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A B S T R A C T

The present work describes and quantitatively assesses the strengthening mechanisms in Inconel 718 fabricated 
by arc-based DED (IN718 arc-based DED) through an experimentally-based approach. IN718 arc-based DED (in 
the as-built condition) showed a typical coarse (millimetric-sized grains) and oriented (cube texture) micro
structure with a significant quantity of interdendritic eutectics (Laves and MC-type carbides). After heat treat
ment (1100 ◦C/2 h + aging), these eutectics were partially dissolved; however, the original grain size and 
crystallographic texture aspects were not altered. In addition, the heat treatment promoted a notorious γ′′ 
(Ni3Nb) and γ′ (Ni3(Al, Ti)) phases content (~17 and 5 %, respectively), which results in superior room tem
perature tensile strength despite the aforementioned non-optimized microstructure. The grain size, dislocation 
density, precipitation content and morphology, and alloying elements in solid solution were experimentally 
measured and utilized as input data for a quantitative assessment of the strengthening mechanisms. This analysis 
concludes that the linear dependence of the majority of the strengthening mechanisms on the Taylor factor 
predominantly promoted the yield strength anisotropy. Furthermore, as expected, it is evidenced that the pre
cipitation strengthening mechanism governs the final strength of IN718 arc-based DED.

1. Introduction

Ni-based superalloy 718 (UNS 07718; commercially known as 
Inconel 718 – IN718) is a precipitation-strengthened alloy (γ matrix; 
cubic; Fm 3 m) primarily hardened by the metastable and coherent γ′′ 
(Ni3Nb; D022; tetragonal; I4/mmm) and stable and coherent γ′ (Ni3(Al, 
Ti); cubic; L12; Pm 3 m) phases [1]. The γ′′ phase is the main hardening 

phase due to its higher volume content (~13–17 %) compared to γ′ (~5 
%) [2–4]. The strengthening efficiency of γ ′ and γ ′′ phases depends on 
their size, volume fraction, and the strain (mismatch) induced at the 
(semi)coherent interfaces [5], which are related to the primary micro
structure (processing condition, e.g., cast and wrought) and heat treat
ments [3,6,7]. Additionally, IN718 is also strengthened by solid solution 
(elastic field induced by alloying elements, e.g., Fe, Nb, Al, and Mo), 
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grain boundaries (grain size), and dislocation density (strain hardening) 
strengthening mechanisms [8,9]. However, as emphasized by Rielli 
et al. [10], these mechanisms for wrought IN718 in heat-treated con
dition (solution + aging) are secondary compared to the precipitation 
strengthening (i.e., γ ′ and γ ′′).

Upon the primary dependence of the final strength of IN718 on the γ ′ 
and γ ′′ content and their morphological aspects, when processing this 
alloy thought the traditional fusion-based processes (e.g., welding and 
casting), it is typically observed an inferior room temperature strength 
in relation to the wrought IN718 [11–22]. This is attributed to signifi
cant Nb (γ ′′-former element) segregation to the interdendritic region and 
the Nb-rich eutectics precipitation (e.g., Laves phase and MC-type car
bides) during the IN718 solidification. The non-homogeneous distribu
tion of Nb also promotes a heterogeneous distribution of γ ′′ and different 
precipitation kinetics in the dendritic core and interdendritic regions 
[15,16]. These aspects become more critical for IN718 fabricated by 
additive manufacturing (AM), especially in processes with low-energy 
density (e.g., arc-based directed energy deposition, arc-based DED). 
The layer-by-layer process fashion of AM continuously alters the thermal 
boundary conditions (i.e., solidification), leading to different segrega
tion patterns throughout the part [23]. Additionally, IN718 fabricated 
by arc-based DED is characterized by a non-optimized microstructure, 
with coarse (millimeter-sized) and cube (<100>{100}) textured grains 
[16,24–26], in comparison to wrought material (fine and non-oriented 
equiaxed grains) [27,28]. These characteristics, along with Nb heter
ogenous distribution, compromise the mechanical behavior and justify 
the lower performance of IN718 arc-based DED [11–22], demanding the 
development of dedicated in-process microstructure refinement (e.g., 
thermal management, interlayer mechanical deformation, and 
vibration-assisted deposition) and/or post-processing procedures (e.g., 
heat treatment and hot isostatic pressure) [29–31].

The (semi)quantitative description of the strengthening mechanisms 
and tensile behaviour of traditionally manufactured IN718 is well- 
documented [10,32–38]; however, a similar comprehensive approach 
for additively manufactured IN718 (e.g., IN718 arc-based DED) is still 
lacking. Sui et al. [39] and Sun et al. [40] ranked the influence of the 
aforementioned strengthening mechanisms on IN718 fabricated by 
laser-based DED. They obtained a good agreement between the esti
mated and experimentally measured yield strength, demonstrating that 
precipitation (i.e., γ ′ and γ ′′) is the primary strengthening mechanism for 
additively manufactured IN718. This finding is in accordance with the 
(semi)quantitative description for traditionally manufactured IN718 
[10,32–38]. However, these authors [39,40] considered a Taylor factor 
similar to that of non-oriented materials (~3.06), which does not 
physically correspond to the Taylor factor observed for additively 
manufactured materials with cube texture orientation (~2.4–2.8) [26,
41–43]. In addition, Zhang et al. [44] pointed out, through a (semi) 
quantitative description of the strengthening mechanisms, that the ef
fects of eutectics (Laves and MC-type carbides) on the final strength of 
IN718 fabricated by laser powder bed fusion (PBF) are not significant, a 
finding that was also verified for IN718 arc-based DED (coarse inco
herent eutectics) [26]. Despite several works focused on IN718 fabri
cated by arc-based DED [11–22], to the best of the authors’ knowledge, 
only Farias et al. [26] have performed a semi-quantitative analysis of the 
strengthening mechanisms. They observed that, using a specially 
developed heat treatment, it is possible to induce a similar hardening 
phase content to that of PBF and wrought material, counterbalancing the 
deleterious effects of a coarse and oriented microstructure on the tensile 
behavior. However, it is worth mentioning that the analysis performed 
by Farias et al. is based on both a literature- and experimental-informed 
description, which may not fully represent the physical and micro
structural aspects related to the strengthening mechanisms in IN718 
arc-based DED.

Despite the numerous studies on IN718 arc-based DED [11–22], a 
clear correlation between the microstructure and tensile behavior of 
IN718 arc-based DED has not been established. This is particularly 

relevant for explaining the lower ultimate tensile strength and the 
anisotropy, which may hinder the use of IN718 arc-based DED in 
mission-critical applications (e.g., energy and aviation industries). In 
other words, IN718 arc-based DED fails to meet rigorous requirements 
(e.g., AMS 5662 and API 20S). To the best of the authors’ knowledge, the 
observed behavior is superficially attributed to the lower energy density 
of arc-based DED (lower cooling rate in relation to other fusion-based 
AM processes) without considering critical microstructural factors 
(grain size and stereology, crystallographic texture, volume fraction of 
second phases, …). Moreover, the (semi)quantitative strengthening 
mechanism approaches previously mentioned [26,39,40,44] are based 
on those developed for traditionally manufactured IN718 [10,32–38], 
which have shown suitable agreement with experimental results for 
additively manufactured IN718. However, each metal AM category (e. 
g., PBF and DED) and sub-category (e.g., laser- and arc-based DED) can 
originate specific microstructure-property relationships that are not yet 
fully understood. In this regard, the present work aims to describe and 
quantitatively assess the tensile behavior of Inconel 718 fabricated by 
arc-based DED through an experimentally-based procedure. For this 
purpose, single-bead multi-layer parts were 3D printed and character
ized using optical microscopy (OM), scanning electron microscopy 
(SEM), electron backscatter diffraction (EBSD), transmission electron 
microscopy (TEM), and synchrotron X-ray diffraction (SXRD). Addi
tionally, the mechanical behavior was evaluated through uniaxial ten
sile testing.

2. Materials and methods

2.1. Sample fabrication

Single-bead multi-layer parts (7 × 55 × 120 mm3) were printed using 
an in-house developed arc-based DED 3D printer. This printer is 
composed of two main sections: (i) a semi-automatic gas metal arc 
(GMA) welding machine (Oerlikon® CITOWAVE III 520) and (ii) a 3- 
axis computer numerical control (CNC) positioner [45]. The feedstock 
material (UNS N07718; 1.2 mm; voestalpine Böhler Welding; Table 1) 
was consolidated on a hot-rolled C-Mn steel plate. Table 2 depicts the 
printing parameters used to obtain defect-free parts.

Following deposition, the sample was subjected to the mandatory 
post-deposition heat treatment, which consisted of two stages: (i) ho
mogenization (1100 ◦C/2 h) and (ii) aging (718 ◦C/8 h, cooling to 
621 ◦C, and holding at 621 ◦C/8 h). The heat treatment was designed 
based on the typical heat treatment used for cast Inconel 718 (AMS 5383 
standard). However, the solution step was omitted to prevent the δ 
phase precipitation. For details regarding the considerations involved in 
selecting the soaking time and omitting the solution step, refer to our 
previous work [26].

2.2. Materials characterization

OM (Leica DM IRM) and SEM (Thermo Scientific Quattro) samples 
were prepared following the standard metallographic procedure (i.e., 
grinding and polishing), followed by electrolytic etching (10 wt% oxalic 
acid in water, 6 V for 25 s). Samples for EBSD (EDAX Velocity camera) 
underwent an additional polishing step on a vibratory polisher (Vibro
Met®; SiO2; 0.04 μm; 2 h). The step size, voltage, and tilt angle used in 
EBSD analyses were 1 μm, 20 kV, and 70◦, respectively. EBSD data post- 
processing was carried out using the MTEX-Toolbox [46].

TEM foils were prepared using a focused ion beam SEM (Helios 
NanoLab 600 DualBeam, FEI) and then cleaned using a Fischione 
Nanomill. High-angle-annular dark-field (HAADF) TEM images were 
captured in a Titan3™ G2 60–300 S/TEM (300 kV) coupled with energy- 
dispersive X-ray spectroscopy (Super-X EDS detector, Thermo 
Scientific).

The high-energy SXRD (0.14235 Å) was performed at HEMS beam
line of PETRA III/DESY. The raw data (2D Debbye-Scherrer diffraction 
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rings) were post-processed using FIT2D [47]. For experimental setup 
details, refer to our previous works [30,48]. Additionally, the content of 
the hardening phase was estimated using the Rietveld refinement 
(DIFFRAC.TOPAS software, Bruker). For details about the Rietveld 
refinement, see the Supplementary Material.

2.3. Tensile test

Tensile tests at room temperature were conducted on cylindrical 
specimens (Supplementary Material) extracted both perpendicular 

(horizontal) and parallel (vertical) to the building direction. These 
specimens were fabricated by electric discharge machining, followed by 
turning and low-stress mechanical polishing to remove machining- 
induced work hardening and surface scratches. The tensile tests were 
performed at a strain rate of 5.0 × 10− 4 s− 1 using an Instron® 8562 
machine equipped with a 100 kN load cell and a contact extensometer. 
The engineering stress-strain curves were analyzed in accordance with 
ASTM E8 standard. Three specimens were evaluated for each condition.

2.4. Thermodynamic simulations

Thermodynamic simulations were used to support the microstruc
tural characterization. The Scheil–Gulliver model, which considers back 
diffusion, with carbon fast diffusion enabled, and a cooling rate of 
102 ◦C/s [49,50], was conducted using the Thermo-Calc® software 
(TCNI11 and MOBNI5 databases). The chemical composition (Table 1) 
and the phases identified in SXRD were used as input data.

3. Results and discussion

3.1. Microstructural characterization

Fig. 1 depicts the microstructure of the IN718 DED (as-built and heat- 
treated conditions). In both conditions, it is possible to identify coarse 
and aligned grains parallel to the building direction, which reveals that 
the heat treatment did not alter the primary grain microstructure. In the 

Table 1 
– Feedstock material chemical composition (weight %).

Ni Cr Fe Nb Mo Ti Al C Mn Si P S

Nominal composition 52.52 17.41 20.23 5.25 2.98 0.98 0.45 0.05 0.04 0.08 0.002 0.001
AWS A5.14 ERNiFeCr-2 50–55 17–21 Bal. 4.75–5.5 2.8–3.3 0.65–1.15 0.2–0.8 0.08 0.35 0.35 0.015 0.015
AMS 5383 0.4–0.8
API 6ACRA 4.87–5.2 0.80–1.15 0.4–0.6 0.045 0.35 0.35 0.01 0.01

Table 2 
– Arc-based DED 3D printing parameters.

Currenta 137 [A]
Tensiona 17 [V]
Wire feed speed 4 [m/min]
Travel speed 5 [mm/s]
Heat inputb 372.6 [J/mm]
Interlayer temperature 150 [◦C]
Contact-tip-to-work distance 12 [mm]
Shielding gas specification AWS A5.32
Shielding gas I3 – ArHe − 25
Shielding gas flow 15 [l/min]
Substrate preparation ISO 8501-1

a Root mean square (RMS).
b Thermal efficiency (η = 0.8), BS EN 1011-1.

Fig. 1. – Optical and scanning electron microscopy of Inconel 718 fabricated by arc-based directed energy deposition: (a) and (c) as-built and (b) and (d) heat- 
treated conditions.
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interdendritic region, it is observed the eutectics, which are not 
completely dissolved after the heat treatment, presenting a dotted 
pattern (heat-treated) instead of a continuous long-chain (as-built) [39,
51]. These eutectics were classified based on their chemical composition 
and morphology (Fig. 2), as well as crystallographic aspects (Fig. 3), into 
Laves phase and MC-type carbides. The identified eutectics are in 
accordance with the solidification sequence proposed by DuPont et al. 
[52] (Nb-bearing Ni-based superalloys welded) and indicated by the 
Schiel-Gulliver model (Fig. 4), as well as experimentally verified by Oh 
et al. [53] (in situ SXRD during solidification of IN718 laser-based DED). 
The as-built condition (Fig. 2) also shows the formation of the δ phase 
near the Nb-rich zones (Laves phase at the interdendritic zone), which is 
associated with the multiple thermal cycles and the high precipitation 
kinetics in the Nb-rich zones [23,26]. Moreover, Fig. 4b also indicates 
that the δ phase can be part of the solidification sequence, which was 
corroborated by Oh et al. [53].

Fig. 2 also reveals that the “MC-type carbides” are composed of a 
core-shell structure with three layers (from internal to external): (i) Al- 
based oxide, (ii) Ti-rich MC-type carbide, and (iii) Nb-rich MC-type 
carbide. This type of morphology has been previously reported for 
Inconel 625 (weld cladding) [54,55] and Inconel 718 (additive 
manufacturing) [56,57]. The authors believe that Al-oxide formation is 
associated with oxygen pick-up during part deposition, as previously 
indicated by Xu et al. [11] and Zhang et al. [58]. The layer just deposited 
and its adjacent area (still incandescent) reacted with the oxygen present 
in the atmosphere (regions not fully protected by the shielding gas), 
creating an oxide scale that will be remelted during the subsequent layer 
deposition, thereby increasing the oxygen content in the melting pool. 
Consequently, according to the Ellingham–Richardson diagram [59,60], 
Al tends to react rapidly with oxygen. Thus, Al-oxide (core) forms before 
MC-type carbides (shell), which use the Al-oxides as nucleation sites, 
leading to the formation of the aforementioned core-shell structure. 
After the homogenization heat treatment, the solid-state precipitated 
phases (δ, γ″, and γ′) dissolved due to the high peak temperature and 
prolonged soaking time (1100 ◦C for 2 h), leaving only the undissolved 
eutectics, as demonstrated in Figs. 1 and 3. This is in accordance with the 
equilibrium diagram (Fig. 4a), which shows that the δ, γ″, and γ′ phases 
are unstable at 1100 ◦C. In addition, the heat treatment induces a partial 
dissolution of the eutectics (especially Laves phase, which changes its 
morphology), as confirmed by the vanishing or reduced peak intensity in 
the SXRD (Fig. 3). However, a significant quantity of eutectics remains 
(Fig. 1), particularly MC-type carbides, which are stable at the heat 
treatment temperature [17,18,26].

In relation to crystallographic aspects (refer to pole figures, Fig. 5a 
and b), as mentioned earlier (Fig. 1), the heat treatment is unable to alter 
the coarse and oriented grains usually observed in IN718 arc-based DED 
[11–22]. As a result, the heat-treated material continues to exhibit the 
characteristic cube texture commonly observed in face-centered cubic 

(FCC) materials processed by fusion-based techniques (e.g., welding, 
casting, and additive manufacturing) [16,24–26]. This observation is 
further supported by the presence of the highest intensity (200) peak in 
SXRD (Fig. 3), i.e., volumetric evidence of texture aspects. The cube 
texture observed in fusion-based processed non-transformable alloys, 
such as Inconel 718, arises from competitive growth and a nearly uni
directional heat flux, which promotes dendrite growth almost perpen
dicular to the fusion line [61,62]. In addition, for FCC materials, the 
planes and directions with the lowest planar and linear densities, {100} 
and <100>, respectively, grow faster than other directions [63–65]. 
Thus, cube-textured grains aligned with the maximum thermal gradient 
will impinge the growth of remaining grains (competitive growth) and 
induce a non-randomized microstructure in the melting pool [66]. 
Additionally, due to the layer-by-layer deposition fashion of arc-based 
DED, each subsequent layer partially remelts the previous one and so
lidifies from it, maintaining the same crystallographic orientation, a 
procedure known as epitaxial growth [67]. Thus, layer by layer, the cube 
texture in the newly deposited layers intensifies [68], becoming domi
nant in medium to large-sized parts [69].

The crystallographic texture was also related to the Taylor factor (M, 
Fig. 5c and d) [70,71]. M refers to the susceptibility of each grain in a 
polycrystalline aggregate to accommodate the deformation induced by 
dislocation sliding, considering that all grains undergo similar defor
mation [72]. Therefore, depending on the stress (e.g., vertical and 
horizontal tensile tests) and grain orientations, a specific grain can be 
more (soft grain, lower M) or less (hard grain, higher M) susceptible to 
deformation. Hosford [70] performed several calculations for M, 
considering distinct crystallographic orientations and stress states. For 

Fig. 2. – High-resolution scanning electron microscopy image and energy-dispersive X-ray spectroscopy of the Inconel 718 fabricated by arc-based directed energy 
deposition (as-built condition).

Fig. 3. – Synchrotron X-ray diffraction of the Inconel 718 fabricated by arc- 
based directed energy deposition (as-built and heat-treated conditions). The 
symbol * represents a represents a second harmonic peak.
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ideally cube-oriented wires (aligned grains with <100> fiber textures) 
loaded along the wire axis of symmetry, M was estimated to be equal to 
̅̅̅
6

√
≈ 2.45. Therefore, considering the typical microstructure observed 

for IN718 arc-based DED (<100>{100} texture, Fig. 5), M must be 
around that presented by wires with ideal <100> fiber textures, which 
was experimentally confirmed (2.7 ± 0.15 and 2.47 ± 0.07,Fig. 5c and 
d). The higher M (2.7) in relation to wires with ideal <100> fiber 
texture was related to the non-ideal texture observed for IN718 
arc-based DED parallel to the building direction, i.e., grains not perfectly 
aligned with the build direction [73]. Additionally, for samples analyzed 
transversely to the building direction, M (2.47 ± 0.07) was almost 
identical to the ideally calculated M (2.45). Therefore, according to 
Liang et al. [41] (Hastelloy X fabricated by laser-based DED) and Thijs 
et al. [74] (Ta alloy X fabricated by laser-based PBF), samples tested in 
the horizontal direction (transverse to the building direction, M =

2.47 ± 0.07) are expected to be less resistant to deformation than those 
tested in the vertical direction (M = 2.7 ± 0.15). It is worth noting that, 
due to the coarse grain size, M in the present work was estimated using a 
weighted average that accounted for the M of each grain and its 
respective area, such as proposed by Thijs et al. [74].

Finally, in order to analyze the aged material, a transmission electron 
microscopy analysis (Fig. 6) was performed to support the SXRD data 
(Fig. 3). The γ ′ (Ni3(Al, Ti)) and γ ′′ (Ni3Nb) phases were distinguished by 
their chemical composition and morphology (sphere/cubic and lens like 
disk shape, respectively [75,76]). According to Cozar and Peinau [77] 
and Theska et al. [33], in wrought Inconel 718 direct aged (i.e., without 
solution heat treatment, as in the present work), the typical precipitate 
morphologies observed were γ ′ and γ ′′ (monolith), γ ′-γ ′′ duplets and 
γ ′′-γ ′-γ ′′ triplets (sandwich like structure). Additionally, Rielli et al. [76] 
also observed these precipitate morphologies in IN718 fabricated by PBF 
(direct aged). In the present work (Figs. 6 and 7), γ ′′ and γ ′ (monoliths), 
γ ′-γ ′′ doublets, and γ ′′-γ ′-γ ′′ triplets were also confirmed, which indicates 
that these precipitate morphologies can also occur across different 
processing routes, such as forging, PBF, and DED. In addition, the 
duplets and triplets suggest that γ ′′ precipitates first, followed by γ ′ [78], 
which is in accordance with the differential scanning calorimetry study 
performed by Semiatin et al. [79]. Shi et al. [80] reported that, during 
the aging heat treatment, the precipitation of γ ′′ and γ ′ rejected Al and 
Nb for adjacent regions, respectively. Rielli et al. [81] demonstrated that 
the precipitation of γ ′′ in Nb-rich zones occurred more easily for the 
direct aging condition. Thus, as the γ′′ precipitation rejects Al (i.e., its 
adjacent regions become enriched in γ′-forming elements), it can act as a 
heterogeneous nucleus for γ′ (pre-existing surfaces and Al-rich regions), 
which may explain the formation of a significant fraction of γ′-γ’′ duplets 
and even γ′′-γ′-γ’′ triplets.

The γ ′ and γ ′′ particle sizes (Fig. 6 and Supplementary Material) were 

estimated based on the chemical composition distribution. The 
measured particles sizes for γ ′ and γ ′′ (~11.62 ± 1.67 and 17.02 ± 3.3 
nm, respectively) were in accordance with those estimated experimen
tally by Rielli et al. [76,81] (atom probe), Sui et al. [39] (TEM), Slama 
et al. [82] (TEM), and Devaux et al. [83] (TEM). Geng et al. [78] re
ported that the Al enrichment (Fig. 7) during γ′′ precipitation stabilizes 
the interface between γ′′ and γ′ and hinders the assimilation of Nb from γ′ 
to γ′′ (i.e., γ′′ tends to grow only from one side), which maintains the 
precipitate particle size fine even during long aging heat treatments 
and/or service operations. Moreover, the γ ′′ thickness (e, 6.1 ± 1.5 nm) 
and particle size (2Rγʹ́ , Fig. 6b) followed the correlation established by 
Sui et al. [39] (literature survey), which deduced a linear relationship 
between 2Rγʹ́  and e (2Rγʹ́ = 4.5026e − 9.649) for additively manufac
tured and wrought Inconel 718.

The hardening phase content was estimated using TEM/EDS (Fig. 6) 
analysis and compared with the Rietveld refinement of the SXRD data 
(Table 3), which demonstrated a good agreement (γ ′′ – 17.02 % 
vs.17.39 % – and γ ′ – 5.01 % vs. 4.15 %, respectively). This suggests that 
the Rietveld refinement applied to synchrotron X-ray diffraction can 
satisfactorily estimate the hardening phase content, as also demon
strated by Ferreri et al. [2] and Smith et al. [75]. Additionally, the 
volume fraction of the hardening phases estimated by TEM/EDS and 
SRXD is in accordance with the literature data for Inconel 718 processed 
in several conditions (e.g., cast, forging, and powder bed fusion) [2–4,
32,39,44,76,81,84]. These results reinforce the suitability of the devel
oped heat treatment for IN718 arc-based DED [26], indicating that 
despite the non-optimized microstructure (Nb segregation and coarse 
grain size), a significant hardening phase content can be achieved 
through an appropriate selection of soaking time and homogenization 
peak temperature (i.e., a maximum dissolution of eutectics).

3.2. Tensile testing

The IN718 arc-based DED showed a usual strain × stress curve with a 
clear ductile behavior (Fig. 8), characterized by a fracture surface 
composed of dimples (Fig. 9), i.e., the failure mode was the coalescence 
of microcavities [85]. In addition, the horizontal specimen (Fig. 9a) 
showed a ‘dendrite solidification pattern’ on the fracture surface, which 
is associated with the incoherent eutectic (interdendritic zone) that acts 
as a dimple nucleation site [39,86]. Subsequently, these dimples grow 
and coalesce, generating the previously mentioned patterns. The yield 
strength, YS, and ductility requirements of AMS 5662 were met using 
the typical process route (AM + heat treatment). However, the ultimate 
tensile strength, UTS, requirement was not met, similar to what has been 
previously observed in the literature [15–18]. This aligns with the lower 
strain-hardening exponent (0.0945 and 0.1123 for horizontal and 

Fig. 4. – (a) Equilibrium and (b) Scheil-Gulliver solidification diagrams of Inconel 718.
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vertical, respectively), a typical aspect observed in coarse-grainsized 
materials [87,88]. The strain-hardening exponent, n, was estimated by 
fitting the strain-stress curve using a Holleman’s-type power law equa
tion [89]. Additionally, Table 4 compares the present results with those 
from the literature, demonstrating that the selected heat treatment 
promoted superior mechanical properties in relation to the majority of 
available data. These results were primarily attributed to the higher 
hardening phases content (refer to Table 3). Finally, the IN718 arc-based 
DED fully met the requirements of cast (AMS 5383) and PBF (ASTM 
F3055) materials, reinforcing that arc-based DED can achieve tensile 
properties comparable to those observed in several conventional process 
routes (e.g., forging, welding, and casting) through a properly designed 
heat treatment.

Keller et al. [94], based on the Kocks-Mecking model [95], described 
that the increase in dislocation density during tensile testing at room 

temperature (i.e., the strain-hardening) is mainly dependent on M 
(directly proportional), the mean free path of gliding dislocations 
(inversely and non-linearly proportional to grain size [96]), the gener
ation rate of geometrically necessary dislocations (inversely propor
tional to grain size [97]), and the initial dislocation structures (directly 
proportional). Therefore, considering that the IN718 arc-based DED 
exhibited a smaller M (Fig. 5) compared to a non-oriented and equiaxed 
material (~3.06) [70,71], a larger grain size (refer to Section 3.3.2), and 
a lower initial dislocation density (heat-treated condition, refer to Sec
tion 3.3.3), the notably lower strain-hardening exponent of IN718 
arc-based DED (0.0945 and 0.1123) compared to wrought material 
(~0.5–0.7) [98] can be justified. Furthermore, following the same 
rationale, it was expected that the vertical specimens would have a 
slightly higher strain-hardening exponent (higher M) compared to the 
horizontal direction, which was verified experimentally. Therefore, 

Fig. 5. – EBSD analysis of the Inconel 718 fabricated by arc-based directed energy deposition (heat-treated condition): (a) and (b) orientation image map, (c) and (d) 
Taylor factor maps, and (e) and (f) pole figures. In (e) and (f), B, D, and T represent building, deposition, and transversal directions, respectively.
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meeting the UTS requirement of AMS 5662 becomes a significant chal
lenge for IN718 arc-based DED due to its non-optimized microstructure 
(coarse and oriented), which induces lower strain-hardening during the 
tensile test. This is reflected in the available literature (Table 4), which 
reports that only Xi et al. [17,18,90] (IN718 arc-based DED using cold 
metal transfer – CMT – process) met the AMS 5662 requirements 
through the conventional process route (3D printing + heat treatment). 
Xi et al. [17,18,90] attributed this achievement to the finer grain size 
induced by CMT-DED in relation to the regular GMA-based DED (i.e., 
lower heat input) [17,18] and the δ phase precipitation promoted by an 
intermediate solution heat treatment (900 ◦C/1 h) [90]. These two 
factors tend to increase the strain-hardening during the tensile test. In 
the present work, the δ phase was not observed because the adopted heat 
treatment did not include a solution step [23]. Additionally, a regular 
GMA welding machine was used (see Section 2.1), which tends to induce 
a coarse grain size compared to plasma transferred arc and/or 
GMA-CMT [12,99].

Despite the coarse and oriented microstructure (Fig. 5), the IN718 
arc-based DED did not exhibit a remarkable YS anisotropy (9.8 %), as 
calculated following Kok et al. [100]. According to Hosford [71], the YS 
anisotropy can be estimated using the typical power-law hardening 
correlation between the shear strain (γ) and stress (τ = Kγn), as well as 

the Taylor factor definition 
(

M =
∑ dγ

dε

)

. In addition, considering the 

relationship (σ = Mτ) between the applied stress (σ) and shear stress (τ) 
in a uniaxial tensile test, σ can be related to M (Equation (1)). Thus, the 
anisotropic index (Ai, Equation (2)) can be correlated with the tensile 
test curve profile (namely n) and microstructure/texture aspects 
(namely M) through Equation (3). σH, σV , and K, in Equations (1)–(3), 
represent the YS for the horizontal and vertical directions and the pro
portionality constant, respectively. The calculated (9.4 %, Equation (3)) 
and experimentally measured (9.8 %, Equation (2)) anisotropic indexes 
showed good agreement. This indicates that, despite the coarse and 
oriented microstructure of IN718 arc-based DED, which is expected to 

Fig. 6. – (a) Transmission electron microscopy coupled with energy dispersive X-Ray spectroscopy analysis of Inconel 718 fabricated by arc-based directed energy 
deposition (heat-treated) and (b) γ ′′ and γ ′ particle analysis (refer to Supplementary Material).
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promote significant mechanical anisotropy, the significant cube texture 
in both directions and the lower strain-hardening exponent mitigated 
the anticipated strong anisotropy. This enables the IN718 arc-based DED 
to achieve a Ai comparable to that of laser-based PBF, despite the more 
pronounced texture and coarser microstructure of arc-based DED 
[100–103]. 

σ =Mn+1Kεn (1) 

Ai =
|σH − σV |

σV
(2) 

Ai =

⃒
⃒MnH+1

H KεnH − MnV+1
V KεnV

⃒
⃒

MnV+1
V KεnV

(3) 

Ai =

⃒
⃒Mn+1

H − Mn+1
V

⃒
⃒

Mn+1
V

, nV ≈ nH 

3.3. Strengthening mechanisms

This section is dedicated to elucidating the remarkable yield strength 
of the IN718 arc-based DED (Table 4) through a (semi)quantitative 
experimentally-based strengthening mechanism analysis.

3.3.1. Peierls-Nabarro stress
The Peierls-Nabarro stress (σ0) is expressed by Equation (4). M and 

τcrss are the Taylor factor (Fig. 5) and the critical resolved shear stress 
(17.5 MPa [104]), respectively. The Peierls-Nabarro stress was calcu
lated for horizontal (43.23 MPa) and vertical (47.25 MPa) directions. 

σ0 =Mτcrss (4) 

3.3.2. Grain boundary
The grain boundary strengthening (σgb) was described using the Hall- 

Petch relation (Equation (5)) [82,105]. d and α represent the grain size 
(intercept method, ASTM E112) and the constant of proportionality 
(710 MPa μm− 0.5) [105,106]. The grain size was measured for both 
vertical and horizontal directions (1388.2 ± 588.8 and 373.6 ± 96.8, 
respectively; see Supplementary Material). σgb for vertical and hori
zontal directions was estimated to be 19.41 and 36.76 MPa, respectively. 
Thus, the observed difference in YS for both directions (~113 MPa) 
cannot be entirely explained through the grain size and its morphology 
(stereology). In addition, due to the coarse grain size (Fig. 5), grain 
boundary strengthening was classified as secondary for IN718 arc-based 
DED. 

Fig. 7. – (a) and (b) High-magnification transmission electron microscopy 
images illustrating the precipitation of γ ′′ monoliths. (c) and (d) Energy 
dispersive X-Ray spectroscopy images highlighting the Al enrichment on one 
side of the γ ′′ monoliths. These analyses were performed on Inconel 718 
fabricated by arc-based directed energy deposition (heat-treated condition). 
The yellow rectangle in (c) indicates the region where the chemical composi
tion of the γ matrix was measured. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.)

Table 3 
– γ′ and γ′′ quantification through Rietveld refinement (Fig. 3) and quantitative 
metallography (Fig. 6).

Rietveld 
refinement

Quantitative 
metallography

γ′ (Ni3(Al, Ti); cubic; L12; Pm 3 
m)

4.15 ± 0.41 5.01

γ′′ (Ni3Nb; D022; tetragonal; I4/ 
mmm)

17.39 ± 1.74 17.02

Fig. 8. – Tensile test of Inconel 718 fabricated by arc-based directed energy deposition (heat-treated condition). The dashed and solid lines represent the true and 
engineering stress-strain curves, respectively. The vertical and horizontal directions correspond to specimens aligned parallel and transverse to the building direction 
(Fig. 5). AMS 5662 is a standard that regalement the use of Inconel 718 in the aviation industry.
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σgb =
α

d0.5 (5) 

3.3.3. Dislocation density
The SXRD peaks for IN718 arc-based DED (heat-tread condition, 

Fig. 3) were fitted using a gaussian function (Supplementary Material) 
and the main peak characteristics were estimated (e.g., the Bragg’s 
angle, θ, and full width at half maximum, FWHM). Using the Williamson 
and Hall [107] and Smallman and Westmacott [108] relations (Fig. 10), 
the statistically stored dislocations density (ρ, 3.33⋅1013 m− 2) [109] was 
estimated from θ and FWHM [110,111]. The dislocatin density 
strengthening (σd) was computed using the Bailey-Hirsh’s relation 
(Equation (6) [112]. b and G (65.9 GPa [113]) are the Burgers vector and 
shear modulus, respectively. b (0.2539 nm) was computed from SXRD 
peak fitting (Supplementary Material), using a procedure similar to 
those adopted by Farias et al. [30]. σd for the horizontal and vertical 
directions were 47.7 and 52.14 MPa, respectively. As the grain boundary 
strengthening mechanism, the dislocation density strengthening had a 
minimal influence on YS and only slightly contributed to YS anisotropy. 
The lower contribution of σd to YS can be associated to the lower 
intragranular residual strain caused by the relatively slower cooling rate 
of arc-based DED compared to high-density AM processes (e.g., PBF) 
[44,114,115]. Additionally, the long soaking time (2 h) and high peak 
temperature (1100 ◦C) of the heat treatment can promote recovery and 
dislocation annihilation [116]. 

σd =0.2MbGρ0.5 (6) 

Fig. 9. – Fractography of tensile tests: (a) horizontal and (b) vertical.

Table 4 
– Uniaxial tensile test of the IN718 fabricated by arc-based DED.

Reference Heat 
treatment

Orientation YS UTS Ductility

[MPa] [MPa] [%]

Present work 1100 ◦C/2 h 
+ aging

Horizontal 1040 
± 15

1172 
± 12

25.1 ± 2

Vertical 1153 
± 17

1225 
± 29

26.1 ±
1.2

Xu et al. [25] AMS 5662 Horizontal 790 ±
9

1102 
± 78

14.7 ±
1.3

Vertical 791 ±
14

988 ±
6

12.8 ±
1.2

Kindermann 
et al. [16]

AMS 5662 Horizontal 910 ±
2

1185 
± 80

8.8 ± 3.4

Vertical 1025 
± 9

1246 
± 117

6.2 ± 4.5

API 6ACRA Horizontal 780 ±
6

1304 
± 41

22.8 ±
3.2

Vertical 842 ±
4

1229 
± 136

12.7 ± 5

Xu et al. [11] AMS 5662 Horizontal 807 ±
1

1110 
± 3

15 ± 0.3

Vertical 899 ±
5

1233 
± 16

19.4 ±
2.8

Xi et al. [17] 1185 ◦C/1 h 
+ aging

Horizontal 1070 
± 9

1249 
± 30

20.09 ±
3

Vertical 1071 
± 11

1251 
± 27

21.43 ±
3.9

Xi et al. [18] 1150 ◦C/1 h 
+ aging

​ 1070 
± 8.3

1270 
± 1

30.27 ±
1.38

Xi et al. [90] 1150 ◦C/1 h 
+ 900 ◦C/1 h 
+ aging

​ 1071 
± 19

1316 
± 34

18.98 ±
3.97

Zhang et al. 
[19–22]

AMS 5662 ​ 865 ±
32

947 ±
43

7.16 ±
0.05

Chen et al. 
[91]

AMS 5383 ​ 1019 1111 9.8

Seow et al. 
[12]

AMS 5383 Horizontal 1065 1116 0.9
Vertical 951 1072 2

1185 ◦C/40 
min + aging

​ 856 1044 19.9

Wang et al. 
[92]

AMS 5662 ​ 864 ±
24

1152 
± 28

23 ± 2

James et al. 
[93]

AMS 5662 ​ 852 870 ​

AMS 5662 ​ 1034 1276 12
AMS 5383 ​ 724 827 3
API 6ACRA ​ 965 1103 20
ASTM F3055 ​ 940 1240 12

Fig. 10. – Williamson-Hall plot and dislocation density calculation.
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3.3.4. Solid-solution
The chemical composition (ci) of the γ matrix (Table 5), i.e., a region 

without precipitates, was measured using TEM-EDS (yellow rectangular 
box in Fig. 7). Solid-solution strengthening (σss) was calculated using the 
Gypen and Deruyttere relation [117] (Equation (7) and Table 5). The 
strengthening constants (ai) for each alloying element are detailed in 
Table 5. The obtained result (~246 MPa) was close to that found by 
Zhang et al. [44] (250 MPa, IN718 PBF) and inferior to Sui et al. [39] 
(181 MPa, IN718 laser-based DED), highlighting the effect of heat 
treatment and cooling rate (AM process) on the solid-solution 
strengthening. The higher σss effect for IN718 arc-based DED 
compared to laser-based DED can be attributed to its slower cooling rate 
(i.e., higher interdendritic segregation) [50,118–121] and the partial 
dissolution of Laves phase (Fig. 1), which induces a higher alloying 
element content in solid solution, particularly in the vicinity of the 
interdendritic regions. As described by Gypen and Deruyttere relation, 
σss is isotropic and cannot be associated with the observed anisotropy. 
Furthermore, σss corresponds to 20–24 % of the YS, being classified as 
the second most important strengthening mechanism for IN718 
arc-based DED. 

σss =

[
∑

i

(
aic0.5

i
)2

]0.5

(7) 

3.3.5. Precipitation
As previously indicated by SEM, SXRD, and TEM analyses, the IN718 

arc-based DED presents several secondary phases (MC-type carbide, 
Laves, γ′′, and γ′), which can interact with the dislocations in motion and 
contribute to material strengthening [72]. Orowan’s bypass mechanism, 
typically associated with incoherent second phases (MC-type carbides 
and Laves phases), is characterized by dislocation bowing and climbing 
[35,123], i.e., a thermally activated phenomenon. Thus, dislocation 
bowing in coarse and incoherent secondary phases of Ni-based super
alloys at room temperature is not typically observed [124,125]. More
over, according to Kelly’s model [126], the coarse particle sizes of 
MC-type carbides and Laves (micrometric-sized vs. nanometric-sized γ′′ 
and γ′) will result in negligible strengthening through the dispersion of 
secondary phases. Furthermore, Farias et al. [26] and Sui et al. [39], 
IN718 fabricated by arc- and laser-based DED, respectively, reported 
that the low volume fraction of Laves phase and MC-type carbides (eu
tectics) aligns with their coarse particle size, promoting an insignificant 
effect on the final material strengthening. Thus, the present work did not 
compute the interdendritic eutectics effect on IN718 arc-based DED 
strength.

Zhang et al. [44] and Farabi et al. [127] reported that, for γ′′ and γ′ 
particle size expressed in Fig. 6, the coherency (γ′′) and order (γ′) 
mechanisms govern the precipitate strengthening mechanism. Addi
tionally, Chaturvedi and Han [36] pointed out that the γ′ order 
strengthening (σγʹ; Equation (8)) and γ′′ coherency strengthening (σγʹ́ ; 
Equation (9)) [106,128,129] mechanisms exhibited the best approxi
mation between the computed and experimentally estimated resolved 
shear stress. Therefore, σγʹ and σγʹ́  were adopted in the present work to 
estimate the IN718 arc-based DED strength (heat-treated condition). All 

the variable names and input data used in Equations (8) and (9) were 
presented in Table 6. σγʹ (81.17 and 88.73 MPa) and σγʹ́  (649.61 and 
710.1 MPa) were computed in horizontal and vertical directions, 
respectively, which confirms that the γ′′ coherency strengthening was 
the primary strengthening mechanism for IN718 arc-based DED. Similar 
results have previously been observed for fusion-based AM processes 
and casting [26,32,39,44]. Furthermore, γ′′ coherency strengthening 
was primarily associated with the YS anisotropy, reinforcing the YS 
anisotropy dependence on γ′′ volume fraction, γ′′ particle size, and matrix 
crystallographic texture (i.e., Taylor factor), as indicated by Equation 
(9). 

σγʹ =M
γʹ

APB
2b

[(
8γʹ

APBfRγʹ

πGb2

)0.5

− f

]

(8) 

σγʹ́ =1.7GMδ1.5
γʹ́

⎡

⎢
⎢
⎣

Rγʹ́ f

2b
(

2Rγʹ́
e

)2

⎤

⎥
⎥
⎦

0.5

(9) 

3.3.6. Combined effect
The combined contributions (σy) of the aforementioned strength

ening mechanisms were computed as expressed in Equation (10) [106,
130]. Table 7 and Fig. 11 summarize the contributions of the strength
ening mechanisms and compare the (semi)quantitative analysis with the 
experimentally measured YS, showing good agreement (relative error 
less than 5 %) and validating the experimentally-based strengthening 
mechanism analysis previously presented (Sections 3.3.1–3.3.5). 

σy = σ0 + σgb + σd + σss + σγʹ + σγʹ́ (10) 

Table 5 
– Chemical composition in solid solution and the solid-solution strengthening 
(σss) effect.

Composition, 
ci [at.%]

Strengthening constants, ai [MPa⋅at.%− 0.5] [122] σss [MPa]

Cr 21.89 337 245.62
Fe 25.35 153
Al 0.79 225
Nb 0.76 1183
Ti 0.33 775
Mo 1.6 1015

Table 6 
– Physical constants used in Equations (8) and (9).

Taylor factor, M 2.7 and 2.47, Fig. 5

Phase content, f 5.01 and 17.02, Table 3
Burgers vector, b 0.2539 nm, Supplementary Material
Shear modulus, G 65.9 GPa [113]
Antiphase boundary energy, γÁPB 12 mJ/m2 [128]
Average length of γ′ phase, 2Rγʹ 11.52 nm, Fig. 6
Average length of γ′′ phase, 2Rγʹ́ 17.02 nm, Fig. 6
Average thickness of γ′′ phase, e 6.51 nm, Supplementary Material
γ′′ lattice misfit, δγʹ́ 0.02364, Supplementary Material

Table 7 
– Combined effects of the strengthening mechanisms in Inconel 718 fabricated 
by arc-based directed energy deposition (heat-treated condition).

Strengthening 
mechanism

Horizontal Vertical

Peierls-Nabarro stress, 
σ0

Mτcrss 43.23 47.25

Grain boundary, σgb α
d0.5

19.41 36.76

Dislocation density, σd 0.2MbGρ0.5 47.70 52.14
Solid solution, σss

[∑

i

(
aic0.5

i
)2
]0.5 245.62 245.62

γ′ order, σγʹ
M

γ́APB
2b

[(
8γʹAPBfRγʹ

πGb2

)0.5
− f

]
81.17 88.73

γ″ coherency, σγʹ́

1.7GMδ1.5
γʹ́

⎡

⎢
⎢
⎣

Rγʹ́ f

2b
(

2Rγʹ́

e

)2

⎤

⎥
⎥
⎦

0.5 649.61 710.10

Estimated yield 
strength, σy

σ0 + σgb + σd + σss + σγʹ + σγʹ́ 1086.73 1180.60

Measured yield 
strengtha

​ 1040 ± 15 1153 ±
17

Relative error [%] 4.49 2.39

a Tensile test, Fig. 8 and Table 4.
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The observed yield strength anisotropy can be directly correlated 
with the effect of Taylor factor (i.e., crystallographic texture aspects) on 
strengthening mechanisms, which has a linear effect on Peierls-Nabarro 
stress (Equation (4), dislocation density (Equation (6)), and precipita
tion (Equations (8) and (9)) strengthening mechanisms. In addition, 
grain morphology and stereology also contributed to anisotropy (17.35 
MPa); however, at an inferior level in relation to the Taylor factor 
(76.51 MPa). From Fig. 11, it is evident that the precipitation 
strengthening mechanism governs the final strength of the IN718 arc- 
based DED, especially the γ′′ coherency strengthening. This reveals 
operational implications during process optimization and heat treat
ment development, which must focus on increasing the Nb (γ′′-former) 
content available in solid solution. As a consequence, it is possible to 
achieve an appreciable γ′′ volume fraction, ensuring that strict strength 
requirements (e.g., AMS 5662) can be met (Table 4), even with a non- 
optimized microstructure (coarse and oriented). Moreover, as indi
cated by Equations ((4), (6), (8) and (9), increasing the average Taylor 
factor, i.e., altering the cryptographic texture aspects, will also signifi
cantly alter the IN718 arc-based DED strength [18]. However, opti
mizing process parameters to alter the crystallographic texture is 
challenging because Inconel 718 has a narrow process window (i.e., 
preventing hot cracks and lack of fusion) [15,99,131]. This suggests the 
use of grain size refinement techniques, e.g., interlayer mechanical 
deformation [29], inoculants [132], and vibration [31], can be a suit
able alternative for improving the primary microstructure of the IN718 
arc-based DED.

4. Conclusions

The present work evaluated the microstructure and tensile properties 
of the Inconel 718 fabricated by arc-based DED (IN718 arc-based DED). 
In addition, the strengthening mechanism was described and quantita
tively assessed through an experimentally-based procedure, showing a 
good agreement (error inferior to 5 %) with the measured yield strength. 
IN718 arc-based DED (as-built) exhibited a coarse and oriented micro
structure with the presence of interdendritic eutectics (Laves and MC- 
type carbides). At heat-treated condition (1100 ◦C/2 h + aging), the 
Laves phase was partially dissolved; however, the grain stereology and 
crystallographic texture were unchanged. Additionally, despite the 
IN718 arc-based DED non-optimized microstructure, the heat treatment 
induced a significant content of γ′′ and γ′ (~17 and 5 %), which results in 
a yield strength superior to that required by AMS 5662. The contribution 

of each strengthening mechanism was computed based on experimental 
data collected through EBSD, SXRD, and TEM, which evidenced that the 
precipitation strengthening mechanism governs the final strength of the 
IN718 arc-based DED. Furthermore, the analysis of strengthening 
mechanisms revealed that yield strength anisotropy was primarily 
associated with the linear dependence of these mechanisms – particu
larly precipitation hardening – on the Taylor factor (i.e., crystallo
graphic texture), while grain size and morphology (stereology) played a 
secondary role in yield strength anisotropy.
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dimensional detector software: from real detector to idealised image or two-theta 
scan, High Press. Res. 14 (1996) 235–248, https://doi.org/10.1080/ 
08957959608201408.

[48] T.A. Rodrigues, F.W.C. Farias, J.A. Avila, E. Maawad, N. Schell, T.G. Santos, J. 
P. Oliveira, Effect of heat treatments on Inconel 625 fabricated by wire and arc 
additive manufacturing: an in situ synchrotron X-ray diffraction analysis, Sci. 
Technol. Weld. Join. 28 (2023) 1–6, https://doi.org/10.1080/ 
13621718.2023.2187927.

[49] L. Ling, Y. Han, W. Zhou, H. Gao, D. Shu, J. Wang, M. Kang, B. Sun, Study of 
microsegregation and laves phase in INCONEL718 superalloy regarding cooling 
rate during solidification, Metall. Mater. Trans. A. 46 (2015) 354–361, https:// 
doi.org/10.1007/s11661-014-2614-5.

[50] F.W.C. Farias, J. da C. Payão Filho, V.H.P. Moraes e Oliveira, Prediction of the 
interpass temperature of a wire arc additive manufactured wall: FEM simulations 
and artificial neural network, Addit. Manuf. 48 (2021) 102387, https://doi.org/ 
10.1016/j.addma.2021.102387.

[51] H. Qi, M. Azer, A. Ritter, Studies of standard heat treatment effects on 
microstructure and mechanical properties of laser net shape manufactured 
INCONEL 718, Metall. Mater. Trans. A. 40 (2009) 2410–2422, https://doi.org/ 
10.1007/s11661-009-9949-3.

[52] J.N. DuPont, C.V. Robino, J.R. Michael, M.R. Nous, A.R. Marder, Solidification of 
Nb-bearing superalloys: part I. Reaction sequences, Metall. Mater. Trans. A. 29 
(1998) 2785–2796, https://doi.org/10.1007/S11661-998-0319-3.

[53] S.A. Oh, R.E. Lim, J.W. Aroh, A.C. Chuang, B.J. Gould, J. V Bernier, N. Parab, 
T. Sun, R.M. Suter, A.D. Rollett, Microscale observation via high-speed X-ray 
diffraction of alloy 718 during in Situ laser melting, J. Occup. Med. 73 (2021) 
212–222, https://doi.org/10.1007/s11837-020-04481-1.

[54] C.C. Silva, H.C. de Miranda, M.F. Motta, J.P. Farias, C.R.M. Afonso, A.J. Ramirez, 
New insight on the solidification path of an alloy 625 weld overlay, J. Mater. Res. 
Technol. 2 (2013) 228–237, https://doi.org/10.1016/j.jmrt.2013.02.008.

[55] M. Solecka, A. Kopia, A. Radziszewska, B. Rutkowski, Microstructure, 
microsegregation and nanohardness of CMT clad layers of Ni-base alloy on 
16Mo3 steel, J. Alloys Compd. 751 (2018) 86–95, https://doi.org/10.1016/j. 
jallcom.2018.04.102.

[56] K. Kakehi, S. Banoth, Y.-L. Kuo, S. Hayashi, Effect of yttrium addition on creep 
properties of a Ni-base superalloy built up by selective laser melting, Scr. Mater. 
183 (2020) 71–74, https://doi.org/10.1016/j.scriptamat.2020.03.014.

[57] Y.-L. Kuo, K. Kakehi, Influence of powder surface contamination in the Ni-Based 
superalloy Alloy718 fabricated by selective laser melting and hot isostatic 
pressing, Metals (Basel). 7 (2017) 367, https://doi.org/10.3390/met7090367.

[58] Y.N. Zhang, X. Cao, P. Wanjara, M. Medraj, Oxide films in laser additive 
manufactured Inconel 718, Acta Mater. 61 (2013) 6562–6576, https://doi.org/ 
10.1016/j.actamat.2013.07.039.

[59] Q. Pang, G.H. Wu, Z.Y. Xiu, L.T. Jiang, D.L. Sun, Microstructure, oxidation 
resistance and high-temperature strength of a new class of 3D open-cell nickel- 
based foams, Mater. Charact. 70 (2012) 125–136, https://doi.org/10.1016/J. 
MATCHAR.2012.05.010.

[60] Q. Jia, D. Gu, Selective laser melting additive manufactured Inconel 718 
superalloy parts: High-temperature oxidation property and its mechanisms, Opt 
Laser. Technol. 62 (2014) 161–171, https://doi.org/10.1016/J. 
OPTLASTEC.2014.03.008.

[61] M. Gustafsson, M. Thuvander, E.L. Bergqvist, E. Keehan, L. Karlsson, Effect of 
welding procedure on texture and strength of nickel based weld metal, Sci. 
Technol. Weld. Join. 12 (2013) 549–555, https://doi.org/10.1179/ 
174329307X213800.
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[110] A. Borbély, The modified Williamson-Hall plot and dislocation density evaluation 
from diffraction peaks, Scr. Mater. 217 (2022) 114768, https://doi.org/10.1016/ 
j.scriptamat.2022.114768.

[111] S.K. Rai, A. Kumar, V. Shankar, T. Jayakumar, K.B.S. Rao, B. Raj, Characterization 
of microstructures in Inconel 625 using X-ray diffraction peak broadening and 

lattice parameter measurements, Scr. Mater. 51 (2004) 59–63, https://doi.org/ 
10.1016/J.SCRIPTAMAT.2004.03.017.

[112] J.E. Bailey, P.B. Hirsch, The dislocation distribution, flow stress, and stored 
energy in cold-worked polycrystalline silver, Philos. Mag. A J. Theor. Exp. Appl. 
Phys. 5 (2006) 485–497, https://doi.org/10.1080/14786436008238300.

[113] B. Reppich, Some new aspects concerning particle hardening mechanisms in γ’ 
precipitating Ni-base alloys—I. Theoretical concept, Acta Metall. 30 (1982) 
87–94, https://doi.org/10.1016/0001-6160(82)90048-7.
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