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Abstract

Summary: AlphaPulldown2 streamlines protein structural modeling by automating workflows, improving code adaptability, and optimizing data 
management for large-scale applications. It introduces an automated Snakemake pipeline, compressed data storage, support for additional 
modeling backends like UniFold and AlphaLink2, and a range of other improvements. These upgrades make AlphaPulldown2 a versatile platform 
for predicting both binary interactions and complex multi-unit assemblies.

Availability and implementation: AlphaPulldown2 is freely available at https://github.com/KosinskiLab/AlphaPulldown.

1 Introduction

Recent advancements in Artificial Intelligence (AI)-based 
structural prediction, driven by tools such as AlphaFold2 
(Jumper et al. 2021), RoseTTAFold (Baek et al. 2021), and 
ColabFold (Mirdita et al. 2022), have remarkably improved 
our capacity to predict protein–protein interactions (PPIs) 
and the architecture of protein complexes. The associated 
confidence scores can be also used to predict whether two 
proteins would interact, facilitating high-throughput compu-
tational screens of PPIs (Humphreys et al. 2021, Burke et al. 
2023, Yu et al. 2023, Razew et al. 2024).

We previously introduced the AlphaPulldown Python pack-
age (Yu et al. 2023) to streamline PPI screens and facilitate 
high-throughput modeling of higher-order complexes using 
AlphaFold-Multimer (Evans et al. 2021). AlphaPulldown sep-
arates the AlphaFold2 pipeline into CPU-based calculation of 
input features [multiple sequence alignments (MSAs) and tem-
plates] and GPU-based structure prediction, reducing compu-
tational time. It offers four modes: pulldown, all-versus-all, 
homo-oligomer, and custom (Supplementary Fig. S1). The 
pulldown mode screens interactions between one or more 
“bait” proteins and a list of candidates, mimicking pulldown 
assays. The all-versus-all mode automatically predicts pair-
wise PPIs between all proteins in a provided list, useful for 
interaction network prediction. The homo-oligomer mode 

facilitates the modeling of alternative oligomeric states. The 
custom mode allows flexible input combinations of proteins 
or fragments. AlphaPulldown reuses input features pre- 
calculated for full-length proteins when modeling fragments, 
avoiding costly recalculation, and retains original residue 
numbering in the resulting models. It includes an integrated 
analysis pipeline that enriches native AlphaFold2 scores with 
additional evaluation metrics such as pDockQ (Bryant et al. 
2022) and physical parameters of interfaces (Malhotra et al. 
2021, Agirre et al. 2023), generating a graphical summary in 
a Jupyter notebook for comprehensive analysis of model con-
fidence and interaction properties. AlphaPulldown has been 
utilized in a range of applications, demonstrating its effective-
ness in PPI screens, modeling individual complexes, and inter-
face scoring (Seidel et al. 2023, Bonchuk et al. 2024, Kadhim 
et al. 2024, Lapcik et al. 2024, Sell�es-Baiget et al. 2025).

Despite its utility, challenges in automation, code adaptabil-
ity, and management of the resulting models and data persisted. 
Moreover, new customized modeling protocols have emerged 
for adjusting modeling outcomes using modified MSAs, tem-
plates, or distance restraints (Mirabello et al. 2024, Stahl et al. 
2024). In response, we introduce AlphaPulldown version 2.0, 
incorporating significant improvements in user experience, 
modeling capabilities, and available modeling and evaluation 
features. This updated version offers a comprehensive suite for 
modeling both binary PPIs and multi-unit assemblies, 
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positioning it as a comprehensive toolbox for high-throughput 
protein structure prediction.

2 Software description

2.1 Usability improvements and software  

management
2.1.1 Automation and new configuration syntax

In large-scale structural modeling, managing multiple model-
ing tasks (jobs) and computational resources becomes a bottle-
neck. Thus, to further automate AI-based structural modeling, 
we developed an automated scalable and reproducible pipe-
line for AlphaPulldown2 using the Snakemake workflow 
management system (M€older et al. 2021). This pipeline repli-
cates the original AlphaPulldown workflow, but now runs all 
steps automatically based on an initial configuration (Fig. 1). 
Snakemake internally uses Singularity containers (Kurtzer 
et al. 2017) to ensure reproducibility and compatibility with 
various compute architectures, including cloud or local clus-
ters. It reschedules jobs with settings adjusted based on fail-
ure reasons and resumes from saved checkpoints. Snakemake 
also simplifies the installation process, as AlphaPulldown is 
now available on DockerHub (Merkel 2014) and is automati-
cally installed during the first execution.

We also introduced a new syntax for configuring the model-
ing jobs, which unifies all AlphaPulldown modes—pulldown, 
homo-oligomer, all-versus-all, and custom—into a single, 
flexible format (Supplementary Fig. S1). Within this format, 
AlphaPulldown2 additionally allows users to provide UniProt 
IDs of the input proteins (The UniProt Consortium 2023) and 
the sequences will be fetched automatically. This simplifies in-
put preparation and allows users to define complex modeling 
scenarios with ease. While the original scripts and syntax re-
main available, the Snakemake pipeline and new configura-
tion syntax enhance automation and usability.

2.1.2 Storage management

High-throughput AI-based structure prediction requires ex-
tensive storage, as input features and output files with confi-
dence scores can easily accumulate to terabytes of data. To 
mitigate this, we implemented several space-saving measures. 
Input features in PKL format (Python object serialization) are 
now compressed using the XZ format with the LZMA2 com-
pression algorithm, reducing file sizes by 97.7% (55 GB in-
stead of 2.4 TB for 20581 human proteins). Output PKL files 
are compressed too, and usually unnecessary data (aligned 
confidence probabilities, distograms, and masked MSAs) are 
removed before saving. This reduces the average size of out-
put directories by 97%. These compressions are optional, 
with a script available for cleaning and compressing the data 
later. For instance, in the case of modeling 1000 
random protein pairs, storage requirements dropped from 
3.5 TB to 102 GB with AlphaPulldown2.

2.1.3 Improved code organization and testing framework

To support community interest, feature requests, and our de-
velopment goals, we have restructured the AlphaPulldown 
codebase. AlphaPulldown was initially built on AlphaFold- 
Multimer, but other implementations like OpenFold (Ahdritz 
et al. 2024) and UniFold (Li et al. 2022) have since emerged. 
UniFold, in particular, offers the capabilities of AlphaFold2 
and includes code for training and fine-tuning AlphaFold2 
weights. New tools such as AlphaFold3 (Abramson et al. 
2024), OpenFold Multimer, and HelixFold3 (Liu et al. 2024) 
are also becoming available. To ensure that AlphaPulldown 
is able to timely incorporate these folding programs in the fu-
ture, we reorganized the architecture of AlphaPulldown2 to 
allow flexible integration of various modeling backends. 
Input features can be generated through a unified pipeline us-
ing AlphaFold2 or MMSeqs2 (Steinegger and S€oding 2017, 
Mirdita et al. 2022) and passed to the user’s chosen backend. 

Figure 1. The workflow of structural modeling with AlphaPulldown2. For better allocation of resources, AlphaPulldown2 separates the AlphaFold2 

pipeline into CPU-based calculation of input features and results analysis (1,3) and GPU-based structure prediction (2). The pipeline can use a new Version 

2 input format that can define all Version 1 modes using simplified syntax. Additional input like cross-links and multimeric templates can be provided. The 

resulting models in ModelCIF format and confidence scores are summarized using an interactive, graphical interface. Features and output files are 

compressed to decrease storage requirements. The entire pipeline can be run automatically using Snakemake.
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For example, we added backend support for UniFold and 
AlphaLink2 (see Section 2.3), and additional backends can be 
integrated using this modular system.

Further improvements include code refactoring for clarity 
and efficiency, the removal of redundancies, and the addition 
of automated tests. We also implemented continuous integra-
tion and continuous delivery/deployment (CI/CD) pipelines 
to streamline ongoing development. AlphaPulldown docker 
images are automatically built and pushed to DockerHub 
upon each new software release to the AlphaPulldown 
GitHub repository, ensuring that the software remains up to 
date. Lastly, we expanded the usage manual to provide more 
comprehensive documentation.

2.2 Ensuring FAIR principles through ModelCIF  

support

In the era of ubiquitous structural modeling, one major chal-
lenge is ensuring that the resulting data are both reproducible 
and accessible in a standardized format. The lack of detailed 
metadata in the traditional PDB format limits the ability to 
reproduce results and assess model reliability.

To address this, we have added support for the ModelCIF 
format (Vallat et al. 2023). ModelCIF, an extension of the 
PDBx/mmCIF dictionary (Westbrook et al. 2022), is specifi-
cally designed to accommodate computationally generated 
models. ModelCIF aligns with the FAIR (Findable, 
Accessible, Interoperable, and Reusable) principles, enabling 
detailed documentation of the modeling process, including 
software versions, parameters, and information about used 
sequence and template databases. The global confidence 
scores as well as local pLDDT and pairwise alignment error 
matrices are stored in the files as well. This extension ensures 
that models predicted using AlphaPulldown2 can be stored 
with all necessary metadata for future replication and analy-
sis. The introduction of ModelCIF support also ensures that 
AlphaPulldown2-generated models are fully compatible with 
repositories like ModelArchive (https://www.modelarchive. 
org/) (Schwede et al. 2009), facilitating model deposition. 
This integration not only facilitates compliance with FAIR 
principles but also provides a standardized and reliable way 
to store, share, and evaluate high-throughput structural 
modeling data.

2.3 Cross-link-driven modeling through the 

integration of AlphaLink2

Cross-linking mass spectrometry (XL-MS) is a powerful ex-
perimental technique used to study PPIs and macromolecular 
complexes (Graziadei and Rappsilber 2022). In XL-MS, 
chemical cross-linkers covalently bind specific amino acid 
residues that are in proximity. By analyzing these cross- 
linked peptides via mass spectrometry, the cross-linked resi-
due pairs can be identified and used as distance restraints in 
structural modeling.

AlphaLink2 (Stahl et al. 2024) is a modified version of 
AlphaFold2, based on the UniFold implementation, that 
incorporates cross-linking data as modeling restraints within 
the AlphaFold2 neural network. This enhancement improves 
the accuracy of structural models, particularly for large pro-
tein complexes and challenging PPIs.

In AlphaPulldown2, we have implemented AlphaLink2 as 
an optional backend, enabling seamless integration of cross- 
link-driven modeling into the existing workflow. The process 
begins with feature generation using the standard 

AlphaFold2 or MMSeqs2 pipelines, after which these fea-

tures are passed to AlphaLink2, where cross-linking 

restraints are applied to guide structure prediction. This inte-

gration allows users to perform both unconstrained and 

restraint-driven modeling within the same software frame-

work, offering flexibility for various use cases while benefit-

ing from the full range of features provided by 

AlphaPulldown2.

2.4 Extended modeling applications

AlphaPulldown2 offers a wide range of parameters and fea-

tures that expand the capabilities of AlphaFold2. These in-

clude options for adjusting the number of recycles, specifying 

the number of output models, and selecting between different 

sequence search methods, such as the standard AlphaFold2 

pipeline or the faster MMSeqs2. Users can also choose be-

tween different template search methods, like the faster 

HMMER (Finn et al. 2015) or the more accurate HHsearch 

(Steinegger et al. 2019). These customizable parameters en-

able users to optimize modeling protocols, whether prioritiz-

ing speed or accuracy.
AlphaPulldown2 also introduces enhanced functionalities 

for controlling predictions. Users can adjust the MSA by tog-

gling the pairing of sequences from the same species or modi-

fying MSA depth to increase the diversity of models 

(Monteiro da Silva et al. 2024). Additionally, custom tem-

plates, including multimeric templates, can be used. The mul-

timeric templates allow users to impose the relative 

orientation of template chains on their models, improving the 

accuracy of complexes that cannot be accurately predicted by 

AlphaFold2 alone (Mirabello et al. 2024). This feature is par-

ticularly useful for refining pre-calculated models of smaller 

complexes or partially resolved experimental structures by 

adding missing regions or proteins. Additionally, it can auto-

matically remove clashing residues and/or regions of low con-

fidence (low pLDDT scores) when previous AlphaFold2 

models are provided as templates. Since the reliance of 

AlphaFold2 on templates varies with the depth of the MSA, 

AlphaPulldown2 includes an automated mode that samples a 

gradient of MSA depths. This mode enables users to fine-tune 

the degree to which templates influence the final model.
Finally, the analysis pipeline has been enriched with the 

commonly used and requested average pLDDT and PAE 

scores at protein interfaces, offering a more comprehensive 

assessment of PPIs and model quality.

2.5 Repository of input features for model  

organisms

The generation of input MSA and template features is com-

putationally intensive and often redundantly performed by 

different labs for the same proteins. This leads to unsustain-

able use of resources and time. Thus, we released a web- 

based repository (linked from the AlphaPulldown GitHub 

page) of the input features for the proteomes of 14 model 

organisms. Users can download individual features in com-

pressed PKL format, allowing them to proceed directly to 

structure prediction without the need for MSA and template 

generation. This approach not only accelerates workflows 

but also reduces global computational costs and the associ-

ated energy consumption from repeatedly generating input 

features for the same proteins.
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3 Conclusions, discussion, and future plans

AlphaPulldown2 represents a significant step forward in 
high-throughput AI-based structural modeling, offering a ver-
satile and customizable platform for protein complex predic-
tions. With its new automation features, support for different 
modeling backends, and the ability to integrate experimental 
data like cross-links, AlphaPulldown2 further enhanced the 
modeling quality. Its optimizations in storage management 
and computational efficiency also make it more sustainable 
for large-scale projects, reducing both time and resource 
consumption.

Although AlphaFold3 source code and its reproductions like 
HelixFold3 and Chai-1 have been released, they require further 
testing before they can be confidently incorporated into work-
flows such as AlphaPulldown. Additionally, the more restric-
tive licensing terms of these new programs may present 
challenges, particularly for high-throughput applications and 
for depositing models into public databases. For protein com-
plex modeling, AlphaFold3 shows approximately 10% im-
provement in accuracy over AlphaFold2 (Abramson et al. 
2024). However, AlphaFold3 has been shown to hallucinate 
false secondary structures more frequently than AlphaFold2 
(Abramson et al. 2024). Thus, even though AlphaPulldown 
relies on AlphaFold2 and AlphaFold-Multimer, it remains a 
robust and reliable tool for high-throughput protein com-
plex modeling.

We plan to incorporate additional modeling backends, in-
cluding OpenFold. We are also working on expanding scoring 
functions and could integrate permissively licensed reproduc-
tions of AlphaFold3. Since the AlphaFold2 backend requires 
substantial computing time and memory (Supplementary 
Figs S2–S3), improving computational efficiency without 
compromising accuracy is another future direction. Although 
AlphaPulldown provides widely used and tested scores, their 
ability to distinguish true from false positive interactions has 
not yet been exhaustively tested, which should be addressed 
in future work. Thanks to the new modeling backends, future 
developments will also enable the incorporation of non- 
protein molecules and post-translational modifications.
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