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ABSTRACT: Besides solving the spectral problem of N' = 4 Super-Yang-Mills (SYM) theory,
integrability also provides us with tools to compute the structure constants of the theory,
most prominently through the hexagon formalism. We show that, with minor modifications,
this formalism can also be applied to orbifolds of N’ =4 SYM theory, which are integrable
theories in their own right. To substantiate this claim, we test our results against a direct
gauge-theory calculation at tree-level. We focus here on a family of N' = 2 supersymmetric
Z pr-orbifold theories. BPS correlators in these theories have recently been investigated with
independent localisation techniques and a tentative matching with wrapping corrections
in the hexagon formalism was observed. Together with our weak-coupling evidence, this
suggests that a full determination of the structure constants of orbifold theories at finite
coupling may be within reach.
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1 Introduction

The AdS/CFT correspondence is best understood for type IIB superstrings on AdSs x S°
and N = 4 supersymmetric Yang-Mills (SYM) theory [1-3|. It was noticed by Minahan
and Zarembo [4] that in the planar limit [5] the one-loop spectrum of anomalous dimensions
of certain operators can be mapped to an integrable spin-chain Hamiltonian. This allows
to solve the spectrum exactly by using Bethe Ansatz techniques [6]. The map to integrable
spin chains was then extended to the full superconformal algebra of N' = 4 SYM theory
[7-9]. Considering operators of finite length, wrapping corrections have to be taken into
account [10]. These finite-size corrections can be described on the string worldsheet by
introducing a mirror model [11-14]. Thus, in principle the spectral problem of anomalous
dimensions in N' =4 SYM is solved and large amounts of data can be produced by virtue
of the quantum spectral curve formalism [15-18].

Following the success of integrability in the spectral problem, the study of three-point
functions of non-protected operators was initiated in [19], where correlators of three closed
spin-chain states were calculated at tree level. Subsequently, the hexagon formalism [20]
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Figure 1: Structure constants can be evaluated through the hexagon formalism. After
cutting the worldsheet, all possible distributions of excitations on the two hexagons have
to be summed. Finite-size correction can be captured by inserting full sets of states on the
cut edges.

was developed to apply integrability techniques to three-point functions of generic opera-
tors in A/ = 4 SYM. Starting from the string theory picture, the worldsheet is cut into two
hexagonal patches, c.f. Fig. 1. Each patch has three edges corresponding to the cut opera-
tors (physical edges) and three edges that correspond to the cut worldsheet (virtual edges).
The physical excitations carried by the operators can end up on either of the hexagons after
cutting the operators and hence it is necessary to sum over all possible partitions of exci-
tations. The hexagonal patches can be evaluated as form factors. Using the symmetries of
three-point functions, the one- and two-particle hexagon form factor were bootstrapped and
the multi-particle form factor was conjectured [20]. Asymptotically, the bootstrap yields
the psu(2|2) S-matrix elements [21]. More specifically, the worldsheet is considered asymp-
totically large after cutting and hence finite-size corrections are suppressed. In analogy to
Liischer-corrections in field theory [22], finite-size effects can be captured order by order
through the insertion of full sets of mirror particles on the virtual edges [20]. Since this is
relevant when gluing the two hexagonal patches back together into a three-point function,
it is also referred to as gluing corrections. However, the explicit evaluation of these pro-



cesses is rather involved, see for instance refs. [23-28]. Moreover, it is possible to extend
the formalism to planar higher-point correlation functions [26, 29|, and even to non-planar
correlators [30-32].

It seems natural to ask whether this very promising program can be extended to theories
with less supersymmetry. One possibility is to consider other instances of AdS/CFT and in
fact a first affirmative example was given for AdS3 x S? x T* [33, 34]. Another possibility
is to consider deformations of A" = 4 SYM. For certain operators in the 3- and y-deformed
theory a similar formalism seems applicable [35] and it would be desirable to have a first-
principles derivation. For orbifold theories [36, 37|, recent progress was made in [38], where
a three-point function of BPS operators was considered and agreement with results from
localisation |39] was found. The main goal of this article is to explore the hexagon formalism
for orbifold theories for non-BPS operators.

Our main focus will be on N' = 2 Zys-orbifolds of AdSs; x S° which arise as the near-
horizon limit of a stack of D3-branes probing a C2/Z,; singularity (Aj;_1 in the usual
ADE-classification [40]). The dual N’ = 2 gauge theory consists of M gauge multiplets
and bifundamental hypermultiplets summarised by the quiver diagram Fig. 2. These

Figure 2: The “necklace" quiver diagrams associated to N' = 2 Zys-orbifold theories feature
M gauge nodes and bifundamental hypermultiplets. All gauge nodes have the same gauge
coupling constant g.

orbifold theories are integrable [41-43] and have also been investigated with localisation
techniques, which allow us to calculate correlators of BPS-operators at all values of the
gauge coupling g [44-49]. However, the analysis of unprotected quantities will require the
application of less specialised tools such as integrability.

Along with changing the gauge structure of the fundamental fields, the orbifold pro-
jection also modifies the spectrum of single-trace operators by allowing for twisted-sector
states that introduce an element ~* of the Zy;-representation into the trace. These states are
dual to string states that only close up to an orbifold action. When considering three-point
functions of single-trace operators we therefore have to specify which twisted sectors we
are contracting. Denoting scalar operators twisted by v* as OF, overall orbifold invariance
results in a superselection rule and conformal invariance fixes the space-time dependence
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(1.1)



where we denote by A; the conformal dimension of the operator inserted at x;. Our goal
will be to determine the value of the structure constants Corpipm by making use of the
hexagon formalism outlined above. These structure constants depend on operator normali-
sations, which we may mitigate by considering ratios of the three-point functions of interest
with a reference three-point function. As reference we choose the protected three-point
function involving only untwisted BPS-operators V9 of the same lengths, resulting in the
“normalised" three-point function!

<Ok(x1)ol($2)om(x3)> o éOkOZOm(s(k-i-H-m) mod M (1 2)
(VO(x1)V0(x2)VO(23)) B |1 — @o |1 t27 8|2y — w3182 |y — g2 tWBTIL )
which now only depends on the anomalous dimensions v; = A; — L;. In an abuse of

notation we will sometimes denote the structure constants by their associated corellators
é@koloru£ <(’)k Ol(’)m>, suggesting that the spacetime-dependence and normalisation can be
restored by reference to (1.2). It is these normalised structure constants that the hexagon
formalism will determine. In order to check our results, we compare them with a direct
gauge-theory calculation at tree level.

The set-up of this calculation is complicated by the reduced amount of symmetry in the
orbifold theory. In AN/ = 4 SYM one usually prepares the operators in question at one point
in spacetime and translates them to a finite distance using a PSU(2|2)-preserving translation
operator 7. This operator mixes the original state with other operators from the same
superconformal multiplet. The three-point function then picks out the component that is
appropriately rotated to preserve overall R-symmetry and we may determine the associated
structure constant via the hexagon formalism. In the N = 2 orbifold the translation
operator T generally does not commute with the orbifold twist and the overall symmetry is
broken to at best PSU(1|1). This results in the mixing of several superconformal multiplets
with distinct anomalous dimensions and structure constants. Nevertheless, we find evidence
that a minor modification of the usual N' = 4 hexagon formula still determines individual
structure constants accurately and matches the gauge-theory prediction after the latter has
been projected onto the contributions of individual superconformal multiplets. We therefore
conjecture the following statement:

The hexagon formalism accurately determines the structure constants of physical
states in N = 2 Zj-orbifold theories, if:

e we consider solutions to the twisted Bethe equations and

e keep track of the corresponding twist factors for particles being moved past the
twist operators during the cutting and gluing procedure.

In this paper we will provide tree-level evidence for this statement at low numbers of
magnon excitations in various SU(2) sectors of the simplest Zs orbifold as well as some
preliminary checks for the Zs orbifold, which directly generalise to Zy; orbifolds. A recent

!This choice assumes a uniform normalisation scheme across twist sectors, as e.g. used in [49].



discussion of wrapping corrections [38] provided additional evidence that a correct treatment
of mirror excitations follows the same logic by matching to localisation results. In light of
these promising results, a full determination of the structure constants of non-BPS operators
at finite coupling seems possible and would be an interesting challenge for future research.

We start our discussion by reviewing the spectral problem of orbifold theories in Sec-
tion 2. We first introduce the N' = 2 Zjs-orbifolds and their gauge theory incarnation
(c.f. Fig. 2), comment on the gauge choice necessary to set up a spin-chain picture and
finally present some simple SU(2) sectors of single-trace operators. An explicit calculation
of their spectrum is performed for the Zs-orbifold theory and we listed states with up to
two excitations in Appendix A. In Section 3 we briefly review the available technology to
compute three-point functions, directly from gauge theory, via a spin-chain overlap and
through the hexagon formalism. In Section 4 we apply these techniques to the orbifold
theories. We first compute three-point functions for the simplest gauge choice in the Zs
orbifold where an additional SU(2)-symmetry appears. This symmetry mitigates the need
to project onto the relevant superconformal multiplets as their structure constants are now
related by this symmetry. When choosing a different gauge or moving on to higher-order
Zys orbifolds this quality is lost and we need to decompose the three-point functions that
arise from the translated operators into individual components. In general, this would be
a very tedious endeavour but for some simple operators we can indeed show agreement
with the hexagon. It stands to reason that we may therefore take the hexagon as a direct
access route to structure constants. We comment on possible additional checks, extensions
to finite coupling and other deformations of ' =4 SYM in Section 5.

2 Review: The spectral problem of orbifold theories

In this Section we will gather the necessary background on orbifold theories, their symme-
tries and the associated spin-chain. A simple subset of operators is given by SU(2) sectors
which consist of single-trace operators involving only two scalar fields. In orbifold theories
we can construct multiple SU(2) sectors which are distinguished by their transformation
properties under the orbifold action. We will list the various SU(2) sectors of N' = 2
supersymmetric orbifold theories.

2.1 Orbifolds theories

The simplest integrable deformation of type IIB string theory on AdSs x S° is an orbifold by
some discrete subgroup I' of the overall PSU(2,2[4) symmetry [36, 37]. The closed-string
spectrum of such orbifold theories is constructed by projecting the undeformed spectrum
onto I-invariant states (untwisted sector) and furthermore adding additional string states
which close only up to a I'-action and were absent in the undeformed theory (twisted
sectors). We thus have to combine |I'| different sectors to achieve a modular invariant
string theory. In this paper, we will restrict our attention to cyclical groups I' = Z,; acting
on the S subspace, or in terms of the dual gauge theory on the R-symmetry subgroup
SU(4).



The dual gauge theory descends from N' =4 SYM theory with gauge group SU(MN)
on which the orbifold group I' = Z, acts as [41, 42]

v =diag(ly,w- 1y, w? - In,... ™M1 1y), w:exp%, (2.1)
and thus breaks the gauge group down to U(N)M . We furthermore need to act with the
appropriate R-symmetry transformation 2, on the various fields in the theory. Imposing
invariance under the combined action of v and R, will generally break supersymmetry com-
pletely. If we want to retain supersymmetry, we have to ask for R, to leave an appropriate
amount of R-symmetry unbroken, as is best illustrated by the action on the N' = 4 scalar
fields. If N/ = 1 supersymmetry shall be preserved, we may parametrise the most general
orbifold action as

RINX,Y,Z) =91(X)Y, Z)y = (0¥ X, 0"V, 07 Z), tx,ty,tz € Zmod M. (2.2)

preserving the U(1) R-symmetry under which the complexified scalars X,Y and Z are
charged. If we want to retain A/ = 2 supersymmetry the orbifold action may be restricted
to

RNX,Y,Z) =/(X,Y, Z)y = (wX,w'Y, Z), (2:3)

which furthermore preserves an SU(2)r C SO(4) R-symmetry. The simplest case of this
orbifold action is the Zsy orbifold for which the twist factor w = w™' = —1 degenerates and
allows for yet another SU(2)-symmetry between X and Y. In Section 4.1 we will study
three-point functions in this theory and see that this additional SU(2)-symmetry greatly
simplifies the calculations.

Let us take a closer look at the N' = 2 orbifold, following in part the discussion in [41].
Invariance under the combined gauge and R-symmetry transformations according to (2.3)
dictates that the SU(M N)-adjoint fields X,Y and Z decompose into bifundamental and
adjoint fields of U(N)M as follows

0 Xio 0 Yim Zn
0 Xos Y1 0 Z22

(2.4)
where the indices label the respective gauge groups. This break-down of the SU(MN)
gauge group now naturally encodes the projection to Zys-invariant states in the dual string
picture. The holographic dictionary maps closed string states to single-trace operators

trynZXXYZZ. ... (2.5)

The trace becomes a sum over traces try of the individual U(N)-factors, but only if the first
and last gauge indices match. This projects out all states that do not satisfy the orbifold
condition

#H(X) —#(Y) = #(X)+ #(Y) =wM, weEZ. (2.6)



and precisely the untwisted sector states remain. Here we defined a “winding number" w
which counts the number of times the state wraps around the quiver diagram Fig. 2. We
may similarly construct the twisted sector states by adding powers of v to the trace

trunY ZXXYZZ ..., (2.7)

which translates the twisted boundary conditions of the string to the gauge theory and
introduces relative phases into the sum of U(N)-traces.

In [50] it was pointed out that although the orbifold action breaks the SU(4) R-
symmetry, one may restore the broken elements of the Lie algebra in the language of
algebroids. This captures the fact that acting with broken generators R} on fields would
change their gauge indices from one gauge group to another, e.g.

Rb : X12 — Z11 . (28)

To reinstate such algebroid elements to the theory, one may introduce an algebroid co-
product
A(Ry) =1® Ry + Ry ®Q, (2.9)

where ) acts as a Zg-rotation on the gauge indices. Essentially, the prescription is to
rotate the gauge indices to the right of a transformed operator in such a way as to allow
contractions with the new gauge index. Within traces, the notion of “to the right" is not
well-defined so the authors of [50| proposed an opening procedure that temporarily allows
for open spin chains as intermediate states. Repeated action of broken generators may
eventually lead back to a non-vanishing trace. We will make use of this language when
discussing the interplay of translations with the orbifold action.

2.2 Gauge choice and symmetries

For sufficiently long single-trace operators, the spectral problem of N' = 4 SYM has been
solved by the asymptotic Bethe Ansatz. Its starting point is a BPS-vacuum built from
a scalar operator ®y (a canonical choice is &y = Z, but any SO(6)-rotation thereof is
possible)

tr &L | (2.10)

which is interpreted as an integrable spin chain of length L into which further operators,
such as other scalars or derivatives, are inserted as quasi-particle excitations. The choice of
the vacuum corresponds to choosing a light-cone gauge in the dual string theory and breaks
the overall supersymmetry from PSU(2,2[4) down to PSU(2/2)2. To make this breaking
explicit, consider the fundamental representation of psu(2,2[4) in terms of complex 8-by-8
matrices. A generic generator may be block-decomposed as

La,@ —I—D KaB Qab Qai)

Py L= DL Q% Q% (2.11)
S5 8% |R%-J R% |’ '
gdg SdB Rdb Rdé +J



where we introduced fundamental SU(2) indices «, &, a,a € {1,2} which determine the
transformation behaviour under the SU(2) subgroups generated by L%g, L& & R%, and
R%;, respectively. While the decomposition of the conformal symmetry group SU(2,2) (in
the upper-left quadrant) according to the maximal compact subgroup SU(2) x SU(2) is
natural, the decomposition of the SU(4) R-symmetry group (in the lower-right quadrant)
may seem ad-hoc and in fact one may choose any SU(4) conjugated version as an equivalent
decomposition. We shall choose the orientation such that the vacuum (2.10) has charge L
under the action of the generator J. Since this operator (2.10) is BPS, its eigenvalue under
the dilatation operator D is fixed to A = J. Thus, we may interpret the vacuum (2.10) as
the ground-state w.r.t. to the light-cone Hamiltonian

H=D-J, (2.12)

which we interpret as the Hamiltonian of the associated spin-chain. A basis of excita-
tions that diagonalises this Hamiltonian will furnish a representation of the commutant
Cpsu(2,2)4) (H), which is spanned by the generators with purely dotted or undotted indices.
These form two PSU(2|2) subgroups that can be centrally-extended to generate the full
off-shell algebra of quasi-particles. The large amount of symmetry allows for a complete
determination of the S-matrix of such excitations scattering off each other and we may
employ a Bethe Ansatz to also determine the energies of multi-particle states [4, 6].

When applying this technology to orbifold theories, the various choices of the vacuum
field @y are no longer related by SO(6)-symmetry. Instead they are now distinguished by
their charge under the orbifold action (2.3). We may identify two main gauge choices:

e Adjoint vacuum: ¢y = 7

This vacuum choice is natural when comparing to N'= 4 SYM. The vacuum field Z
sits in the adjoint representation of the N' = 2 gauge theory and all (untwisted and
twisted sector) single-trace operators built from it are BPS-operators. The winding
number (2.6) of this vacuum is w = 0. The orbifold action on the scalar fields was
given in (2.3) but after the gauge choice, we may now capture it in the language of
the fundamental SU(4) representation (lower-right quadrant of (2.11))

w 0 00
0w l00

R. — 2.13

K 0 0 10 (2.13)
0 0 01

It is thus an element of the SU(2) € PSU(2|2) spanned by the undotted elements
R%,. The other PSU(2|2) group remains unbroken by the orbifold projection.

e Bifundamental vacuum oy = X

In this case, the vacuum field is charged under the orbifold action. When it comes to
constructing single-trace operators according to (2.10), only untwisted vacua of the
form tr(7°XM®) with positive winding number w are part of the spectrum.? In the

2We could have equally chosen Y or a conjugate fields X, Y as vacuum field. The winding numbers of
the Y- and X-vacuum states have negative winding numbers w.



twisted sector and for length L # 0 mod M, we require at least one excitation to
build a physical state. In this gauge the orbifold action is given by

w0 0 0
01 0 0

R, = 2.14

K 00w lo]’ (2.14)
00 0 1

which breaks the supersymmetry down to PSU(1/1)2.

We could investigate further more complicated gauge choices, but since we have covered
all winding numbers w, these would not offer a qualitatively different or more convenient

scenario.

2.3 SU(2) sectors

An analysis of the full spectrum of operators and their structure constants is the declared
goal of the integrability program. In this paper, however, we will restrict our attention to
certain subsectors of states in which the difference of N' = 2 orbifold theories and N = 4
SYM become apparent, leaving a more extensive survey of structure constants to future
work. The sectors in question consist of single-trace operators

tr 'ykq"L/_K(I)g + permutations, (2.15)

involving only two scalar fields, the vacuum field ®y and the excitation field ®5. We can
go to the spin-chain picture by formally identifying ®y as down- (|{)) and ® g as up-state
|1). Hence single-trace operators can be identified with spin chain states as

try Py By Py Pp... <« I )R (2.16)

where the boundary twist has to be taken into account whenever the spin chain is shifted
by one site. The eigenstates of the light-cone Hamiltonian (2.12) can be obtained through
diagonalising the one-loop dilatation operator Dy = ZZL:1 1 — P41, where P 14 is the
permutation operator acting on neighbouring fields. The corresponding eigenvalues are
non-trivial corrections to the conformal scaling dimensions of the operators (2.15), which
can be calculated via a Bethe Ansatz. Assuming a generic behaviour under the orbifold
action (2.3) as (Py, Pg) ~ (WPPy, wWIPE), the Bethe equations are given by [41]

K K
il H Sjp = wkP=a) el = H ePi = WP (2.17)
j=1,j#i 7=l

where we introduced the S matrix S;, scattering the excitations with momenta p; and py
as well as the shift factors €. In terms of rapidities and at leading order in the gauge
coupling g these are given by

Uj — U — 1 eipj:uj‘—l-i/Q

Sik = ; — .
” wj —up +1i’ uj —1/2

(2.18)



We will solve these equations for up to two excitations in the various scenarios below,
but the generalisation to higher excited states is a matter of stamina. After determining
the Bethe roots w;, we can simply add the energies of the excitations to find the overall
energy of the state

K
b= ;u +1/4 (2.19)

The Bethe eigenstate can be constructed as in the undeformed case

k= Y N dximrewne T Sogyow Ints---nw)* (2.20)

1<ni<-<ng<L c€SK >l
o(j)<e(l)

where the sums run over all spin-chain sites as well as all permutations o of the K ex-
citations, which are inserted at the sites n; as indicated in the ket state. In particular,
the twisted boundary conditions enter only implicitly through the Bethe roots u;. The
normalised state is then given by [51, 52]

v)*
VOIL 2+ DL, Sig

where the Gaudin norm G is defined as the logarithmic derivative of the Bethe equations,

B* = (2.21)

which is again independent of the twist factors. For the reader’s convenience, we spell out
the Gaudin norm in the SU(2) sectors, which explicitly reads

0log (st [T S (ujr w))
Bul '

G=Detdy, =i (2.22)

We see that the only effect of the twist 4% is the introduction of phases w*®~9 and wh?
to the Bethe equations (2.17). It will therefore be useful to distinguish a few archetypical
SU(2) sectors in the orbifold theory generated by (2.3). We choose the bifundamental
vacuum Py = X here but one may always exchange vacuum and excitation fields at the

cost of exchanging highly and slightly excited states.

SU(2)g sector. The orbifold action preserves an SU(2)g symmetry between X and Y,
and similarly for their complex conjugate fields. One may therefore study the scenario
dy = X, ®p =Y (or any SU(2)g-rotation thereof) and consider states of the form

try*V 172l X1 4+ permutations (J1 >0,J2<0). (2.23)

These operators have the SO(6) charges (Ji, J2,0). The spectrum can be found from the
Bethe Ansatz equations (2.17) with p = ¢ = 1. The boundary condition is periodic and
hence the Bethe equations are given by

| J2] |J2]
epil H Sik=1, et = He”’j =w", (2.24)
j=lj#i =1

where the twist only appears in the constraint for the total momentum P.

~10 -



SU(2)r, sector. We may also consider operators consisting of fields X and Y. The SU(2)-
symmetry relating these fields is explicitly broken by the orbifold action (2.3). When
considering operators of the form

try*Y 2 X/t 4 permutations, (J1>0,J2 >0), (2.25)

we therefore find a phase in the Bethe equation for excitations

Ja Ja
67‘ij H S],k = w2k s SZP = H elpj = wk . (226)
j=1.j# =t

Note that, in the special case of the Zg orbifold, the Bethe equations of the SU(2)r and
the SU(2) [, sector coincide.

Mixed SU(2) sector. Finally, we could also consider operators consisting of fields X and
Z (or similarly Z). In the original N' = 4 SYM theory these fields also form an SU(2)
sector. However, in the orbifold theory this symmetry is broken and now mixes adjoint and
bifundamental representations. Like in the sectors considered above, single-trace operators
take the form

try* 273 Xt + permutations, (J1 >0,J3>0). (2.27)
Building the state on top of the bifundamental vacuum the corresponding Bethe equations
read
J3 A J3 A
bifundamental vacuum: etPil H Sip =Wk, et = H ePi = k| (2.28)
J=Lj#i Jj=1

For later convenience, let us also give the Bethe equations for excitations on top of the
adjoint vacuum. In this case the Bethe equations read

Jl Jl
adjoint vacuum: il H Sip=w", el = H i =1. (2.29)
j=lj#i =1

This list exhausts the physically distinguished SU(2) sectors up to duality transformations.
As instructive example, let us analyse the spectrum of the A/ = 2 Zsy-orbifold.

2.4 Spectrum of the SU(2) sectors for the Z; orbifold

We will now construct some explicit states with two excitations for the Zs orbifold. Since
the untwisted sector descends directly from N = 4 SYM, we will instead focus on twisted-
sector operators. For the Zs orbifold the twist factor is simply w = —1, and therefore
the SU(2)g and the SU(2), sector are characterised by the same Bethe equation, c.f. egs.
(2.24) and (2.26). Let us define a basis of doubly excited operators of length L as

O = tr(y 'Y XTIV X E7972). (2.30)

For each length of the operator we have a set of 2| L/4] distinct operators. Considering
the mixing problem reveals a highly degenerate spectrum. The operator (’)é’L has energy
E = 2, while all the other operators O;’L, with 1 < j < 2[L/4| have the energy E = 4.

— 11 —



L ‘ Eigenstate ‘ E ‘ Ul ‘ U

8 | VBB =01 1iv30y — 03 | 4| 2% | 1
10 | 28y = 0 £iv20, 03" | 4 | jE | 55

Table 1: Single-trace operators in the SU(2)r and SU(2) [, sectors of the Zs-orbifold theory
with lengths L = 8,10 and two excitations. The Bethe eigenstates are given by linear com-
binations of the basis elements O?’L defined in (2.30). The spectrum is highly degenerate
with energy E = 4 as the rapidities are related through us =

m.
L ‘ Eigenstate ‘ FE ‘ uy ‘ U9
1,6 1,6 | . AL6
6| 2627 =v20," £i0,7 | 4 | 5+ 5 | 3£ 55
8 | vact =00 +iop!0 |4 143 | 148

Table 2: Single-trace operators in the broken SU(2) sector of the Zg-orbifold theory with
lengths L = 6, 8 and two excitations. The Bethe eigenstates are given by linear combinations
of the basis elements (’);?’L defined in (2.30). Also in this case the spectrum is highly
degenerate.

Even though the high degeneracy prevents us from finding good eigenstates from a
naive diagonalisation of the one-loop Hamiltonian, the Bethe equations know about higher
conserved charges present in an integrable theory. Choosing a basis of states according
to the Bethe roots additionally diagonalises the state with respect to those.? Solving the
momentum constraint from (2.24) for two excitations yields

12u (WF+1) —i(wh—1 1
Uy = —— 1( & ) ( % ) Uz = s (231)
2i 2uq (WF —1) — i (wF+1) duy
with w = —1 and k = 1 for the twisted sector. We again observe a high degeneracy in this

subsector, as the energy (2.19) is E = 4 for doubly excited states, irrespective of their length
L. Solving the Bethe equation, it turns out that primary operators with two excitations
only exist for length L > 8. In Tab. 1 the shortest possible primary operators are listed,
as well as their eigenstates and rapidities.

We can proceed similarly for the mixed SU(2) sector. The spectrum of operators
carrying two excitations is again highly degenerate with energy £ = 4. Primary operators
with two excitations exist for length L > 6. In Tab. 2 the shortest possible primary
operators are listed, as well as their eigenstates and rapidities.

We delegate a complete list of twisted-sector Zs-orbifold states with two (equal) exci-
tations and length L < 10 to the Appendix A.

3 Three approaches to three-point functions

The aim of this article is the calculation of three-point functions involving non-BPS op-
erators in orbifold theories at weak coupling, where we can compare integrability based

3We thank Paul Ryan for clarifying this point to us.
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approaches directly to gauge theory.

To this end, it will be necessary to consider operators at different points in 4d spacetime.
Superconformal symmetry allows us to transform any configuration of three points to a
collinear configuration, the only necessary transformation now being a translation along
the line. Take for example the translation operator

T = —iega P . (3.1)

Its non-trivial action on Qg‘ and Sg suggests that this translation breaks the supersymmetry
remaining after light-cone gauge completely (2.11). However, one may salvage half the
supersymmetry by acting simultaneously with an R-symmetry transformation, resulting in
the “twisted translation" [20]

T = —i€4a P + €4a R . (3.2)

Since the adjective “twisted" has already been used to describe sectors of orbifold theories,
we will henceforth refer to this operation simply as translation, keeping the additional R-
symmetry rotation implicit. We note that a diagonal combination of the two PSU(2|2)-
factors remains unbroken under translation by 7. This subgroup is spanned by generators
of the form ) .

R% = R% + RY L% = O‘B—FLO‘B, 33

Qy =Q, + iealgeabsbﬂ : S0 =58+ ieabeo‘ﬁQBb, 3
and is called the hexagon subalgebra in reference to the hexagon formalism [24] which uses
this remaining symmetry algebra to bootstrap three-point functions. We will review the
hexagon formalism in Section 3.3.

As we are restricting our attention to scalar operators, it will be useful to illustrate
the effect of the translation 7 on the scalar fields explicitly. The adjoint scalar fields of
N = 4 furnish an antisymmetric representation of the SU(4) R-symmetry, which sits in the
lower-right quadrant of (2.11). We choose a representation

0 év (i)T oy}
—‘fv 0 (i)L S

R 3.4
by -0, 0 Py (34)
—®; —Pp -y 0
We then observe that the translation 7 acts non-trivially only on the following fields
T: (I)L—>(i)v, @L%—(i)v, q)v—>CI)L—(iJL. (3.5)

This action justifies our nomenclature in terms of the vacuum field ®y,, the longitudinal
field ®; and the transversal field &7 w.r.t. the translation at hand. In A" = 4 SYM we
could of course make an arbitrary identification of these fields as (combinations of) the
usual complex fields X, Y and Z and their conjugates. However, as we already observed
in Section 2.2, the choices of vacua in the orbifold theories are distinct, so we will for now
stick to this generic naming scheme.
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Having outlined the necessary translation operation, we may exponentiate it to move
operators to finite separations

O(t) = e!T0(0)e™ 7T . (3.6)

Again the action on scalar fields will be of key interest. Due to the nilpotency of €44 R
the series expansion terminates at second order

. v . e . ) . t2 . ) .
(I)bb(t) — eteaaR (I)bbe—tecc'R _ (I)bb + tEaa[Raa, (I)bb] + geadfcé[RCCa [Raa’ (I)bb]] , (37)

In particular, we can work out the translated bosonic fields &Jbi’(t), which read

(i)T(t) = (I)T, (i)T(t) = éTa
oy (t) =D, +tdy, O () =Dy —t Dy, (3.8)
dy(t) = By +t (B, — D) + 2Dy, Dy (t) = Dy .

This allows us to set up a useful basis of three-point functions preserving a PSU(2|2)-
symmetry. Note that the translation mixes single-trace operators with certain “descendant"
states in the same superconformal multiplet, related by R-symmetry. This approach is
tailored towards a description of states in terms of their Bethe-roots where the actual field
content of the operators is secondary. Essentially one may always change the field content
by adding excitations with vanishing energy and momentum to the spin-chain picture.
Moving on to three-point functions, the translation 7 then ensures that an appropriately
R-rotated descendant is present at each point to make the overall configuration an R-
symmetry singlet [20]. We can then identify the structure constants for all R-symmetry
conserving combinations.

We will now use three approaches to evaluate them at tree level: field theory, spin-chain
overlaps and the hexagon formalism. We will review these methods and their application
to N'=4 SYM in the following, commenting on their applicability to orbifold theories.

3.1 Wick contractions

In the field-theory calculation we simply perform planar tree-level Wick contractions. As
observed above, the translation (3.2) rotates some of the fields into each other. We may
determine the effective propagators of the translated fields (3.8) by performing standard
Wick contractions:
~ ~ ]_ ~ = 1
Dr(t)Pr(t)) = ——— (BLt)PL(t)) =
(Br(t)0r(t)) = G—570 (2el)2) = 173
- - 1 ~ - 1 - -
(B1(t)Dv (1)) = (Brt)dr(t))) ==, (Brt)dr(t)) =1.

ti—t;’ Cti—tj

(3.9)

A tree-level evaluation of correlation functions can now be performed by doing Wick con-
tractions and using the SU(N) trace rules

tr (T9A) tr (T*B) = 5% <tr (AB) — %tr (A)tr (B)) ,
(3.10)
tr (TAT?B) = 6% (tr (A)tr (B) — %m« (AB)) ,
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where T are the generators of SU(N). This method is tailored towards N' = 4 SYM
and moving on to orbifold theories, we will have to take into account the more intricate
gauge structure. One may decompose the SU(M N) representations as in (2.4) and con-
tract strictly fields which transform under the same gauge groups. This yields the same
results as a more implicit prescription due to [41] where we work at the level of SU(MN)-
representations and keep track of commutations with the twist operator ~.

3.2 Spin-chain overlap

The spin-chain overlap method makes use of the coordinate Bethe Ansatz for the evaluation
of correlation functions. In [19] an elegant integrability-based framework was developed for
three-point functions. The evaluation can even be used to read off the tree-level hexagon
form factor, c.f. the construction in [20] for one-magnon states. In principle it can also be
lifted to loop corrections by inserting Hamiltonian densities at the splitting points of the
spin chains [53, 54].

For the purposes of this paper, if suffices to use blunt tools. To set the scene let us
consider correlators featuring two non-BPS operators and one BPS operator in AV = 4 SYM.
The BPS operator we refer to as reservoir and it consists of the field @y only. Hence, it
can have contractions with vacuum fields and longitudinal excitations from the non-BPS
operators.

The non-BPS operators are described by their wave function (2.20). For example the
two-particle state may be abbreviated as

1/’%’,%1 = ei(np—i—mq) + ei(nq—i—mp)an ] (311)

The overlap can be calculated by summing the product of the two operator wave functions
over all possible contractions. Furthermore, we will dress the phase factors with their

propagators (3.9), e.g. when we contract an excitation ‘i)L sitting at point ¢; on a vacuum
1

t1—to "

(3.2) mixes vacuum and longitudinal fields, we need to distinguish different cases in the

field @y from an operator at ts, the corresponding factor is Since the translation

evaluation.

Transversal excitations. We consider two operators carrying transversal excitations.
The first operator is at ¢;, has length L; and two excitations ®7, while the second is at
to with length Ly and two excitations ®7. Further, we consider a vacuum of length L3 at
t3. In the spin-chain picture, the excitations can propagate freely over the chain. Since
the fields are transversal, ®7 can only be contracted on an excitation ®7. Hence, in the
overlap, we only have contact terms, as depicted on the left side of Fig. 3. In the notation
of [20], the overlap is then given by

217%2 * ¢£37p4 I
1,12 — 1,Lo— 1
Cys. =NiNy 2-natlaomtl (3.12)
’ 112
1<n1<n2<ly2

where ¢19 = (L1 + Ly — L3)/2 is the number of tree-level propagators between the operators
at t1 and to and t19 = t; — to their physical distance. The factors N; and N» are the
normalisation factors of the respective operators as given in eq. (2.21).

~15 —



1 Op Drly, Ly 1 @ 2P Dy, Ly

0 —+——+——+—+—+ 0 ———+—+—+—+—+
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L, &p Dr 3 1 L, &, O, Iy 1
Figure 3: Three-point functions can be calculated from spin-chain overlaps summing over

all possible contractions. Left: For the transversal excitations only conjugate fields can be
contracted. Right: The longitudinal excitations can either be contracted on the translated
vacuum or on their conjugate counterpart (contact terms). We also marked the position
of the twist operator in a twisted-twisted-untwisted three-point function in the orbifold
theory.

Longitudinal excitations. As the longitudinal excitations ®;, and P 1 can also be con-
tracted on the vacuum, we have to consider two cases; either both operators carry different
excitations, i.e. &7, and @y, or they carry only one kind. In the first case, the fields can be
contracted on the translated vacuum ®y as well as producing contact terms, as depicted
on the right side of Fig. 3. Hence the excitations move independently over the spin chain
and the overlap is given by

PLD2 PLP2 PLP2
1,12 1,12 1,12
C‘;Lo,‘fL = N1Va Z +2 + Z t1ot Z t2
1<ni<na<tip 12 1<m<tiy P ppcni<ne<n, 13
l12<na<Ly
D3,P4 D3,D4 D3,D4
mi,ma2 wmlme mi,m2
Z 12 * Z tostar Z t2
1<m1<ma<{a3 23 1<m1<{a3 laz<mi<ma<La 21
lag<ma<Lsa

(3.13)
Finally, we consider the case with excitations ®7, on both operators 5,‘LO7¢L. Since there
is no propagator between two fields ®;, there cannot be any contact terms. Therefore,
we have to subtract these terms. For the reader’s convenience we give this rather bulky
expression explicitly in Appendix B .

If we want to apply this technology to orbifold theories, we are faced with the same
subtleties about gauge representations we had to consider in the approach using Wick con-
tractions. Furthermore, when we consider three-point functions involving twisted operators,
we have to take into account the commutation of fields with the twist operator. Take for
example the three-point function of two non-BPS twisted operators (with twist numbers
k and M — k, respectively) and one BPS untwisted operator. In each twisted operator,
the twisted boundary condition is placed between the sites L and 1, i.e. depending on the
sector a factor w is picked up, when an excitation moves from site L to L + 1 (c.f. Fig. 3).
It seems worth noting that with this placement no explicit twist appears in the following
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evaluation. The twist only enters through the Bethe roots as solutions of the twisted Bethe
equations. We will see this pattern reemerge in discussing the hexagon formalism in the
next Section.

3.3 The hexagon formalism

Although the hexagon formalism was already outlined in the introduction, let us provide
some formulae for the evaluation of a sample three-point function in NV = 4 SYM. For
simplicity, we consider the correlator of one non-BPS operator B with two BPS operators O.
The operators are described in the integrability picture, so cutting an operator corresponds
to cutting a Bethe state. Considering for instance two excitations, there are four partitions
a, @ with «Ua = {uy, us} over which the hexagon has to be summed. The sum is weighted
by the splitting factor [19, 20]

po(a) =[] e T] Soso - (3.14)
Jjea 7k
kEa
The parameter £ measures the length of the sub-chains after cutting. Moreover, for the
three-point function we have

LyiLoLs —1)1l 1y _ _

01,0, = B2 s CUT ) oy (i) (319)
GSi2 t12t13

aUa={u1,u2}

where the hexagon form factor is (h|a). Its explicit evaluation reveals a combination of

the matrix elements of the su(2]2) S matrix [21| and the scalar hexagon dressing factor

[20]. For instance, at tree-level the zero-, one- and two-particle form factors for longitudinal

excitations are given by

Uy — u2

(hi{}) =1, M2 (w)}) =1, (h{Pr(ur), Pr(u)}) = (3.16)

Ulr — ug — ) '
For the evaluation of more general form factors we refer to the original literature [20]*. The
edge width #15 is given by the number of tree-level propagators between the operators B
and Or,. As before it is given by ¢19 = (L1 + Lo — L3)/2. The expression in (3.15) is valid
for asymptotically large operators. To compute finite-size corrections, full sets of virtual
particles need to be inserted on the edges of the cut worldsheet [20]. This Liischer-like
approach allows to evaluate the finite-size contributions order by order in the coupling.
The generalisation to more operators carrying excitations is straightforward, though
one has to deal with a growing number of partitions. To evaluate the form factor, all
the excitations need to be brought to the same edge. This is achieved through crossing
transformations. Working out the hexagon formalism for orbifold theories will be the focus
of the next Section. The emerging formalism is very similar to the one of N' = 4, with only
two differences: first of all, the rapidities entering know about the orbifolding as they are
solutions to the twisted Bethe equations. Secondly, when cutting the Bethe state one has

1A further review is given in [55], of which we use, in particular, the conventions fixed in Appendix A.
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to keep track of the twist. Depending on the considered sector and its Bethe equations,
excitations may pick up twist factors when they move from one hexagon to another. For
instance, using the adjoint vacuum of a Zjs orbifold, the factor (3.14) has to be modified
to
ko oo = Ela| ip;e

ph(a,a) = [T e T Sy (3.17)

jea 3.k

kea

where k is the twist sitting on the respective edge.

4 The hexagon for orbifolds

In this Section, we will set up and evaluate three-point functions in orbifold theories via the
hexagon formalism [20]. We will use the simplest N' = 2 Zs-orbifold theory as an instruc-
tive example but comment on the generalisation to Zj,; orbifolds. In order to check our
computation, we compare the results explicitly to tree-level gauge theory. This comparison
is slightly complicated by the fact that the translation 7 (3.2) which preserves a PSU(2|2)
symmetry in A/ = 4 SYM and is used to set up three-point function calculations does not
commute with the orbifold twist. In fact we can see by comparing with (2.13) and (2.14)
that all supersymmetry is broken when choosing the adjoint gauge (®y = Z, &7 =Y) and
only a diagonal PSU(1|1) group remains when choosing the bifundamental gauge (®y = X,
o, =Y)5

When applying a naive translation (3.6) to a generic state, we therefore generate a
bunch of states that do not close into traces of the same gauge group and have to be
discarded as unphysical.® Alongside these we also generate physical states that do not
belong to the same superconformal multiplet anymore. This results in a superposition of
three-point functions involving various multiplets. The hexagon formalism now seems to
yield the structure constants of individual components of this superposition, which are R-
symmetry singlets under the reduced R-symmetry. However, a comparison to the gauge
theory is now complicated by the plethora of multiplets involved.

If we want to test the hexagon proposal against gauge theory and spin-chain overlaps,
we may now follow two possible strategies. We can keep setting up three-point functions by
employing the translation 7 and consider operators for which the descendant structure is
reasonably simple. This approach shows great benefit in the bifundamental gauge where a
PSU(1|1) is preserved. The other possibility is to abandon the translation operator 7 and
to ensure R-symmetry conservation “by hand". To this end we pick particular operators
inserted at 0, 1 and oo along a line in spacetime and make sure they can be contracted
completely. This comes at the benefit of probing individual structure constants directly
without the need to disentangle a superposition of three-point functions, but requires a
large amount of bookkeeping when tabulating three-point functions. This approach is

5We have been careful to separate the notion of vacuum, transversal and longitudinal fields (®v, &7, ®1)
from explicit fields (X, Y, Z), which transform differently under the orbifold action (2.3). The “gauge choices"
performed here determine the relative orientation of translation and orbifold action and lead to physically
distinct scenarios.

SIn the language of [50], the finite translation is uplifted to a finite groupoid transformation.
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natural to the discussion of the adjoint vacuum where all supersymmetry is broken anyway,
so both strategies would require the same amount of effort.

We will first consider the structure constants of SU(2) sectors in the N' = 2 Zy-orbifold
theory in bifundamental gauge. In this special case, we may exploit the additional SU(2)-
symmetry between the X and Y fields. This makes a discussion following the first strategy
feasible. If we instead choose the adjoint gauge, we face a less symmetric situation in
which the second strategy seems more straightforward. We then comment on Zj; orbifolds
and show how particularly easy three-point functions can be evaluated and matched. In
all explicit examples, we find complete agreement of Wick contractions, spin-chain overlap
and the hexagon formalism.

4.1 Z- orbifolds in bifundamental gauge

The operator spectrum of the Zy orbifold consists of an untwisted and a single twisted
sector. This implies that the superselection rule (1.1) only allows for two possible sector
combinations in the three-point function

(0°0°0°%)  and  (O'O'0OY). (4.1)
We will be particularly interested in the second case involving two twisted and one untwisted
operator.
221 a
/./ \\\ /// \-\
l// \\\ /// \\l

Figure 4: For three-point functions in orbifold theories involving twisted operators, we
have to introduce twist operators into the external traces. Here we consider a twisted-
twisted-untwisted correlator and extend the twist along the orange line. Moving the twist
over the spin chain, it can be moved to either hexagon. Magnons may pick up a twist factor
w* when they travel over an edge carrying twist. In scenarios with three twisted operators,
the twist lines meet and generate the superselection rule (1.1).

Choosing the bifundamental gauge, we have the following sets of unbroken and broken
R-symmetry generators (c.f. (2.14))

unbroken: {R'1, R%, R'{, R%, RY;, R'|, R%;, R%},
broken: {R'5,R?, R's, R*{, R*, R'5, R'5, R*|},

(4.2)

where the underlined generators are only unbroken in the Zy orbifold due to the symmetry
enhancement w = w™! = —1in (2.14). As the R-symmetry component of the translation 7°
(3.2) is build from precisely these underlined generators, it preserves the multiplet structure
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21 == Xn| — Zyz

Figure 5: The algebroid structure of the bosonic part of the hexagon subalgebra (3.3)
(orange) for the Zy orbifold. Broken and unbroken R-symmetry generators R, and R, are
taken from (4.2).

of scalar operators without any mixing, see Fig. 5. It is easy to see that any other gauge
choice would lead to a mixing of representations under translation. By fixing the translation
operator 7 (3.2) and the vacuum field @y, = X we have implicitly also fixed the longitudinal
field @7, =Y. In terms of the SU(2N) matrices (analogously to the notation introduced in
(2.4)), we may decompose the translated scalar fields as

0 Za)’ Yo1 +t X0 0 ’

- - (4.3)
5 ( 0 X2 + t(Yi2 — Yi2) + t2X12>

X(t) = _ _
®) Xop +t(Yar — Yap) + 12 X9 0

We indeed observe that there is no mixing between bifundamental and adjoint fields. Fur-
thermore, the translated fields satisfy the same twist relations as the untranslated fields.
Explicitly, we have

FVMXy==-X, AYy=-Y, AlZy=+42Z. (4.4)

Therefore, translating an operator from the twisted sector results in another twisted sector
operator
O t) = T O 0)e T = tr(y PU@ P92 Harir) (4.5)

with the fields ® satisfying the same twisted boundary conditions. In this sense the bi-
fundamental gauge is well-behaved because translated operators transform homogeneously
under the orbifold projection, meaning that no unphysical configurations need to be pro-
jected out. We may compute some simple three-point-functions by inserting SU(2)-sector
operators at the origin and translating them to the points of interest. As they will remain
in their multiplet under the action of the translation, performing gauge-theory calculations
for correlators involving such operators is straightforward.

The hexagon form factor can be bootstrapped from symmetry [20]. The symmetry
preserved by T is a diagonal psu(2|2)p subalgebra — the hexagon subalgebra introduced in
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(3.3). The R-symmetry part of the hexagon subalgebra is given by
{R' + R'{, R% + R, R's + R's, R* + R*}}, (4.6)

and we see that this diagonal su(2)p is broken — and hence the term hezagon subalgebroid
might be more suitable [50].

We shall now assume that the hexagon form factor is blind to the colour structure of
the excitations involved. Observations indicating this were made in [30], where the hexagon
result had to be dressed by SU(N) colour factors to reproduce field-theory results. Imposing
that the hexagon form factor preserves the (otherwise broken) PSU(2|2) symmetry leads to
the same bootstrap equations as in [20]

(hlglW) =0, Vg € psu(22)p, (4.7)

for any (off-shell) state |¥). Omitting the colour indices, the algebroid coproduct (2.9)
becomes the standard coproduct. This fixes the one- and two-particle form factors and can
be generalised to arbitrary many particles. It takes the same form as in [20] and can be
written relatively simple in terms of the S-matrix elements [21] and the hexagon dressing
phase. In order to construct three-point functions, we need to glue together two hexagon
form factors as in (3.15), which is demonstrated in Fig. 4. As mentioned above, when the
state is cut, we need to keep track of magnons moving through the twist operator, resulting
in additional twist factors in (3.17). By moving the twist over the spin chain, we can make
sure that it is for instance always on the front hexagon (see also Fig. 1 in [38]). This and
the modified Bethe roots are the only changes we impose on the hexagon formalism.

Under this premise, we can exactly reproduce tree-level gauge theory as well as spin-
chain overlap predictions, as we will show momentarily. We take this as first evidence in
favour of the proposal made in Section 1. This result is not surprising taking into account
the observations from spin-chain overlaps in Section 3.2, where the twist also only enters
implicitly through the Bethe roots.

4.1.1 Three-point functions with two twisted operators carrying magnons

Having set up the formalism in the preceding sections, let us present here some explicit
results for three-point functions between two excited states By, B2 and one groundstate Oy,
of length L. Here, we will consider SU(2)-sector states introduced in Sec. 2.4 and App. A.
We choose to bring the excitations over the same edge £12. The explicit hexagon formula

reads
(_1)\&|+IB\ _ _
<81820L> ~ 5O,KmodM Z Tﬂfu(a?d) :0512(/835) <h|0é,ﬁ,{}> <h|6‘7{}’5> s

an:z:{ul,uz}
pUB={us,us} ( )
4.8

. . . . . . LiLoL
with the factor of proportionality given by the standard normalisation ’/WQZSM for

the hexagon. Due to the Bethe equations (2.24) we can use the splitting factor py,, (o, @)
from (3.14). Further, as mentioned in (1.1), the correlator has to have vanishing total twist
K mod M = 0 where K = kj+ko+k3 is the sum of the twists k; of the individual operators.
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Correlators H L=2 ‘ 4 ‘ 6 ‘ 8 ‘ 10

BLBL8o, —42 0 V6 | 22 0

éBiBB;% i 0 | V6| B2 | o
(BBioy) | 228 (21 v6| § |o2pB] /8
<Bl£1081:p’80L> &\/%/6 26 % 6\/§3—\/§ %
<Bi1oBi100L> —6v/2 4 \/g -3v2 |3 %
<Bi1081¢’100L> 0 4 3 % V2 %

Table 3: Set of three-point correlation functions with operators of different lengths. The
length-L’ operators BiL are in the twisted sector and each carry two excitations Y, whereas
Or, is an untwisted vacuum of length L.

Correlators H L=2 ‘ 4 ‘ 6 ‘ 8 ‘ 10

B0, 0 |0| -% | V2|35

BB o;, 0o 0| X |Vv2| &
<B§;1°B§;SOL> 0 o] 0o |0 |—/2
(BYB0L) | o o] o | 0| /3
BB, 0 0|33 |v2| o0
BYOBL0, 0 0| 3% |v2| o

Table 4: Another set of correlators. The twisted operators Bflc’L/ carry two excitations

Y, while the twisted operators Bjc’y carry two excitations Y. Again, Oy, is an untwisted
vacuum of length L.

Longitudinal excitations. Let us begin by considering operators with longitudinal ex-
citations. For this we use two twisted operators as given in Tab. 1 carrying two excitations
each as well as an untwisted vacuum Oy, of length L = 2,...,10. We evaluate these three-
point functions using Wick contractions, the spin-chain overlap and the hexagon formalism,
finding agreement in all cases considered. Tab. 3 lists the results for both operators carrying
the same type of excitation Y, while in Tab. 4 the first operator features Y and the second
carries excitations Y. The time-consuming step in these calculations is the evaluation using
Wick contractions, of which our examples involve up to fifteen.

Transversal excitations. The set up here is similar to the case before, though here we

use the operators from Tab. 2 carrying transversal excitations. According to the Bethe
equations the weight factor is

ol (a, @) = H wHlaleipst H Spjpic (4.9)
jea jik
kea
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Correlators H L=2 ‘ 4 ‘ 6 ‘ 8 10
NG 4 _@ 0

0 0 \/g 0

{ )
{ )
gcf(ff(%i 3+42v2 | 73 -2v3 | V3+£V6| T2
{ )

o o o O

3F2V2 | £3-2v3 | V3FVE | —FV2
—6v2 8 53 | 32 | /%
(ci*ctfor) | o 0 Jio| -ve 3

Table 5: Set of correlators with operators carrying transversal excitations. The twisted

operators Cjc’L carry two excitations Z, while the twisted operators (fiL carry two excitations
Z.

Correlators HL:Z‘ 4 ‘ 6 ‘ 8
O TACAET

Table 6: A simple example for correlation functions of twisted and untwisted operators
1,L

all carrying excitations. While the twisted operators o™ carry one excitation each, the

non-BPS operator B%* carries two excitations.

as the excitations pick up a factor w*, when moved over the twist v*. In Tab. 5 we collected
results with the first operator carrying Z and the second operator carrying Z excitations.
Again we find agreement between tree-level Wick contractions, spin-chain overlaps and the
hexagon formalism for all examples considered.

4.1.2 More general three-point functions

The generalisation to more complicated correlation functions is straightforward. As an
additional example let us consider three non-BPS operators. As before two operators carry
orbifold twist and one operator is untwisted. Here we consider the twisted operators with
one longitudinal excitation each, i.e. 0¥ = tryY X©~! which will have momentum p = 7
and rapidity u = 0. The untwisted operator will be a non-BPS operator of length L = 4
with two excitations and is given by

1

80’4
V3

(Ogt — o). (4.10)

Its energy is £ = 6 and the rapidities are u; = —ug = ﬁ The results of the correlators

consisting of these operators are listed in Tab. 6. Again we find agreement between the

results from gauge theory and the hexagon formalism. Note that the correlation functions

1,L

vanish if the lengths of the operators o** are not identical.
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4.2 The hexagon for general orbifolds

Trying to use the adjoint vacuum for the Zy orbifold turns out to be more challenging. In
this Section we discuss the obstacles we face in the construction of translated gauge-theory
states. In response to these, we may consider abandoning the translation 7 and setting up
three-point functions by hand. It is important to discuss these issues extensively here, be-
cause for higher-order Zy; orbifolds, the additional SU(2)-symmetry over the bifundamental
vacuum is lost and we are faced with the same issues independent of gauge choice.

The first thing to notice is that for the adjoint vacuum the translation 7 (3.2) is a
broken generator. Therefore, its action changes the gauge indices of the fields and the
algebroid coproduct (2.9) should be used when acting on a multi-particle state. Following
the procedure in [50], the trace needs to be cut open and we have to sum over all cut
locations. Acting once with the broken generators leads to unphysical intermediate states
that cannot close. However, acting multiple times may lead to physical states which are
however not necessarily in the same superconformal multiplet as the original state.

Let us illustrate this for the adjoint vacuum of the Zs orbifold. Recall that we have
(Y, Z) ~ (w™'Y, Z). Acting with the translation on a single field component, we obtain

Zn  —  Z(t) = Zn +t(Yia — Yio) + 2211,

) y (4.11)
Yio — Y({t)=Yi2+tZ1,

and we see that fields in the adjoint and bifundamental representation mix. Acting with this
translation and following the rules given in [50], we project down to the allowed colour index
structure only at the end when closing the trace again. Since not all field configurations are
allowed, there are no effective propagators (3.9) in this case and Wick contractions have to
be carried out for individual component fields. Some of the resulting expressions are not
even invariant under translation, due to the explicit appearance of ¢ in (4.11). We attribute
these difficulties to the modified multiplet structure of the orbifold theory. Considering
for example a translated twisted vacuum state, we find among many terms some physical
configurations carrying two fields Y as

tI"}/Z(t)L =...+ t2tr(- - Z11Y19490 - L9oYo1 217 - - - ) + ... (412)

Index structure aside, such a state would be allowed as a vacuum descendant in N = 4
SYM. Accordingly, the excitations would have vanishing momenta. However, for this choice
of vacuum in the orbifold theory, there are no descendants that carry two fields Y. Solving
the Bethe equation e'(E=1) = —1 as py = —py, the solution is p; = 7/(L — 1) and hence
non-vanishing, in contrast with A" =4 SYM. In the orbifold theory, this state belongs to a
different superconformal multiplet than the vacuum state.

Even though the trace closes under the gauge index structure it seems that the broken
translation generates a plethora of states from other multiplets. Let us make this more
explicit by considering an example of a twisted vacuum operator of length L = 3, i.e. tryZ3.
Under the action of the translation, this operator becomes

tryZ(t)® =ty 2 + 1 (6tr7YY Z — 6t07YY Z — 6tryYY Z +tryZZZ) + O(tY) . (4.13)

— 24 —



We see that already the term tryYY Z is a non-BPS state (c.f. operator BY3 in the list
of states in Tab. 11 of Appendix A). Similarly the other terms are in general non-BPS,
and their integrable description would be governed by more general Bethe equations [42].
When we calculate a three-point function involving this operator we would obtain a linear
combination of more elementary three-point functions. To match field theory calculations
to the hexagon predictions, we therefore need to project out states that are not descendants
of the original operator after acting with the translation. We will consider examples for
such three-point functions in the following Sec. 4.2.1.

One may now raise the question whether an R-rotated translation along the lines of
(3.2) is a sensible operation in this context. If we have to project out essentially all operators,
we may as well insert operators by hand and check R-charge conservation by inspection.
This allows us to compute the individual structure constants and match them to the hexagon
predictions. Unsurprisingly, both methods lead to the same results.

If one wants to salvage the strategy using translations, it is worth noting that the
projection to the correct multiplets is to some extent already implemented in the gauge
theory calculation. If we strictly move the operators of interest to t = 0, 1 and oo, the first
one will remain unchanged, the last one will consist purely of ®y-fields and there will only
be certain components of the operator at ¢t = 1 that can contract nontrivially. Similarly, a
restriction to a subset of operators can further reduce the number of possible contractions.

For higher-order orbifolds, a good example of this phenomenon is the SU(2)g-sector
which we may align with transversal excitations over a bifundamental vacuum. The hexagon
results agree straightaway with Wick contractions in this case. To illustrate this observation,
we collect some exemplary three-point functions for the Zgz orbifold in Sec. 4.2.2. This is
similar to the observations made in [35] for the 8- and v-deformation of N' =4 SYM and
might be due to a similar projection onto the fields X and Y for the three-point function
in those cases.

4.2.1 Three-point functions in the adjoint gauge

Longitudinal excitations. As discussed above, the obstacle to performing field theory
checks is that the translation (3.2) mixes different multiplets. We will now consider a
specific setup that allows to project down to the three-point function we want to calculate.
For this we consider correlators with one twisted non-BPS operator B, one untwisted BPS
operator O, and one twisted vacuum O = try*ZL. Placing these operators at specific
points, we can make sure, that we do not generate mixtures of different multiplets.” For
instance, placing the operator B at the origin, it is not translated at all. We move the
twisted vacuum O®’ to t = oo, which effectively turns all the fields Z(t) into Z. The
untwisted BPS operator Oy, can be inserted at a generic point on the line. The translation
mixes the vacuum with its descendents and the only selection rule is that the trace closes.
We can now use the three approaches from Sec. 3 to evaluate three-point functions.

Let us give some explicit examples for the Zo orbifold in adjoint gauge. The shortest
primary operators of length L = 4,5 with two excitations are listed in Tab. 7.

"Of course, the structure constants will ultimately be independent of the positions of the operators.
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4 BYA = 0y 2 Vel
b 17 b
5/ 22EV2)BY = (1£v2)0,° + 01 | 4F2vV2 | 5+ 5

Table 7: Some examples for twisted Zsg-orbifold states of length L = 4,5 with two excita-

tions on top of the adjoint vacuum. The momentum constraint yields uo = —u;.
(12 2 3 4
(60,012 2 G 3
(B4*0L013) 3 2v'15 2v/21
(B4*0,01%) 4 44/6 8v2

(BL70,0'2) - V30£7v2) | \/5(10+7v2)
<Bj;5OL01’3> \/g(umﬁ) \/3(1Oi7ﬂ) 34/(10 £ 7v/2)
<Bi5(’)LOL4> V32£v2) | /5010 7v2) | /1410 £7v2)

Table 8: Set of correlators involving two twisted operators and one untwisted operator.
Here the adjoint vacuum for the Zy orbifold is used. Only the twisted operator BFI1
carries excitations. The length of the untwisted operator Op, is for each correlator given as
L =205 — L1+ Ls.

Using the set-up described above, we can straightforwardly carry out Wick contractions
to evaluate three-point functions. The spin-chain overlap is in this case given by

D1,P2

®00 n1,n2
CY’° = N100,K modM Z 2 (4.14)

1<n1<na<ly2 12

where we already took into account, that the third operator is placed at t3 = co. Again, the
total twist K = ky + ko + ks of the three-point function has to vanish, which is ensured by
the d-function. Finally, we can evaluate the hexagon form factor finding perfect agreement
for all the structure constants considered in Tab. 8.

We can generalise the construction of this particularly simple set of observables from
Zo to any Zps. The only difference being that the gauge indices run over a bigger set of
numbers. Let us give an explicit example for the Zs orbifold. Using the adjoint vacuum,
the shortes operator we can build is of length L = 4 carrying three excitations. In fact, the
operator takes the simple form

B* =tk YYY Z. (4.15)

In the same manner as in Sec. 4.2.1 we can perform the field theory and compare with the
hexagon result. We checked this for correlators with vacuum operators of length L =2, ...,6
and found agreement in all cases, e.g. for L = 6 we find

<Bk’4(96(’)"“’4> —2V6. (4.16)
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Transversal excitations. Considering transversal excitations, the eigenstates coincide
with the eigenstates given in Tab. 7. The calculation of three-point functions is straight-
forward since we do not need to worry about the mixing of transversal excitations with the
vacuum descendants. In particular, we can consider cases in which only Z and Z fields in a
translated vacuum state are being contracted. For example, we can calculate the Zy-orbifold
correlator

<B}54B;404> —2. (4.17)

This can easily be extend to other correlators in this sector and even Zj; orbifolds.
Using the adjoint vacuum there are however at least M excitations involved, which makes
solving the Bethe equations and evaluating the hexagon quite cumbersome.

4.2.2 SU(2)g-sector in higher-order orbifolds

In order to present a simple application of the hexagon formalism to higher-order orb-
ifolds, we will now consider a gauge choice that aligns the unbroken SU(2) gp-symmetry with
transversal excitations, i.e. ® = X and &7 = Y. This corresponds to a different choice
for the orientation of 7 in (3.2). For concreteness, let us consider the scalar sector of the Zs
orbifold. The construction of the spectrum is very similar to the considerations presented in
Sec. 2.3 and in Sec. 2.4 for the Zs orbifold, with the difference that we set w = 5" in this
case. We restrict to transversal excitations over the bifundamental vacuum in the SU(2)g
sector. Recall that the orbifold action on the relevant fields acts as (X, Y) ~ (wX, wY). In
order to write the one-loop eigenstates, we will use a short-hand notation as in eq. (2.30).
Due to the index structure of the fields the operators need to be of length L mod 3 = 0.
For the twisted sectors k = 1,2 we collect the shortest primary states in Tab. 9. Again, the

k Eigenstate Energy F
LB~ (1= ) (VIT—5) OF° — i (V3 1) (VIT— 1) O] (7- V17
16~z(\f+z)(5+\/T7)016+(1+zx/§)(1+\/ﬁ)016+40§’6 (7+ V17)
A A A G R

2 | By (1—1—1\/3 V17T —5) 0% +i (V3 +1i) (VIT—1 (’)264—4(’);’6
Table 9: Shortest single-trace operators (not normalised) in the SU(2)g sector of the Zs-

N = D= DN | = DN =

836 i (V3—1) (5+V17) 05° — (1 —iv3) (1 4+ V17

orbifold theory with length L = 6 and two excitations. The Bethe eigenstates are given
by linear combinations of the basis elements (’);?’L. The operators of the twisted sectors
k = 1,2 are related to each other by complex conjugation of the coefficients.

spectrum can be found from integrability. Using the respective Bethe and momentum equa-
tion (2.24), the corresponding Bethe roots can be worked out. The normalised eigenstate
can then be obtained using egs. (2.20) and (2.21).

As before, we are interested in three-point functions involving two twisted and one
untwisted operator. Let us begin with an overlap calculation and assume the following
set-up: The operator at position ¢ = 0 has excitations Y on top of the vacuum X. At
position ¢ — 0o we have a conjugate operator, namely Y on top of X. It is clear that the
latter state is described by the same Bethe equations with w — 1/w, as the fields carry
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L 0 6 12
BB oL ) | 1] 0.609612 | 0
BESBESOL ) || 1| 1.64039 | 0
BMBY°oL) || o 0 0

Table 10: Example of correlators in the Zs orbifold. The operators B]f”g and l’;’]fjg are in

the twisted sector with k& = 1,2 and carry two excitations Y and Y, respectively. The third

operator O is a vacuum of length L.

opposite charge. Finally, we have the untwisted vacuum (reservoir) at ¢ = 1 consisting of
fields X.

We can evaluate correlators of this form by using Wick contractions (using the effec-
tive propagators (3.9) irrespective of the gauge index structure involved) or the spin-chain
overlap formula from eq. (3.12). Some simple examples of correlators are given in Tab.
10. As discussed above, the excitations Y,Y are considered as transversal and therefore
only contact-terms contribute in the overlap. Evaluating the geometric sums of the overlap
formula, yields the corresponding hexagon formula for transversal excitations. Hence, the
SU(2) g-sector is governed by the hexagon form factor directly without further admixtures.

It is interesting to note, that we used the conjugate operator at the point ¢ = oo in this
construction. In the original hexagon construction [20], the excitations X would have been
placed on the vacuum Z at the origin and then moved by using the translation, c.f. the
discussion around (3.2). However, such an operator cannot exist (not with this length nor
in the SU(2) R sector). Nonetheless, the hexagon reproduces the correct tree-level result. A
similar observation was made in Sec. 4.2 of [35] for the S-deformation of N'=4 SYM and
even checked at one-loop order.

5 Conclusions and outlook

In this work we presented many examples for the calculation of three-point functions using
integrability methods. The operators considered belong to different SU(2) sectors built on
the bifundamental as well as on the adjoint vacuum introduced in 2.2. Although presented as
a gauge choice, we should add that the operators built on the respective vacua are not related
by symmetries. The orbifold action distinguishes them via quiver winding number, twist
sector and energy spectrum, so we have to account for them individually. This increases
the number of relevant structure constants, making a full catalogue a more challenging
endeavour. Our aim was to isolate a few qualitatively distinct examples and to present
evidence for the applicability of the hexagon-formalism in these cases. A more complete
survey, involving for example twisted-twisted-twisted structure constants or higher-rank
sectors is left for future work.

We demonstrated that the hexagon formalism can be adapted to orbifold theories by
fairly natural requirements on particles passing through twist operators and using the
twisted Bethe-equations. The relative simplicity of these adaptations matches the situ-
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ation in the spectral problem [42, 43|, where one may use the N’ =4 SYM technology with
simple twist phases added. Despite the apparent increase in complexity of the underlying
gauge theory, integrability holds without much alteration.

We considered as instructive example the simplest N' = 2 Zsy-orbifold theory and
analysed structure constants of operators built on the bifundamental vacuum. Here an
additional SU(2)-symmetry allowed us to perform direct field theory checks at tree-level.
Extending to general Zys orbifolds the naive application of the R-rotated translation (3.2)
spoils a direct field theory check. While the hexagon seems to be inert and reproduces the
correct result, translating operators in field theory produces unphysical states and multiplet
mixing. After a projection on the correct multiplets we find perfect agreement.

The results presented in this article were evaluated at tree-level only. Obtaining the
asymptotic (in large operator lengths L) result is quite straightforward. At a certain order in
the coupling g, we can solve the Bethe equations perturbatively and expand eq. (4.8) to that
order. Finite-size effects are suppressed by the edge width ¢ as they will start to contribute
at order ¢2*1) In order to account for these, a full set of states has to be inserted on the
virtual edges [20]. In [38] the evaluation of gluing and wrapping contributions in orbifold
theories were discussed. Considering three-point functions of twisted BPS operators, the
known result from localisation [39] was recovered. Following along these lines it would be
interesting to combine the investigation of non-BPS operators initiated here with the gluing
prescription from [38] and check their consistency with more advanced gauge-theory results.
However, due to the presence of the excitations, the evaluation of even the first correction
at gluing order is quite involved for the correlators presented here. We leave this problem
for future work but are optimistic that a full determination of the structure constants of
orbifold theories at finite coupling may be within reach.

The hexagon formalism in NV = 4 SYM also paved a way towards the computation
of higher-point functions [26, 29| and non-planar corrections [30-32|. In orbifold theories
a similar extension may be possible if we meticulously keep track of the twist operators
involved. A major obstacle to such considerations is the R-rotated translation 7 (3.2),
which plays a central role in the setup of higher-point functions, since we now require an
explicit space-time dependence. It is therefore important to gain sufficient control over the
algebroid structure generated by 7 (c.f. [50]) or to develop an alternative approach without
R-rotation.

Apart from A = 2-supersymmetry preserving orbifold theories, one could also attempt
to extend the hexagon formalism to N' = 1 and N’ = 0 orbifolds. Although the required
technology should be analogous to the one discussed in this paper, the physical interpreta-
tions may become more challenging, especially in the latter case where tachyons may appear
in the spectrum [56-60|. Insight from orbifold structure constants may also provide inspi-
ration for the further development of structure constant in the 8- and ~-deformed theories
[35]. Finally, one could consider marginal deformations of N = 2 orbifold theories [61-63],
which break conventional integrability but might still allow for a treatment of structure
constants in the language of [50].

Let us close our conclusion by calling attention to an interesting discussion of colour-
twist operators considered in [64], which we would be like to make contact to in the future.
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A Collection of twisted sector SU(2)-states

As discussed in Sec. 2.3, we can either choose an adjoint (uncharged) or a bifundamental
(charged) vacuum to build our excited states on. Choosing the bifundamental vacuum,
only excited states can exist in the twisted sector. The twisted vacuum state vanishes as
can easily be seen by writing the fields with their gauge group indices tI‘(212Z21)L/2 —
tr(221212)L/ 2 — (0. For the reader’s convenience we now collect the twisted-sector Zo-
orbifold states up to length L = 10 with one and two magnons in all the different SU(2)
sectors.

Operators with one excitation can only exist over the bifundamental vacuum. The
momentum of the magnon is p = 7 (with rapidity v = 0) and the single-trace operator
is given as try®p X L~! with the energy E = 4. A single-excitation state over the adjoint
vacuum cannot exist, as the gauge indices do not close under the trace. The list of operators
with two excitations is given in Tab. 11. It is necessary to distinguish whether the vacuum
is charged or uncharged. For a charged vacuum (bifundamental vacuum) carrying charged
excitations we have the SU(2);, and SU(2)g sectors, which are degenerate in the Zy case.
If the excitations are uncharged we are in a mixed SU(2) sector.

For the uncharged vacuum (adjoint vacuum) the SU(2) symmetry is always mixed as
all bosonic excitations are charged.
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Zo vac. ‘ Sector ‘ Length H Figenstate Energy Uy U9

bif, SU(2)L,r 8 VOBL® = 01° +iv/30,° — 03° 4 +¥3 +-1

10 2810 = 07" +iv20010 — 031° 4 v —3% 7

mixed SU(2) [ 6 20.° = v20;° £i0,° 4 5 5+ 5

8 vach® = o' +iop! 4 1443 14+ Y3

10 €10 = —0.2705980,° F 1i0,® + 0.6532810,° + 0.353553i0,° 4 +0.334089 | +0.748303
Cy’ = —0.6532810,° F 1i0,® — 0.2705980,° F 0.353553i0,° 4 +2.51367 | £0.0994562

adj. | mixed SU(2) 3 B3 = Oé’g 4 3 —u
4 B4 = op* 2 A —uy
5 —2(2+v2)BY" = (1 £v2)0L° + 01° 1F2V2 | % —uy
6 B}° = 0.8506510° + 0.5257310;"° 3-v5 | L5425 —uy
BL% = 0.5257310,° — 0.8506510;° 3+vh | LV5-2V5 —uy
7 V3BT — (O} - O} — O} 1 ,
BT = 07886750, " + 0577350, + 0.21132505"" 4-2v3 | 1+% —uy
BT = 0211325057 — 05773507 + 0.78867505"" 4+2v3 | 1-% —uy
8 B = 0.3279850,° — 0.73697601° + 0.5910090," 6.49396 | 0.240787 —u
By® = 0.5910090,® — 0.32798501° — 0.7369760," 3.10992 |  0.62698 —u
By® = 0.7369760,° + 0.5910090;® + 0.3279850," 0.396125 |  2.19064 —uy
9 B1? = 0.3928470,° — 0.693520,° + 0.137950,"° + 0.5879380;® 5.53073 | 0.334089 —u
By? = 0.6935204° + 0.58793801° + 0.3928470%° +0.1379505° | 0.304482 |  2.51367 —u
ByY = 0.137950,® — 0.39284701® + 0.5879380,° — 0.693520,® 7.69552 | 0.0994562 —u
By? = 0.5879380,° — 0.137950;° — 0.693520,"° — 0.3928470;® 2.46927 | 0.748303 —u
10 BI0 = 0.57735(05" — 0310 — 0119) 2 3 —uy
By = 0.2280130,"° — 0.577350," 4 0.6565390," — 0.42852505'° | 7.06418 | 0.181985 —u
By = 0.4285250,"° — 0.577350," — 0.2280130,™ + 0.65653905 "0 | 4.69459 |  0.41955 —u
By = 0.6565390,"° 4 0.5773501" + 0.4285250, ' + 0.22801305 "% | 0.24123 |  2.83564 —u

Table 11: List of operators with two bosonic excitations and up to length L = 10 for Zs orbifolds. We need to distinguish the different

sectors as well as the vacua on which they are build.



B Contact terms

Let us spell out the overlap formula for two operators carrying two longitudinal excitations

®y, each. The overlap for Cg'°5 ~can be expressed by removing the contact terms from

C‘;:O@L in (3.13). Explicitly, it is given by

1 1
000 _ ee0 p1,p2 ,/,P3,P4 . .
C‘bL,‘I’L - C<I>L,‘I>L N1N2< Z ni,n2 “mi,Lo—n1+1 (tl _ t2)2 (tg _ t1)2
1<n1<na<li2
laz<m1<La—n1
+ § : P1,D2 p37p£ . —1 . 1 . 1
n1,n2 ¥mq,La—n1+1 t — 1o)2 t —1t to — ¢
i (t1 —t2)* (i —t3) (t2—t1)
l12<na<Ly
loz<mi1<La—mny
+ P1,P2 wp&pz . —1 . 1 . 1
E : nLn2 Fmy,Lo—na+l o 10)2 0 (4 — ¢ to — t
1<ny <ms<f1s ( 1 2) ( 1 2) ( 2 3)
1<m<la3
+ E : P1,p2 ,/,P3:P4 . . . 1 . 1
monz VmuLemmtl (1 o) (t —t3) (ta—t
R (t1 —t2) (t1 —t3) (t2—t3)
1<m <l>3
4 E D1,P2 1£37P4 . 1 . !
ni,ng 2—n1+1,ma t1 —t 2 to —t 2
1<ni<ng<li3 ( ! 2) ( 2 1)
Lo—ni+1<ma<Ls
4 DP1,P2 12371’4 . —1 . 1 . 1
E : nin2 Flo—nitlme (g 10)2 (ty — ¢ t1 — t-
R (t1 —t2)? (t2—t1) (t1 —13)
Lo—ni+1<mo<Lo
+ E P1,p2 ,/,P3,P4 1 1

ni,n2 ¥my,La—na+1 " t —15)2 ) to — 11)2
1§n1<n2§612—1 ( 1 2) ( 2 1)
loz3<m1<Lo—no

-1 1 1
+ Z g?zr?z w$£P£27n2+1 ’ 2" '
1<n1<n2<li2 (tl - tg) (tl B t2) (tg B t3)
1<m1 <023
1 1
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