di-t BDT score distribution for
the CR is shown in Fig.9. A trend can be seen in the data-
to-total prediction ratio, implying a mismodelling of the di-t
BDT in the y+jets sample. Since the ABCD method does not
have any impact on the shape, a reweighting approach was
developed to correct for this mismodelling.

Event reweighting

The dominant background in the analysis is y+jets, account-
ing for over 95% of pre-selected data events, and therefore
is expected to resemble the distribution for data. However,
as seen in Fig.9, the di-t BDT score distribution shape for
y+jets shows a discrepancy as compared with the data, and
applying event reweighting can resultin improved modelling.
To mitigate a bias in the SF measurement arising from signal
contribution in the reweighting process, a reweighting factor
is derived from the BDT score distribution in the CR. The
signal significance in the CR compared with the SR is smaller
by factors of 22, 29, and 51 for the full BDT range, BDT >
0.35 and BDT > 0.5, respectively, such that biases due to
signal contamination are not expected.

Furthermore, since the primary distinction between mul-
tijet and y +jets processes is due to the presence of a prompt
photon, and since both contain an energetic jet misidentified
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Fig. 9 Di-t BDT score distribution with y+jets and multijet yields
ABCD-normalised in the CR, before event reweighting. Simulated
events from Zy, Zyy and Z+jets, where Z — tt, containing a recon-
structed di-7 object geometrically matched to a particle-level T+~ pair
are referred to as Signal (red open histogram). The lower panel shows a
bin-by-bin comparison of the data with the total predicted background
and signal, in terms of event yield ratios. The uncertainty band corre-
sponds to both the statistical and systematic uncertainties in the total
SM prediction, detailed in Sect. 6.3. Error bars on the markers represent
the statistical uncertainty in data

as adi-t object, the event reweighting is applied to both of the
samples. The reweighting factor, binned in BDT score val-
ues, is hence defined as (Ngata — NMcbke) / (Ny + Nwy),
where Ny is the number of events in the observed data,
NwmcC vkg Tefers to number of events in all MC background
processes except for y+jets and multijet, and N, , Nvy refer
to the ABCD-estimated yield for the y +jets and multijet pro-
cesses, respectively.



Eur. Phys. J. C (2025) 85:561

Page 150f35 561

The reweighting function that is eventually employed is
an analytical function that is fitted to the reweighting fac-
tor, and as such is applied as a BDT score-dependent event
weight. Two criteria are considered for selecting the optimal
function: the x? test, evaluating the goodness of the fit in the
CR, and the agreement between the data and the total pre-
diction after reweighting in the VR. Various functions were
tested on the VR, of which a fifth-order polynomial is chosen
as the nominal reweighting function, while other functional
forms are used to derive an associated uncertainty on the
reweighting process. The pre-reweighting di-t BDT score
distribution in the VR is shown in Fig. 10a, with the corre-
sponding post-reweighting distribution given in Fig. 10b. The
latter shows the reweighting procedure impact on the VR —
with the reweighting uncertainty included in the uncertainty
band —increasing the total contribution from y +jets and mul-
tijets samples by about 10% for the BDT > 0.2 domain.

The reweighting is then applied to events from y +jets and
multijet samples in the SR, modifying their contributions
by about +12 and —1%, respectively, for the BDT > 0.2
domain. The pre- and post-reweighting BDT score distribu-
tions are shown in Fig. 10c-d, with ABCD-estimated yields
given in Table 3. The event reweighting primarily affects
the shape, showing negligible impact on the total normalisa-
tion of the background samples obtained through the ABCD
method before reweighting, with a difference of less than
0.5%. Although designed to achieve better modelling for
the background in the CR and VR, where the signal con-
tribution is negligible, upon comparing the data-to-total pre-
diction ratio in the SR, the declining trend vanishes with
event reweighting. This correction effectively resolves the
observed discrepancy, such that the total prediction and data
are now within the full uncertainty band.

The reweighted di-t BDT score distribution is used for
computing the SF, as described in Sect. 6.4.

6.3 Systematic uncertainties

The systematic uncertainties that affect the SF measure-
ments are divided into four categories: experimental uncer-
tainties affecting the simulated background and signal pro-
cesses, uncertainties derived from using different generators
for y+jets and multijet samples, uncertainties in the mod-
elling of the reweighting factor, and theoretical uncertain-
ties of the simulated background and signal samples. All
systematic uncertainties are propagated through all the anal-
ysis chain, including the ABCD method (and particularly
the leakage coefficients and correlation factor), being repro-
cessed independently for each systematic variation. Further-
more, fixing R, to one to assess the impact of correlations
in the ABCD method, results with background fractions dif-
fering by less than 0.1% in the SR, and hence a negligible
effect on the SF. Uncertainties are added up in quadrature to

express the total systematic uncertainty that corresponds to
the SF, with the dominant sources listed in Table 4.

Experimental uncertainties address the luminosity deter-
mination and modelling of detector effects. The leading
effects come from those associated with the modelling of
pile-up interactions in simulation, photon energy scale and
resolution, muon and E%liss modelling, and di-t detector
modelling and energy-scale calibration. The largest contribu-
tion for the Medium WP stems from the pile-up reweighting
due to the low statistical precision in the y+jet sample in the
corresponding BDT region.

The estimate of di-t detector modelling and energy-
scale calibration uncertainties uses four systematically var-
ied 17X MC simulations. The di-t reconstruction efficiency
is parameterised in the particle-level di-t pt and ARyjs.
The differences in efficiency of each of the varied samples
to the nominal sample are summed in quadrature and are
assigned as the di-t detector modelling uncertainty, which
are applied to truth-matched di-t objects. The di-t energy-
scale uncertainty is parameterised in the calibrated di-t pr,
AR (lead, sublead) and the subjet prongness. The calibrated
subjet pr distribution from the nominal sample is compared
with the varied ones via a scaling parameter using a x> test,
and the relative uncertainty is taken as the value of the scaling
parameter that minimises the x2 distribution. The contribu-
tions from the four different varied simulations are summed
in quadrature to obtain the total uncertainty, which is applied
as up and down variations on subjets prt of truth-matched
di-t objects.

Different generators for the y+jets and multijet sam-
ples are used to estimate the parton-shower and hadronisa-
tion uncertainties. The choice for the nominal generators is
SHERPA 2.2.2 for y +jets and POWHEG+PYTHIA for multijet.
Two varied combinations are obtained using the nominal gen-
erator for one of the samples together with either PYTHIA for
y+jets or  POWHEG+HERWIG for multijet. These variations
are particularly important in the determination of uncertain-
ties in the simulation-derived correlation factor and leakage
coefficients, used to obtain the background normalisation. In
both of the combinations, background events are reweighted
using a dedicated fifth-order polynomial function obtained
from the di-t BDT distribution in their CR. The uncertainty
considers the largest deviation from the nominal value.

To account for small variations in the SF derived from
different choices of the fitting function, a corresponding
uncertainty is introduced. This uncertainty considers alterna-
tive reweighting functions, chosen for their similarity to the
nominal function in terms of the reduced x 2 goodness-of-fit
parameter. Specifically, a quartic polynomial and a sum of
two tangent functions are selected. The uncertainty is deter-
mined as the largest deviation from the nominal value.

Uncertainties in the calculation of the cross-sections for
the different processes are considered. Following the rec-
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Fig. 10 Di-t BDT score distributions with y+jets and multijet yields
ABCD-normalised in the VR a before and b after event reweighting,
and in the SR ¢ before and d after event reweighting. Simulated events
from Zy, Zyy and Z+jets, where Z — 77, containing a reconstructed
di-t object geometrically matched to a particle-level T+t~ pair are
referred to as Signal (red open histogram). The lower panel shows a
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bin-by-bin comparison of the data with the total predicted background
and signal, in terms of event yield ratios. Vertical arrows indicate points
that lie outside the displayed axis range. The uncertainty band corre-
sponds to both the statistical and systematic uncertainties in the total
SM prediction, detailed in Sect. 6.3. Error bars on the markers represent
the statistical uncertainty in data
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Table 4 Summary of the

. . Category Source Relative uncertainty [%]
dominant systematic - -
uncertainties in the SF. The Medium Tight
uncertainties are expressed as T
percentages relative to the Statistical Data 21 22
nominal SF. Only uncertainties MC 28 8.3
exceeding 1% are shown Total 35 23
Modelling Theory 6.4 5.6
Reweighting 3.7 4.1
Generators 3.1 9.3
Total 8.0 12
Experimental Integrated luminosity 1.6 1.6
Photon energy scale 4.0 -
Photon energy resolution 2.8 -
E%‘i” resolution 1.0 -
Muon sagitta evaluation - 1.1
Pile-up reweighting 8.7 2.0
Di-t detector modelling 1.9 1.2
Di-t calibration 1.9 1.7
Total 9.9 3.6
Total uncertainty 37 26

Table 5 Total yields for all relevant samples that are required for the
SF calculation: BDT inclusive yields, followed by Medium (BDT >
0.35) and Tight (BDT > 0.5) WP yields with the corresponding BDT
efficiencies. "MC background’ refers to background events from all MC
samples excluding y+jets and multijet samples. "MC signal’ refers to

simulated events from Zy, Zyy and Z+jets, where Z — 171, con-
taining a truth-matched reconstructed di-r object. Events from both
the y+jets and multijet samples are ABCD-normalised and reweighted.
Total uncertainties are given

Sample BDT inclusive Medium Tight

Yield Efficiency [%] Yield Efficiency [%]
MC signal 71.0+3.3 49.7+£3.0 70.0 £ 4.2 240+14 33.8+2.0
MC background 496 £ 23 7.8+1.2 1.57+0.24 1.94 4 0.63 0.39+0.13
y+jets 13750 £ 370 52£15 0.38 +0.11 1.8+£3.2 0.01 £0.02
Multijet 137130 0.037038 03739 <0.01 <0.01
Total predicted 14330 £ 390 110 £ 15 0.77+0.11 27.8+3.6 0.19 £ 0.02
Data 14330 110 0.77 28 0.20

ommendations given in Ref. [74], a 5% total theoretical
uncertainty for the estimate of the expected event yields is
assigned for all MC samples from which the normalisation
is utilised, which accounts for the uncertainties arising from
the choice of renormalisation and factorisation scales and the
PDF choice. For the y+jets sample, scale uncertainties are
used instead, and evaluated by varying the renormalisation
and factorisation scales, ur and up, independently by fac-
tors of two and one-half, removing combinations where the
variations differ by a factor of four.

6.4 Results

The di-t identification efficiency SF is computed in the SR
as the ratio of observed to expected signal efficiencies, for

a specified di-t BDT score selection. As the ABCD method
fixes the total expected yield to data, the definition is reduced
to a ratio of event yields. Since the predicted BDT inclu-
sive signal purity is less than 1%, its impact on the ABCD-
estimated background normalisation and therefore on the SF
is negligible. The measured signal yield is obtained after
subtracting the backgrounds with a misidentified di-t object
from the data:

SF — Ndata — Nnon-di-t . (1)

Nirue di—7
The yields for data, background and signal samples are
obtained by applying the desired di-t BDT score selection
in the corresponding distribution (Fig.10), and are given
in Table 5. The resultant signal identification efficiency is
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approximately 70% (34%) at background rejection rate of
approximately 240 (3600) for the Medium (Tight) WP. These
efficiencies differ from those estimated using the BDT train-
ing samples, shown in Fig. 7, indicating that the identification
efficiency depends on the kinematic phase space in which the
measurement is performed.

The SF is calculated for Medium and Tight BDT-based di-
T identification requirements, for which BDT score > 0.35
and > 0.5 selections are chosen, respectively. Being a
statistically-limited study, an inclusive SF is obtained. From
Eq. (1), using the total yields given in Table 5, the SFs are
finally obtained:

SF (BDT > 0.35) = 1.00 £ 0.35 (stat.) &= 0.13 (syst.)
= 1.00 £ 0.37 (tot.) ,

and

SF(BDT > 0.5) = 1.01 £0.24 (stat.) & 0.12 (syst.)
= 1.01 £ 0.27 (tot.) .

The total relative uncertainty is about 37% (26%) for the
Medium (Tight) WP. The SFs are found to be compatible
with 1, well within the associated uncertainties. Notably, the
statistical uncertainty for the Medium WP is larger than for
the Tight WP. This counterintuitive behaviour is due to the
larger absolute uncertainty of the background component rel-
ative to the difference between the number of data events and
background events in the Medium WP, which is roughly three
times larger than in the Tight WP.

The corresponding SF will be applied as an event weight
to simulated events containing a di-t object geometrically
matched to a Tsz_ldrl;ld pair at particle-level, in future ATLAS
studies utilising this tagger. In analyses targeting a differ-
ent phase space compared with this measurement, additional
uncertainties may be required — likely in the form of an
extrapolation uncertainty in one or more kinematic features
of the di-t object.

7 Conclusions

A tagging algorithm for hadronically decaying Lorentz-
boosted di-t systems originating from decays of low-mass
particles with pt smaller than 300 GeV is presented. The
identification algorithm applies a BDT using features of the
di-t object reconstructed based on tracking and calorimeter
information from the ATLAS detector at the Large Hadron
Collider. A measurement of the identification efficiency was
performed with Zy events using proton—proton collision data
at /s = 13 TeV recorded with the ATLAS detector between
2015 and 2018, corresponding to an integrated luminos-
ity of 139 fb~!. Two BDT-based di-t identification criteria,
Medium and Tight, were defined, corresponding to estimated
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signal efficiencies of approximately 70 and 34%, with mea-
sured background rejection rates of approximately 240 and
3600, respectively. The measured identification scale factors
are 1.00 £ 0.37 (tot.) and 1.01 & 0.27 (tot.), respectively,
demonstrating good data-to-simulation agreement for the di-
T object modelling. This novel measurement allows using
the tagger as an alternative to the standard ATLAS thad-vis
reconstruction. Physics analyses may combine both methods
to reject fake di-t background, improving search sensitivi-
ties at prt values characteristic of the kinematic phase space
relevant to light resonance searches.
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