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Leading two-loop contributions to the di-photon decay of the Higgs boson are evaluated for the
first time in the Inert Doublet Model (IDM). We employ for this calculation the Higgs low-energy
theorem, meaning that we obtain corrections to the Higgs decay process by taking Higgs-field deriva-
tives of the leading two-loop contributions to the photon self-energy. Specifically, we have included
corrections involving inert BSM Higgs bosons and gauge bosons, as well as external-leg contribu-
tions involving inert scalars, gauge bosons and fermions. Our calculation has been performed with
a full on-shell renormalization, and in the gauge-less limit. Moreover, we performed two indepen-
dent calculations, using the background-field method and the pinch technique, in order to apply
the Higgs low-energy theorem consistently, and found full agreement between the two calculations.
We investigate our results numerically in two scenarios of the IDM: one with a light dark matter
(DM) candidate (Higgs resonance scenario), and another with all additional scalars heavy (heavy
Higgs scenario). In both cases, we find that the inclusion of two-loop corrections qualitatively mod-
ifies the behavior of the decay width, compared with the one-loop (i.e. leading) order, and that
they increase the deviation from the Standard Model. Furthermore, we demonstrate that the inclu-
sion of the newly-computed two-loop corrections is essential to reliably interpret the observation or
non-observation of a deviation in the Higgs di-photon decay width at current and future colliders.

I. INTRODUCTION

In spite of its successes, the Standard Model (SM)
of Particle Physics cannot explain the existence of dark
matter (DM), the observed tiny neutrino masses, or the
baryon asymmetry of the universe. Therefore, the SM
must be extended to address these problems. At the same
time, while the Higgs sector has now been confirmed as
the origin of the electroweak symmetry breaking, there is
no unequivocal guiding principle for its building, and its
structure remains uncharted. Moreover, because many
issues left unanswered by the SM can be related to the
Higgs boson, Beyond-the-Standard-Model (BSM) theo-
ries commonly feature extended scalar sectors.
Although the contribution of DM to the energy bud-

get of the Universe (i.e. the DM relic density) has been
measured to a high level of precision by the PLANCK
collaboration [1], its nature is, to this day, still a mys-
tery. Among the many possible explanations of DM, the
scenario of it being a weakly interacting massive particle
(WIMP), remains promising and motivated due to the
DM candidate being around the electroweak scale and
therefore the testability of this scenario. An interesting
possibility in this context is to explain the nature of DM
via an extension of the Higgs sector.
The inert doublet model (IDM) [2, 3] is a simple ex-

tension of the SM including a DM candidate. In this
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model, an additional SU(2)L doublet field and an unbro-
ken Z2 symmetry are introduced. Under the Z2 symme-
try, all of the SM fields are even, while the additional
doublet field is odd. Therefore, the lightest neutral com-
ponent of the additional doublet is stable and it can be
a DM candidate. Since the Z2-odd particles (also called
inert particles) interact with the SM particles through
gauge interactions and scalar self-interactions, they are
thermalized in the early universe. Thus, the dark mat-
ter abundance in the present universe can be generated
as a thermal relic. Moreover, extending the IDM by
including right-handed neutrinos allows explaining the
observed tiny neutrino masses via the radiative seesaw
mechanism — this model is referred to as the Tao-Ma
model [4, 5].

Direct detection experiments of DM, such as LUX-
ZEPLIN (LZ) [6, 7] and XENONnT [8] constrain the
allowed mass range of the DM within the IDM. In ad-
dition, the IDM has been tested by collider experiments
through searches for the direct production of the Z2-odd
scalars [9, 10] and electroweak precision tests [11]. On
the other hand, the decays of the discovered Higgs bo-
son also constrain the parameter space of the IDM. The
Higgs boson decays into an invisible DM pair constrains
the size of Higgs-DM coupling if the decay channel is
kinematically allowed. In addition, radiative effects from
the Z2-odd particles modify the partial decay widths of
the Higgs boson with respect to those in the SM [12–14].
These signals can be tested by precision measurements
of the Higgs boson decays at the High-Luminosity LHC
(HL-LHC) [15] and at future lepton colliders, such as
the International Linear Collider (ILC) [16], the Future
Circular Collider [17], or the Circular Electron Positron
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Collider [18].

Several options can be explored to accommodate DM
in the IDM [13], either with a light DM candidate —
with a mass below or around half of the Higgs mass —
or with a relatively heavy one, at a few hundred GeV
or more. These scenarios often involve significant mass
splittings between the DM candidate and the other Z2-
odd scalars — this is especially the case when DM is
light. In turn, such mass splittings typically give rise
to large BSM deviations in couplings or decay widths
of the 125-GeV Higgs boson, due to non-decoupling ef-
fects in radiative corrections involving the heavy BSM
scalars. This was first pointed out for the trilinear Higgs
coupling [19, 20], for which it is known that deviations
of O(100%) from the SM are possible in various models
with extended scalar sectors [12, 13, 21–31]. For other
Higgs couplings, e.g. to gauge bosons or fermions, effects
from mass splittings are usually less dramatic [14, 22],
but at the same time these couplings are much better
constrained than the trilinear Higgs coupling (see for in-
stance Refs. [32, 33]). In this context, a property of the
Higgs boson that is especially useful to investigate the
parameter space of the IDM is its di-photon decay width,
because of the existence of a charged scalar boson in this
model. The one-loop BSM contributions to this decay
have been studied in Refs. [13, 34, 35] and, in particu-
lar, it has been found that the deviation in the effective
Higgs coupling with photons can reach about −5% in
scenarios with light DM [13]. The magnitude of this de-
viation is thus comparable with the expected precision
— of about 7% at the 95% confidence level (CL) — at
the HL-LHC [36], and this strongly motivates studying
the impact of the two-loop — or in other words the next-
to-leading order (NLO) — corrections to the di-photon
decay width.

In this paper, we therefore evaluate the leading two-
loop contributions to the di-photon decay width of the
Higgs boson in the IDM. We employ the Higgs low-energy
theorem (LET) [37–39] for the calculation of the leading
two-loop corrections. Following this theorem, an effec-
tive Higgs-photon coupling is obtained from the photon
self-energy by taking a Higgs-field derivative. Because
we are investigating BSM effects related to (potentially
large) scalar quartic couplings, we perform an expansion
in powers of the comparatively much smaller EW gauge
couplings, and retain only the leading terms of this ex-
pansion. At the same time, the ratio of the two EW
gauge couplings, related to the weak mixing angle, is
kept fixed (see e.g. Ref. [40]). We have included in our
calculation two-loop corrections involving inert scalars,
as well as external-leg contributions involving the inert
scalars, gauge bosons, and fermions are included. We
have employed an on-shell renormalization scheme — see
in particular Refs. [13, 28, 29]. Recently, leading two-loop
corrections to the Higgs di-photon decay have also been
investigated in a scenario of the 2HDM with alignment
in the Higgs sector [41] and in a real triplet model [42].
In contrast to these articles, we consider here a new and

different model — namely the IDM — and we consider
our results in light of DM phenomenology. Specifically,
we investigate our results numerically in two scenarios of
the IDM: one with a light DM candidate, and another
with all additional scalars heavy. In both cases, we find
that the inclusion of two-loop corrections qualitatively
modifies the behavior of the decay width, compared with
the one-loop order, and that they increase the deviation
from the SM. We also study the correlation between the
Higgs partial decay width to two photons and the tri-
linear Higgs coupling, and how this is modified by the
inclusion of two-loop corrections to both quantities. Our
work can furthermore be distinguished by the computa-
tional techniques that we employ: indeed, we perform
our calculations using the background field method as
well as the pinch technique, while Refs. [41, 42] employ
the unitary gauge.

This article is organized as follows: we define in Sec-
tion II our notations for the IDM and the considered
theoretical and experimental constraints. In Section III,
we present our setup for the calculation of the leading
two-loop corrections to the Higgs di-photon decay and
our analytical results. Numerical investigations of our re-
sults are shown in Section IV, followed by a discussion of
their implications and our conclusions in Section V. Dif-
ferent appendices contain additional analytical expres-
sions, complementing the results presented in Section III:
in Appendix A, we provide results for the two-loop con-
tributions to the Higgs decay width to two photons using
the decoupling-inspired scheme of Refs. [28, 29] for the
BSM mass parameter µ2; in Appendix B, we present our
analytical expressions for the unrenormalized two-loop
corrections to the photon self-energy; and finally, in Ap-
pendix C, we give results for two-loop corrections for the
trilinear Higgs coupling applicable in any scenario of the
IDM (extending the results of Refs. [28, 29]).

II. THE INERT DOUBLET MODEL

The Higgs sector of the IDM is composed of two isospin
doublet scalar fields Φ1 and Φ2 with an unbroken Z2 sym-
metry. The inert doublet field Φ2 is Z2-odd, while all the
other fields are Z2-even. The tree-level Higgs potential
is given by

V = µ2
1|Φ1|2 + µ2

2|Φ2|2 +
λ1

2
|Φ1|4 +

λ2

2
|Φ2|4 (1)

+ λ3|Φ1|2|Φ2|2 + λ4

∣

∣

∣
Φ†

1Φ2

∣

∣

∣

2

+
λ5

2

[

(Φ†
1Φ2)

2 + h.c.
]

.

The phase of λ5 can be removed via a global phase ro-
tation, Φ2 → eiθΦ2, without affecting any other part of
the Lagrangian. Therefore, we take λ5 to be real and
negative.

In the inert vacuum phase, where only Φ1 acquires
a vacuum expectation value (VEV) v(≃ 246 GeV), the
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scalar doublet fields are parameterized as

Φ1 =

(

G+

1√
2
(v + h+ iG0)

)

, Φ2 =

(

H+

1√
2
(H + iA)

)

, (2)

where h is the discovered Higgs boson with a mass of 125-
GeV and G± and G0 are (would-be) Nambu-Goldstone
(NG) bosons. We call the additional Z2-odd scalar
bosons H, A, and H± the inert scalar bosons.
The Higgs-field dependent masses of the scalar bosons

are given by

m2
h(h) = µ2

1 +
3

2
λ1(v + h)2 ,

m2
G(h) = µ2

1 +
1

2
λ1(v + h)2 +m2

Z ,

m2
G±(h) = µ2

1 +
1

2
λ1(v + h)2 +m2

W ,

m2
H±(h) = µ2

2 +
1

2
λ3(v + h)2 ,

m2
H(h) = m2

H±(h) +
1

2
(λ4 + λ5)(v + h)2 ,

m2
A(h) = m2

H±(h) +
1

2
(λ4 − λ5)(v + h)2 , (3)

and can be simplified at the minimum of the potential,
h = 0, using the stationary (or minimization) condition
µ2
1 = − 1

2λ1v
2. Since we take λ5 ≤ 0, H is lighter than

A and becomes a DM candidate. We employ a standard
Feynman gauge fixing, expressed only in terms of the
Higgs VEV but of not the Higgs field, meaning that m2

W

and m2
Z are here the field-independent masses of the W

and Z gauge bosons. This treatment is compatible with
the application of the Higgs LET [43].
There are theoretical constraints on the Higgs poten-

tial parameters such as vacuum stability, perturbative
unitarity, and the inert vacuum condition. Vacuum sta-
bility bounds require that the Higgs potential is bounded
from below in any direction of field space with large field
values. The necessary conditions for vacuum stability are
given by [2, 44]

λ1 > 0, λ2 > 0 ,
√

λ1λ2 + λ3 +MIN(0, λ4 + λ5, λ4 − λ5) > 0 . (4)

Perturbative unitarity bounds impose
∣

∣ai0
∣

∣ ≤ 1/2, where

ai0 are the eigenvalues of the s-wave amplitude matrix. In
the high-energy limit, only two-to-two elastic scatterings
of scalar bosons are relevant, and explicit formulae for ai0
are given in Refs. [45, 46]. The inert vacuum condition
requires the following inequality [47],

µ2
1√
λ1

<
µ2
2√
λ2

. (5)

From the vacuum stability conditions, λ1 and λ2 are pos-
itive, while µ2

1 is negative due to the stationary condition.
Therefore, µ2

2 > 0 is a sufficient condition to realize a sta-
ble inert vacuum. As a last theoretical constraint, we re-
quire that all scalar quartic couplings fulfill the inequality
|λi| ≤ 4π, as a criterion to ensure perturbativity.

Direct collider searches at LEP as well as measure-
ments of the electroweak precision observables (EWPOs)
give bounds on the masses of the inert scalar bosons. The
measurements of the Z and W± bosons’ widths lead to
the lower limits on the inert scalar masses

mH +mA ≥ mZ , 2mH± ≥ mZ ,

mH,A +mH± ≥ mW , (6)

in order to kinematically prohibit the decay processes
Z → HA, H+H− and W± → HH±, AH±. From
searches of the e+e− → H+H− production process, we
have [9]

mH± & 90GeV. (7)

On the other hand, from the e+e− → HA production
process, we have [10]

mH > 80GeV or mA > 100GeV. (8)

If the mass difference between A and H is smaller than
8 GeV, there remain allowed regions in the mass range
below 80 − 100 GeV. Current bounds from searches of
inert scalars at the LHC have been discussed for instance
in Refs. [48–51], but do not produce significantly more
stringent limits than LEP searches at the moment.
The inert scalar contributions to the EWPOs can be

parameterized by the electroweak parameters ∆S, ∆T ,
and ∆U [52]. One-loop analytic expressions for these
are given in Ref. [40, 53]. From a global fit analysis,
the constraints on the ∆S and ∆T parameters are given
by [11]

∆S = −0.01± 0.07, ∆T = 0.04± 0.06, (9)

when fixing ∆U = 0. The correlation coefficient in the
χ2 analysis is +0.92. We require ∆S and ∆T to be
within the 95% CL intervals of the values given in Eq. (9).
We note that as an additional check, we have also ver-
ified for our numerical benchmark scenarios (discussed
in the following), that the electroweak precision observ-
ables at the Z pole — i.e. the W -boson mass, the sine of
the effective weak mixing angle, and the Z-boson decay
width — evaluated in the IDM at one and two loops with
THDM EWPOS [40, 54] are all within 95% CL from their ex-
perimentally measured values.
Experimental limits [32, 33, 55, 56] on the branching

ratio of invisible decays of the detected Higgs boson pro-
vide a complementary probe of models with inert scalars
like the IDM. The corresponding constraints depend on
the chosen scenario and will be verified for the benchmark
scenarios considered in Section IV.
The last experimental constraints that we take into ac-

count relate to DM phenomenology. The DM relic den-
sity has been determined as ΩDMh2 = 0.1200 ± 0.0012
from PLANCK data [1]. Using the code micrOMEGAs [57,
58], we compute ΩDMh2 and exclude the parameter
points with an overabundance of DM. We also evaluate
the spin-independent cross section of DM scattering by
using micrOMEGAs and impose the constraint from DM
direct detection by the LZ experiment [7].
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III. HIGGS LOW-ENERGY THEOREM AND
DI-PHOTON DECAY OF THE HIGGS BOSON

We present in this section our calculation of the lead-
ing two-loop corrections to Γ(h → γγ) with the Higgs
LET [37–39]. Similarly to effective-potential computa-
tions (see examples at two loops for the Higgs mass in
Ref. [59] and references therein, or Refs. [27–30] for the
trilinear Higgs coupling), the use of the Higgs LET im-
plies that we neglect the incoming momentum on the
Higgs-boson leg (the validity of this approximation will
be discussed below). In this case, we can write the am-
putated amplitude for the di-photon decay as

Γµν(h → γγ) = gµνΓ
(g)
h→γγ − pν1p

µ
2Γ

(p)
h→γγ , (10)

where gµν is the metric tensor and p1,2 are the photon
momenta. The above equation also serves as the defini-

tion of the form factors Γ
(g)
h→γγ and Γ

(p)
h→γγ . Due to the

Ward-Takahashi identity of QED, we obtain Γ
(p)
h→γγ =

Γ
(g)
h→γγ/(p1 · p2), and the decay width is given by

Γ(h → γγ) =
1

16πmh

|Γ(g)
h→γγ |2 . (11)

This form factor can be expressed as Γ
(g)
h→γγ =

m2
hChγγ/2 where Chγγ is an effective Higgs-photon cou-

pling constant defined as

Leff ⊃ −1

4
ChγγhFµνF

µν , (12)

and which the LET of Ref. [39] allows us to compute
simply by taking a Higgs-field derivative of the photon
self-energy, i.e.

Chγγ =
∂

∂h
Πγγ(p

2 = 0)

∣

∣

∣

∣

h=0

. (13)

For this equation, we have expanded the photon self-
energy using the Ward-Takahashi identity of QED as

Σµν
γγ(p

2) =
(

− p2gµν + pµpν
)

Πγγ(p
2) . (14)

We remark that for models such as the IDM, where the
125-GeV Higgs field is aligned in field space with the EW
VEV, the derivative with respect to the Higgs field h can
be replaced by a derivative with respect to the VEV v —
because field-dependent masses and couplings are always
functions of the quantity v + h. This is, however, not
directly the case for general scenarios (e.g. a Two-Higgs-
Doublet Model away from the alignment limit).
From this effective coupling, we obtain the Higgs decay

width to two photons as

Γ(h → γγ) =
m3

h

64π
|Chγγ |2 . (15)

Before turning to the specific steps of our calculation
and to our analytical results, some assumptions made

in this work should be discussed. We are interested
here in the dominant two-loop order (NLO) contribu-
tions to the di-photon decay. In terms of couplings,
these are corrections involving two powers of the electric
charge e and one or two powers of quartic scalar cou-
plings λi. Such contributions arise from i) purely-scalar
corrections involving the BSM scalars H, A, and H±,
as well as ii) diagrams involving both BSM scalars and
gauge bosons. However, these types of diagrams also
yield terms of higher orders in powers of e, which are
subleading. For this reason, we perform a series expan-
sion of the expressions of the various contributions in
the EW gauge couplings around zero, and we only re-
tain terms of quadratic order at most — i.e. we keep a
prefactor e2 in all photon self-energy contributions and
their derivatives. We retain, moreover, the dependence
on the weak mixing angle (in other words, we take the
EW gauge couplings g1, g2 to zero while keeping their
ratio g2/g1 fixed). Furthermore, we neglect throughout
this work the quartic coupling λ1(≃ 0.25), which is re-
lated to the mass of the detected Higgs boson, in com-
parison to the other Lagrangian quartic couplings that
can take significantly larger values. Consequently, the
field-dependent Higgs and would-be NG boson masses in
Eq. (3) simply reduce to mh(h) = 0, mG(h) = mZ and
mG±(h) = mW , and together with the expansion per-
formed in powers of the EW gauge couplings, this corre-
sponds to mh, mG, mG± ≪ mH , mA, mH± (although in
one of the numerical scenarios we also consider below, we
additionally assume mH to be small). This assumption
motivates the use of the Higgs LET, which as mentioned
earlier implies that we are neglecting the external mo-
mentum p2 = m2

h on the Higgs leg. At two loops, the
genuine corrections can be distinguished into four cate-
gories, involving the couplings λ2

3, (λ4+λ5)
2, (λ4−λ5)

2,
and λ2 respectively. Some example photon self-energy
diagrams of orders λ2

3, (λ4 + λ5)
2 and λ2 are shown in

figures 1, 2 and 3 — and we note that terms of order
(λ4 − λ5)

2 can straightforwardly be obtained from those
of order (λ4 + λ5)

2 by the replacement H ↔ A.

Care must be taken when applying the Higgs LET to
diagrams containing gauge bosons. Indeed, and as dis-
cussed e.g. in Refs. [39, 43], one must ensure that the
quantity of which one is taking derivatives — in our
case the leading two-loop contributions to the photon
self-energy — is gauge independent. In our work, we
choose to achieve this with two separate methods: on the
one hand by employing the pinch technique [60–65], and
on the other hand by using the background-field method
(BFM) [66–73]. We confirmed that these two calculations
produced exactly the same results for gauge-independent
two-loop contributions to the photon self-energy, which
we interpret as a strong cross-check of our expressions.

Our calculation itself is divided into three main steps,
described below. We have begun by generating genuine
two-loop diagrammatic contributions to the photon self-
energy using FeynArts [74, 75], using two different model
files: one generated with SARAH [76–79] for the Feynmann
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γ γ

H+ H+

H+H+

h
γ

H+

h

H+

H+

H+

γ

γ γ

h

H+

H+ H+

FIG. 1: Two-loop diagrams contributing to the photon
self-energy at O

(

e2λ2
3

)

.

γ γ

G+ H+

H+G+

H
γ γ

W H+

H+W

H

γ
G+

H

H+

G+

G+

γ γ
H+

H

G+

H+

H+

γ

γ γ

H

H+

G+ G+
γ γ

H

G+

H+ H+

γ
H+

H

W

H+

H+

γ γ γ

H

W

H+ H+

FIG. 2: Two-loop diagrams contributing to the photon
self-energy at O

(

e2(λ4 + λ5)
2
)

.

gauge, and a second one devised for the BFM (adapting
the results of Ref. [73] to the IDM). The correspond-
ing amplitudes were then computed and simplified with
FeynCalc [80–82], and the reduction to master integrals
was performed with Tarcer [83]. At intermediate stages
of the computation, we retained the leading dependence
on the light masses — i.e. mh, mG(= mZ), mG±(= mW )

γ γ

H+

H+ H+

H,A,H±

γ γ
H+ H+

H,A,H±

FIG. 3: Two-loop diagrams contributing to the photon
self-energy at O

(

e2λ2

)

.

— as these serve to regulate infrared (IR) divergences
in individual diagrams — we will return to the cancel-
lation of these IR divergences below. Once the contri-
butions were expressed in terms of master integrals, we
employed known expressions for the two-loop integrals
(see e.g. Refs. [84, 85]). We also used expansions of the
loop integrals around p2 = 0, both with results available
from the literature [85–87], and from our own derivations
using differential-equation based techniques (see for in-
stance Refs. [85, 87]). All new expansions were verified
numerically with the public tool TSIL [88]. In the Feyn-
man gauge calculations, we include tadpole shifts so that
tadpole contributions are canceled [89] already at the
level of bare perturbation theory. This leads two-loop
diagrams with tadpole shift in the NG-boson propaga-
tors. In addition, we have included pinch terms obtained
by the intrinsic pinch technique [63, 64]. On the other
hand, on the BFM method, we have calculated the 1PI
self-energy of classical photon field, which is manifestly
gauge invariant. We have obtained the same expressions
in both methods. In addition, our results are consistent
with those in the two-Higgs doublet model calculated in
the alignment limit and using the unitary gauge [41].
After obtaining closed-form expressions for the lead-

ing two-loop, unrenormalized, corrections to the pho-
ton self-energy — expanded in terms of the ultraviolet
(UV) regulator — we inserted the full field dependence
of masses and couplings, and took a derivative of these
expressions with respect to the Higgs field h in order to
obtain the corresponding contributions to the Higgs di-
photon decay amplitude. These results were then com-
plemented by subloop renormalization contributions as
well as external Higgs-leg corrections that also contribute
at the leading two-loop level. The physical masses of the
BSM scalars — i.e. mH , mA, and mH± — as well as
the EW VEV v have been renormalized in an on-shell
(OS) scheme (we note that for the renormalization of
the VEV, we follow the prescription of Ref. [22]). For
the BSM mass scale µ2

2, we have employed two different
choices of renormalization schemes, a process-dependent
on-shell (PDOS) scheme (following Refs. [90, 91]) as well
as the decoupling-inspired (DI) scheme of Ref. [28, 29].
Both options are discussed below together with the ob-
tained analytical results.
We have, in turn, performed a number of checks

of our results, at different stages of the computation.
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First, we have verified that our results for the two-loop
corrections to the photon self-energy obey the Ward-
Takahashi identity of QED, which we did by confirming

that p2Πγγ(p
2)

p2=0−−−→ 0, separately for each contribution.
In the BFM, the QED Ward identity actually held inde-
pendently for each diagram, while in the pinch-technique
calculation the relation was fulfilled when combining all
diagrams of a given class. As mentioned earlier, we also
verified for each of the two-loop BSM contributions to
the photon self-energy that the results obtained with the
pinch technique and with the BFM were identical. Next,
at the level of the decay amplitudes, we have verified
that all UV divergences cancel between genuine two-loop
terms and the one-loop subloop renormalization contri-
butions. Moreover, we have confirmed that the renormal-
ization scale dependence of individual diagrams cancels
in the total results.

Returning now to our choice of renormalization scheme
for µ2, as a first option, we have implemented a process-
dependent OS (PDOS) scheme, inspired by Refs. [90, 91],
in which the counterterm for µ2

2 is determined by re-

quiring that the renormalized three-point function Γ̂hHH ,
evaluated with all three legs on shell (neglecting stillmh),

should be equal to the tree-level result, i.e.,

Γ̂hHH(m2
H ,m2

H , 0)
!
= Γtree

hHH . (16)

In terms of the counterterm for µ2
2 — which we denote

in this scheme (δ(1)µ2
2)

PDOS — this implies that

(δ(1)µ2
2)

PDOS = δm2
H

−1

2
Γtree
hHHv

(

−δv

v
− 1

2
∆r +

1

2
δZh + δZH

)

−1

2
Γ1PI
hHH(m2

H ,m2
H , 0)v , (17)

where Γ1PI
hHH denotes the one-particle-irreducible (1PI)

one-loop corrections to the ΓhHH three-point function,
δZh and δZH are the wave-function renormalization con-
stants for h and H respectively, and δv is the VEV coun-
terterm and ∆r is the quantity that enters the relation
between the OS-renormalized VEV and GF [14, 92] (ex-
pressions for the one-loop IDM-specific contributions to
the later two quantities are provided below). This PDOS
scheme is also implemented in the program H-COUP [93–
95], with which we performed our numerical evaluations.
From Eq. (17), we obtain

(16π2)(δ(1)µ2
2)

PDOS = 3λ2µ
2
2∆UV +

(m2
H − µ2

2)m
2
H±

2(m2
A −m2

H±)v2

[

m2
A log

m2
H

m2
A

+
m2

Hm2
H± +m2

A(m
2
H± − 2m2

H)

m2
H −m2

H±

log
m2

H

m2
H±

]

+
µ2
2m

2
H

v2

(

1− m2
A

m2
H

)3

Re

[

log

(

1− m2
H

m2
A

)]

+
2µ2

2m
2
H

v2

(

1− m2
H±

m2
H

)3

Re

[

log

(

1− m2
H

m2
H±

)]

+
µ6
2

6v2

(

1

m2
A

− 23

m2
H

+
2

m2
H±

)

− µ4
2

6v2

(

m2
H

m2
A

+
2m2

H

m2
H±

− 63

)

+
85m4

H

12v2
− 23m2

Hm2
A

12v2
+

m4
A

v2

− 23m2
Hm2

H±

6v2
+

2m4
H±

v2
− µ2

2

12m2
Hv2

[

165m4
H − 23m2

Hm2
A + 12m4

A − 46m2
Hm2

H± + 24m4
H±

]

+
1

2
λ2

[

3m2
H +m2

A + 2m2
H±

]

− 1

2
λ2µ

2
2

[

3 log
m2

H

Q2
+ log

m2
A

Q2
+ 2 log

m2
H±

Q2

]

+
7m2

t

2v2
(m2

H − µ2
2) ,

(18)

where ∆UV ≡ 1
ǫ
− γE + log(4π), with ǫ = (4 − D)/2

and γE the Euler-Mascheroni constant. We note that
we have defined (δ(1)µ2

2)
PDOS so that it becomes a real

quantity. As a second option, we also used the scheme
proposed in Refs. [28, 29], which ensures the cancellation
of the renormalization scale dependence and the proper
decoupling of the BSM effects. Expressions for the µ2

2

counterterm, and for the contributions to the Higgs decay
width to two photons in this second scheme are provided
in Appendix A.

Lastly, a powerful check of the consistency of our re-
sults comes from confirming that all IR divergences can-
cel out. Indeed, individual topologies of diagrams con-
tributing to the two-loop photon self-energy (and thus

also to the effective Higgs-photon coupling) exhibit IR
divergences caused by the light Higgs and NG bosons
as well as gauge bosons, which are massless in our ap-
proximation. However, once all contributions of a given
class of corrections (in terms of powers of scalar quar-
tic couplings) have been summed, all IR divergences are
canceled and the dependence on the light masses — mh,
mG(= mZ), mG±(= mW ) — that had been kept as reg-
ulators drops out entirely — already at the level of un-
renormalized self-energies. We note that this is different
from what has been observed for scalar self-energies in
relation with the Goldstone Boson Catastrophe (see e.g.
Refs. [86, 96–100]) where IR divergences are only cured
by employing an OS scheme for the NG (and Higgs) bo-
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son masses, together the inclusion of external momen-
tum.1

To present our final analytical results, we decompose
the di-photon decay width following

Γ(h → γγ) =
√
2α2

em

16π3
GFm

3
h

∣

∣

∣

∣

I(1)
t + I(1)

W + I(1)
H± + I(2)

SM, NLO QCD

+ I(3)
SM, NNLO QCD + I(2)

SM, NLO EW

+ I(2)

O(λ2
3)
+ I(2)

O((λ4+λ5)2)
+ I(2)

O((λ4−λ5)2)

+ I(2)
O(λ2)

+ I(2)
rem.

∣

∣

∣

∣

2

, (19)

where αem = e2/(4π) is the fine-structure constant and
GF the Fermi constant. The first three terms corre-
spond to the known one-loop corrections (see Ref. [13]),
while the next three terms, with subscripts “SM”,

are the higher-order QCD and SM-like EW corrections
computed in Refs. [101–108] and Refs. [109–114] re-
spectively — we note that for the latter we use the

numerical value I(2)
SM, NLO EW = αem/(16πs

2
W )(−24.1)

from Ref. [112]. The third and fourth lines con-
tain the newly computed two-loop BSM contributions.

I(2)

O(λ2
3)
, I(2)

O((λ4±λ5)2)
, I(2)

O(λ2)
are the genuine two-loop

corrections respectively proportional to λ2
3, (λ4 ± λ5)

2

or λ2. Finally, I(2)
rem. contains remaining pieces coming

from the external-leg contributions I(2)
ext.-legs, terms aris-

ing from the renormalization of the EW VEV I(2)
VEV, and

subloop renormalization contributions coming from parts
of (δ(1)µ2

2)
PDOS independent of λ2. The expressions of

the different new BSM contributions (together with the

terms I(1)
H± , I(1)

t , and I(1)
W , given here in the LET limit,

to clarify the relative sign of one- and two-loop pieces)
read

I(1)
H± =− 1

12

(

1− µ2
2

m2
H±

)

, I(1)
t = −4

9
, I(1)

W =
7

4
,

I(2)

O(λ2
3)

=− 1

96π2v2

(

1− µ2
2

m2
H±

)2

(2m2
H± + µ2

2) ,

I(2)
O((λ4+λ5)2)

=− 1

192π2v2

{

m2
H±

(

1− m2
H

m2
H±

)2

+ µ2
2

(

m4
H

m4
H±

− 3m2
H

m2
H±

+ 38

)

+ µ2
2

[

− 17m2
H + 19m2

H±

m2
H −m2

H±

log
m2

H

m2
H±

+

(

m2
H

m2
H±

− 1

)3

Re

[

log

(

1− m2
H±

m2
H

)]]}

,

I(2)
O((λ4−λ5)2)

=− 1

192π2v2

{

m2
H±

(

1− m2
A

m2
H±

)2

+ µ2
2

(

m4
A

m4
H±

− 3m2
A

m2
H±

+ 38

)

+ µ2
2

[

− 17m2
A + 19m2

H±

m2
A −m2

H±

log
m2

A

m2
H±

+

(

m2
A

m2
H±

− 1

)3

Re

[

log

(

1− m2
H±

m2
A

)]]}

,

I(2)
O(λ2)

∣

∣

∣

∣

(δ(1)µ2
2)

PDOS

=− λ2

192π2m2
H±

(

m2
H± −m2

H + µ2
2 log

m2
H

m2
H±

)

I(2)
ext.-legs + I(2)

VEV =
7m2

t

32π2v2
I(1)
H± +

[

I(1)
t + I(1)

H± + I(1)
W

]

(

1

2
Σ

(1) ′
hh (0)|BSM − δv

v

∣

∣

∣

∣

BSM

− 1

2
∆r|BSM

)

.

I(2)
rem. ≡ I(2)

ext.-legs + I(2)
VEV +

∂I(1)
H±

∂µ2
2

(

(δ(1)µ2
2)

PDOS
∣

∣

∣

λ2→0

)

=
µ2
2m

2
H

192π2v2m2
H±

[

(

1− m2
A

m2
H

)3

Re

[

log

(

1− m2
H

m2
A

)]

+ 2

(

1− m2
H±

m2
H

)3

Re

[

log

(

1− m2
H

m2
H±

)]

]

+
3m2

H + 44m2
H±

1152π2v2(m2
A −m2

H±)

[

m2
A log

m2
H

m2
A

+
m2

Hm2
H± +m2

A(m
2
H± − 2m2

H)

m2
H −m2

H±

log
m2

H

m2
H±

]

1 Note that unlike the Higgs self-energies, for which the Goldstone
Boson Catastrophe has been discussed in the literature, the pho-

ton self-energy is evaluated here at p2 = 0, so that external
momentum cannot serve to cure the IR divergences.
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+
7m2

t (m
2
H −m2

H±)

384π2v2m2
H±

+
255m4

H − 94m2
Hm2

H± + 160m4
H± + 36m4

A +m2
A(−69m2

H + 44m2
H±)

6912π2v2m2
H±

− µ2
2

1728π2v2m2
Hm2

H±

[

123m4
H − 18m2

Hm2
A + 9m4

A − 212m2
Hm2

H± + 18m4
H±

]

− µ4
2

3456π2v2m2
Hm2

Am
4
H±

[

6m4
Hm2

A +m2
Hm2

H±(3m2
H − 125m2

A) + 44m4
H±(m2

H +m2
A)

]

− µ6
2

48π2v2m2
Hm2

H±

. (20)

In the equations above, Σ
(1)
hh (0)|BSM and δv/v|BSM de-

note the BSM contributions respectively to the one-loop
Higgs boson self-energy and to the VEV counter-term.
The former can be found to read

Σ
(1) ′
hh (0)|BSM = − 1

48π2v2

[

m2
H

(

1− µ2
2

m2
H

)2

(21)

+m2
A

(

1− µ2
2

m2
A

)2

+ 2m2
H±

(

1− µ2
2

m2
H±

)2
]

,

while the latter is

δ(1)vOS

vOS

∣

∣

∣

∣

BSM

=
1

64π2s2W v2

{

− c2WF(m2
H ,m2

A)

+ (1− 2s2W )
[

F(m2
H± ,m2

H) + F(m2
H± ,m2

A)
]

}

, (22)

with

F(x, y) ≡ x2 − y2 + 2xy log y
x

x− y
, (23)

and with cW and sW the cosine and sine of the weak
mixing angle. Finally, we use the GF scheme for the EW
input parameters, and therefore we include an additional
piece in the results arising from ∆r|BSM, i.e. the leading
one-loop BSM contributions to the quantity ∆r that ap-
pears in the relation between the OS-renormalized VEV
and GF — see e.g. Ref. [14, 92]. The expression of
∆r|BSM reads

∆r|BSM =
c2W

32π2s2W v2

{

F(m2
H ,m2

A)−F(m2
H ,m2

H±)

−F(m2
A,m

2
H±)

}

. (24)

We note, however, that the scenarios investigated in the
following section, for which we set mH± = mA, the lead-
ing BSM contributions ∆r|BSM vanish.

IV. NUMERICAL RESULTS

We present in this section numerical investigations of
our new results and their phenomenological impact. We

begin by defining two benchmark scenarios, fulfilling all
the theoretical and experimental constraints discussed in
Section II and inspired by DM phenomenology — follow-
ing also Ref. [13]. We set for both scenarios mH± = mA,
so that the custodial symmetry is restored in the scalar
sector — thereby ensuring that EWPOs are in good
agreement with their experimentally measured results.
As can be seen from Eq. (3), this choice also implies
that λ4 − λ5 = 0, so that corrections of O((λ4 − λ5)

2)
will not appear — however, we emphasize once again
that the form and behavior of these effects are analo-
gous to that of the O((λ4 + λ5)

2) pieces, which will be
present in our investigations. We furthermore fix the
BSM mass parameter µ2 for each scenario from the re-
quirement that the DM relic density (computed with
micrOMEGAs 6.1.15 [58]) should not exceed the value
measured by PLANCK [1], while simultaneously evad-
ing direct detection limits. Throughout this section, the
values given for µ2 will be understood as those in the
PDOS scheme.
A first scenario, which we will refer to as the Higgs

resonance scenario, is defined by

µ2
2 = 3581 GeV2 , mH = 60 GeV ,

100 GeV ≤ mH±(= mA) ≤ 620 GeV . (25)

The lower bound on mH±(= mA) comes from direct
searches at LEP [10]. To ensure perturbativity, we re-
move the parameter points with |λi| > 4π even if they
are allowed by tree-level perturbative unitarity2. These
mass ranges correspond to Lagrangian quartic couplings
ranging from λ3 = 0.212, λ4 = λ5 = −0.106 (for
mH± = 100 GeV) to λ3 = 12.6, λ4 = λ5 = −6.28
(for mH± = 600 GeV). The scalar DM candidate H
has a mass of approximately mh/2, which leads to an en-
hancement of the DM relic density via Higgs resonance
(see e.g. Ref. [115]) — hence the name of this scenario.
Due to the proximity of µ2 and mH , the branching ra-
tio for the invisible decay h → HH is about 0.01% in
this scenario — well below the current bounds (see e.g.

2 Considering only tree-level perturbative unitarity, we could take
m

H± ≃ 700 GeV, which corresponds to λ3 = 16.0 and λ4 =
λ5 = −8.02.
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Refs. [32, 33, 55, 56, 116]) as well as expected limits
at e+e− Higgs factories like the ILC [117] or the FCC-
ee [118]. We have also verified that the spin-independent
direct detection cross-section [58] is σSI = 9.4·10−49 cm2

in this scenario (we note that, at leading order, this cross-
section only depends on mH and µ2), so that it fulfills
the upper bound from the recent LZ results [7] — which
corresponds to σSI . 2 · 10−48 cm2 for mH = 60 GeV.
The value of ΩDMh2 is about 0.12 and is approximately
independent of mH± and mA for most of the considered
mass range. We note that since the evaluation of ΩDMh2

is only performed at tree level, we restrict ourselves to a
level of accuracy of two digits.
We also consider a second scenario where all BSM

scalars are heavy (we refer to this as the heavy Higgs
scenario). This case is less directly related to DM phe-
nomenology, as DM (for which the candidate state is still
taken to be H) is typically underproduced. We set

µ2 = 499.9 GeV , mH = 500 GeV ,

500 GeV ≤ mH±(= mA) ≤ 790 GeV . (26)

The lower bound on mH±(= mA) is this time motivated
by vacuum stability — see Eq. (4) — which implies
that all BSM scalar masses should be larger than |µ2|.
The upper bound is once again obtained from requiring
|λi| ≤ 4π. (in the most favorable case of λ2 ≃ 0). In
terms of Lagrangian quartic couplings, this corresponds
to values ranging from λ3 = 3.30 × 10−3, λ4 = λ5 = 0
(for mH± = 500 GeV) to λ3 = 12.3 and λ4 = λ5 = −6.17
(for mH± = 790GeV). For both scenarios, λ2 is kept as
a free parameter, and we choose several example values
λ2 = 0.1, 1, 5 and adapt the upper limit of the range of
mH±(= mA) allowed under perturbativity accordingly
(the bound on the masses is lower for higher λ2). We
also note that, in this scenario, decays of the Higgs bo-
son into pairs of inert scalars are kinematically forbid-
den, so that there is no constraint from invisible Higgs
decays. Once again, we have verified for this scenario
the upper limit on the spin-independent direct detection
cross-section, which we find to be σSI = 3.9 · 10−49 cm2,
below the bound from LZ [7] of σSI . 1 · 10−47 cm2 for
mH = 500 GeV.
In the following, we present our results for the Higgs

decay to two photons in terms of the ratio

R[BR(h → γγ)] ≡ BR(h → γγ)IDM

BR(h → γγ)SM
, (27)

i.e. the ratio of the branching ratio of the di-photon de-
cay of the Higgs boson computed in the IDM over that
in the SM. The branching ratios are computed using the
program H-COUP [93–95], supplemented by the NLO (two-
loop) corrections to the di-photon decay width given in
the previous section. We note that the total Higgs boson
width, to which the partial decay widths Γ(h → γγ) are
normalized, is always calculated at NLO— this choice al-
lows to disentangle the effect of the newly computed NLO
corrections to the di-photon decay from known one-loop

corrections to other Higgs decay channels. This quantity
can also be compared directly to current experimental
measurements [32, 33, 119, 120] or future prospects [36]
— e.g. it corresponds to the quantity Bγγ in Ref. [36].
In order to better understand and illustrate the size of
the two-loop corrections to the di-photon partial decay
width, we will also investigate in the following a second
quantity, R[Γ(h → γγ)], which we define to be

R[Γ(h → γγ)] ≡ Γ(h → γγ)IDM

Γ(h → γγ)SM
. (28)

In this ratio, the SM pieces approximately cancel out
between the numerator and denominator, so that we can
directly assess the magnitude of BSM effects.
In Figs. 4 and 5, we show respectively results for

R[BR(h → γγ)] and R[Γ(h → γγ)] as a function of
mH±(= mA) for the Higgs resonance (left) and the heavy
Higgs (right) scenarios. The leading order (i.e. one-loop)
results are given by the blue curves, while the red curves
correspond to the NLO (i.e. two-loop) results for different
values of the inert quartic coupling λ2. The black lines
in Fig. 4 indicate the expected 95% CL bounds on the
ratio R[BR(h → γγ)] at HL-LHC [36]: the dot-dashed
line corresponds to the more conservative limit from AT-
LAS, while the dashed line is the stronger limit from
CMS (which has a better detector for photons). We note
that the corresponding current LHC bounds [32, 33, 119]
correspond to R[BR(h → γγ)] = 0.8 and are outside
the plots. Turning first to the LO results, we can ob-
serve that the BSM deviation in R[Γ(h → γγ)] (Fig. 5)
approaches a plateau as mH± increases as can be seen

from I(1)
H± in Eq. (20) (for the heavy Higgs scenario,

this plateau is however not reached due to the limit
from perturbativity). This behavior can be explained
by the compensation between the charged-Higgs mass
dependence in the coupling λ3 ∝ (m2

H± − µ2
2) and in

the loop function for the charged Higgs loop at LO —
see for instance equations (A.34)-(A.35) in Ref. [13]. In
the left plot of Fig. 4, one can observe an increase in
R[BR(h → γγ)] formH± & 250 GeV. This is because the
ratio (Γtot

h )IDM/(Γtot
h )SM decreases asmH± increases [14].

At two loops, the behavior of the two-loop corrections to
Γ(h → γγ) is drastically modified, and in both scenarios
they continue growing with mH± , increasing the devi-
ation from the SM. On the one hand, the parametric
dependence of the two-loop corrections — c.f. Eq. (20)
— is different, so that these still grow for fixed µ2 and
increasing mH± . On the other hand, several new types
of contributions arise at two loops that are not correc-
tions of the LO BSM effects — specifically the O(λ2

3)
terms can be understood as a correction of the LO O(λ3)
charged-Higgs loop, while the O((λ4 + λ5)

2) and O(λ2)
terms as well as the external-leg corrections correspond
to new classes of effects only entering Γ(h → γγ) from
two loops. Importantly, we find that the inclusion of two-
loop corrections in the di-photon decay width increases
the size of the BSM deviation. To be concrete, we can
consider the situation in the Higgs resonance scenario
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above the CMS sensitivity. On the other hand, no point
in the allowed mass range of the Higgs resonance scenario
would produce a large enough deviation to exceed the ex-
pect ATLAS sensitivity at HL-LHC. In the heavy Higgs
scenario, neither ATLAS nor CMS would have sensitiv-
ity to BSM deviations in R[BR(h → γγ)], throughout
the allowed mass range. The picture would, however, be
modified with a future e+e− Higgs factory, like ILC or
FCC-ee, at which the improvement in the determination
of the total Higgs boson width would result in a better
experimental precision on R[BR(h → γγ)] — a precision
on this branching ratio of about 2.6% [117] could be at-
tained at ILC-500, or of about 3% [121, 122] at FCC-ee
(while further improvements could also be achieved at a
high-energy e+e− collider or at a muon collider, see e.g.
Ref. [123]). Such a level of precision would allow prob-
ing BSM deviations in R[BR(h → γγ)] in the high mass
range of the heavy Higgs scenario — but a reliable in-
terpretation of a possible detection of a BSM deviation
in R[BR(h → γγ)] can only be achieved in this scenario
provided that two-loop corrections to Γ(h → γγ) are in-
cluded. In the Higgs resonance scenario, the entire mass
range from Eq. (25) could be excluded at the 2σ level.
Moreover, the difference between the one- and two-loop
curves is even of the order, or larger, than the expected
accuracy at e+e− colliders. Therefore, in both scenarios
the inclusion of two-loop corrections is necessary to prop-
erly interpret the observation or non-observation of BSM
deviations in R[BR(h → γγ)] in terms of the parameter
space of the IDM.
Reliable interpretations of theoretical predictions ad-

ditionally require corresponding uncertainty estimates.
Therefore, we employ renormalization scheme conver-
sions of the BSM mass parameter µ2 between the PDOS
and DI schemes (described in Section III) in order to es-
timate the size of unknown higher-order contributions,
which are not included in our calculations. The results
we obtain are shown as bands in Fig. 5, symmetrized
around the predictions for R[Γ(h → γγ)] in the PDOS
scheme. Specifically, the light blue band corresponds to
the scheme conversion of µ2 in the one-loop prediction
(using λ2 = 0.1 in the conversion), while the magenta
and orange bands show the impact of the conversion3 at
two loops, for λ2 = 1 (magenta) and λ2 = 5 (orange) —
and we use the expressions in the DI scheme, in Eq. (A2),
for the two-loop predictions of R[Γ(h → γγ)] after the
scheme conversion. It should be emphasized that the
bands obtained with the conversion of µ2 alone should
not be taken as complete theory uncertainties, but as es-

3 We note that conversions of µ2 in the one-loop result for Γ(h →

γγ) do not generate terms of all the possible terms present at two
loops. Thus, to ensure meaningful comparisons of the one- and
two-loop uncertainty bands, we have restricted the conversion
at two loops to the types of contributions that are generated by

one-loop conversions — i.e. the term I
(2)
O(λ2)

and the purely BSM

corrections in I
(2)
rem..

timates of the size of missing higher-order effects. As
expected, the size of the unknown higher-order contribu-
tions is reduced when going from the one- to the two-loop
level; for instance, considering the Higgs resonance sce-
nario (left panel) and mH± = 500 GeV, the size of the
band, in relative size compared to the PDOS prediction,
is reduced from ±8.4% at one loop to ±0.16% (±1.1%)
at two loops for λ2 = 1 (λ2 = 5). The difference between
the two values at two loops can simply be understood
as being due to the impact of increasing values of λ2 on
the magnitude of the loop corrections. These findings
constitute a positive indication of the convergence of the
perturbative expansion performed in our loop calcula-
tions, as well as of the high level of accuracy with which
our results can be compared with experimental results.
Correlations between BSM deviations in various cou-

plings of the 125-GeV Higgs boson can play a crucial role
in identifying, or “fingerprinting,” the nature of the un-
derlying BSM physics at the origin of the deviations —
this was for instance pointed out in Ref. [22] and stud-
ied at NLO in Refs. [14, 124]. However, in this context,
it is also important to assess how higher-order correc-
tions to the different couplings can modify the correla-
tions found at LO. Therefore, we illustrate in Fig. 6 the
interplay between R[BR(h → γγ)] and κλ and how it is
modified when going from LO to NLO in the calculation
of BSM corrections to these two quantities.4κλ denotes
here the coupling modifier for the trilinear Higgs cou-
pling, defined5 as κλ ≡ λIDM

hhh /(λSM
hhh)

(0), with λIDM
hhh the

trilinear Higgs coupling calculated at one and two loops
in the IDM and with (λSM

hhh)
(0) the tree-level prediction

for this coupling in the SM. As in the previous figure,
we consider both benchmark scenarios (Higgs resonance
on the left and heavy Higgs on the right), and the blue
and red curves correspond to one- and two-loop results
respectively. Each of these lines is obtained by varying
mH± = mA in the ranges given in Eqs. (25) and (26). For
the values of κλ shown in Fig. 6, we perform a full one-
loop calculation of κλ with the public tool anyH3 [126],
which we complement at the two-loop level by employ-
ing results from Refs. [28, 29]. These results were de-
rived for the Higgs resonance scenario (i.e. they include
only the dependence on mA, mH± and λ2), and we have
moreover extended them for use in the heavy Higgs sce-
nario by including also the full dependence on mH and
µ2 in λhhh — we provide the new expressions in Ap-
pendix C. Black lines indicate the expected limits at the

4 We note that BSM corrections to the trilinear Higgs coupling
only occur at the loop level. As was pointed out in e.g.
Refs. [19, 20, 29, 31], these effects are not a correction of the
tree-level prediction for this coupling, but rather a new class of
contributions entering from the one-loop level. We therefore refer
to the one- and two-loop BSM corrections to κλ as respectively
LO and NLO effects.

5 This definition corresponds to the effective trilinear Higgs cou-
pling that is constrained by the ATLAS and CMS collaborations
via double- and single-Higgs production [32, 33, 125].





13

γγ). To ensure that we obtained gauge-independent re-
sults for the two-loop corrections to the photon self-
energy, which we employ in the Higgs LET, we per-
formed two separate calculations with the background-
field method as well as the pinch technique — finding
full agreement between the two results. Additionally,
we employed the on-shell renormalization scheme for the
BSM scalar masses and the EW vacuum expectation
value. For the BSM mass parameter µ2, we have em-
ployed two different choices of renormalization schemes,
a process-dependent OS scheme following Refs. [90, 91]
and that is implemented in H-COUP [93–95], as well as
the decoupling-inspired scheme from Refs. [28, 29]. In-
terestingly, we found that the DI scheme, while defined
in the context of the calculation of the trilinear Higgs
coupling, also applies in the present case and ensures the
desired renormalization-scale independence as well as ap-
parent and proper decoupling of the BSM contributions
to Γ(h → γγ).

We have investigated the numerical impact of our new
results for two benchmark scenarios inspired by DM phe-
nomenology — the Higgs resonance scenario with H as a
light DM candidate and the heavy Higgs scenario where
all inert scalars, including the DM candidate H, are
heavy. We furthermore imposed for these scenarios state-
of-the-art theoretical constraints (in particular perturba-
tive unitarity and vacuum stability) as well as experi-
mental limits from collider and DM searches.

We have shown that the two-loop corrections to Γ(h →
γγ) can become significant in the presence of large mass
splittings (in our case between mH ∼ µ2 and mH± =
mA). While one would not expect to see deviations in
R[BR(h → γγ)] arising from the inert scalars with the
present LHC limits, deviations could appear with data
from the HL-LHC or from a future e+e− Higgs factory. In
this regard, the Higgs resonance scenario is most promis-
ing and, in this type of scenario, the most of the mass
range for A and H± could be ruled out in the near fu-
ture, considering the expected CMS sensitivity at HL-
LHC. It is particularly important to emphasize here that
this result requires the inclusion of two-loop BSM correc-
tions to the di-photon decay width. On the other hand,
the heavy Higgs scenario would remain out of reach of
measurements of the h → γγ decay at the HL-LHC.
Prospects are of course better at possible lepton collid-
ers, with (sub)percent level constraints achievable at an
electron-positron machine like the ILC — see for instance
Ref. [117]. Our results illustrate, in both scenarios we
considered, that the inclusion of higher-order corrections
to Γ(h → γγ) is crucial for reliable interpretations of
experimental data and expected limits from future col-
liders. Investigations of the IDM via its effects on Higgs
properties should also be considered in complementarity
with direct searches for inert scalars at current and fu-
ture colliders (see e.g. Ref. [51]). Direct collider searches
will probe the lower ranges of masses, but it is interest-
ing to note that they will not rule out large deviations in
Higgs couplings (as these occur for larger masses of the

BSM scalars). Meanwhile, probes via invisible decays of
the 125-GeV Higgs boson or via DM direct detection,
typically do not significantly constrain scenarios leading
to large deviations in R[BR(h → γγ)] (or in κλ), as il-
lustrated by the specific cases considered in this work.
On the other hand, while scenarios like the Higgs reso-
nance one could entirely avoid constraints from DM di-
rect detection if the DM detection cross-section is below
the neutrino floor, it could potentially be excluded en-
tirely in the future if no BSM deviation is detected in
R[BR(h → γγ)]. Our work strengthens the motivation
to compute Higgs properties such as its decay width to
two photons beyond leading order, in order to reduce
theoretical uncertainties and allow reliable comparisons
between theoretical predictions and experimental results.

ACKNOWLEDGEMENTS

We thank T. Katayose for collaboration in the early
stages of this project. We thank G. Guedes, M. Spira,
and G. Weiglein for helpful discussions, as well as P.
Slavich for communication and cross-checks of our work
with Ref. [41]. This work is supported by the Japan Soci-
ety for the Promotion of Science (JSPS) Grant-in-Aid for
Scientific Research on Innovative Areas (No. 22KJ3126
[M.A.]). J.B. acknowledges support by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – EXC
2121 “Quantum Universe” – 390833306. J.B. is sup-
ported by the DFG Emmy Noether Grant No. BR
6995/1-1. This work has been partially funded by the
Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) – 491245950. The work of S. K. was
supported by the JSPS KAKENHI Grant No. 20H00160,
23K17691, 24KF0060.

Appendix A: Expressions for the two-loop
contributions to the Higgs decay width to two

photons, with µ2 renormalized in the
decoupling-inspired scheme

We provide in this appendix expressions for the two-
loop contributions to the Higgs di-photon decay in the
case where the BSM mass parameter µ2 is renormal-
ized in the decoupling-inspired (DI) scheme defined in
Refs [28, 29]. The corresponding counterterm, denoted
(δ(1)µ2

2)
DI, reads

(16π2)(δ(1)µ2
2)

DI = 3λ2µ
2
2∆UV (A1)

−1

2
λ2µ

2
2

[

log
m2

H

Q2
+ log

m2
A

Q2
+ 4 log

m2
H±

Q2
− 6

]

,

where Q is the renormalization scale.

While the expressions of I(2)

O(λ2
3)
, I(2)

O((λ4+λ5)2)
, and

I(2)
O((λ4−λ5)2)

are unchanged compared to Eq. (20), the
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one of I(2)
O(λ2)

is modified and I(2)
rem. is simply equal to I(2)

ext.-leg. + I(2)
VEV.

I(2)
O(λ2)

∣

∣

∣

∣

(δ(1)µ2
2)

DI

=− λ2

384π2m2
H±

(

m2
H +m2

A + 4m2
H± − 6µ2

2

)

,

I(2)
rem. = I(2)

ext.-leg. + I(2)
VEV (A2)

Appendix B: Expressions for the unrenormalized
two-loop contributions to the photon self-energy

For the sake of further applications and cross checks,
we provide in this appendix expressions for the unrenor-
malized two-loop contributions to the photon self-energy
in the IDM. These read

(16π2)2Π
(2)

O(λ2
3)

=
2e2m2

H±

3v2

(

1− µ2
2

m2
H±

)2 [

2∆UV + 1− 4 log
m2

H±

Q2

]

+O(ǫ) , (B1)

(16π2)2Π
(2)
O((λ4+λ5)2)

=
e2

3v2

{

m2
H±

(

1− m2
H

m2
H±

)2 [

∆UV − log
m2

H

Q2
− log

m2
H±

Q2

]

+
m4

H

m2
H±

+ 6m2
H + 11m2

H±

− m2
H±(17m2

H +m2
H±)

m2
H −m2

H±

log
m2

H

m2
H±

}

+O(ǫ) ,

(16π2)2Π
(2)
O((λ4−λ5)2)

=
e2

3v2

{

m2
H±

(

1− m2
A

m2
H±

)2 [

∆UV − log
m2

A

Q2
− log

m2
H±

Q2

]

+
m4

A

m2
H±

+ 6m2
A + 11m2

H±

− m2
H±(17m2

A +m2
H±)

m2
A −m2

H±

log
m2

A

m2
H±

}

+O(ǫ) ,

(16π2)2Π
(2)
O(λ2)

=
e2λ2

6m2
H±

{

(m2
H +m2

A + 4m2
H±)

[

∆UV + 1− 2 log
m2

H±

Q2

]

−m2
H log

m2
H

m2
H±

−m2
A log

m2
A

m2
H±

}

+O(ǫ)

We emphasize that these expressions contain finite pieces
arising from contributions of the form ǫ×1/ǫ, which in the
present calculation are found to cancel with terms from
subloop renormalization. Employing an MS scheme, we
find full agreement between our results and the scalar
contributions in eq. (B.1) of Ref. [41].

Appendix C: Leading two-loop corrections to λhhh in
the IDM

We provide in this appendix expressions for the leading
two-loop corrections to the trilinear Higgs coupling λhhh

in the IDM — extending the results of Refs. [28, 29]. As
in these references, we obtain the new expressions using

the effective-potential approximation, and with a full on-
shell renormalization scheme.
For convenience, we decompose the two-loop correc-

tions to λhhh — which we denote δ(2)λhhh — in three
pieces, as

δ(2)λhhh = δ(2)λhhh

∣

∣

SS
+ δ(2)λhhh

∣

∣

SSS

+ δ(2)λhhh

∣

∣

ext-leg+VEV
. (C1)

In this equation, the three pieces correspond respectively
to eight-shaped and sunrise diagrams in the effective po-
tential (see e.g. Ref. [84] for a description of two-loop
contributions to the effective potential) and to one-loop-
squared contributions from external-leg corrections and
VEV renormalization. We find



15

δ(2)λhhh

∣

∣

µDI
2

SS
=

6λ2

(16π2)2v3

[

3

(

m4
H − 6m2

Hµ2
2 −

2µ6
2

m2
H

)

+ 3

(

m4
A − 6m2

Aµ
2
2 −

2µ6
2

m2
A

)

+ 4

(

2m4
H± − 9m2

H±µ2
2 −

3µ6
2

m2
H±

)

+ 2m2
Hm2

A + 4m2
Hm2

H± + 4m2
Am

2
H± + µ4

2

(

m4
H +m4

A

m2
Hm2

A

+
2(m4

H +m4
H±)

m2
Hm2

H±

+
2(m4

A +m4
H±)

m2
Am

2
H±

)

+ 62µ4
2 −

2µ2
2

m2
H

(

(m2
H − µ2

2)
2 log

m2
H

m2
H±

− 2m2
Hµ2

2 log
m2

A

m2
H±

)

− 2µ2
2

m2
A

(

(m2
A − µ2

2)
2 log

m2
A

m2
H±

− 2m2
Aµ

2
2 log

m2
H

m2
H±

)

]

. (C2)

δ(2)λhhh

∣

∣

µPDOS
2

SS
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t (m
2
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δ(2)λhhh
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These expressions are manifestly independent of the
renormalization scale, as expected from our choice of
renormalization prescription. Moreover, we have veri-
fied: (i) that these BSM effects decouple properly in the
limit µ2 → ∞, and (ii) that in the limit µ2,mH → 0

we recover equation (V.22) of Ref. [29]. Finally, we note
that the expression for δ(2)λhhh

∣

∣

SSS
is provided here for

the mass hierarchy mH < mA < mH± , but it can be
adapted for any desired hierarchy by selecting the appro-
priate branch of the logarithms.
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