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1 Introduction

The search for extensions of the standard model (SM) remains one of the most important
goals of the CERN LHC research program. Beyond-the-SM (BSM) physics can manifest itself
through the production of a new heavy particle that decays into SM particles. Numerous
searches for massive resonances decaying into a pair of SM particles, such as dijet or diboson
searches [1-15], have been conducted without resulting in any compelling evidence for
BSM physics.

Several BSM theories can also give rise to resonances resulting in signatures with three
or more SM bosons. Extended models with warped extra dimensions [16-21] are among
those that predict such a signal. These models assume a Randall-Sundrum scenario with
an extended bulk space containing two branes in addition to the one on which the SM
resides [16]. Each additional brane introduces a bulk scalar boson, the radion R, which
stabilizes the size of the extra dimension through the potential of a modulus field [22]. One



of the main motivations of these models is to tackle the SM hierarchy problem [23, 24], where
quantum corrections to the Higgs boson mass need to be fine-tuned to the ratio (Mg /MP1)2
in order to maintain the Higgs boson mass at the observed electroweak scale, with Mgw
and Mp; representing the electroweak and Planck scales, respectively. Extended warped
extra-dimensional models address the Mp—Mgw gap by proposing that it is an artifact of
the SM not residing in the full bulk space, while simultaneously addressing flavor hierarchy
problems. Such BSM signatures would, however, remain undetected in the above-mentioned
dijet and diboson resonance searches since their final states are not fully reconstructed.
Therefore, dedicated searches are needed.

Previous searches for triboson and trigluon signatures resulting from a two-step cascade
decay of a heavy resonance have been performed by the CMS experiment [25-28]. A scenario
containing a W boson plus two gluons (g) has been probed by the ATLAS experiment [29].
Despite the constraints imposed by these searches, a large fraction of the theoretical parameter
space remains unexplored. In this paper, we consider the specific extended warped extra-
dimensional scenario in which only the quantum chromodynamic (QCD) gauge field can
propagate into the extended bulk, giving rise to a Kaluza-Klein (KK) gluon gri. The grik
can decay in a cascade through the lightest radion of the theory. In a certain parameter
space of the model, the dominant decay mode is gy — gR — gWW, which has not yet
been directly probed, and is the focus of this analysis.

In this paper, we probe the gWW signature performing a search for BSM physics in the
trijet final state. Two of the jets, both arising from the posited R decay, are identified using
jet substructure techniques as originating from hadronic decays of Lorentz-boosted W bosons.
No particular requirements are imposed on the third jet, which, in this model, is expected to
originate from the gluon. This choice preserves search generality as it allows other potential
signals to be selected. Figure 1 displays a schematic diagram of the signal process, including
the cascade decay and the resulting final state probed in this paper. The overall gy mass
range explored is 1.25-4.5 TeV. Within this range, the phase space with a ratio of R and gy
masses of 0.04 < mg/m, < 0.9 is considered. For mg /m, < 0.2 and mg /mg > 0.8,
the analysis sensitivity is reduced because a significant number of events result in a dijet
final state that is not selected. In the former case, the two W bosons are collimated, while
in the latter case, the final-state gluon carries relatively little energy.

The analysis is based on proton-proton (pp) collision data collected by the CMS experi-
ment during 20162018 at /s = 13 TeV, with integrated luminosities of 36.3 [30], 41.5 [31],
and 59.7 [32] fb~! for 2016, 2017, and 2018, respectively, yielding a total of 138fb~ . The
targeted signal is reconstructed by identifying the two W boson jet candidates, whose com-
bined invariant mass my; yields the posited mg. These jets, along with a third one, are
used to reconstruct the gii resonance candidate and compute its invariant trijet mass

my;;- To increase analysis sensitivity, my; and my;; are corrected, improving their resolution.

Machine-learning techniques are employed to reéonstruct and identify the jets originating
from a W boson decay. In previous analyses [25, 26], the DeepAKS algorithm [33] has been
used for this purpose. In this paper, we use the ParticleNet (PNet) algorithm [34], which
yields a significantly better signal selection efficiency for the same background rejection and
exhibits a reduced dependency on the jet mass. Additionally, we split the selected event

sample based on the ratio my;/m;;.
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Figure 1. A schematic diagram of the decay of a gii boson via a radion R to the final state
considered in this analysis.

While this search is optimized for a gWW signal, it is also sensitive to other signals
containing a pair of Lorentz-boosted W or Z bosons. In particular, this includes any heavy
resonance decaying, with or without an intermediate particle, into XWW, XWZ, or XZZ,
where X is a particle resulting in an energetic jet, such as a light or heavy quark, a vector
boson, or a BSM particle.

This paper is organized as follows: section 2 provides a description of the CMS detector.
Section 3 describes the simulated samples used in the analysis. The triggers employed for
data collection and the event reconstruction are discussed in section 4. The event selection
and categorization are presented in section 5. Section 6 describes the estimation of the
SM background. Systematic uncertainties are discussed in section 7. The results and their
interpretation are given in section 8. The paper is summarized in section 9. Tabulated results
for this analysis are provided in the HEPData record [35].

2 The CMS detector

The central feature of the CMS detector is a superconducting solenoid of 6 m internal diameter,
providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL),
each composed of a barrel and two endcap sections resides within the solenoid volume.
Forward calorimeters extend the coverage provided by the barrel and endcap detectors up
to pseudorapidities of |n| = 5. Muons are measured in gas-ionization detectors embedded
in the steel flux-return yoke outside the solenoid.

The trijet events of interest are selected using a two-tiered trigger system. The first level,
composed of custom hardware processors, uses information from the calorimeters and muon
detectors to select events at a rate of around 100 kHz, making a decision within the fixed
period of about 4 us following the beam crossing, allowed by the latency implemented in
the readout path [36]. The second level, known as the high-level trigger, consists of a farm
of processors running a version of the full event reconstruction software optimized for fast



processing, and reduces the event rate to around 1kHz before data storage [37]. A more
detailed description of the CMS detector, together with a definition of the coordinate system
and kinematic variables, can be found in refs. [38, 39].

3 Simulated samples

The signal is simulated at leading order (LO) using the MADGRAPH5_aMCQNLO 2.4.2
generator [40], covering a wide range of gk and R masses (mgKK from 1.25 to 4.5 TeV and
mpg from 4 up to 90% of mgKK). The corresponding KK gauge coupling values that are used
for the interpretation of this result are g, = 2.65, gw, . = 3, gg,x = 0, and ggray = 5,
as proposed in ref. [17]. The widths of both gxk and R are less than 2% of their masses,
thus satisfying the narrow-width approximation.

The dominant SM background originates from jets produced through the strong in-
teraction. Such events are referred to as QCD multijet events. While this background is
estimated using data, the procedure is tested using simulation. The QCD multijet events,
along with the subdominant background from W+jets and the Z+jets production, designated
as “V+jets”, are simulated at LO with MADGRAPH5_ aMC@NLO, and matched to parton
showers with the MLM [41] algorithm. The top quark-antiquark pair (tt) and single top quark
(t) background production are modeled at next-to-LO (NLO) in QCD using the POWHEG 2.0
generator [42-47]. The minor diboson background is simulated at NLO with either POWHEG
(WW production) or MADGRAPH5 _aMC@NLO (WZ, ZZ), collectively referred to as “VV?,
Contributions from other processes are found to be negligible.

The signal and background samples for all three years of data taking are generated
with the LO or next-to-NLO NNPDF3.1 parton distribution functions (PDFs) [48], ensuring
that the order of the PDFs matches that of the matrix element calculations. The parton
showering, fragmentation, and hadronization for all samples is performed using PYTHIA
8.230 [49] with the underlying event tune CP5 [50]. The CMS detector response is modeled
using the GEANT4 package [51]. The simulated events include the contribution of particles
from additional pp interactions within the same or neighboring bunch crossings, referred
to as pileup (PU), and are corrected to reproduce the distribution of the number of PU
interactions observed in the data.

4 Event reconstruction

The primary interaction vertex (PV) is taken to be the vertex corresponding to the hardest
scattering in the event, evaluated using tracking information alone, as described in section
9.4.1 of ref. [52].

The particle-flow (PF) algorithm [53] aims to reconstruct and identify each interacting
particle in an event, with an optimized combination of information from the various elements
of the CMS detector. The energy of electrons is determined from a combination of the track
momentum at the PV, the corresponding ECAL cluster energy, and the energy sum of all
bremsstrahlung photons attached to the track. The energy of muons is obtained from the
curvature of the corresponding track. The energy of charged hadrons is determined from
a combination of their momentum measured in the tracker and the matching ECAL and



HCAL energy deposits, corrected for the response function of the calorimeters to hadronic
showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected
ECAL and HCAL energies.

For each event, hadronic jets are clustered from these reconstructed particles using
the infrared- and collinear-safe anti-kt jet finding algorithm [54, 55] as implemented in the
FASTJET package [55]. The clustering algorithm is run twice over the same inputs with the
distance parameters 0.4 and 0.8, resulting in AK4 and AKS jet collections, respectively. Jet
momentum is determined as the vectorial sum of all particle momenta in the jet, and is found
from simulation to be, on average, within 5 to 10% of the true momentum over the entire
transverse momentum spectrum and detector acceptance [56].

The PU per particle identification algorithm [57, 58] is used to mitigate the effect of
PU in AKS jets at the reconstructed-particle level, making use of local shape information,
event PU properties, and tracking information. A local shape variable is defined, which
distinguishes between collinear and soft diffuse distributions of other particles surrounding
the particle under consideration. The former is attributed to particles originating from the
hard scattering and the latter to particles originating from PU interactions. Charged particles
identified to be originating from PU vertices are discarded. For each neutral particle, the
local shape variable is computed using the surrounding charged particles compatible with the
PV within the tracker acceptance (|n| < 2.5), and using both charged and neutral particles
in the region outside of the tracker coverage. The momenta of the neutral particles are then
rescaled according to their probability to originate from the PV deduced from the local shape
variable, thus superseding the need for jet-based PU corrections [57].

Jet energy corrections are derived from simulation to bring the measured response of jets
to that of particle-level jets on average. In situ measurements of the momentum balance in
dijet, photon+jet, Z+jet, and multijet events are used to account for any residual differences
in the jet energy scale (JES) between data and simulation [56]. The jet energy resolution
(JER) measured using a dijet balance technique amounts typically to 15-20% at 30 GeV,
10% at 100 GeV, and 5% at 1 TeV [56]. Additional selection criteria are applied to each jet
to remove jets potentially dominated by anomalous contributions from various subdetector
components or reconstruction failures [59].

The AKA4 jets originating from the hadronization of bottom (b) quarks are identified (“b
tagged”) using a deep neural network algorithm DEEPJET [60, 61] that takes as input: tracks
within the jet that are displaced from the PV, identified secondary vertices, jet kinematic
variables, neutral PF candidates, and information related to the presence of soft leptons in
the jet. A threshold on the DeepJet score is used, corresponding to a 0.1% probability of
misidentifying a light-flavor quark or a gluon (udsg) AK4 jet with pp > 30 GeV and |n| < 2.5
as a b quark jet, while maintaining a 67% signal efficiency.

The missing transverse momentum vector, pp. iss, is computed as the negative vector sum
of the transverse momenta (pt) of all the PF candidates in an event, and its magnitude is
denoted as p** [62]. The 7™ is modified to account for corrections to the energy scale of

SS .
events can occur due to a variety

the reconstructed jets in the event. Anomalous high—p?i
of reconstruction failures, detector malfunctions, or noncollision backgrounds. Such events
are rejected by conditions that are designed to identify more than 85-90% of the spurious

high-pH™* events with a single efficiency loss of less than 0.1% [62].



The AKS jets containing hadronic decays of W bosons are identified using the PNet
machine learning algorithm [34], with PF candidates and secondary vertices as input. The
algorithm output classifies jets by assigning one score for each class trained. The algorithm
is used in its mass-decorrelated version [63]. For the identification of W bosons, the ratio
of the PNet scores of the W — qq class to the sum of all QCD multijet classes is formed
and referred to as PNetyy in the following. We additionally make use of the groomed jet
mass (m;) for further discrimination of W boson jets from background jets. The groomed jet
mass is calculated after applying a modified mass-drop algorithm [64, 65] to AKS8 jets, with
parameters 5 = 0, z.; = 0.1, and Ry = 0.8 also known as the soft drop algorithm [66]. The
variables are calibrated in a tt enriched sample with hadronically decaying W boson [67].
Further details on the calibration method used for this analysis are given in section 6. The
soft-drop mass is meant when referring to the jet mass in the following.

Isolated muon and electron candidates, collectively referred to as leptons ¢ in the following,
are reconstructed as follows in order to veto events containing them. Muon candidates are
required to fulfill p > 20 GeV, to be within the geometrical acceptance of the muon detectors
(In] < 2.4), and are reconstructed by combining the information from the silicon tracker
and the muon chambers [68]. Electron candidates with pp > 35 GeV and within |n| < 2.5
are reconstructed using an algorithm that associates fitted tracks in the silicon tracker with
electromagnetic energy clusters in the ECAL [69]. Electron candidates identified as coming
from photon conversions in the detector are also rejected. Identified muons and electrons are
required to be isolated from hadronic activity in the event. The isolation variable is defined by
summing the pp of all the PF candidates in a cone of radius AR = vV (An)* + (A¢)* = 0.4 (0.3)
around the muon (electron) track, where ¢ is the azimuthal angle in radians, and is corrected
for the contribution of neutral particles from PU interactions [68, 69].

5 Event selection

5.1 Trigger

Several triggers are used to select events of interest. One set of triggers requires Hr, the
scalar sum of the pp of all AK4 jets (with pp > 30GeV and |n| < 2.4) in the event, to be
greater than 800, 900, or 1050 GeV, depending on the data-taking era. In addition, single
high-pt jet triggers are used for the 2016 era. Furthermore, events containing a high-pr
AKS jet with trimmed mass [70] in combination with either Hp calculated using AKS jets
or single AKS8 jet pp requirements are selected. The choice of triggers is identical to the
one used in a similar analysis described in ref. [26], where more details can be found. The
combination of all triggers (logical OR) results in a selection efficiency greater than 99%
over the full data set, for events with Hp > 1.1 TeV, as measured using AKS8 jets in an
independent sample of data events collected with a single-muon trigger and found to be
consistent for both data and simulated samples.

5.2 Preselection and signal region

Two stages of event selection are implemented. The first, the preselection, is initially applied
to select events with signal-like kinematic features, comparing them to the SM backgrounds.



A more stringent selection, the signal region (SR) selection, is then applied to further improve
the background rejection and define the event sample used in the statistical analysis. The
AKS jets will simply be referred to as “jets” in the following.

The preselection requires exactly three jets, corresponding to the two W boson candidates
and the gluon candidate, for consistency all reconstructed as AKS8 jets, with p]T > 200 GeV,
In;| < 2.4, and with the highest py jet satisfying also the p’% > 400 GeV condition. The event
H is required to exceed 1.1TeV to ensure that the fully efficient trigger. The jets with the
highest and second-highest PNetyy score, designated as ja and jb, respectively, are taken as
the two W boson candidates of the event while the third one, jc, is assumed to be the gluon.
The probability of incorrectly assigning at least one jet in this way is approximately 20%
g = 2 TeV and mg = 1TeV. The
masses of ja and jb, mj, and my,, must each be greater than 50 GeV, while no requirement is

at the preselection level, and, e.g., 7% in the SR for m

imposed on the jc mass, mj.. Events containing isolated leptons are rejected.

The ja (jb) PNetyy score, designated as sj, (sjp), is required to be greater than 0.9 (0.8).
These conditions correspond to selection efficiencies of approximately 33 (43)% and 0.5 (1.3)%
for signal and background jets, respectively (evaluated over a generic sample of jets other
than from the analysis preselection). The sj, and s;, spectra for signal and background
events at the preselection are presented in figure 2, upper left and right, respectively. The
combined s;, and sj, conditions at the preselection yield a 36-45% signal efficiency (varying
with jet pp) and 2% (3%) background efficiency in simulation (data). Based on the s, value,
events are divided into two categories, SRa and SRb, with the requirements s;, > 0.9 and
0.8 < 85, < 0.9, respectively. This binning enhances the analysis sensitivity by defining
SRa with high signal purity and low background, complemented by SRb with moderate
purity and higher background.

We define the observable mgs as mgs = \/(mja —85GeV)? + (mjp, — 85 GeV)2. The value
of 85 GeV is chosen since the reconstructed signal W boson mass peaks near that value, as

shown in figure 3 (upper left), due to additional radiation captured within the jet cone.

We require the W boson jet candidates to be compatible with that mass by requiring
mgs; < 15GeV. Figure 3 presents the mj, and my, distributions (upper left) and the mg;
variable (upper right) after the preselection. The first and the last bins of the one-dimensional
distributions of figure 3 contain the events outside the illustrated range.

The QCD multijet background is further reduced by requiring that the largest absolute
difference in pseudorapidity found among the three possible jet pairs is [An;™| < 3. Events
arising from tt and single t quark production result in final states with b-tagged jets. To
suppress this background, events that contain b-tagged AK4 jets are rejected using the

DEEPJET algorithm, as described in section 4.

5.3 Resonance reconstruction and event categorization

The masses of the R and gy resonance candidates can be reconstructed using the invariant
masses of the two W boson candidate jet system mj,;1, = my;, and of all three jets my,jpic = mjj,
respectively. In approximately 94% of all cases, the W bosons resulting from the decay of
the R boson are correctly identified by the PNet algorithm. For most of the remaining cases,

the W boson decay products are not contained in a single AKS jet.
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Figure 2. Upper left (right): the one-dimensional distributions of s, (s;,) for the labeled signal
scenario compared to the simulated background. Black dashed lines indicate the SR selection
boundaries. Lower: the two-dimensional (s;,, sj,) distribution in data. For the hypothesized signal
(mg = 0.75 TeV, mg =15 TeV), contours representing constant event yield fractions (80, 60, 40,
and 20% of the maximum yield) are shown to illustrate the shape. White dashed lines indicate the
boundaries between SRa, SRb samples, and regions of rejected events. All distributions are shown
after event preselection.

Instead of using these two masses directly, we are using modified versions, in which the
jet masses are subtracted, and the average expected W boson mass estimated from simulation
is added. This strategy leads to an improved signal resolution due to the detector resolution
effects canceling out. These variables are defined and designated as m*J = my; — My, — Myp, +

i g
2 x 85GeV, and m;k Myjj — M — My, + 2 X 85 GeV. An improvement in sensitivity of 10

i = i j
(4)% for mj; (mj;;) is observed. Figure 3 (middle row) presents the corrected distributions
of mj; (left) and mj; (right) in simulation after preselection.

Events are divided into five orthogonal regions based on the ratio m;kJ /m;J to better
probe different R masses. The corresponding SRs are enumerated (from lower to higher ratio

values) as SR1-SR5. The SR1-5 ranges over ms;/ms; are symmetrically located around 0.5,
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distribution for a posited signal (mg = 0.75 TeV, mg . = 1.5 TeV) compared to the background-
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signal and background events, as indicated in the legends. The signal events are scaled by the labeled
factors times the theoretical cross sections for visibility. Lower right: the two-dimensional (m;, m::;)

i T
distribution in data. White dashed lines indicate the SR splitting.



. k *
Region  mj;/mj; Sib

SR1a >0.9
<0.28
SR1b 0.8-0.9
SR2a >0.9
0.28-0.43
SR2b 0.8-0.9
SR3a >0.9
0.43-0.57
SR3b 0.8-0.9
SR4a >0.9
0.57-0.72
SR4b 0.8-0.9
SRb5a >0.9
>0.72
SR5b 0.8-0.9

Table 1. Definition of the different SRs based on the mj;/mj;; ratio and sy,.

with the widths exceeding the signal resolution and dividing the data into sub-samples with
approximately similar event counts, while ensuring sufficient numbers of events for QCD
background predictions, as discussed in section 6.1. This categorization, together with the
one based on the tagger score sj,, results in a total of ten SRs designated as SR1a, SR1b,
..., SRBb. The conditions defining these SRs are summarized in table 1. The optimization
of selection conditions, aiming to maximize the signal significance (defined as the ratio of
the number of signal events to the square root of the number of background events), is
evaluated for several signal scenarios at both the preselection level and in the SR, excluding

one variable condition at a time.

The m; / mJ*JJ distribution with the SRs indicated is shown in figure 3 (lower left). The
two-dimensional distribution of m; VS. mJ*JJ is presented in the same figure (lower right). A
posited signal is illustrated with constant yield contours and is centered around the generated

mpg and mg  values. The mi; variable is used for the statistical analysis of the data and

3]
the signal extraction in these ten SRs.

6 Background estimation

The SM backgrounds in the SRs are grouped into three categories: “QCD multijet”, “Top”,
and “Other”. The dominant background in all SRs stems from QCD multijet events, amounting
to 55-75% of the total yield based on simulation, depending on the SR. Single and pair
production of top quarks, collectively referred to as “Top”, accounts for 7-17% of total events.
All other background processes are designated as “Other”. They make up 20-40% of the
total events, the largest contribution coming from W+jets production.

~10 -



6.1 Estimation of the QCD multijet background

The PNet tagger drastically suppresses the dominant background due to QCD multijet
production leaving only relatively few simulated events in the SRs. These are difficult
to predict reliably using simulation. Thus, we estimate this background contribution di-
rectly from control regions (CRs) in data. Ten CRs are used for this purpose, each in
association with a corresponding SR, i.e., CR1a—CRb5b. The selection defining the CRs
is identical to that in the corresponding SRs as listed in table 1, except that the mgs
requirement is inverted such that mgs > 15GeV. In addition, a new variable defined as
Mgy = \/(mja —90GeV)* + (mjr, — 90 GeV)? is introduced, imposing mgy < 50 GeV. In the
(Mja, M;,) plane shown in figure 3 (upper left) SR and CR are indicated. In this illustration,

the area with 15 < mgs < 20 GeV, while also part of the CR, is used as a validation region
(VR). The distribution of events in the (mj,, m;,) plane is not homogeneous. By using
nonconcentric circles (mgs in SRs vs. mgg in CRs), we ensure that the average jet masses

(my, and my,) remain approximately the same in both the SR and CR. Since mjj; depends on

my, and myy, defining CRs using myg, ensures kinematic consistency between the CR and SR,
avoiding potential biases in the mj; prediction. The msj;
samples are found to be consistent between SRs and CRs within their statistical uncertainties.

spectra in simulated QCD multijet

Based on simulation, about 90% of the events in the CRs are QCD multijet events.
Their kinematic properties are very similar to those of the QCD multijet events in the SRs.
Most importantly, CR events feature the same selection efficiency as the SR events, as the
PNety, tagger condition remains identical.

The mj*JJ spectra of QCD multijet events in SRs are predicted using the data in the CRs.
All other SM processes labeled as “Rest” in the following are subtracted using simulation.
Fach resulting CR. template is scaled to the event yields of the corresponding SR using the
ratio of total simulated QCD multijet events in the given SR and CR, QCDgpyy;/QCDcRyy-

This can be written as:

QCDSny

XY ANCT 6.1

CDh _
PredSQRXy = [Data — Rest]
The QCD multijet event yields obtained in this way are factors of 1.6-1.8 larger than
predicted by the simulation depending on the SR. These differences are consistent with similar
analyses [25, 26|, reflecting the limitations of QCD multijet modeling at high tagger scores.

6.2 Estimation of the Top and Other backgrounds

The normalization and the shape of the Top background is estimated from simulation and
validated in data CRs. For this purpose, we are using the data from ten regions, defined
similarly to the SRs, but requiring the presence of at least one b-tagged AK4 jet. These
b-tagged jet enriched regions are called bRs in the following. The signal contribution in
the bRs is an order of magnitude lower than in the SRs, and thus negligible. According to
simulation, the bRs consist to approximately 70, 25, and 5% of Top, QCD multijet, and
Other processes, respectively. The QCD multijet contribution in each bR, is estimated
using simulation, corrected by the factor [Data — Rest]crxy/QCDcRyy, obtained from the
corresponding CRxy. The remaining difference with respect to the data in each bR, ranging
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Jet pr (GeV) 200-300 300-400 >400
Sja > 0.9 0.83+£0.03 0.84=+0.04 0.82+0.05
0.8 <sy, <09 1.08+£0.03 1.01+0.04 1.02+0.05

Table 2. The PNetyy scale factors calculated for exclusive pp and PNety, tagger score ranges of W
boson matched jets.

from 0 to 50%, is then attributed to the Top background. A 50% rate uncertainty in the Top
production cross section, uncorrelated across the SRs, is assigned. The Top background mJ*JJ
shapes in the bRs are found to be consistent with simulation within uncertainties.

The contribution of the Other background in the SRs is estimated from simulation. It is
dominated by W+jets production, which accounts for approximately two thirds of the events.
The selections used in this analysis, in particular the vetoing of leptons and selecting two
W boson candidates, do not allow the definition of a pure W +jets sample close to the SR.
However, a similar triboson analysis [25], for which W+jets production was the dominant
background, found this process to be well-described by simulation. A conservative 30%
uncertainty is assigned to the Other background rate. A correction is applied to both Top and
Other background simulations to account for the differences in the PNet W boson selection

efficiency in data and simulation, as described below.

6.3 Calibration of the W boson tagger

For the QCD multijet background, an estimate using the same selection conditions on s;, and
sjp in the data CRs and SRs, obviates the need for correcting the PNet selection efficiency.
For the signal and all other background processes that contain genuine W bosons, the
PNet selection efficiency is calibrated using the data. By requiring the data to match the
simulation in the jet mass distribution, scale factors (SFs) are derived for the selected W
boson candidate jet with PNetyy scores of 0.8-0.9 and >0.9. These SFs are binned in jet
pr and summarized in table 2.

To apply the SFs, all reconstructed jets in simulated events are subjected to matching
with the generated partons using geometrical conditions, as described in ref. [26]. Both the
simulated signal and background events are corrected with these SFs for each jet matched as
a W boson, across all samples used in the analysis and in all regions.

6.4 Background estimation validation

The background estimation method is validated in the data without using the actual SR
events. Instead, SRs are replaced by ten VRs. These are obtained using the SR selection
conditions given in table 1, changing only the mgys < 15 GeV condition to 15 < mgs < 20 GeV,
as illustrated in figure 3, upper row. As the 15 < mgs < 20 GeV range nominally is part of
the CRs, for this test only, the CRs are redefined excluding these overlapping events. The
prediction of the shape and rate of QCD multijet production is evaluated for each VR with
the same method as used for the SRs. Simulation is used for processes other than QCD
multijet, as their contribution is small outside the W boson mass window. A maximum
likelihood fit is performed, including all the sources of systematic uncertainty described in
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Uncertainty source BorS Effect on Magnitude Number of NPs & correlations

Normalization QCD multijet B Rate 20% 10, uncorr. across SRs
Normalization Top B Rate 50% 10, uncorr. across SRs
Normalization Other B Rate 30% 10, uncorr. across SRs
QCD multijet B shape due to mgq usage B Shape  *1o templates 10, uncorr. across SRs
QCD multijet B shape due to other processes B Shape  +1lo templates 10, uncorr. across SRs
PU reweighting & integrated luminosity S Rate 1.7% 1, correlated across all SRs
PDFs S Rate <10% 1, correlated across all SRs *
pr and pp scales S Rate <0.8% 1, correlated across all SRs *
PNety selection efficiency per jet (event) S Shape 6% (12%) 1, correlated across all SRs
JES S Shape 410 templates 1, correlated across all SRs *
JER S Shape  +1lo templates 1, correlated across all SRs *

Table 3. The sources of systematic uncertainties accounted for in the analysis. From left to right:
indication of whether an uncertainty is evaluated for the background (B) or signal (S), whether the
uncertainty affects shape or rate, magnitudes (where applicable, or standard deviations (o)), and the
total number of nuisance parameters (NPs) used along with their correlations across SRs. The “*”
indicates a value or a shape template different for each signal scenario.

section 7 for the actual result interpretation. The observed mJ*JJ

with the predicted ones within statistical uncertainties, validating the prediction method

distributions in data agree

described in section 6.1. The maximum nonclosure observed in the VRs prior to the fit is
assigned as the uncertainty in the QCD background rate.

7 Systematic uncertainties

Systematic uncertainties are taken into account for the background estimation and the
signal extraction. For each source of uncertainty, a nuisance parameter is assigned, which is
constrained by the data. These are summarized in table 3. Uncertainties in the background
estimation and signal modeling are grouped separately. It is also indicated whether the
uncertainty is in the mJ*JJ shape or the rate of a particular process.

7.1 Systematic uncertainties in the background estimation
7.1.1 Systematic uncertainties in the background rates

The three background categories (defined as QCD multijet, Top, and Other) are assigned
normalization rate uncertainties of magnitude 20, 50, and 30%, respectively, with a log-normal
prior. One nuisance is used for each background category and for each SR, resulting in a total
of 30 nuisance parameters. The 20% magnitude of the QCD multijet background category
is obtained from the maximum nonclosure observed in the VRs before performing the fit
and from the statistical uncertainty in the ratio factor of eq. (6.1), resulting from simulation.
The observed modeling of the PNety, score and the mj*J / m;J distributions at the preselection
level supports the choice of using uncorrelated nuisance parameters across the SRs. A 20%
uncertainty is assigned to account for residual differences between the simulation and the
data. The 50% magnitude of the Top category is assessed by the maximum nonclosure
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observed in the bRs. The 30% magnitude of the Other category, since it is dominated by
the W+jets production, is assessed from a similar analysis [25] where the W+-jets process is
the dominant background. Uncertainties in the JES and JER of the simulated backgrounds
were found to have a negligible impact on the final result.

7.1.2 Systematic uncertainties in the QCD multijet background shape

The m;J shape of the QCD multijet background is assigned two uncertainties. As the shape
comes effectively from the data in the CRs, as eq. (6.1) denotes, the prediction is susceptible

to potential biases due to:

(a) the choice of the circular area in the (m;,, m;,) plane used to define the CRs, which is
centered around (90, 90) GeV (figure 3 upper left), i.e., the choice of using mygg, and

(b) the subtraction of the largely unknown rate of backgrounds other than QCD multijet
production in the prediction method (given by eq. (6.1)).

For (a), we derive two alternative shape predictions (+1c variations) using two modified CR
selection conditions: mgy < 50 GeV, and mgs < 50 GeV, where mgy is defined using 95 GeV
in analogy with mgs. In this way, we parametrize the CR definition based on the center of
CR area allowing the prediction to be only loosely dependent on the nominal mgq used. For
(b), to account for a potentially inaccurate normalization of the Other processes in CR, we
derive the QCD multijet shape estimate scaling the Rest events in eq. (6.1) by factors of
zero and two, also obtaining up and down variations of the m;kJJ shape.

A nuisance parameter with a Gaussian prior is assigned for each of the two sources of
uncertainty and for each of the ten SRs, resulting in 20 nuisances. These QCD multijet shape
uncertainties provide flexibility in particular for the tails of the mJ*JJ spectra to adapt to a
potentially softer or harder spectrum observed in the SR.

7.1.3 Systematic uncertainties in the signal rate

The simulated PU distribution is scaled to match the data using an effective total inelastic
cross section of 69.2mb. The uncertainty in this procedure is evaluated by varying the
total inelastic cross section by +£4.6% [71]. This results in a 0.5% uncertainty in the signal
normalization in the SRs with negligible shape effects. The uncertainty in the integrated
luminosity individually for the 2016, 2017, and 2018 data-taking years amounts to 1.2—
2.5% [30-32]. The overall uncertainty for the 2016-2018 period is 1.6%. The two sources are
combined to a total uncertainty of 1.7%, implemented with a log-normal prior.

The renormalization pug and factorization up scales, and PDF uncertainties affecting the
signal selection efficiency are evaluated per SR and mass point. The scale uncertainties are
obtained by varying pur and up independently by factors of 1/2 and 2 (without considering
the extreme cases of the opposite-direction variations). Half of the maximum difference of
these variations is taken as the uncertainty with a log-normal prior, resulting in a <0.8%
effect on the signal rate. The PDF uncertainties are evaluated using the replicas of the
NNPDF PDF set, for each signal scenario individually. The corresponding Hessian members
of the PDF set are varied, and the quadratic sum of the variations from the central value is
calculated for each SR. The resulting variation in signal event yields is 0-10% for different
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grk Mmasses. For the overall signal scale uncertainty, a single nuisance parameter is used to
account for both the ugr and pp scales, and PDF uncertainties with a log-normal prior.

7.1.4 Systematic uncertainties in the signal shape

The JES uncertainty is evaluated by collectively varying the reconstructed four-momenta of
all jets in an event, according to their n- and pp-dependent associated uncertainties. The
resulting impact on the mj"JJ distributions is then assigned as the uncertainty. Moreover, to
properly evaluate the systematic effect coming from differences in the JER between data and
simulation, smearing is also applied to the latter by varying the jet resolutions according to
their uncertainties. Both uncertainty sources are implemented as shape-altering nuisance
parameters using Gaussian priors.

7.1.5 Systematic uncertainties in the signal and background rates

The uncertainties in the PNetyy calibration are presented in table 2. A potential mismodeling
of the W boson jet substructure dynamics, including the effects related to parton shower
modeling, is corrected from the data via the SF’s calibration. The corresponding SF un-
certainty, 6% per jet matched to a W boson, accounts for residual jet shower mismodeling
effects and the limited event sample used in the SF evaluation. In case of events with two
jets matching with W bosons, the uncertainty is taken as fully correlated, e.g., for a signal
event in the SRa high-pr bin, this results in a 12% uncertainty. These are considered for
both signal and background processes that contain W-boson-matched jets. The effect is
accounted for by a nuisance parameter with a log-normal prior.

8 Statistical analysis and results

The search for gy resonances is performed using a binned maximum likelihood fit to the mJ*JJ
distribution simultaneously in all ten SRs, as implemented with the CMS COMBINE tool [72].
The results are shown in figures 4 and 5. The lower panels show the pull distributions defined as
the difference between the data and predicted event yields divided by statistical uncertainty in
the data, o,:. Additionally, selected signal distributions and the total systematic uncertainty
divided by o, are displayed. The last bins include events beyond the shown range. The
data are in agreement with the estimated SM background within uncertainties. The largest
deviations between the data and the prediction are two single-bin downward fluctuations.
These are located in SR3a and SR5b, m;J bin centers 3 and 2.8 TeV, with 0 and 1 data events
observed for an expected 3.8 and 7.4 events, respectively. They correspond to local p-values
of 2.1 and 0.5%, assuming event counts with Poisson distributions.

For the background, the leading source of systematic uncertainty lies in the estimation
of the QCD multijet background rates. For the signal, the dominant uncertainty arises from
the PNetyy, selection efficiency calibration. The overall result is statistically limited. This is
presented at the lower panel of figures 4 and 5 where the ratio of systematic to statistical
uncertainties ogys/0ga; is less than 1.

Upper limits at 95% confidence level (CL) are set on the production cross section times

branching fraction for a potential resonance signal as functions of the m,  and mg resonance

gK
masses, as shown in figure 6. The limits are set following the modified frequentist approach
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and the definition of the profile likelihood test statistic as described in ref. [72] using an
asymptotic approximation [73].

We exclude, at 95% CL, gii resonances decaying via a scalar radion R to a gluon and
gy i the range of 1.25-3.55 TeV and mg in the range of 0.3-2.18 TeV,
using the model provided in refs. [16-19]. The observed limits set in the mg . —Mmp plane

two W bosons, with m

are stronger than the expected ones because of data under-fluctuations at m = 3.5TeV
in SR3a and SRA4a.

9 Summary

A search for heavy resonances decaying, via an intermediate resonance, to a gluon and a pair
of W bosons in the all-hadronic final states has been presented. A benchmark model, in
which a Kaluza-Klein gluon decays into a radion and a gluon, ggxx — gR — gWW, has been
considered. The search is performed using proton-proton collision data at a center-of-mass
energy of 13TeV, collected by the CMS experiment, corresponding to a total integrated
luminosity of 138 fb~'. The final states include three large-radius jets, at least two of which
are required to be massive, containing the decay products of the hadronically decaying W
bosons. The topology corresponds to events where each W boson from the R decay is
reconstructed as a single merged jet. In this analysis, a previously unexplored signature is
probed using jet substructure techniques relying on deep learning. No resonant signal above
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the standard model background prediction is found in the data analyzed. Exclusion limits
are set at 95% confidence level on the masses of the ggyx and R bosons, up to 3.55 and
2.18 TeV, respectively, and on the product of the production cross section and the branching
fraction to a gluon and two W bosons in an extended warped extra-dimensional model. This
result is the first analyzing the resonant WW —+jet signature and complements constraints
set on similar scenarios [25-28].
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