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Abstract: We present NNLOCAL, a proof-of-concept parton-level Monte Carlo program

implementing the extension of the completely local subtraction scheme CoLoRFulNNLO

to the case of color-singlet production in hadron collisions. We have built general local

subtraction terms that regularize all single and double unresolved infrared singularities in

real radiation phase space. The subtractions are then integrated fully analytically to the

required order in the parameter of dimensional regularization. Combining the integrated

counterterms with the virtual contributions we demonstrate the cancellation of all infrared

poles explicitly. We validate our procedure by computing the fully differential cross section

for the production of a Higgs boson at the LHC in an effective field theory with gluons only.

Our code provides the first public implementation of a completely local analytic subtraction

scheme at next-to-next-to-leading order accuracy.
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1 Introduction

The Standard Model (SM) of particle physics provides a well-established description of the

known particles and their interactions over a wide range of energies. While the last major

ingredient, the Higgs boson, was discovered at the LHC over a decade ago [1, 2], certain

mysteries within the model still remain. For example, while we think we understand some of

the more general features of the Higgs field, certain details such as the exact shape of the

potential and the nature of self-interactions still remain puzzling. To unravel such mysteries,

current as well as planned high-precision experiments are vital. Examples of the latter include

the high-luminosity phase of the LHC [3] in the near future and the possibility of the FCC-

hh [4, 5] in the far future. Besides the more in-depth study of the SM itself, high-precision

physics may also prove crucial for finding signs of physics beyond the Standard Model, which

is motivated, e.g., by the matter-anti-matter asymmetry and the non-zero neutrino masses.

At the theoretical level, one important aspect of increasing precision involves computing

higher-order perturbative corrections to physical observables such as scattering cross sections.

This generically requires one to take into account additional emissions compared to the

Born process. The corresponding radiated partons can either be virtual or real, leading to

additional loops or legs in the Feynman diagram expansion. As is well known, the resulting

diagrams develop singularities in several regions of phase space. In particular, loops give rise

to both ultraviolet (UV) and infrared (IR) divergences and at the same time the production

of unresolved real partons leads to IR singularities. While UV divergences are removed once

and for all by renormalization, there is no unique method for treating IR singularities. This is

highlighted by the fact that, although the problem is considered to be solved at next-to-leading

order (NLO) [6, 7], the computation of next-to-next-to-leading order (NNLO) corrections

is a highly active field of research with several approaches available in the literature [8–15].
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Conceptually, a particularly appealing approach lies in the construction of a local subtraction

scheme. Such schemes are deeply connected to the universal nature of the IR structure

of squared matrix elements in quantum chromodynamics (QCD). Specifically, the basic

idea is to define approximate cross sections that match the point-wise singular behavior of

the real-emission partonic cross sections. When these approximations are subtracted, one

obtains an expression which is regular as real emissions become unresolved. Moreover, the

subtraction terms need to be integrated over the phase space of the unresolved emissions and

added back, which in turn takes care of the singularities coming from virtual contributions.

Hence, one ends up with blocks of phase space integrals which are separately finite and

so can be evaluated numerically.

The construction of the approximate cross sections is directly inspired by QCD factor-

ization and the universal nature of the IR structure of QCD matrix elements [16–18]. In

particular, exploiting universality, one can hope to construct the required approximate cross

sections in a process- and observable-independent fashion. However, while the IR structure

of QCD has been extensively studied at NNLO [19–22], carrying out the full program of

constructing universal local approximate cross sections has proven to be surprisingly chal-

lenging. In the present paper we address the extension of the CoLoRFulNNLO subtraction

scheme [23–29] to hadron-hadron collisions. This method was applied previously to processes

with colorless initial states and starts by considering the known IR limits of QCD amplitudes.

These are then promoted to true subtraction terms by carefully defining the momenta entering

the factorized matrix elements and specifying the various quantities entering the IR factoriza-

tion formulæ. To avoid multiple subtractions in regions of phase space where limits overlap,

subtraction terms based on iterated limit formulæ are constructed. The approximate cross

sections obtained in this way are completely local. In particular, the point-wise convergence of

the sum of subtraction terms to the real radiation contribution can be demonstrated explicitly.

Moreover, the subtraction terms can be integrated analytically over the unresolved emissions,

up to the appropriate order of ε in dimensional regularization in d = 4 − 2ε dimensions.

Combining the results with the virtual contributions, the complete cancellation of ε-poles can

be shown. We demonstrate the viability of this approach by presenting a proof-of-concept

parton-level Monte Carlo code for computing NNLO corrections to color-singlet production

in hadron collisions. For now, we focus on Higgs boson production in the Higgs effective field

theory (HEFT) approximation [30–36] without light quarks, considering only the fully gluonic

subprocess. We emphasize that this is not a restriction on the structure of the subtraction

scheme. In fact, the fully gluonic subprocess has a highly non-trivial IR structure and receives

contributions from all possible types of IR singularities for color-singlet production. As such,

it provides an ideal testing ground for setting up the subtraction without having to worry

about technical complications which are irrelevant for our current purposes.

The paper is organized as follows. In section 2 we review the general setup of the

CoLoRFulNNLO subtraction scheme. Our goal here is to present the overall picture without

entering into the rather elaborate details of the precise definition of each subtraction term and

its corresponding integration, which will be given elsewhere. Instead, we provide the results in

the form of a publicly available computer code called NNLOCAL. The latter will be introduced in

section 3 and constitutes a proof-of-concept implementation of the method in a particle-level

Monte Carlo program. Finally, in section 4 we present our conclusions and outlook.
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2 Local subtraction at NNLO

2.1 General subtraction procedure

We consider the production of a colorless final state X in hadron-hadron collisions, A(pA) +

B(pB) → X(pX). Cross sections for such processes are computed by convoluting parton

density functions (PDFs) with partonic cross sections,

σ(pA, pB) =
∑

a,b

∫ 1

0
dxafa/A(xa, µ2

F )

∫ 1

0
dxbfb/B(xb, µ2

F ) σab(pa, pb; µ2
F ) . (2.1)

Here the partonic momenta are pa = xapA and pb = xbpB and the sum is over parton

flavors. The partonic cross section can be computed in perturbation theory and up to

NNLO accuracy it reads

σab(pa, pb; µ2
F ) = σLO

ab (pa, pb; µ2
R, µ2

F ) + σNLO
ab (pa, pb; µ2

R, µ2
F ) + σNNLO

ab (pa, pb; µ2
R, µ2

F ) + . . . .

(2.2)

In the following, the dependence of the cross sections on partonic momenta, as well as on

the renormalization and factorization scales µ2
R and µ2

F , will be suppressed.

The leading order (LO) contribution is simply the integral of the fully differential Born

cross section over the phase space of the produced color-singlet state,

σLO
ab =

∫

X
dσB

ab JX . (2.3)

Here JX is the value of some infrared and collinear-safe measurement function J evaluated

on the Born phase space. More generally, we will denote by JX+n the value of J evaluated

on a real-emission configuration with n extra partons compared to the Born contribution.

The phase space integral on the right hand side of eq. (2.3) is of course finite and can be

evaluated numerically in four spacetime dimensions.

However, higher-order cross sections are sums of several real-emission and/or virtual

contributions that are separately IR divergent and require regularization. For the sake of

setting our notation, we recall that at NLO only a single extra emission is allowed, which

may be real or virtual. Hence, the full NLO correction reads

σNLO
ab =

∫

X+1
dσR

ab JX+1 +

∫

X

(
dσV

ab + dσC
ab

)
JX . (2.4)

Here dσR
ab and dσV

ab represent the real and virtual cross sections and dσC
ab denotes the collinear

remnant, which accounts for the UV renormalization of the PDFs. Several well-established

methods exist to handle the IR singularities in eq. (2.4), thus we turn our attention to the

NNLO correction immediately.

At NNLO there are precisely two extra emissions which may become unresolved and

hence lead to IR singularities. As both of these may be either real or virtual, the complete

NNLO correction reads

σNNLO
ab =

∫

X+2
dσRR

ab JX+2 +

∫

X+1

(
dσRV

ab + dσC1
ab

)
JX+1 +

∫

X

(
dσVV

ab + dσC2
ab

)
JX . (2.5)

– 3 –
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Here dσRR
ab , dσRV

ab and dσVV
ab represent the double real, real-virtual and double virtual cross

sections, while dσC1
ab and dσC2

ab denote the collinear remnants. We recall that the collinear

remnants can be written symbolically as [37]

dσC1
ab =

(
Γ

(1) ⊗ dσR
)

ab
and dσC2

ab =
(
Γ

(1) ⊗ dσV
)

ab
+
(
Γ

(2) ⊗ dσB
)

ab
(2.6)

where we define

(
Γ

(1) ⊗ dσ
)

ab
= Γ1,ac ⊗ dσcb + dσac ⊗ Γ1,cb (2.7)

and (
Γ

(2) ⊗ dσ
)

ab
= −Γ2,ac ⊗ dσcb − dσac ⊗ Γ2,cb − Γ1,ac ⊗ dσcd ⊗ Γ1,db (2.8)

with

Γ1,ab =
αs

2π

P
(0)
ab

ε
, Γ2,ab =

(
αs

2π

)2 [ 1

2ε2

(
P (0)

ac ⊗ P
(0)
cb + β0P

(0)
ab

)
−

1

2ε
P

(1)
ab

]
. (2.9)

Here Pab are the standard space-like splitting functions [38, 39],1 β0 is the one-loop coefficient

of the QCD beta function and the ⊗ symbol indicates the standard integral convolution

[f ⊗ g](x) =

∫ 1

0
dy dz δ(x − yz)f(y)g(z) . (2.10)

In order to regularize all IR singularities in eq. (2.5), we employ the CoLoRFulNNLO

subtraction scheme and write

σNNLO
ab =

∫

X+2

[
dσRR

ab JX+2−dσ
RR,A1
ab JX+1−dσ

RR,A2
ab JX +dσ

RR,A12
ab JX

]

+

∫

X+1

{[
dσRV

ab +dσC1
ab +

∫

1
dσ

RR,A1
ab

]
JX+1−

[
dσ

RV,A1
ab +dσ

C1,A1

ab +

(∫

1
dσ

RR,A1
ab

)A1
]

JX

}

+

∫

X

{
dσVV

ab +dσC2
ab +

∫

2

[
dσ

RR,A2
ab −dσ

RR,A12
ab

]

+

∫

1

[
dσ

RV,A1
ab +dσ

C1,A1

ab

]
+

∫

1

(∫

1
dσ

RR,A1
ab

)A1
}

JX . (2.11)

Here, the various approximate cross sections have the following interpretation:

• dσ
RR,A1
ab approximates the double real emission cross section dσRR

ab in all single unresolved

limits.

• dσ
RR,A2
ab approximates the double real emission cross section dσRR

ab in all double unre-

solved limits.

• dσ
RR,A12
ab approximates dσ

RR,A2
ab in all single unresolved limits and dσ

RR,A1
ab in all double

unresolved limits.

1We are using the MS scheme here. For other collinear factorization schemes, the splitting functions receive

scheme-dependent finite corrections.
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• dσ
RV,A1
ab approximates the real-virtual cross section dσRV

ab in all single unresolved limits.

• dσ
C1,A1

ab approximates the collinear remnant dσC1
ab in all single unresolved limits.

•

(∫
1 dσ

RR,A1
ab

)A1
approximates the integrated single unresolved approximate cross section

∫
1 dσ

RR,A1
ab in all single unresolved limits.

With these subtractions, all three lines on the right hand side of eq. (2.11) are rendered finite

in four dimensions and can be computed numerically. However, in order to apply eq. (2.11)

in practical calculations, the formal approximate cross sections which appear in them must

be explicitly defined. We turn to this issue next.

2.2 Constructing the subtraction terms

The universal behavior of QCD squared amplitudes as some number of partons becomes

unresolved (soft and/or collinear) is described by IR factorization formulæ. As mentioned in

the Introduction, these are completely known up to NNLO, and in some instances beyond

and their general form can be described as follows. Let |Mab,X+k−l({p}X+k−l)|
2
l−loop be the

full l-loop NkLO correction to the squared matrix element, i.e., the correction with a total of

k extra emissions where (k − l) of those are real and l are virtual. Consider now the symbolic

operator Uj , which takes some j-fold unresolved (j ≤ k − l) limit or overlap of limits2 of this

squared matrix element. The IR limit formula then takes the following symbolic form

Uj |Mab,X+k−l({p}X+k−l)|
2
l−loop =

(
αs

2π

)j l∑

i=0

Sing
(i)
j ×|M

âb̂,X+k−l−j
({p̂}X+k−l−j)|2(l−i)−loop ,

(2.12)

i.e., it is a sum over i-loop, j-fold unresolved universal singular structures Sing
(i)
j multiplied

by (l − i)-loop factorized matrix elements. Depending on the type of unresolved limit,

Sing
(i)
j involves Altarelli-Parisi splitting functions and eikonal factors, and their appropriate

multi-emission and multi-loop generalizations. Thus, these factors are typically matrices in

color and/or spin space, and the product in eq. (2.12) above is to be understood accordingly.

The factorized matrix element involves j less partons and is evaluated with a corresponding

reduced set of momenta {p̂} (e.g., for a soft limit, {p̂} is obtained from {p} by simply

dropping the soft momenta). The subscripts â and b̂ indicate that the parton flavors in the

factorized matrix element may also differ from the original ones. We note in passing that up

to NNLO, the singular factors Sing
(i)
j are known to be universal, i.e., they do not depend on

the process under consideration. This makes the construction of a general NNLO subtraction

scheme feasible. However, a violation of strict process-independent factorization as implied

by eq. (2.12) is possible for initial-state collinear radiation beyond NNLO accuracy [40].

2Here by overlap of limits, we simply refer to the subsequent application of limits and two different

j-fold unresolved limits are considered overlapping precisely when their subsequent application produces

a configuration that is also j-fold unresolved. Note that the successive application limits can also lead to

configurations that are more than j-fold unresolved. For example, consider the single (j = 1) collinear

limits p1||p2 and p2||p3. Clearly the successive application of these produces the triple collinear configuration

p1||p2||p3, in which j = 2 momenta are unresolved. In such cases, we do not consider the limits as overlapping.

– 5 –
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Any calculational method beyond NNLO will have to address this issue, but it is clearly

irrelevant for our present considerations.

In the CoLoRFulNNLO method, these IR limit formulæ are employed as building blocks

to construct the approximate cross sections introduced in the previous section. However,

they cannot be used directly as subtraction terms for two reasons. First, at any given

order, the unresolved regions in phase space overlap, thus care must be taken to avoid

multiple subtraction in overlapping regions. Second, these formulæ are only well-defined

in the strict IR limits, and as such their definitions must be carefully extended over the

full phase space away from the limits.

The issue of overlapping singularities can be addressed simply by the application of the

inclusion-exclusion principle: we must subtract each limit once, then add back the pairwise

overlaps of limits, subtract the triple overlaps and so on. Then in order to obtain counterterms

that are well-defined over all of phase space, two additional steps must be taken. First, one

must specify precisely the momenta entering the factorized matrix elements in the various IR

factorization formulæ. This requires that we specify mappings of sets of momenta {p}X+k−l

(at NNLO k = 2, while l = 0 for the double real correction and l = 1 for the real-virtual

piece) to sets of momenta {p̃}X+k−l−j (where j ≤ k − l, i.e., j = 1 or j = 2 for double real

emission and j = 1 for real-virtual emission) which respect momentum conservation and

preserve the mass-shell conditions.3 Second, the various quantities entering the singular

structures in the factorization formulæ, such as collinear momentum fractions and transverse

momenta for collinear splitting and eikonal factors for soft emission, must be precisely defined

as functions of the original momenta of the event. After these definitions are fixed, the IR

limit formula in eq. (2.12) can be promoted to a (sum of) true subtraction term(s) that is

unambiguously defined in any point in phase space,

Uj |Mab,X+k−l({p}X+k−l)|
2
l−loop →

l∑

i=0

U
(i,l−i)
j . (2.13)

Here

U
(i,l−i)
j =

(
αs

2π

)j

S̃ing
(i)

j × |M
ãb̃,X+k−l−j

({p̃}X+k−l−j)|2(l−i)−loop (2.14)

and S̃ing
(i)

j simply stands for the expression of the corresponding singular structure incor-

porating the precise definitions of momentum fractions, eikonal factors and so on. Notice

also that the matrix element in eq. (2.14) is evaluated over the set of mapped momenta,

{p̃}X+k−l−j . Obviously, the momentum mappings and definitions of momentum fractions,

etc., must be chosen such that they respect the structure of cancellations in all overlapping

limits, which is a constraint for the entire construction.

The previously described procedure has been used to construct subtraction terms for

handling final-state singularities, whose detailed definitions are available in refs. [24, 25, 29].

To extend this approach to hadron-initiated processes, additional subtraction terms are

needed to regularize initial-state divergences. Although providing the exact definitions for

3Notice that the reduced set of momenta {p̂} that appear in eq. (2.12) do not necessarily satisfy these

conditions. For example, for a soft limit {p̂} only conserves overall momentum in the precise limit when all

soft momenta are strictly zero.

– 6 –
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these new counterterms is beyond the scope of the present paper, we would like to emphasize

that a naive extension of the CoLoRFulNNLO method is not possible. Momentum mappings

and subtraction terms for initial-state singularities cannot be obtained by simply applying a

crossing transformation on their final-state counterparts for several reasons; for instance:

• The momentum mappings used in refs. [24, 25, 29] were designed to keep initial-state

momenta unchanged, making them by definition unsuitable for describing collinear

emissions from initial-state partons. Hence, we must consider momentum mappings

appropriate to this case. We find that we can define all new subtraction terms using 5

elementary mappings, each describing a basic single or double unresolved configuration:

i) final-state single collinear; ii) initial-state single collinear; iii) final-state single soft;

iv) initial-state double collinear and v) final-state double soft. Some of the required

mappings are new (e.g., the final-state single collinear), while others were available in

the literature [41, 42]. The iterated single unresolved subtraction terms that appear in

dσ
RR,A12
ab use compositions of two single unresolved mappings. Also, subtraction terms

that describe the overlaps of limits do not require dedicated mappings, but can use one

of the elementary mappings for the limits whose overlap they describe.

• Defining momentum fractions through crossing can lead to spurious singularities. For

example, the momentum fraction for the initial-state parton in triple collinear splitting

obtained via crossing will vanish at regular points (i.e., points that do not correspond

to any IR limit) inside phase space. But this momentum fraction appears in the

denominator of the triple collinear splitting function, leading to spurious singularities.

In order to overcome this issue, we introduce appropriate damping functions around

these singularities. These damping functions must be constructed such that they do not

interfere with the delicate structure of internal cancellations in physical unresolved limits.

• As an additional complication, integrated initial-state subtraction terms are not simple

functions of kinematic invariants, contrary to those for pure final-state radiation [26–29].

Rather, they are distributions in the momentum fractions of the initial-state partons.

Hence, the appropriate distributional expansions of the integrated counterterms must

also be computed.

The full details of the extension of the CoLoRFulNNLO method to hadronic collisions

will be presented in upcoming publications and here we limit ourselves to giving a symbolic

overview of the results. To begin, we recall that each approximate cross section in eq. (2.11)

has a clear interpretation in terms of the types of limits it is meant to regularize (e.g., tree-level

single and double unresolved limits for dσ
RR,A1
ab and dσ

RR,A2
ab , one-loop single unresolved

limits for dσ
RV,A1
ab , etc.). Hence, approximate cross sections are first of all constructed as

sums over the appropriate types of limits. In this regard, we recall that overlaps of limits

are considered on the same footing as direct limits: they too must be enumerated and

included as per the inclusion-exclusion principle in order to avoid multiple subtraction in

overlapping singular regions. Then, for a given physical process, each type of limit can occur

several times (e.g., for processes with multiple gluons in the final state, the single soft limit

clearly arises separately for each gluon), so all specific singular configurations associated

– 7 –
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to each type of limit must be accounted for. Thus, approximate cross sections are finally

sums of subtraction terms, introduced in eq. (2.14), that each correspond to one specific

singular configuration of one specific type of limit. Note however that, since subtraction

terms that correspond to overlaps of limits do not use unique momentum mappings, the

number of distinct mapped momentum configurations can be less than the total number

of subtraction terms. In the following, we refer to each sum of subtractions that share the

same mapped momenta as a counter-event.

In the remainder of this section, we give explicitly the form of each approximate cross

section as a sum of subtraction terms, concentrating on the case of color-singlet production

in hadron collisions. This allows for a number of simplifications in the sense that some types

of subtraction terms will be absent. However, all the formulæ that we have computed for the

colors-singlet case remain valid for more general processes when QCD final state radiation

is present already at Born level. In that case, the subtraction terms presented here will

simply have to be supplemented by additional ones regularizing the unresolved configurations

which do not occur for color-singlet production.

To begin, consider the approximate cross section dσ
RR,A1
ab , which regularizes the single

unresolved limits of the NNLO double real contribution. We write symbolically

dσ
RR,A1
ab = dφX+2({p}X+2)A

(0)
1 , (2.15)

where the approximation to the matrix element, A
(0)
1 , is obtained by summing all single

soft (pr → 0) and single collinear (pn||pr) subtraction terms and subtracting the overlaps

as discussed above,

A
(0)
1 =

∑

r∈F

[
S(0,0)

r +
∑

i∈F
i6=r

(
1

2
C

F F (0,0)
ir − CF F

ir S(0,0)
r

)
+
∑

c∈I

(
CIF (0,0)

cr − CIF
cr S(0,0)

r

)]
. (2.16)

Here I and F denote the sets of initial-state and final-state partons and the various subtraction

terms appearing on the right hand side are explicit realizations of the generic formula for

U
(i,l−i)
j in eq. (2.14) with j = 1, i = 0 and l = 0. As stated above, each term in eq. (2.16) is

defined precisely as a function of the original set of double real momenta {p}X+2, and the

individual terms have the following physical origin: S
(0,0)
r denotes the subtraction term that

regularizes the emission of a single soft gluon, C
F F (0,0)
ir and C

IF (0,0)
cr denote subtraction terms

regularizing final-final and initial-final collinear singularities, while CF F
ir S

(0,0)
r and CIF

cr S
(0,0)
r

account for the double subtraction in the overlapping collinear-soft regions. Note that the

factor of 1
2 in front of C

F F (0,0)
ir simply accounts for the fact that the double summation in

i, r ∈ F counts this term twice. The superscript (0, 0) signals that these subtraction terms

originate from IR limit formulæ that involve the product of tree-level singular structures

Sing
(0)
1 multiplied by zero-loop reduced matrix elements.4 Moreover, in contrast to the generic

expression in eq. (2.14), the subscripts on the concrete subtraction terms do not simply give

4More precisely the reduced matrix elements have zero-loop corrections as compared to the Born process.

Since the Born process may be loop-induced, the reduced matrix elements may not literally be tree-level. For

the sake of simplicity though, we will continue to refer to the reduced matrix elements as zero-loop, one-loop,

etc., with the understanding that this loop order is to be understood as compared to the Born process.
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Approximate

cross section

Nr. of types of

limits

Nr. of subtraction

terms

Nr. of counter-

events

Double real

A
(0)
1 5 13 7

A
(0)
2 5 9 3

A
(0)
12 12 39 17

Total 22 61 27

Real-virtual

A
(1)
1 4 7 3

AΓ
1 1 2 2

AI
1 3 5 3

Total 8 14 3

Table 1. Numbers of types of limits, distinct subtraction terms and counter-events for each approxi-

mate cross section for the tree-level process gg → Xgg (double real) and the 1-loop process gg → Hg

(real-virtual). The total number of counter-events for the real-virtual contribution counts only the

independent ones.

the number of unresolved partons (j = 1), but instead specify the actual limit from which

the term derives. For example, a single unresolved collinear limit is identified by the indices

of the partons that become collinear and this is what we write for the collinear-type terms in

eq. (2.16). Clearly, eq. (2.16) follows the structure for a general approximate cross section that

we have laid out: it is a sum of 5 distinct types of limits (single soft, final-final single collinear,

final-final collinear-soft overlap, initial-final single collinear and initial-final collinear-soft

overlap). After accounting for all singular configurations as implied by the summations in

eq. (2.16), these 5 types of limits give rise to a number of subtraction terms depending on

the specific process we consider. For example, for gg → Xgg production, we find a total

of 13 distinct subtraction terms: 2 soft subtractions, 1 final-final collinear subtraction,5 2

final-final collinear-soft overlaps, 4 initial-final collinear subtractions and finally 4 initial-final

collinear-soft overlaps. We note also that the 13 subtraction terms lead to just 7 counter-

events, since, as discussed above, the 6 terms that correspond to overlaps do not use separate

momentum mappings but rather employ the single soft one. We provide similar details for

the rest of the approximate cross sections to be introduced below as well, giving directly the

number of types of limits, as well as numbers of subtraction terms and counter-events for

the tree-level gg → Xgg process and the one-loop gg → Xg process in table 1.

5Note that C
F F (0,0)
ir = C

F F (0,0)
ri and so this term is counted here only once.
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Next, we turn to the double unresolved subtraction terms to double real emission. We

write dσ
RR,A2
ab symbolically as

dσ
RR,A2
ab = dφX+2({p}X+2)A

(0)
2 . (2.17)

In this case, one must account for four basic types of limits: double soft (pr → 0, ps → 0), soft-

collinear (pn||pr, ps → 0), triple collinear (pn||pr||ps) and double collinear (pn||pr, pm||ps) and

their various overlaps. Concentrating on color-singlet production in hadron collisions we find

A
(0)
2 =

1

2

∑

r∈F

∑

s∈F
s 6=r

{
S(0,0)

rs +
∑

c∈I

[
CIF F (0,0)

crs − CIF F
crs S(0,0)

rs +
∑

d∈I
d6=c

(
C

IF,IF (0,0)
cr,ds − CIF,IF

cr,ds S(0,0)
rs

)]}
,

(2.18)

where the various counterterms correspond to the limits implied by the notation. Notice

that the repeated application of a triple collinear and double collinear limit leads to a

configuration where at least three partons are unresolved, so the corresponding overlapping

terms do not appear in eq. (2.18). Moreover, as will be shown in an upcoming publication,

all soft-collinear type terms cancel among each other for color-singlet production due to

the precise definitions we adopt for the subtraction terms. As such, eq. (2.18) is also free

of any terms involving the soft-collinear limit.

Finally, we must consider the overlaps of single and double unresolved regions. In order

to avoid double counting in these limits, we introduce the approximate cross section dσ
RR,A12
ab .

This can be written symbolically as

dσ
RR,A12
ab = dφX+2({p}X+2)A

(0)
12 , (2.19)

where

A
(0)
12 =

∑

s∈F

[
A

(0)
2 Ss +

∑

r∈F
r 6=s

(
1

2
A

(0)
2 CF F

rs −A
(0)
2 CF F

rs Ss

)
+
∑

c∈I

(
A

(0)
2 CIF

cs −A
(0)
2 CIF

cs Ss

)]
, (2.20)

with

A
(0)
2 Ss =

∑

r∈F
r 6=s

[
S(0,0)

rs Ss +
∑

c∈I

(
CIF F (0,0)

crs Ss − CIF F
crs S(0,0)

rs Ss

)]
, (2.21)

A
(0)
2 CF F

rs = S(0,0)
rs CF F

rs +
∑

c∈I

(
CIF F (0,0)

crs CF F
rs − CIF F

crs S(0,0)
rs CF F

rs

)
, (2.22)

A
(0)
2 CF F

rs Ss =
∑

c∈I

CIF F (0,0)
crs CF F

rs Ss , (2.23)

A
(0)
2 CIF

cs =
∑

r∈F
r 6=s

(
CIF F (0,0)

csr CIF
cs +

∑

d∈I
d6=c

C
IF,IF (0,0)
cs,dr CIF

cs

)
, (2.24)

A
(0)
2 CIF

cs Ss =
∑

r∈F
r 6=s

(
S(0,0)

rs CIF
cs Ss + CIF F (0,0)

csr CIF
cs Ss − CIF F

csr S(0,0)
rs CIF

cs Ss

)
. (2.25)
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When writing eqs. (2.21)–(2.25), we have made use of various cancellations at the level of

iterated IR factorization formulæ, as well as some cancellations which occur for color-singlet

production due to the specific definitions of the subtraction terms we adopt. The details

of these cancellations will be given elsewhere.

Turning to the remaining subtraction terms that regularize real-virtual emission in the

second line of eq. (2.11), let us address dσ
RV,A1
ab first. This term approximates the real-virtual

cross section dσRV
ab in single unresolved limits and can be written symbolically as

dσ
RV,A1
ab = dφX+1({p}X+1)A

(1)
1 , (2.26)

where for color-singlet production we have

A
(1)
1 =

∑

r∈F

[∑

c∈I

CIF (0,1)
cr + S(1,0)

r +
∑

c∈I

(
CIF (1,0)

cr − CIF
cr S(1,0)

r

)]
. (2.27)

The structure of this subtraction term is similar to that of the single unresolved subtraction

term for double real emission in eq. (2.16). However, given that for color-singlet production the

real-virtual term has only a single parton in the final state, the final-final collinear subtraction

terms are missing here. Also, the various counterterms in eq. (2.27) are constructed starting

from the IR factorization formulæ for one-loop squared matrix elements. As can be seen from

eq. (2.12) (the case of a single unresolved limit of the NNLO real-virtual correction is obtained

by setting j = 1, k = 2 and l = 1), these formulæ are sums of two terms. Thus, contributions

involving tree-level singular structures multiplying one-loop reduced matrix elements appear

as counterterms with superscript (0, 1), while contributions with one-loop singular structures

multiplying zero-loop reduced matrix elements enter the counterterms with superscript (1, 0).

Moreover, we find that for color-singlet production the soft subtraction S
(0,1)
r is exactly

canceled by the sum of collinear-soft overlaps CIF
cr S

(0,1)
r , and we have exploited this fact

to simplify eq. (2.27).

Next, let us consider dσ
C1,A1

ab , the single unresolved subtraction term to the collinear

remnant dσC1
ab . The form of the collinear remnant was given in eq. (2.6). In particular,

notice that it involves the convolution of the P
(0)
ab splitting functions and the single real

emission correction to the process under consideration, dσR
ab, which develops IR divergences

in the single unresolved regions of phase space. The approximate cross section can then

be symbolically written as

dσ
C1,A1

ab = dφX+1({p}X+1)AΓ

1 . (2.28)

For color-singlet production, this correction again involves just a single parton in the final

state, so as for the real-virtual contribution, only the soft and initial-final collinear limits

need to be considered. Moreover, it is possible to define the subtraction terms such that

for color-singlet production, the soft subtraction, S
(Γ⊗0,0)
r , is exactly canceled by the sum

of the soft-collinear overlaps, CIF
cr S

(Γ⊗0,0)
r . Thus the complete subtraction term reduces to

the initial-final collinear contribution and we find

AΓ

1 =
∑

r∈F

∑

c∈I

CIF (Γ⊗0,0)
cr . (2.29)
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The superscript (Γ ⊗ 0, 0) refers to the fact that the IR limit formulæ from which the

counterterms are constructed involve convolutions of Γ with tree-level singular structures

multiplied by zero-loop reduced matrix elements. In principle, the order of the Γ operator

should also be indicated in the notation for the counterterms. However, up to NNLO these

are the only counterterms of this type, hence in order to ease an already elaborate notation,

we do not show this order explicitly.

Last,
(∫

1 dσ
RR,A1
ab

)A1
is the single unresolved subtraction term to the integrated sub-

traction term
∫

1 dσ
RR,A1
ab . As we will briefly discuss below, this in turn can be written

symbolically as
∫

1
dσ

RR,A1
ab =

(
I

(0)
1 (ε) ⊗ dσR

)
ab

, (2.30)

where the I
(0)
1 (ε) operator arises after collecting the integrated forms of all subtraction terms

in eq. (2.16). Its precise form will be discussed elsewhere. The corresponding approximate

cross section can then be written symbolically as

(∫

1
dσ

RR,A1
ab

)A1

= dφX+1({p}X+1)AI

1 , (2.31)

with

AI

1 =
∑

r∈F

[
S(I⊗0,0)

r +
∑

c∈I

(
CIF (I⊗0,0)

cr − CIF
cr S(I⊗0,0)

r

)]
. (2.32)

Once more, we have exploited the fact that for color-singlet production, only soft and initial-

final collinear limits are relevant. The superscript (I ⊗ 0, 0) implies that the IR limit formulæ

from which the counterterms are built involve convolutions of I with tree-level singular

structures multiplied by zero-loop reduced matrix elements. Again, as was the case with

eq. (2.29), the notation for the counterterm should include the information carried by the

indices of the I operator, but to lighten the notation, we do not show these indices. Finally,

we note that the existence of universal limits for the integrated approximate cross section in

eq. (2.30) is not guaranteed by QCD factorization formulæ and depends also on the specific

definitions of the subtraction terms that we adopt.

We finish this section by reiterating that all subtraction terms introduced in eqs. (2.16)–

(2.32) are precisely defined as functions of the original momenta in the double real emission

phase space. These definitions will be spelled out in detail in an upcoming publication.

Furthermore, since the construction of each subtraction term is based on the appropriate IR

factorization formula, all spin correlations in gluon splitting are correctly taken into account.6

Thus, it is possible to test the cancellation of IR singularities point-wise in phase space by

generating sequences of momenta approaching any given IR limit.

2.3 Integrating the subtraction terms

In order to finish the definition of the subtraction scheme, we must compute the integrals of the

counterterms over the momenta of unresolved partons. This computation can be performed

6In principle, all color correlations are also taken into account, but for color-singlet production, the factorized

matrix element has at most three hard partons, so color correlations always reduce to simple multiplication by

appropriate linear combinations of squared color-charge operators.
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once and for all, and we have integrated all counterterms introduced above individually,

obtaining fully analytic expressions. Owing to the universal nature of our subtractions terms,

the results will be useful also for general processes beyond color-singlet production. The

integrated approximate cross sections for the generic case can be build from the integrated

subtraction terms presented here, supplemented by the integrals of those subtraction terms

that correspond to unresolved limits which do not occur for the color-singlet case.

The complete description of the integration procedure will be given elsewhere (see however

ref. [43] for a compact overview) and here we limit ourselves to discussing some general

features and to presenting the final results. First, we note that all momentum mappings

employed to define the subtraction terms lead to an exact factorization of the real emission

phase space in terms of a convolution of the reduced phase space of mapped momenta

(denoted by tildes) and an integration measure for the unresolved emission. For the case

of a j-fold unresolved limit, symbolically we have

dφX+k−l({p}X+k−l) = [dφ]j ⊗ dφX+k−l−j({p̃}X+k−l−j) (2.33)

where [dφ]j represents the phase space measure for the j unresolved emissions. For color-

singlet production at NNLO, we must consider the cases k = 2, l = 0, 1 and j = 1, 2 with

j ≤ k − l. The factorized matrix elements entering the counterterms are also evaluated

over the same reduced phase space, see eq. (2.14). Thus, the integrated subtraction term

can be written generically as

∫
dφX+k−l({p}X+k−l) U

(i,l−i)
j

=

(
αs

2π

)j ∫
[dφ]j S̃ing

(i)

j

⊗ dφX+k−l−j({p̃}X+k−l−j)|M
ãb̃,X+k−l−j

({p̃}X+k−l−j)|2(l−i)−loop

=

(
αs

2π

)j (∫
[dφ]j S̃ing

(i)

j ⊗ dσRk−l−jVl−i

)

ab
,

(2.34)

where we have introduced the notation dσRmVn to denote the m-fold real and n-fold virtual

correction to the differential cross section. In this notation dσB = dσR0V0 , dσR = dσR1V0 ,

dσV = dσR0V1 and so on. Then, the integration of the subtraction terms over the measure for

unresolved emission can be performed once and for all. Since the phase space factorization

is convolutional in nature, the integrated counterterms,

[U
(i)
j ] ≡

∫
[dφ]j S̃ing

(i)

j , (2.35)

turn out to be linear combinations of Dirac-delta and plus-distributions, as well as regular

terms in the convolution variables. Details about the integration of all the counterterms will

be presented in dedicated publications and here we limit ourselves to summarizing the main

features. All integrated subtraction terms were reduced to a number of master integrals,

see table 2, which were subsequently computed analytically to the required order is ε. In

particular, the ones arising from the double unresolved counterterms of eq. (2.18) were

obtained using the method of differential equations [44–47], while for the others we employed
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direct integration techniques. For the latter we used the method of ref. [48] as described

in ref. [49] and implemented in PolyLogTools [50]. All integrated counterterms can be

computed in terms of multiple polylogarithms (MPLs) [51] evaluated at algebraic arguments.

We note that, for generic values of the momentum fractions xa and xb of the initial-state

partons, we only need to evaluate the integrals up to orders in ε that involve at most MPLs

of weight two. Higher orders, which involve MPLs of weight three, only contribute for xa = 1

or xb = 1, after expanding, e.g., (1 − xa)−1+mε into distributions,

(1 − xa)−1+mε = −
1

mε
δ(1 − xa) + . . . , (2.36)

where the dots represent regular terms (in ε) that contain plus-distributions. Similarly,

weight-four contributions only arise for xa = xb = 1, and so they are constant. This has

important practical implications. First, the higher-weight terms have a simpler functional

dependence on xa and xb, and are thus easier to evaluate. Second, the only non-constant

MPLs have weight at most three, and it is known that these can always be expressed in

terms of ordinary logarithms and classical polylogarithms [52–54],

Lin(x) =
∞∑

k=1

xk

kn
, |x| < 1 . (2.37)

It follows that all our integrated counterterms can be expressed only in terms of these

functions. We have applied the algorithm of ref. [55] to write our results exclusively in

terms of logarithms, Li2 and Li3 with arguments within the unit circle, so that the series in

eq. (2.37) is convergent. This allows us to easily evaluate all special functions appearing in

the integrated counterterms in a fast and stable way. However, the complete expressions

for the finite parts of the insertion operators are quite elaborate.

The various integrated subtraction terms contributing to each approximate cross section

can be gathered into a single insertion operator with poles in ε. For example, evaluating

the integral of dσRR,A1 , we have k = 2, l = 0 and j = 1 in eq. (2.34), which forces i = 0

since i ≤ l. So symbolically

∫

1
dσ

RR,A1
ab =

αs

2π

∑

U

(
[U

(0)
1 ] ⊗ dσR1V0

)
ab

=
(
I

(0)
1 (ε) ⊗ dσR

)
ab

, (2.38)

where we have simply set I
(0)
1 (ε) = αs

2π

∑
U [U

(0)
1 ] to recover the expression in eq. (2.30). As

noted below eq. (2.12), in IR factorization formulæ the parton flavors of the factorized

matrix elements may differ from the original ones. This property then holds also for the

subtraction terms and their integrated forms. Thus, in addition to acting on the momentum

fractions in dσR via the integral convolution, the operator I
(0)
1 (ε) also acts on the parton

flavors of the real emission cross section,

(
I

(0)
1 (ε) ⊗ dσR

)
ab

=
∑

c,d

I
(0)
1,ac,bd(ε) ⊗ dσR

cd . (2.39)

All other insertion operators to be introduced in the following share this structure, although,

as in eq. (2.38), we lighten the notation by not indicating the flavor indices of insertion
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Approximate

cross section

Nr. of master

integrals

Double real

A
(0)
1 11

A
(0)
2 42

A
(0)
12 104

Total 157

Real-virtual

A
(1)
1 24

AΓ
1 10

AI
1 65

Total 99

Table 2. Number of master integrals that appear in the evaluation of the integrated subtraction terms.

operators and the corresponding flavor summations explicitly. After adding this integrated

approximate cross section to the real-virtual contribution (including the appropriate collinear

remnant), we find that the ε-poles cancel, which is a check on the correctness of the scheme.

Turning to the two other approximate cross sections that enter the regularization of

double real emission, dσ
RR,A2
ab and dσ

RR,A12
ab , we find

∫

2
dσ

RR,A2
ab =

(
I

(0)
2 (ε) ⊗ dσB

)
ab

and

∫

2
dσ

RR,A12
ab =

(
I

(0)
12 (ε) ⊗ dσB

)
ab

. (2.40)

Obviously, the cross sections appearing on the right hand sides are the Born cross sections,

since all unresolved radiation has been integrated out.

Next, consider the integrated version of dσ
RV,A1
ab , i.e., the single unresolved approximation

to the real-virtual contribution. As discussed below eq. (2.27), the full subtraction term

is a sum of two contributions, one involving tree-level singular structures and one-loop

reduced matrix elements and the other one-loop singular structures and zero-loop reduced

matrix elements. This structure is then inherited by the integrated approximate cross section

which can be written as

∫

1
dσ

RV,A1
ab =

(
I

(0)
1 (ε) ⊗ dσV + I

(1)
1 (ε) ⊗ dσB

)
ab

. (2.41)

Clearly, this structure also follows formally from eq. (2.34) with k = 1, l = 1 and j = 1,

since now both i = 0 and i = 1 contributions are allowed.
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The remaining two approximate cross sections, dσC1
ab and

(∫
1 dσ

RR,A1
ab

)A1
, both involve

only the Born matrix element, and their integrated versions may be written in the form

∫

1
dσ

C1,A1
ab =

(
I

(0,0)
Γ,1 (ε) ⊗ dσB

)
ab

and

∫

1

(∫

1
dσ

RR,A1
ab

)A1

=
(
I

(0,0)
1,1 (ε) ⊗ dσB

)
ab

.

(2.42)

Having computed the integrated forms of all subtraction terms, we can now combine

the results with the virtual matrix elements and collinear remnants. After this combination,

the integrand on the third and fourth lines of eq. (2.11) becomes

dσVV
ab +dσC2

ab +

∫

2

[
dσ

RR,A2
ab −dσ

RR,A12
ab

]
+

∫

1

[
dσ

RV,A1
ab +dσ

C1,A1

ab

]
+

∫

1

(∫

1
dσ

RR,A1
ab

)A1

= dσVV
ab +dσC2

ab +
[
I

(0)
1 (ε)⊗dσV+

(
I

(0)
2 (ε)−I

(0)
12 (ε)+I

(1)
1 (ε)+I

(0,0)
Γ,1 (ε)+I

(0,0)
1,1 (ε)

)
⊗dσB

]
ab

.

(2.43)

The explicit ε-poles present in the various terms in eq. (2.43) then cancel and the complete

expression can be evaluated numerically in four dimensions. For the case of Higgs boson

production in HEFT with only gluons, all matrix elements are extremely compact and the

cancellation of ε-poles can easily be checked analytically. Indeed, using the expressions

presented in appendix A (or indeed the known structure of two-loop IR divergences [56]), it

is straightforward to show that the sum in eq. (2.43) is free of ε-poles, which gives a strong

check on the correctness of our calculations.

3 The NNLOCAL code

In this section, we introduce NNLOCAL, a proof-of-concept parton level Monte Carlo code

implementing the subtraction scheme described above. The code can be obtained at http

s://github.com/nnlocal/nnlocal.git and some details about the installation and running

options can be found in appendix B. NNLOCAL is written in Fortran77 and its architecture is

based on a previous version of the well-known Monte Carlo program MCFM [57–59], to be

more precise we refer here to MCFM-4.0. In particular, phase space integrations are handled

with the Vegas algorithm [60] for adaptive multidimensional Monte Carlo integration. This

algorithm implements adaptive importance sampling by first building an integration grid

which adapts to the integrand iteratively. After this warm-up stage of grid refinement, results

are collected with a fixed grid and a Monte Carlo estimate of the integral is computed. Once

the Vegas grid has been computed, one can of course use it to accumulate results from many

independent runs executed in parallel. For a more efficient use of computational resources, in

NNLOCAL we modified the normal workflow of Vegas by introducing the possibility to run in

parallel also the refinement of the grids. For this, we adopted the following solution. First we

run n independent instances of NNLOCAL, all performing a single iteration of grid refinement

and we let Vegas generate n independent versions of the grids. Then, for each integration

variable, a, we combine the n versions of the grid by summing the corresponding cumulative

distributions, ca
j (x), and dividing the result by n.

c̄a(x) =
1

n

n∑

j=1

ca
j (x) . (3.1)
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Finally, we compute the N new grid points, xa
i , of a regular Vegas grid, by solving the equation

c̄(xa
i ) =

i

N
, i = 1, . . . , N (3.2)

where the integer i runs over the N grid divisions. Since the averaged cumulative is the

sum of n linear functions, it is also linear, and the numerical solution to the equation above

is straightforward to compute with standard routines. The subsequent parallel iteration is

then started with the new grid and the above procedure is repeated until the number of

requested grid refinement iterations is reached. We point out that with such a procedure it is

possible to combine results produced on a computer using any number of cores. Furthermore,

in NNLOCAL we have included support for the visualization of the grids at every step of the

warm-up stage,7 which can be useful to assess the quality of the integration procedure.

As stated before, the code in its current state deals with Higgs boson production in

proton-proton collisions in the HEFT approximation with no light quarks. Given that

NNLOCAL is a proof-of-concept code, we supplemented our tool with a number of facilities

to test its behavior. As for the double real correction (that we dub real in NNLOCAL), we

have introduced a dedicated phase space generator to probe every singular region in the

phase space starting from a non-singular configuration and approaching the desired region

point-by-point. In this way it is possible to monitor the level of cancellation among the

matrix element and the sum of all counterterms. We demonstrate this by examining the

ratio R of the sum of all double real subtraction terms (A
(0)
1 + A

(0)
2 − A

(0)
12 ) and the squared

matrix element in figure 1. There we show |1 − R| as a function of the small invariant whose

vanishing characterizes a given kinematic limit. Decreasing the invariant by 7–8 orders of

magnitude from its initial value, we observe the convergence of this ratio to 1 in all cases

as the singularity is approached. However, due to finite precision arithmetic, numerical

instabilities eventually set in as we further decrease the value of the invariant, driving the

ratio away from 1. In order to circumvent this issue, we introduce a technical cutoff, smin,

and do not allow two-parton invariants to take values lower than this.8 We indicate our

default choice of smin = 5 · 10−3 GeV2 on the plots with dashed vertical lines. We will

demonstrate below that this choice is small enough such that further lowering it does not

influence the values of physical observables.

In the real-virtual correction (dubbed virt in NNLOCAL), we encounter two types of

singularities: explicit ε-poles and phase space divergences. We have used the setup mentioned

above to check the local cancellation of phase space divergences and this is demonstrated

in figure 2. In this case, we concentrate on the ratio of the sum of subtraction terms

(A
(1)
1 + AΓ

1 + AI
1) and the sum of the real-virtual matrix element, the appropriate collinear

remnant and the integrated single unresolved subtraction terms. These sums are individually

finite in ε but are divergent as the final-state parton becomes unresolved. Once again, we

observe the convergence of this ratio to 1, which establishes the correct cancellation of

7In NNLOCAL, gnuplot scripts are automatically generated to plot the cumulative of the distributions

associated to the Vegas grids.
8Note that even if one were to employ arbitrary precision arithmetic, some technical cutoff would still be

required since both the matrix element and the subtraction terms diverge and thus are technically undefined

in the exact limits.
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Figure 1. The behavior of |1 − R| in the g(p1) + g(p2) → H(p3) + g(p4) + g(p5) subprocess as

various single (first row) and double (second row) unresolved kinematic limits are approached. Here R

denotes the ratio R = (A
(0)
1 + A

(0)
2 − A

(0)
12 )/|M

(0)
gg,H+2|2. The proximity to a given limit is measured

by the smallness of an appropriate invariant. The dashed vertical line denotes the default value of the

technical cutoff smin = 5 · 10−3 GeV2. Large outliers such as the one visible in the p4||p5 limit are due

to large accidental cancellations.
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Figure 2. The behavior of |1 − R| in the g(p1) + g(p2) → H(p3) + g(p4) subprocess at one-loop order

as single unresolved kinematic limits are approached. Here R denotes the ratio R = (A
(1)
1 + AΓ

1 +

AI

1)/(|Mgg,H+1|21−loop + Γ
(1) ⊗ |M

(0)
gg,H+1|2 + I

(0)
1 ⊗ |M

(0)
gg,H+1|2). The proximity to a given limit is

measured by the smallness of an appropriate invariant. The dashed vertical line denotes the default

value of the technical cutoff smin = 5 · 10−3 GeV2.

kinematic singularities. Furthermore in NNLOCAL, matrix elements and counterterms are all

coded as vectors of coefficients of the corresponding Laurent-expansion in ε, so that we have

direct access to the individual and total poles and so can explicitly check their numerical

cancellation. The last consideration also applies to the double virtual contributions, that

we dub born in our code.
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mH [GeV] n3loxs (gg) NNLOCAL (gg)

100 65.72 pb 65.74(4) pb

125 42.94 pb 42.94(2) pb

250 9.730 pb 9.733(5) pb

500 1.626 pb 1.626(1) pb

1000 173.7 fb 173.7(1) fb

2000 8.794 fb 8.790(5) fb

Table 3. The total NNLO cross section for Higgs boson production at the LHC with 13 TeV center

of mass energy in HEFT with nf = 0 light quarks. The errors on the results obtained with NNLOCAL

represent the estimated uncertainties of the Monte Carlo integrations. The estimated uncertainty of

the n3loxs result is beyond the last displayed digit in each case. The shown results were obtained on

a MacBook Pro laptop with an M2 processor with 8 CPU cores.

As for the sum of all the integrated counterterms, we notice that in certain regions, care

must be taken to obtain an implementation that delivers accurate numerical results. For

example, when xa = xb (but also along some other curves), a naive evaluation of certain

integrated subtraction terms produces a result of the form “0/0”, while in fact the xa → xb

limit is well-behaved and finite. Clearly these cases must be handled to avoid undefined results

and large instabilities. In NNLOCAL, we use dynamical switching to quadruple precision in

order to improve stability and eventually employ a technical cutoff, ∆xmin, to avoid possible

undefined expressions whenever such regions are approached. We find that we typically need

to switch to quadruple precision in about 6% of the evaluations and we choose ∆xmin = 10−5

as the default value of the cutoff. The further lowering of ∆xmin does not influence the value

of physical quantities as we will demonstrate below.

In order to validate our code, we have computed the total cross section for the production

of a Higgs boson at the LHC with 13 TeV center of mass energy at NNLO in HEFT without

light quarks for several different values of mH . We then performed a tuned comparison of

our results to the code n3loxs [61]. In order to synchronize the two codes fully, we made

two changes to the publicly available version of n3loxs. First, we imported into n3loxs the

routine for the computation of the strong coupling from NNLOCAL. Second, we excluded quark

channels in n3loxs. In the calculations we used the NNPDF31_nnlo_as_0118 PDF set [62]

and performed validation runs for several choices of the renormalization and factorization

scales. The results for the scale choice µR = µF = mH are given in table 3. We observe

perfect agreement between the results of n3loxs and NNLOCAL, with relative differences in

the sub-permille range over the full range of Higgs boson masses. We note furthermore that

the obtained values are very stable under the variation of the technical cuts smin and ∆xmin

introduced above. This is demonstrated in figure 3. The left panel shows the value of the

total cross section obtained for a Higgs boson of mass mH = 125 GeV as a function of the

value of the smallest allowed two-parton invariant smin. The right panel shows the total
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Since our code is completely differential in all particle momenta, any infrared and collinear-

safe quantity can be computed by simply implementing the proper analysis routine. By way

of illustration, we present the rapidity distribution of a Higgs boson of mass mH = 125 GeV

at the 13 TeV LHC (in HEFT with nf = 0) in figure 4. In both plots in the figure, the upper

panels show the total distribution as well as the NNLO contribution, while filled bands in the

lower panels indicate the relative Monte Carlo error estimates. The figure was obtained on

the same architecture as the numbers in tables 3 and 4. The runtime was around 1 hour and

15 minutes. In the left plot, we present results with a bin width of ∆y = 0.25. We observe

very good numerical convergence and stability over the full range of values, spanning about

four orders of magnitude, both for the total distribution and for the NNLO contribution. In

particular, the total and NNLO distributions generally have an uncertainty of less than 1%

and 2% over the central rapidity range of |yH | < 2.5. In order to demonstrate the numerical

stability of our code under more demanding conditions, in the right plot of figure 4, we show

the same rapidity distribution, but with bin width of ∆y = 0.1. Overall, we still observe good

stability and convergence, however, with this rather fine binning, the appearance of some

spikes in the predictions is evident. This phenomenon, commonly dubbed “misbinning”, is a

well-known and more or less unavoidable consequence of using a local subtraction scheme

to regularize IR divergences. Due to the binned nature of the distributions, sometimes

momentum mappings cause the weights associated to the matrix element and subtraction to

end up in different bins. This leads to an apparent uncanceled singularity as far as the bin

is concerned, with the appearance of unphysical spikes in distributions during Monte Carlo

integration. Obviously computing with wider bins mitigates the effect of misbinning.

One may also consider approaches other than increasing the bin width and we now

discuss an alternative based on the following observations. The phenomenon of misbinning

introduces unphysical outliers into the set of bin value estimates. Clearly a single extreme

entry can change the arithmetic mean by a large amount. Then it makes sense to employ an

estimator that is robust to such extreme data. This is the topic of robust statistics, see e.g.,

the textbook [63] and references therein. Without entering into the details, let us note that

in practice one of the simplest methods for building such robust estimators is via trimming.

For example, the α-trimmed mean of a sample of n numbers {x1, x2, . . . , xn} is simply the

arithmetic mean of the (n − 2m) numbers obtained by removing the smallest and largest

m = [nα] entries (here [. . .] denotes the integer part of a number),9

x̄α =
1

n − 2m

n−m∑

i=m+1

x(i) , (3.3)

where x(i) denotes the order statistics {x(1) , x(2) , . . . , x(n)}, obtained by sorting the n numbers

such that

x(1) ≤ x(2) ≤ . . . ≤ x(n) . (3.4)

9Note that an alternate definition is sometimes used in the literature [64],

T (x) =
px([αn+1]) + x([αn+2]) + . . . + px(n−[αn])

n(1 − 2α)
,

where p = 1+[αn]−αn. The two definitions differ only in their treatment of the largest and smallest remaining

points after having removed a total of 2[αn] points.
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first public implementation of a completely local subtraction scheme at NNLO and employs

closed analytic expressions for all integrated counterterms. Concentrating on Higgs boson

production at the LHC in HEFT without light quarks, we have demonstrated the viability of

our approach and validated our code by a tuned comparison to publicly available tools.

This work opens the door to the application of the CoLoRFulNNLO subtraction scheme

to hadron-hadron collisions. The presented code, although limited in its scope for the moment,

will serve as a basis for refinements and extensions, making it a useful tool for computing

NNLO QCD corrections to a plethora of important LHC processes. As a first step, we will

extend our code to incorporate all partonic channels that can arise in color-singlet production,

such that any color-singlet production process may be implemented by simply specifying

the correct matrix elements. In this way we will be able to build a library for computing

color-singlet production processes at NNLO accuracy based on a fully local and analytic

subtraction scheme. The extension of our subtraction scheme to general hadronic processes

is also feasible and will be the subject of further study.
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A Matrix elements and insertion operators

In this appendix we present the necessary ingredients to check the cancellation of ε-poles

in eq. (2.43). As stated above, we are working in the HEFT approximation without light

quarks (nf = 0). Throughout this appendix, we set αs = αs(µ
2
R).

A.1 Matrix elements

The Born squared matrix element for gg → H production (in HEFT with nf = 0) averaged

over initial spins and colors reads

|M
(0)
gg→H |2 =

α2
s m4

H

72π2v2(N2
c − 1)(1 − ε)

, (A.1)

where the Higgs VEV can be expressed in terms of the Fermi constant as v2 = 1√
2GF

. The

one-loop correction can then be written as

|Mgg→H |21−loop

= 2ℜ〈M
(0)
gg→H |M

(1)
gg→H〉
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=
αs

2π

eεγE

Γ(1−ε)
CA

[
−

2

ε2
−

(
11

3
+2LR

)
1

ε
+

11

3
+π2−L2

R−

(
2+

11π2

36
−4ζ3−π2LR

+
1

3
L3

R

)
ε−

(
6−

11π2

36
+

11ζ3

9
+

π4

60
+(2−4ζ3)LR−

1

2
π2L2

R+
1

12
L4

R

)
ε2

+O(ε3)

]
|M

(0)
gg→H |2 , (A.2)

where LR = ln
µ2

R

m2
H

. Finally, the two-loop correction reads

|Mgg→H |22−loop

= 2ℜ〈M
(0)
gg→H |M

(2)
gg→H〉 + |M

(1)
gg→H |2

=

(
αs

2π

)2 e2εγE

Γ2(1 − ε)
C2

A

[
2

ε4
+

(
121

12
+ 4LR

)
1

ε3
+

(
8

9
−

23π2

12
+

55

6
LR + 4L2

R

)
1

ε2

−

(
428

27
+

22π2

9
+

15ζ3

2
+

(
199

18
+

23π2

6

)
LR −

11

3
L2

R −
8

3
L3

R

)
1

ε

+
15235

324
+

1961π2

216
−

55ζ3

3
+

137π4

360
+

19

18
Lt −

(
176

27
−

11π2

36
+ 15ζ3

)
LR

−

(
133

18
+

23π2

6

)
L2

R +
11

18
L3

R +
4

3
L4

R + O(ε1)

]
|M

(0)
gg→H |2 , (A.3)

with Lt = ln
µ2

R

m2
t

.

A.2 Pole parts of insertion operators

The expressions for the insertion operators involve Dirac-delta and plus-distributions that

a priori act on differential cross sections. Reinstating the momentum dependence of the

partonic cross sections for clarity, we have
∫ 1

0
dxa dxb fa/A(xa)fb/B(xb)

(
I(ε) ⊗ dσ(xapA, xbpB)

)

ab

=

∫ 1

0
dxa dxb fa/A(xa)fb/B(xb)

[∫ 1

0
dηa dηb Iac,bd(ηa, ηb; ε) dσcd(ηaxapA, ηbxbpB)

]
.

(A.4)

Hence, a direct implementation of eq. (A.4) would require the computation of

dσcd(ηaxapA, ηbxbpB) in several different phase space points. However, in a numeric calcula-

tion it is more convenient to evaluate the differential cross section in a single phase space

point only. For this reason, we perform a change of variables from xa and xb to ξa = ηaxa

and ξb = ηbxb. This way, the cross section only depends on ξa and ξb and the action of the

distributions is transferred to the product of PDFs. We then find
∫ 1

0
dxa dxb fa/A(xa)fb/B(xb)

[∫ 1

0
dηa dηb Iac,bd(ηa, ηb; ε) dσcd(ηaxapA, ηbxbpB)

]

=

∫ 1

0
dξadξb

∫ 1

0
dηa dηb

[
Iac,bd(ηa, ηb; ε | ηa, ηb)

fa/A(ξa/ηa)

ηa

fb/B(ξb/ηb)

ηb

+ Iac,bd(ηa, ηb; ε | 1, ηb)fa/A(ξa)
fb/B(ξb/ηb)

ηb
+ Iac,bd(ηa, ηb; ε | ηa, 1)

fa/A(ξa/ηa)

ηa
fb/B(ξb)

+ Iac,bd(ηa, ηb; ε | 1, 1)fa/A(ξa)fb/B(ξb)

]
dσcd(ξapA, ξbpB) . (A.5)
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We refer to Iac,bd(ηa, ηb; ε | κa, κb), with κa = 1, ηa and κb = 1, ηb, as the coefficient functions

of the operator Iac,bd(ηa, ηb; ε). Indeed, these objects are now just functions (as opposed to

distributions) of the variables ηa and ηb. The arguments after the separator serve to specify the

precise combination of PDFs that each function multiplies.11 Below, we present the pole parts

of these functions for all operators that appear in eq. (2.43), for the purely gluonic subprocess.

Starting with I
(0)
1 (ε) which acts on the virtual cross section dσV in eq. (2.43), we have

I
(0)
1 (ε) =

αs

2π

eεγE

Γ(1 − ε)
CAĪ

(0)
1 (ε) . (A.6)

Then, the various coefficient functions of the operator Ī
(0)
1 (ε) read

Ī
(0)

1;gg,gg(ηa, ηb; ε | ηa, ηb)

= 2

{
−2 + ηa − η2

a

1 − ηb
+

2

ηaηb
−

2 + ηa + η2
a

1 + ηb
−

2 − ηb + η2
b

1 − ηa
−

2 + ηb + η2
b

1 + ηa

−
1

ηb (1 + ηa)
−

1

ηa (1 + ηb)
+

1

(1 − ηa) (1 − ηb)
+

1

ηa (1 − ηb)
+

1

ηb (1 − ηa)

+
1

(1 + ηa) (1 + ηb)
+ 4 − 2ηaηb + 2η2

b + 2η2
a

(
1 + η2

b

)}

×

{
1 + ε

(
2 ln (ηa + ηb) − ln (1 − ηa) − ln (1 + ηa) − ln (1 − ηb) − ln (1 + ηb)

+ LR

)}
+ O(ε2) ,

(A.7)

Ī
(0)

1;gg,gg(ηa, ηb; ε | ηa, 1)

= −2pgg(ηa)

{
1

ε
− ln(2) − ln (1 − ηa) + ln (1 + ηa) +

1

1 − ηb
+ LR

+ ε

(
1

2
ln2(2) +

1

2
ln2 (1 − ηa) + ln (1 − ηa) (ln(2) − ln (1 + ηa))

− ln(2) ln (1 + ηa) +
1

2
ln2 (1 + ηa) +

1

2
L2

R − LR (ln(2) + ln (1 − ηa) − ln (1 + ηa))

−
ln(2) + ln (1 − ηa) − ln (1 + ηa) + ln (1 − ηb) − LR

1 − ηb

)}
+ O(ε2) , (A.8)

11To see the correspondence with the usual notation, consider the distribution D(x) = Aδ(1 − x) +
[

B
1−x

]
+

+

Creg(x), where Creg(x) is a regular function at x = 1. Then, the action of D(x) on some test function f(x)

can be written as

D⊗f =

∫ 1

0

dx

(
Aδ(1−x)+

[
B

1−x

]
+

+Creg(x)

)
f(x) =

∫ 1

0

[(
B

1−x
+Creg(x)

)
f(x)+

(
A−

B

1−x

)
f(1)

]
.

Thus, the integrand is a linear combination of f(x) and f(1) with coefficients that are simply functions of x.

Specifying these coefficient functions, D(x | x) =
(

B
1−x

+ Creg(x)
)

and D(x | 1) =
(
A − B

1−x

)
in this example,

is an equally valid way of describing D(x). This way of specifying the distribution also lends itself directly to

implementation in a numerical calculation.
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Ī
(0)

1;gg,gg(ηa, ηb; ε | 1, 1)

=
2

ε2
+

2

ε

{
1

1 − ηa
+

1

1 − ηb
+ LR

}
+ 2

{
L2

R

2
−

ln (1 − ηa) − LR

1 − ηa

−
ln (1 − ηb) − LR

1 − ηb
+

1

(1 − ηa) (1 − ηb)

}
+ ε

{
L3

R

3
+

(ln (1 − ηa) − LR)2

1 − ηa

+
(ln (1 − ηb) − LR)2

1 − ηb
−

2 (ln (1 − ηa) + ln (1 − ηb) − LR)

(1 − ηa) (1 − ηb)

}
+ O(ε2)

(A.9)

where

pgg(η) =
1

1 − η
+

1

η
− 2 + η(1 − η) (A.10)

and LF = ln
µ2

F

m2
H

. Moreover Ī
(0)

1;gg,gg(ηa, ηb; ε | 1, ηb) is obtained by exchanging ηa and ηb in

the expression in eq. (A.8),

Ī
(0)

1;gg,gg(ηa, ηb; ε | 1, ηb) = Ī
(0)

1;gg,gg(ηb, ηa; ε | ηa, 1) . (A.11)

For the fully gluonic subprocess, this follows from the obvious symmetry between incoming

partons. Similar relations will thus hold for all other operators as well.

Next, consider the sum of operators acting on the Born cross section dσB in eq. (2.43).

It turns out that the structure of this sum is simpler than the structure of the individual

operators, so we introduce

IB(ε) = I
(0)
2 (ε) − I

(0)
12 (ε) + I

(1)
1 (ε) + I

(0,0)
Γ,1 (ε) + I

(0,0)
1,1 (ε) . (A.12)

This sum of operators can be written as

IB(ε) =

(
αs

2π

)2 e2εγE

Γ2(1 − ε)
C2

AĪB(ε) (A.13)

and the coefficient functions of ĪB(ε) are given by

ĪB;gg,gg(ηa, ηb; ε | ηa, ηb)

=
4

ε2

{
2 − ηa + η2

a

ηb
−

2 + ηa + η2
a

1 + ηb
+

2 − ηb + η2
b

ηa
−

2 + ηb + η2
b

1 + ηa

−
1

ηb (1 + ηa)
−

1

ηa (1 + ηb)
+

1

ηaηb
+

1

(1 + ηa) (1 + ηb)

+
(
2ηb + η2

aηb (1 + ηb) + ηa

(
2 − 3ηb + η2

b

))}
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+
4

ε

{(
11

6
− ln (1 − ηa) − ln (1 + ηa) − ln (1 − ηb) − ln (1 + ηb)

+ 2 ln (ηa + ηb) + 2LR

)(
−2 + ηa − η2

a

1 − ηb
+

2

ηaηb
−

2 + ηa + η2
a

1 + ηb

−
2 − ηb + η2

b

1 − ηa
−

2 + ηb + η2
b

1 + ηa
+

1

(1 − ηa) (1 − ηb)
+

1

ηa (1 − ηb)

+
1

ηb (1 − ηa)
−

1

ηb (1 + ηa)
−

1

ηa (1 + ηb)
+

1

(1 + ηa) (1 + ηb)

+ 2
(
2 − ηaηb + η2

b + η2
a

(
1 + η2

b

)))
− 2pgg(ηa)pgg(ηb)LF

}
+ O(ε0) , (A.14)

ĪB;gg,gg(ηa, ηb; ε | ηa, 1)

=
1

2ε2

{
−11 + 4 ln (ηa)

1 − ηa
+

11 + 12 ln (ηa)

3ηa
+

1

3

(
30 + 3ηa + 36ηa ln (ηa) − 11η2

a

− 12η2
a ln (ηa)

)
+ 8 (ln (2) − ln (1 + ηa) + LF − LR) pgg(ηa)

}

+
1

3ε

{
−67 + 9π2 − 9 ln2 (ηa) − 132LF + 72 ln (ηa) LF

6 (1 − ηa)

+
π2 + 22LF + 12 ln (ηa) LF

ηa
+

π2 − 3 ln2 (ηa)

2 (1 + ηa)
+

1

12

(
25 − 48π2 + 150 ln (ηa)

+ 109ηa + 12π2ηa − 66ηa ln (ηa) − 72ηa ln2 (ηa) − 24π2η2
a + 264η2

a ln (ηa)

+ 36η2
a ln2 (ηa) + 96LF + 168ηaLF − 264η2

aLF + 432ηa ln (ηa) LF

− 144η2
a ln (ηa) LF

)
− 2(11 − 12LF )

(
1

(1 − ηa) (1 − ηb)
+

1

ηa (1 − ηb)

−
2 − ηa + η2

a

1 − ηb

)
+ 6 (ln (ηa) ln (1 + ηa) + Li2 (−ηa)) pgg(−ηa)

−

(
2
(
3 ln2(2) − 11 ln(2) − 11 ln (1 − ηa) + 6 ln(2) ln (1 − ηa)

+ 3 ln2 (1 − ηa) − 3 ln (1 − ηa) ln (ηa) + 11 ln (1 + ηa) − 6 ln(2) ln (1 + ηa)

− 6 ln (1 − ηa) ln (1 + ηa) + 3 ln2 (1 + ηa) − 3L2
F − 6LRLF + 12 ln (1 − ηa) LF

+ 9L2
R + 11LR − 12 ln(2)LR − 12 ln (1 − ηa) LR + 12 ln (1 + ηa) LR

)

+
12 (ln (1 + ηa) − ln(2) − ln (1 − ηa) − ln (1 − ηb) + 2LR)

1 − ηb

)
pgg(ηa)

}
+ O(ε0) ,

(A.15)
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ĪB;gg,gg(ηa, ηb; ε | 1, 1)

=
2

ε4
+

1

ε3

{
55

12
+ 4LR

}
+

1

2ε2

{
1

18

(
67 + 21π2 + 264LF + 144L2

R + 198LR

)

+ (11 − 8LF + 8LR)

(
1

1 − ηa
+

1

1 − ηb

)}

+
1

18ε

{
202

3
− 63ζ3 + 66L2

F + 24π2LF + 48L3
R + 66L2

R + 67LR − 3π2LR

+ 132LF LR −
1

1 − ηa

(
− 67 + 9π2 + 36L2

F − 132LF − 144 ln (1 − ηa) LF

+ 72LRLF − 108L2
R − 132LR + 144 ln (1 − ηa) LR + 132 ln (1 − ηa)

− 36 ln2 (1 − ηa)
)

−
1

1 − ηb

(
− 67 + 9π2 + 36L2

F − 132LF

− 144 ln (1 − ηb) LF + 72LRLF − 108L2
R − 132LR + 144 ln (1 − ηb) LR

+ 132 ln (1 − ηb) − 36 ln2 (1 − ηb)
)

+
72

(1 − ηa)(1 − ηb)

(
11

6
− ln (1 − ηa)

− ln (1 − ηb) − 2LF + 2LR

)}
+ O(ε0) . (A.16)

As explained above, here too, we have

ĪB;gg,gg(ηa, ηb; ε | 1, ηb) = ĪB;gg,gg(ηb, ηa; ε | ηa, 1) . (A.17)

Finally, although the expressions of Γ are well-known, for completeness we present these

explicitly as well. Again, it is useful to extract powers of αs and CA, and we set

Γ
(1) =

αs

2π
CAΓ

(1)
and Γ

(2) =

(
αs

2π

)2

C2
AΓ

(2)
. (A.18)

The corresponding coefficient functions then read

Γ
(1)
gg,gg(ηa, ηb; ε | ηa, ηb) = 0 , (A.19)

Γ
(1)
gg,gg(ηa, ηb; ε | ηa, 1) = 2pgg(ηa)

{
1

ε
+ LF + ε

L2
F

2

}
+ O(ε2) , (A.20)

Γ
(1)
gg,gg(ηa, ηb; ε | 1, 1) =

{
11

3
−

2

1 − ηa
−

2

1 − ηb

}{
1

ε
+ LF + ε

L2
F

2

}
+ O(ε2) (A.21)

and

Γ
(2)
gg,gg(ηa,ηb;ε |ηa,ηb) = 4pgg(ηa)pgg(ηb)

{
1

ε2
+

2LF

ε

}
+O(ε0) , (A.22)
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Γ
(2)
gg,gg(ηa,ηb;ε |ηa,1) =

1

ε2

{
11−4ln(ηa)

2(1−ηa)
−

11+12ln(ηa)

6ηa
−5−

1

2
ηa−6ηa ln(ηa)+

11

6
η2

a

+2η2
a ln(ηa)−

4

(1−ηa)(1−ηb)
−

4

ηa (1−ηb)
+

4
(
2−ηa+η2

a

)

1−ηb

+4ln(1−ηa)pgg(ηa)

}

+
1

ε

{
67−3π2+9ln2 (ηa)+264LF −72ln(ηa)LF

18(1−ηa)
−

π2−3ln2 (ηa)

6(1+ηa)

+
1

36
(−25+24π2−150ln(ηa)−109ηa+66ηa ln(ηa)+72ηa ln2 (ηa)

+12π2η2
a−264η2

a ln(ηa)−36η2
a ln2 (ηa)−624LF +96ηaLF

−432ηa ln(ηa)LF +144η2
a ln(ηa)LF )−

4LF

ηa(1−ηa)(1−ηb)
(2+ln(ηa)

−4ηa−ηa ln(ηa)+6η2
a−4η3

a+2η4
a−ηb ln(ηa)+ηaηb ln(ηa))

−2(ln(ηa) ln(1+ηa)+Li2 (−ηa))pgg(−ηa)

−2ln(1−ηa)(ln(ηa)−4LF )pgg(ηa)

}
+O(ε0) ,

(A.23)

Γ
(2)
gg,gg(ηa,ηb;ε |1,1) =

1

2ε2

{
1

18

(
121−24π2

)
−

11+8ln(1−ηa)

1−ηa
−

11+8ln(1−ηb)

1−ηb

+
8

(1−ηa)(1−ηb)

}

+
1

9ε

{
24+27ζ3+121LF −12π2LF −

1

2(1−ηa)
(67−3π2

+264LF +144ln(1−ηa)LF )−
1

2(1−ηb)
(67−3π2+264LF

+144ln(1−ηb)LF )+
72LF

(1−ηa)(1−ηb)

}
+O(ε0) .

(A.24)

Of course, as before

Γ
(1)
gg,gg(ηa, ηb; ε | 1, ηb) = Γ

(1)
gg,gg(ηb, ηa; ε | ηa, 1) (A.25)

and

Γ
(2)
gg,gg(ηa, ηb; ε | 1, ηb) = Γ

(2)
gg,gg(ηb, ηa; ε | ηa, 1) . (A.26)

To finish, let us make the following point regarding our implementation of eq. (2.43). Since

the combination of terms in this equation does not have ε-poles, in a numerical computation

in four dimensions the full expression may be multiplied freely with any ε-dependent constant

C(ε) of the form C(ε) = 1 + O(ε). Clearly this does not influence the four-dimensional value
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of the expression. In our concrete implementation, we include such a factor given by

C(ε) =

[
eεγE

Γ(1 − ε)

]−2 |M
(0)
gg→H |2ε=0

|M
(0)
gg→H |2

. (A.27)

In practice, we achieve this overall multiplication by setting (notice |M
(0)
gg→H |2ε=0/|M

(0)
gg→H |2 =

1 − ε)

|Mgg→H |2l−loop → (1 − ε)

[
eεγE

Γ(1 − ε)

]−l

|Mgg→H |2l−loop , l = 0, 1, 2 , (A.28)

(in particular, the Born matrix element is normalized to its four-dimensional value), and

I
(0)
1 (ε) →

[
eεγE

Γ(1 − ε)

]−1

I
(0)
1 (ε) =

αs

2π
CAĪ

(0)
1 (ε) , (A.29)

IB(ε) →

[
eεγE

Γ(1 − ε)

]−2

IB(ε) =

(
αs

2π

)2

C2
AĪB(ε) , (A.30)

Γ
(1) →

[
eεγE

Γ(1 − ε)

]−1

Γ
(1) =

αs

2π
CA

[
eεγE

Γ(1 − ε)

]−1

Γ
(1)

, (A.31)

Γ
(2) →

[
eεγE

Γ(1 − ε)

]−2

Γ
(2) =

(
αs

2π

)2

C2
A

[
eεγE

Γ(1 − ε)

]−2

Γ
(2)

(A.32)

in our implementation.

B Installing and running NNLOCAL

Our code can be obtained at https://github.com/nnlocal/nnlocal.git. After cloning the git

repository into the desired directory, the code can be compiled with the included makefile

by running make. The only external dependency is LHAPDF [65]. After compilation, the

executable nnlocal is created in the bin directory. A run can then be set up by editing the

provided input.DAT file in the bin/testrun-H subdirectory. The most important parameters

that are set in this file are the following.

• nproc: the process ID number. Currently only the pp → H process is implemented, for

which nproc = 710.

• order: the order in αs relative to the Born process. Hence, order = 0,1,2 correspond

to the LO, NLO and NNLO computations. Moreover, if order is negative, only the

correction at the appropriate relative order is computed, so order = -1,-2 give the

pure NLO and NNLO contributions.

• part: specifies which part of the full computation to perform. Possible values are the

following.

1. born: include all contributions up to the given order that have Born-like (i.e.,

2 → 1) kinematics, e.g., the double virtual contribution at NNLO;

2. virt: include all contributions up to the given order that have Born + one parton

kinematics, e.g., the real-virtual contribution at NNLO;
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3. real: include all contributions up to the given order that have Born + two parton

kinematics, e.g., the double real contribution at NNLO;

4. tota: include all contributions up to the given order.

• sqrts: the total center of mass energy of the hadron-hadron collision in GeV.

• hmass: the mass of the Higgs boson mH in GeV.

• scale: the renormalization scale µR in GeV.

• facscale: the factorization scale µF in GeV.

• itmx1: the total number of iterations used for grid refinement in serial running mode.

• ncall1: the total number of evaluations per iteration during grid refinement.

• itmx2: the total number of iterations for collecting results after the grid has been

set up.

• ncall2: the total number of evaluations per iteration during result collection.

• (ncall virt)/(ncall born): if part = tota is selected, then all partonic contribu-

tions are evaluated during the run. In this case, ncall1 and ncall2 give the number

of evaluations per iteration during the grid refinement and collection stages for the

contributions with Born-like kinematics. However it is usually necessary to run higher-

multiplicity partonic processes with more points and this parameter provides a way to

increase the total number of points by multiplying ncall1 and ncall2 with the value

set here for contributions with Born + one parton kinematics. If the value of part is

something other than tota, this parameter is inactive.

• (ncall real)/(ncall born): same as above, for Born + two parton kinematics.

• parallel: specify whether to run in serial mode (0) or parallel mode (1), see below.

After setting up the inputs, the code can be run in serial mode (with the parallel

flag set to 0) by simply invoking the executable. Assuming the input file is prepared in

a subdirectory of bin, we have

../nnlocal <file>

Here the optional argument <file> allows to use a file different from the default input.DAT

for specifying the run parameters. With this setup, the integration grids are first refined over

itmx1 iterations, then in a second stage, results are gathered with fixed integration grids.

In this second stage, a user-defined analysis routine is also invoked for each event allowing

e.g., the collection of histograms for physical observables.

Our code can also be run in parallel mode with the help of the included scripts. The

parallelization is achieved in a very straightforward manner and is built to exploit architectures

with several CPU cores. To perform a parallel run, one must first set the parallel flag to 1
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in the input card. The launching of jobs and collection of results is then controlled through

the runpar.sh script. The most important variables in this script are

• ncores: the number of CPU cores that the user wishes to use simultaneously.

• nprocessesgrid: the total number of instances to be used during each iteration step

of grid refinement.

• nprocessesaccu: the total number of instances to be used during the collection of

results after the grid has been set up.

• maxgrid: the number of iteration steps used for grid refinement.

• alpha: the trimming parameter α introduced in section 3.

After setting these parameters, the script will launch batches of ncores jobs as necessary

to produce the total number of runs specified. The execution in the parallel setup also

proceeds in two stages. In the first stage, nprocessesgrid jobs are completed in batches of

ncores.12 After all jobs are finished, the obtained separate integration grids are averaged to

produce a single grid for the next batch of runs. In total, maxgrid steps of grid refinement

are performed in this manner, which completes the first stage of running. Then, during the

second stage, a total of nprocessesaccu jobs are launched in batches of ncores.13 When

all jobs are complete, the separate results are collected into the output files nnlocal-1.top,

nnlocal-2.top and nnlocal-$m-$m.top, where $m is value of the integer m introduced in

eq. (3.3). The first file contains results obtained by computing an arithmetic average of the

separate runs, the second one contains results obtained by computing weighted averages,

while the last file contains results computed with the α-trimmed mean. If the statistics are

high enough, the results computed with the arithmetic and weighted averages should be in

good agreement, hence any large discrepancies can be used to diagnose a situation where the

complete statistics was insufficient to produce results that have properly converged.

Data Availability Statement. This article has no associated data or the data will not

be deposited.

Code Availability Statement. This article has associated code in a code repository.

Open Access. This article is distributed under the terms of the Creative Commons Attri-

bution License (CC-BY4.0), which permits any use, distribution and reproduction in any

medium, provided the original author(s) and source are credited.

12The total number of evaluations in each job is still set by ncall1, however the value set for itmx1 is now

irrelevant, as the number of iterations for grid refinement is controlled by maxgrid.
13The total number of evaluations for each job during this stage is set by ncall2 and itmx2: each run will

perform itmx2 iterations of ncall2 evaluations.
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