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Azimuthal anisotropies of charged particles with

high transverse momentum in Pb+Pb collisions at
√

s
NN

= 5.02 TeV with the ATLAS detector

The ATLAS Collaboration

A measurement is presented of elliptic (E2) and triangular (E3) azimuthal anisotropy coefficients

for charged particles produced in Pb+Pb collisions at
√
B

NN
= 5.02 TeV using a dataset

corresponding to an integrated luminosity of 0.44 nb−1 collected with the ATLAS detector at

the LHC in 2018. The values of E2 and E3 are measured for charged particles over a wide range

of transverse momentum (?T), 1–400 GeV, and Pb+Pb collision centrality, 0–60%, using the

scalar product and multi-particle cumulant methods. These methods are sensitive to event-by-

event fluctuations and non-flow effects in the measurements of azimuthal anisotropies. Positive

values of E2 are observed up to a ?T of approximately 100 GeV from both methods across all

centrality intervals. Positive values of E3 are observed up to approximately 25 GeV using both

methods, though the application of the three-subevent technique to the multi-particle cumulant

method leads to significant changes at the highest ?T. At high ?T (?T ' 10 GeV), charged

particles are dominantly from jet fragmentation. These jets, and hence the measurements

presented here, are sensitive to the path-length dependence of parton energy loss in the

quark-gluon plasma produced in Pb+Pb collisions.
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1 Introduction

The primary aim of the heavy-ion program at the Large Hadron Collider (LHC) is to produce and study the

quark-gluon plasma (QGP), the high-temperature state of matter in which quarks and gluons are no longer

confined within protons and neutrons (for a recent review, see Ref. [1]). Measurements of jets originating

from hard parton scatterings in the early stages of heavy-ion collisions provide information about the

short-distance-scale interactions of high-energy partons with the QGP (for a recent review, see Ref. [2]).

The overall rate of jets at a given transverse momentum, ?T, is found to be reduced by approximately a

factor of two in central Pb+Pb collisions compared to ?? collisions scaled to account for the increased

partonic luminosity in Pb+Pb collisions [3–6]. This suppression can be explained by the energy loss of

partons propagating through the QGP, and the magnitude of this energy loss depends on the amount of

QGP that the parton travels through.

The geometry of the overlap of the two nuclei leads to a shorter average path length if the jet is oriented

along the direction of the collision impact parameter1 than if the jet is oriented in the perpendicular direction.

This is expected to lead to a dependence of the jet yield on the azimuthal angle [7–9]. Charged particles

with ?T greater than 10 GeV, hereinafter referred to as high-?T charged particles, are likely to come from

jet fragmentation. Therefore, the measurements of azimuthal anisotropies of high-?T charged particles are

useful for investigating the path-length dependence of jet energy loss. An azimuthal modulation of the

same direction is also present in the low-?T charged particles due to the hydrodynamic flow of the QGP.

The amplitudes of these anisotropies can be used to constrain the bulk properties of the QGP (for a review,

see Ref. [10]).

The azimuthal anisotropies are quantified via the values of Fourier coefficients describing the azimuthal

angular distribution of charged particles with respect to the event planes [11]:

3#

3q
∝ 1 + 2

∞
∑

==1

E= cos(=(q − Ψ=)),

where = is the order of harmonics, Ψ= is the =-th order event plane angle, and q is the azimuthal angle

of charged particles. The order of harmonics in E= corresponds to the order of eccentricities in the

initial geometry of the QGP, such as the ellipticity for E2 and the triangularity for E3. Measurements of

E= also include contributions from non-flow effects, defined as the correlations unrelated to the initial

geometry of the QGP, such as resonance decays, global momentum conservation, jet fragmentation, and

dĳet production. Therefore, various methods have been developed to suppress non-flow effects and applied

in E= measurements at the LHC [12–16] and the Relativistic Heavy Ion Collider (RHIC) [17, 18]. The

scalar-product (SP) method [17, 19, 20] provides an estimate of
√

〈E=2〉 that is independent of the detector

resolution. In addition, the non-flow contributions are mitigated if a pseudorapidity gap is imposed between

the correlated particles. Alternatively, lower-order short-distance correlations from particle decays can be

effectively suppressed by utilizing genuine multi-particle correlations within the multi-particle cumulant

(MPC) framework [21, 22], which can be efficiently implemented using the so-called &-cumulants [23, 24].

Following the convention from this framework, in this paper, correlations, cumulants, and E= measurements

that are integrated in ?T are termed reference, in contrast to the differential quantities that are differential in

?T. The three-subevent &-cumulant method extends the standard method by requiring a pseudorapidity gap

between some of the correlated particles. This has been shown to reduce further the short-range non-flow

effects in measurements of reference E= [25–27]. The measurements of MPCs used to obtain E= are

1 The impact parameter is defined as the distance between the centers of the two colliding nuclei.
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conducted over an ensemble of events of similar centralities. It has been observed that the results obtained

with the MPC method are also sensitive to the centrality resolution of the event ensemble chosen. Therefore,

different strategies of constructing the E= values in a centrality interval have been investigated [27].

Measurements of the azimuthal anisotropies of jets [13, 14, 28] and charged particles at high-?T [12, 15,

29] in Pb+Pb collisions have been previously performed. For jets with ?T > 70 GeV, positive values of E2

are measured for all centrality intervals, except the most central, and positive values of E3 are measured for

mid-central collisions [13]. Measurements of E= using the SP method and the measurements of E2 using

the MPC method have also been performed for charged particles with a ?T up to 100 GeV at the LHC [12,

29]. It has been observed that E2 values measured with both the SP and the MPC method decrease with ?T

for charged particles with a ?T greater than 20 GeV while remaining positive up to a ?T of approximately

80 GeV for the 60% most central collisions. Meanwhile, the values of E3 measured with the SP method

remain positive up to a ?T of approximately 20 GeV for the 40% most central collisions [12]. The positive

values of E= observed in the high-?T sector suggest that the energy loss of hard-scattered partons is affected

by the event-by-event initial geometry of the QGP.

This analysis extends the measurement of E= values using the SP and MPC methods to higher ?T for

charged particles in
√
B

NN
= 5.02 TeV Pb+Pb collisions. The dataset used corresponds to an integrated

luminosity of 0.44 nb−1 collected by the ATLAS detector using the innovative partial event building

technique. Measurements of E= were performed in intervals of ?T up to 400 GeV and intervals of centrality

spanning the 0–60% most central collisions, and compared between different acceptance ranges and

strategies. Measurements of E= with the SP method, denoted by E={SP}, were carried out for tracks in

three pseudorapidity ranges2 |[ | < 1.1, 1.1 < |[ | < 2.5 and |[ | < 2.5. And measurements of E= using

the MPC method were performed for four-particle cumulants, denoted by E={4}, for charged particles

over the pseudorapidity range of |[ | < 2.5. Furthermore, the three-subevent &-cumulant method used for

reference E= measurements is expanded to include ?T-differential E2{4} and E3{4}. For the MPC method,

the cumulants are firstly computed within narrower centrality intervals before combining into wider ones.

The differences in the MPC measurements by using different centrality intervals before combining are

shown. Finally, results from the SP method and the MPC method are compared with each other.

The paper is organized as follows. Section 2 describes the detector, trigger and datasets, and Section 3 the

event and track selections, as well as event combination procedures. Section 4 provides the mathematical

framework for the scalar product and multi-particle cumulant methods. The systematic uncertainties

are described in Sections 5. Section 6 presents the E= measurements using the SP and MPC methods.

Comparisons of these measurements with existing measurements and between using different strategies

and kinematic ranges are also presented. Finally, the conclusions are included in Section 7.

2 ATLAS detector

The ATLAS detector [30] at the LHC covers nearly the entire solid angle around the collision point. It

consists of an inner tracking detector surrounded by a thin superconducting solenoid, electromagnetic

2 ATLAS uses a right-handed coordinate system with its origin at the nominal IP in the center of the detector, and the I-axis

along the beam pipe. The G-axis points from the IP to the center of the LHC ring, and the H-axis points upward. Cylindrical

coordinates (A, q) are used in the transverse plane, q being the azimuthal angle around the I-axis. The pseudorapidity is defined

in terms of the polar angle \ as [ = − ln tan(\/2). The rapidity is defined as H = 0.5ln[(� + ?I)/(� − ?I)] where � and ?I
are the energy and I-component of the momentum along the beam direction respectively. Transverse momentum and transverse

energy are defined as ?T = ? sin \ and �T = � sin \, respectively.
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and hadronic calorimeters, and a muon spectrometer incorporating three large superconducting toroidal

magnets.

The inner-detector system (ID) is immersed in a 2 T axial magnetic field and provides charged-particle

tracking in the pseudorapidity range |[ | < 2.5. The high-granularity silicon pixel detector covers the vertex

region, and is composed of four layers including the insertable B-layer [31, 32]. It is followed by the

silicon microstrip tracker (SCT), which usually provides eight measurements per track. These silicon

detectors are complemented by the transition radiation tracker (TRT), which enables radially extended track

reconstruction up to |[ | = 2.0. The TRT also provides electron identification information based on the

fraction of hits (typically 30 in total) above a higher energy-deposit threshold corresponding to transition

radiation.

The calorimeter system covers the pseudorapidity range |[ | < 4.9. Within the region |[ | < 3.2,

electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid-argon (LAr)

electromagnetic calorimeters, with an additional thin LAr presampler covering |[ | < 1.8 to correct for

energy loss in material upstream of the calorimeters. The hadronic calorimeters have three sampling

layers longitudinal in shower depth in |[ | < 1.7 and four sampling layers in 1.5 < |[ | < 3.2, with a slight

overlap in [. The solid angle coverage is completed with forward copper/LAr and tungsten/LAr calorimeter

modules (FCal) optimized for electromagnetic and hadronic measurements respectively. The FCals cover a

pseudorapidity range of 3.2 < |[ | < 4.9.

The zero-degree calorimeters (ZDCs) are located symmetrically at I = ±140 m and cover |[ | > 8.3 during

the Pb+Pb data-taking period. The ZDCs use tungsten plates as absorbers and quartz rods sandwiched

between the tungsten plates as the active medium. In Pb+Pb collisions the ZDCs primarily measure

spectator neutrons. A ZDC coincidence trigger is implemented by requiring the pulse height from each

ZDC to be above a threshold set to accept the energy of a single neutron. The luminosity is measured

mainly by the LUCID–2 [33] detector that records Cherenkov light produced in the quartz windows of

photomultipliers located close to the beampipe.

A two-level trigger system is used to select interesting events [34, 35]. The first-level (L1) trigger is

implemented in hardware and uses a subset of detector information, including ZDC coincidences in

Pb+Pb collisions, to reduce the event rate to a design value of at most 100 kHz. This is followed by a

software-based high-level trigger (HLT) which reduces the event rate to several kHz. A software suite [36]

is used in the reconstruction and analysis of real and simulated data, in detector operations, and in the

trigger and data acquisition systems of the experiment.

3 Monte Carlo simulation and data selection

3.1 Monte Carlo samples

Monte Carlo (MC) simulations are used in this analysis to evaluate the track reconstruction performance.

A minimum-bias sample of Pb+Pb MC events at 5.02 TeV was generated with HĲING [37]. After the

generation, the flow harmonics were added to the simulated events using an “afterburner” [11] procedure,

which implements the ?T, [, and centrality dependence of the E=, as measured in the
√
B

NN
= 2.76 TeV

Pb+Pb data [38], by artificially rearranging the q positions of the generated particles. The detector response

is simulated with AtlFast-II [39] for calorimeters and Geant4 [40, 41] for the ID. The simulated events

are then reconstructed using the same algorithms as data events.
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3.2 Event selection

The dataset of Pb+Pb collisions at
√
B

NN
= 5.02 TeV used in this analysis was collected by the ATLAS detector

in 2018 and corresponds to an integrated luminosity of 0.44 nb−1 after data-quality requirements [42].

Events were required to satisfy one of the three L1 minimum-bias (MB) triggers. The first MB trigger

requires an event to have a total transverse energy (Σ�Cal
T

) measured in the calorimeter system above 600

GeV. The second MB trigger requires an event to have a Σ�Cal
T

above 50 GeV and less than 600 GeV. The

third MB trigger will fire when an event is rejected by both of the previous two triggers and satisfies a

ZDC coincidence trigger at L1 and have at least one track in the HLT. The MB triggers above have a small

prescale3 of approximately 3.95. The small prescale is enabled by a novel strategy known as the partial

event building [34], in which data from selected ATLAS subdetectors are used to compose an event, thus

enabling higher recording rate and optimized event size. These events contain the ID, FCal and ZDC

information required for this analysis as in other events; other information has not been recorded.

For this analysis, events are required to have the I-coordinate of the primary vertex [43] within 100 mm of

the nominal interaction point. Events with more than one hadronic interaction from the same bunch crossing

are estimated to be less than 0.5% of collisions. These events are suppressed by utilizing the observed

anti-correlation, expected from the nuclear geometry, between the total transverse energy deposited in

both of the forward calorimeters, Σ�FCal
T

, and the energy in the ZDC, with the latter proportional to the

number of observed spectator neutrons. Additional hadronic interactions from just before or right after the

collision of interest could interfere with calorimeter performance and centrality determinations. Criteria

for rejecting these events are determined by the expected strong and linear correlation between charged

particle multiplicity and measured Σ�FCal
T

. Events with a charged particle multiplicity that falls out of this

correlation are rejected. A very stringent criteria is chosen to remove such events, excluding approximately

15% of events nearly independent of centrality. This rejection is made necessary due to the focus of this

analysis on measuring correlations of small magnitudes and a smaller bunch spacing used in the ATLAS

2018 Pb+Pb dataset. Whereas the ATLAS 2015 dataset for Pb+Pb collisions at
√
B

NN
=5.02 TeV used a

bunch spacing interval of 100 ns, this analysis uses the ATLAS 2018 dataset where a bunch spacing interval

of 75 ns was used for approximately half of the dataset for higher event rate.

The centrality of an event in this analysis is obtained using its Σ�FCal
T

energy, and the centrality percentile

requirements are determined by using a MC Glauber analysis [44, 45], starting from the most central

events, where the collisions have the smallest impact parameter and the highest Σ�FCal
T

. In this analysis,

results are obtained in seven centrality intervals: 0–5%, 5–10%, 10–20%, 20–30%, 30–40%, 40–50%, and

50–60%.

3.3 Track selection

Tracks of charged particles are reconstructed from hits in the ID using a track reconstruction algorithm

that was optimized for the high hit density in heavy-ion collisions [46]. Tracks used in this analysis have

|[ | < 2.5 and are required to have at least 10 hits in the silicon detectors. Additionally, a track must have

no more than one hole in the SCT, where a hole is defined as the absence of a hit predicted by the track

trajectory. All charged-particle tracks used in this analysis are required to have reconstructed transverse

3 A prescale is a number that defines what fraction of events are recorded out of all possible events that would have passed the

trigger requirements.
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momentum ?T > 1.0 GeV. In order to suppress the contribution from secondary particles,4 the distance of

the closest approach of the track to the primary vertex is required to be less than a ?T-dependent value

varying from 0.6 mm at ?T = 1 GeV to 0.2 mm at ?T = 20 GeV in the transverse plane and less than 1.0 mm

in the longitudinal direction [47]. The transverse and longitudinal distances of the closest approach to the

primary vertex are denoted by 30 and I0 respectively. The significances |30 |/f30
and |I0 sin \ |/fI0 sin \

are required to be smaller than 3.0, where \ is the polar angle of the track, and f30
and fI0 sin \ are the

uncertainties in 30 and I0 sin \, respectively. The primary vertex is determined using vertex finding and

fitting algorithms described in Ref. [48].

The track weight factor in this analysis is denoted by l 9 where 9 is the track index, and is calculated from the

track reconstruction inefficiency and the ID acceptance non-uniformity. The track reconstruction efficiency

n for tracks that pass the selections is evaluated as a function of ?T, in intervals of centrality and absolute

pseudorapidity |[ |. The charged particle tracks are weighted by 1/n to correct for reconstruction inefficiency

in this analysis. In the most central collision interval 0–5% for |[ | < 1.1, n increases from approximately

63% to approximately 70% in the ?T range of 1–20 GeV and reaches a plateau for ?T > 20 GeV. For

1.1 < |[ | < 2.5 in the same centrality interval, n increases from approximately 43% to approximately

48% in the ?T range of 1–20 GeV, and reaches a plateau for ?T > 20 GeV. The efficiency values in other

centrality intervals follow the same trend and increase toward peripheral events nearly independent of ?T.

The difference in n between the most peripheral centrality interval 50–60% and the most central centrality

interval 0–5% is approximately 4% for |[ | < 1.1 and approximately 8% for 1.1 < |[ | < 2.5. Reconstructed

tracks that are not matched to a generated primary particle in the MC samples are considered “fake” tracks.

The fake rate is negligible for tracks that pass the selection criteria for all centrality, ?T, and [ ranges used

in this analysis, and thus, it is not taken into account. In addition, to correct for non-uniformity in the ID

acceptance along azimuthal direction, the tracks are weighted by a factor proportional to #trk([)/#trk([, q),
where #trk([) is the total number of tracks within a given pseudorapidity interval of 0.1 and #trk([, q)
is the number of tracks for a small given pseudorapidity and azimuthal angle interval of 0.1 × 0.1 [15].

This factor yields a weighted track distribution that is uniform along the azimuthal direction for any given

pseudorapidity interval.

4 Analysis method

4.1 Scalar-product method

The SP method is defined in Ref. [17], further discussed in Ref. [19], and results using this method for

Pb+Pb and Xe+Xe collisions have been published by ATLAS in Refs. [15, 49]. It uses flow vectors D=, 9 and

&=, where the D=, 9 for each object of interest 9 , for example, a charged-particle track or energy deposited

at a single calorimeter tower, is defined as

D=, 9 = 48=q 9 , (1)

and the average flow vector &= of a subevent, for example, one side of the FCal, is defined as

&= =
1

∑

9 l 9

∑

9

l 9D=, 9 , (2)

4 Primary particles are defined as particles with a mean lifetime g > 0.3 × 10−10 s either directly produced in the collisions or

from subsequent decays of particles with a shorter lifetime. All other particles are considered to be secondary.
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where the summation goes over all objects of interest in the subevent. In this analysis, flow vectors are

evaluated separately for the two sides of the FCal and are denoted &
# |%
= , where the N and P correspond to

a pseudorapidity range of −4.9 < [ < −3.2 and 3.2 < [ < 4.9, respectively. In this case, the sum in Eq. 2

runs over the calorimeter towers with approximate granularity of Δ[ × Δq = 0.1 × 0.1 and the weights l 9

are the transverse energies �T measured in the towers.

The azimuthal anisotropy coefficients using this method, E={SP}, are defined for each ?T and centrality

interval as,

E={SP} ≡ '4

〈

D=, 9&
# |%
=

∗〉

√

〈

&#
= &

%
=
∗〉

=

〈

|D=, 9 | |&# |%
= | cos

[

=
(

q 9 − Ψ
# |%
=

)]〉

√

〈

|&#
= | |&%

= | cos
[

=
(

Ψ
#
= − Ψ

%
=

) ] 〉

. (3)

The numerator calculates the scalar product of the flow vector of the reference subevent, &
# |%
= , and that of

each charged-particle track, D=, 9 , where the 〈〉 denotes an average over all tracks within the particular ?T

interval from all events of the given centrality interval. This average is weighted for each track to correct for

azimuthal non-uniformity of the detector and track reconstruction inefficiency, as detailed in Section 3.3.

The denominator calculates the estimated detector resolutions, as determined using two reference subevents,

positive and negative ends of the FCal, of the same event, and the 〈〉 denotes an average over all events in

the given centrality interval. The flow vector &%
= (&#

= ) of the calorimeter is correlated with tracks with

[ < 0 ([ > 0). This implementation of the SP method imposes a pseudorapidity gap of at least 3.2 between

the reference &= and tracks, thus suppressing short-range non-flow correlations, such as those arising from

resonance decays and same-jet correlations [20]. The E={SP} values are measured for ID pseudorapidity

ranges of |[ | < 2.5, |[ | < 1.1, and 1.1 < |[ | < 2.5.

4.2 Multi-particle cumulant method

The MPC method using standard&-cumulants, as applied in this analysis, is based on the generic framework

described in Ref. [24]. The three-subevent &-cumulants method extends this framework and was introduced

in Ref. [25] for reference E={4} measurements. This analysis extends the three-subevent cumulants to

?T-differential E={4} measurements for high-?T charged particles in Pb+Pb collisions.

4.2.1 Standard W-cumulants

For a single event, the =-th order two- and four-particle azimuthal correlators are denoted as 〈2〉= and 〈4〉=,

respectively, and defined as [23, 24],

〈2〉= ≡〈48=(q1−q2 )〉,
〈4〉= ≡〈48=(q1+q2−q3−q4 )〉,

(4)

where q8 represents the azimuthal angles of distinct charged-particle tracks, and the 〈〉 denotes an average

over all two- or four-particle combinations in the given event. In the standard &-cumulants, all tracks

within the pseudorapidity range of |[ | < 2.5 are used. As it is computationally challenging to calculate

four-particle correlations using nested loops, the correlators in this analysis are computed using the
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&-cumulants, following the generic framework from Ref. [24], with the :-th power weighted flow vector

&=,: ,5 defined as

&=,: =

"
∑

9=1

l:
9D=, 9 , (5)

where " is the charged-particle multiplicity of the event and l 9 is the track weight.

The ?T-integrated reference four-particle cumulants 2={4}, computed over reference particles (REF),

defined as all charged particles in the soft ?T range of 1–5 GeV, are calculated as,

2={4} ≡〈〈4〉〉= − 2〈〈2〉〉=2
= 〈E4

=〉 − 2〈E2
=〉2

= 2f2(E2
=) − 〈E4

=〉 = −(E={4})4, (6)

where 〈〈2〉〉= and 〈〈4〉〉= are respectively the event-averaged two- and four-particle correlators, with the 〈〈〉〉
denoting an average of 〈〉 over all events, and f2(E2

=) is the variance of E2
=. The corresponding differential

cumulants 3={4}(?T) are defined similarly as,

3={4}(?T) =〈〈4′〉〉= − 2〈〈2′〉〉=〈〈2〉〉=, (7)

where 〈〈2′〉〉= and 〈〈4′〉〉= are calculated using one particle of interest (POI) in a specific ?T bin, while the

other particles are REF. The ?T differential E={4} is computed as,

E={4}(?T) =
−3={4}(?T)
(−2={4})3/4 . (8)

Depending on the shape of the underlying reference E={4} distributions, 2={4} could change sign across

different centrality ranges. Values of 22{4} have been observed to become positive in the 2% most central

collisions, giving an imaginary reference E2{4} [27]. Therefore for this analysis, the centrality interval

0–5% is omitted for the differential E2{4} measurements to ensure that the values of reference E2{4}, thus

values of the denominator in the differential E2{4} formula, are always real-valued.

4.2.2 Three-subevent W-cumulants

In the standard Q-cumulants, all of the two or four particles correlated come from the full pseudorapidity

range of the ID, |[ | < 2.5. To further suppress the non-flow correlations, rapidity gaps are applied in the

MPC method using the three-subevent cumulants [25–27] by requiring the correlated particles in an event

to come from different pseudorapidity ranges. The ID acceptance is divided equally into three subevents of

non-overlapping pseudorapidity ranges, indexed as 0, 1 and 2. The pseudorapidity ranges of these three

subevents are as follows,

−2.5 < [0 < −2.5

3
, |[1 | <

2.5

3
,

2.5

3
< [2 < 2.5. (9)

The :-th power weighted flow vector for subevent 0, &0
=,:

, is defined as

&0
=,: =

"0
∑

9=1

l:
9D=, 9 , (10)

5 The notation &=,: defined for the MPC method by Eq. 5 should be distinguished from the notation &= defined for the SP

method by Eq. 2. The notation &=,: is a weighted summation of D=, 9 , whereas &= is a weighted average of D=, 9 computed by

the weighted summation of D=, 9 normalized by the total weight of D=, 9 .
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where "0 is the charged-particle multiplicity within subevent 0. The three-subevent single-event reference

correlators and their corresponding event weights ,(2) and ,(4) , calculated also using flow vectors where

= = 0, are defined as

〈2〉0 |1= ≡〈48=(q0−q1 )〉 = '4
&0

=,1
&1

−=,1

,
0 |1
(2)

,

,
0 |1
(2) =&0

0,1&
1
0,1,

(11)

〈4〉0, 0 |1, 2= ≡〈48=(q0+q′
0−q1−q2 )〉 = '4

[(&0
=,1

)2 −&0
2=,2

]&1
−=,1&

2
−=,1

,
0, 0 |1, 2
(4)

,

,
0, 0 |1, 2
(4) =[(&0

0,1)
2 −&0

0,2]&
1
0,1&

2
0,1.

(12)

where the superscript in event weights ,(2) and ,(4) corresponds to the track configuration of correlators.

Here the prime label on the azimuthal angle q′0 indicates that a second distinct particle is selected from

subevent 0. The reference cumulants 2
0, 0 |1, 2
= {4} are calculated from the event-averaged correlators as,

2
0, 0 |1, 2
= {4} =〈〈4〉〉0, 0 |1, 2= − 2〈〈2〉〉0 |1= 〈〈2〉〉0 |2= . (13)

To boost the statistics and reduce [-dependent detector bias, the subevent index 0 is interchanged with

1 and 2 to create two additional configurations. The weighted average of these three measurements is

used to obtain three-subevent reference cumulants 23-sub
= {4}. The formulae for these reference correlators,

presented with different notations, are detailed in Ref. [25].

Each subevent configuration of reference correlator 〈2〉= is subdivided into two separate configurations of

the differential flow correlators by selecting each of the two correlated particles as the POI. Similarly, each

reference correlator configuration of 〈4〉= is subdivided into four differential correlator configurations. For

subevent 0, the =-th order harmonic :-th power weighted flow vector using only POIs is denoted by ?0
=,:

,

which is defined for a given ?T interval. Similarly, the flow vector made from particles that are both REF

and POI for a given ?T interval is denoted by @0
=,:

for subevent 0. These two flow vectors are calculated

similarly to Eq. 10. For 〈4〉=, two formulae were provided: one for when the POI comes from a subevent

within which two particles are selected, as shown in Eq. 15, and the other for when the POI is the only

particle from its subevent, as shown in Eq. 16. A prime in the subevent index indicates that the subevent

from which the POI of this correlator is selected.

〈2′〉0
′ |1

= = '4
?0
=,1

&1
−=,1

,
0′ |1
(2′ )

,

,
0′ |1
(2′ ) =?00,1&

1
0,1,

(14)

〈4′〉0
′, 0 |1, 2

= =〈4′〉0, 0
′ |1, 2

= = '4
(?0

=,1
&0

=,1
− @0

2=,2
)&1

−=,1&
2
−=,1

,
0′, 0 |1, 2
(4)

,

,
0′, 0 |1, 2
(4) =(?00,1&

0
0,1 − @00,2)&

1
0,1&

2
0,1,

(15)

〈4′〉0, 0 |1
′, 2

= ='4
[(&0

=,1
)2 −&0

2=,2
]?1−=,1&

2
−=,1

,
0, 0 |1′, 2
(4)

,

,
0, 0 |1′, 2
(4) =[(&0

0,1)
2 −&0

0,2]?
1
0,1&

2
0,1.

(16)
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Other configurations can be written similarly by permuting the subevent indices. Similar to Eq. 13, the

differential cumulants are defined as

3
0′, 0 |1, 2
= {4}(?T) =〈〈4′〉〉0

′, 0 |1, 2
= − 2〈〈2′〉〉0

′ |1
= 〈〈2〉〉0 |2= . (17)

Each of the three configurations for the reference cumulant corresponds to four configurations for the

differential cumulant. The three-subevent differential cumulants 33-sub
= {4}(?T) are calculated as the

weighted average from these 12 configurations, and then used for the calculation of three-subevent

cumulants E={4} (as defined in Eq. 8), denoted by E3-sub
= {4}.

4.2.3 Event combination procedure

In this analysis, the event-averaged cumulants 2={4} and 3={4}(?T) are firstly computed in narrower

centrality intervals, and then averaged toward wider centrality intervals in which the final results of E= are

presented. The choice of initial centrality intervals in which the cumulants are calculated defines an event

combination procedure. The choice of event combination procedure can affect the measured E= in different

ways. High-?T particle production is biased toward more central events, and therefore, for quantities

measured using high-?T charged particles, an average over a wide centrality interval is biased toward

the more central edge of the interval. Also, the event-by-event fluctuations in the underlying azimuthal

anisotropy distributions are sensitive to the event combination procedure. Therefore, the choice of the initial

centrality intervals in an event combination procedure can be used to test the sensitivity of an observable

to the underlying fluctuations and to identify the source of this fluctuation. These fluctuations can stem

from the initial state geometry or non-flow effects. It has been shown in measurements of reference E=
that the centrality resolution of the initial centrality intervals affects the MPC measurements of E= due to

fluctuations in non-flow effects [25, 27].

By default, cumulants are calculated within 1% centrality percentiles before combining. For comparison,

cumulants are also calculated within 2% centrality percentiles before combining and directly calculated

within the quoted centrality intervals for results. Results obtained following these procedures are referred

to later as 〈1%〉, 〈2%〉 and 〈10%〉, respectively. The final results are presented in 5% centrality intervals

for the most central 10% of events, and in 10% centrality intervals for all other events.

5 Systematic uncertainties

The systematic uncertainties in this analysis arise from the choice of the pseudorapidity ranges used in

reference E= definitions, variation of track selection criteria, detector material uncertainties affecting

reconstruction efficiency and overall imperfections in the detector response. These uncertainties are

evaluated by first repeating the analysis with alternative pseudorapidity ranges, the varied selection

criteria on tracks, or different track reconstruction efficiency corrections, and then calculating the absolute

differences in the resulted E= values from the default results. For each alteration, track weights and other

corrections are re-calculated accordingly.

For a detector with perfect azimuthal symmetry, the imaginary part of the scalar product should be zero.

Therefore, the imaginary part of the scalar product, referred to as the residual sine term, is used as a

systematic uncertainty. The sensitivity of the result to the pseudorapidity range of the FCals used to

determine the flow vector is evaluated by using only the inner or outer halves of the FCals, corresponding to

10



pseudorapidity ranges of |[FCal | < 4.0 and |[FCal | > 4.0, respectively. Additionally, E= values are expected

to be consistent between the positive and negative halves of ID due to the symmetry of the collision system.

Any asymmetry of the results in [ is included in the systematic uncertainty, evaluated using [trk < 0 and

[trk > 0. The sensitivity of the result to the track selection is assessed by tightening the track selection

criteria, requiring at least 12 hits in the silicon detectors and no holes in the SCT. The default Σ�FCal
T

requirements used for the centrality percentile is determined by matching 85% of the Glauber-like dataset

to MC events using the Glauber Model [44, 45]. The centrality determination uncertainty is accounted for

by up and down varying 1% of data used to match the simulations for alternative Σ�FCal
T

requirements.

The track reconstruction efficiency used in this analysis is fitted as a function of ?T in order to obtain a

smooth correction. The difference in the measured E= between the fitted and binned efficiency is used as a

systematic uncertainty. The same systematic uncertainties are evaluated for E={SP} results for the three

ranges of charged-particle pseudorapidity |[ | < 1.1, 1.1 < |[ | < 2.5 and |[ | < 2.5.

In addition to E={SP} values, the difference between two E={SP} measurements using tracks with non-

overlapping pseudorapidity ranges is also calculated. Only contributions of systematic uncertainties that

are uncorrelated between the two E={SP} measurements of non-overlapping ranges are included in this

quantity. For this analysis, the charged-particle [-asymmetry and residual sine term uncertainties use

non-overlapping parts of sub-detectors and are therefore considered uncorrelated.

For the MPC method, only a subset of systematic uncertainties that are considered for the SP method is

included. No systematic uncertainties related to [-symmetry are included, as evaluating multi-particle

correlations within half of the default pseudorapidity range would significantly affect the sensitivity of

measurements to physical effects such as non-flow correlations. Systematics related to the FCal are

irrelevant for the MPC method. Therefore, the list of systematic uncertainty items used for the MPC method

is as follow: the sine residual term in the differential cumulant 3={4}(?T), the centrality determination

variations, and the systematic uncertainty from the track reconstruction efficiency.

All sources of systematic uncertainties are taken as uncorrelated, and the total systematic uncertainty

is calculated as the quadrature sum of the individual components, separately for positive and negative

terms. The magnitudes of systematic uncertainties are summarized in Figure 1 for the SP method and

Figure 2 for the MPC method for the selected centrality interval of 10–20%. Systematic uncertainties of

the SP method are dominated by the choice of the pseudorapidity range for ID or FCal as well as sine

terms, whereas the systematic uncertainties of the MPC method are dominated by the variation in the

centrality determination. Similar relative magnitudes of systematic uncertainties are seen in other centrality

intervals. The magnitudes of total systematic uncertainties increase toward peripheral events. Systematic

uncertainties in E={SP} using alternative pseudorapidity ranges 0 < |[ | < 1.1 and 1.1 < |[ | < 2.5 show

similar relative magnitudes among different terms and increased total magnitudes in comparison to the

default pseudorapidity range of 0 < |[ | < 2.5. The centrality and ?T dependence of the total systematic

uncertainty are similar for both E={4} and E3-sub
= {4}, with the latter having a larger magnitude especially

toward more peripheral events. In both the SP and the MPC methods, the statistical uncertainties dominate

over systematic ones, especially toward the high-?T region.
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6 Results

This section presents measurements of E= using the SP method and the MPC method as a function

of the charged-particle ?T for different centrality intervals in Pb+Pb collisions. Comparisons in this

section are done for both central and peripheral events, the interval 10–20% for “central events” and the

interval 40–50% or 50–60% for “peripheral events”. The former interval is the most central 10%-wide

centrality interval, and the latter is the most peripheral centrality interval that is statistically available for

the variables concerned. The values are measured over intervals of ?T, and the ?T-position of each data

point corresponds to the bin center of each ?T interval. In each centrality interval, the E= values reach

a maximum at charged-particle ?T between 3–4 GeV and then decrease with increasing ?T. Additional

centrality intervals for some plots are included in Appendix A.

6.1 Scalar product method

Figure 3 shows the E2{SP} and E3{SP} values as functions of ?T for the selected centrality intervals. The

measured E2{SP} values are positive for the selected centrality intervals up to a ?T of 100 GeV, and

become constant over the ?T range of approximately 50 to 100 GeV for the 5–10% and 20–30% centrality

intervals. Note that due to decreased statistics, E3{SP} results in the 50–60% centrality interval use wider

?T intervals toward high ?T than other centrality intervals. The measured E3{SP} values are positive up to

approximately 25 GeV for the selected centrality intervals, except for the 50–60% centrality interval, where

values of E3{SP} become negative and have a downward trend for ?T > 20 GeV. Figures 4 and 5 show

the consistency of the E={SP} measured in Pb+Pb collision at
√
B

NN
= 5.02 TeV for the centrality interval

10–20%. Note that in the two figures, two different pseudorapidity ranges are used for the ATLAS 2018

measurements from this analysis. In Figure 4, the reported ATLAS 2015 measurements [15] use the same

pseudorapidity ranges of ID and FCal with the ATLAS 2018 measurements, and the two results show good

agreement. In Figure 5, the CMS 2015 measurements [12] shown use tracks with pseudorapidity range

|[ | < 1.0 and calorimeters in pseudorapidity range 3 < |[ | < 5. Overall, good agreement is found between

the ATLAS 2018 and the CMS 2015 measurements, except for E2{SP} in the ?T range of 14–50 GeV,

where the CMS 2015 measurements yield higher values than the measurements from this analysis.

In Figures 6 and 7, a comparison is made between the charged-particle E={SP} measurements from this

analysis and the jet E= measurements from ATLAS using the event plane method from Ref. [13]. High-?T

charged particles are from jet fragmentation but carry only a fraction of a given jet’s ?T. The measured

E= values are qualitatively similar between the jets and charged particles in the quoted high-?T range of

20–400 GeV.

Measurements of E={SP} using two non-overlapping pseudorapidity ranges of tracks are compared in

Figures 8 and 9 in two centrality intervals. The pseudorapidity range 1.1 < |[ | < 2.5 corresponds to a

greater average pseudorapidity gap between the tracks and correlated reference &= than the pseudorapidity

range |[ | < 1.1. At ?T < 10 GeV for both centrality intervals shown, tracks with the pseudorapidity

range 1.1 < |[ | < 2.5 yield smaller values of both E2{SP} and E3{SP} than tracks with the pseudorapidity

range |[ | < 1.1. With a larger pseudorapidity gap imposed, certain non-flow effects are better suppressed,

while the longitudinal decorrelation effects in the event plane become stronger [50], both of which reduce

the measured values of E=. For the 10–20% centrality interval, the difference in E2{SP} between the

two pseudorapidity ranges at 10 < ?T < 20 GeV is similar to that at low ?T, while the difference in

E3{SP} between the two pseudorapidity ranges becomes consistent with zero. For the most peripheral
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up to ?T of approximately 25 GeV. These results are consistent with previous measurements from the

LHC experiments, and the increased luminosity and implemented data taking innovations resulted in a

larger dataset that has allowed for improved precision at high ?T. Values of E={SP} are also measured

across two additional pseudorapidity ranges: |[ | < 1.1 and 1.1 < |[ | < 2.5, over a ?T range of 1–100 GeV.

In the low-?T region, a larger pseudorapidity gap between the correlated flow vectors decreases both

E2{SP} and E3{SP} values, which can arise from decreased non-flow effects and the increased longitudinal

decorrelation. By contrast, at high ?T, a larger pseudorapidity gap between the correlated flow vectors

decreases E2{SP} but increases E3{SP} values, suggesting non-flow dĳet contributions, especially in

peripheral events.

Using the MPC method, the ?T-differential E2{4} values are measured over a pseudorapidity range of

|[ | < 2.5 and a ?T up to 100 GeV in the most central 0–60% events. For ?T > 10 GeV, it is observed

that the three-subevent technique suppresses short-range non-flow contributions. Meanwhile, non-flow

dĳet contributions are still observed with the three-subevent technique. Measurements of E2{4} and E3{4}
using two additional event combination procedures, 〈2%〉 and 〈10%〉, were also performed and compared

to results using the default 〈1%〉 procedure to understand the dominating source of flucutations in E=
measurements. It is observed that for E2{4}, the event combination procedure affects non-flow contributions

primarily, whereas, for E3{4}, initial geometry contributions are more significantly affected.

The comparison between the SP and MPC methods shows different trends between E2 and E3 in peripheral

events. For E2, the difference between the SP and the MPC methods decreases toward zero up to ?T of

15 GeV, then flips sign for ?T > 15 GeV. For E3, however, this difference continues to increase with

?T with the same sign. The contrasting behavior between E2 and E3 indicates remaining non-flow dĳet

contributions, which contribute to the SP and the MPC methods differently.

These results provide comprehensive information on the mechanism and fluctuations of azimuthal

anisotropies of hard-scattered particles in the Pb+Pb collision system. The positive E2 and E3 values

observed suggest that the energy loss of the hard-scattered partons is influenced by the event-by-event

distribution of the initial geometry of the QGP, and these values can be used to constrain the path-length

dependence of jet quenching. The comparison studies presented provide key insights on the different

contributions of the various non-flow sources, as well as revealing the different sources of fluctuations that

dominate in E2 and E3.
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