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ABSTRACT

Generation and manipulation of micrometer-sized liquid jets is highly relevant for applications like sample delivery in serial femtosecond
crystallography. A promising method combines gas flow focusing with electrospraying but remains underexplored due to numerical limita-
tions regarding high interfacial electric property gradients. This study addresses this challenge by assessing different approaches for electrohy-
drodynamic (EHD) numerical treatment of two-phase interfaces within the finite volume method and the volume-of-fluid framework. A new
geometric mean interpolation technique was developed to address the limitations of high electric conductivity-ratio gas–liquid systems. The
technique was related to the established EHD modeling approaches, comprising two electric force implementations and two electric property
interpolation methods. Three verification tests involving no flow conditions demonstrated consistent performance of all solvers regarding the
electric equations, and they were charge-conservative. Validation on a free boundary problem experiment revealed varying levels of agree-
ment. Results show that the Coulomb-polarization force implementation combined with weighted harmonic mean interpolation provides the
most accurate and physically consistent modeling of electric forces at fluid interfaces, followed by the novel geometric mean technique. The
model based on the Coulomb-polarization force is applied to simulate electro-flow-focused jets, capturing the complex interplay of hydrody-
namic and electrostatic forces in a high-velocity co-flow configuration. While weighted harmonic mean interpolation yields the highest fidel-
ity regarding the electric force magnitude and electric charge position, it fails for extremely low gas conductivities. The proposed geometric
mean interpolation provides a stable alternative for simulating EHD two-phase flows, particularly in configurations with large interfacial elec-
tric property gradients.

VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0281409

I. INTRODUCTION

Recent experimental advances1,2 in the generation of
micrometer-sized jets through the combined effects of flow focusing
and electrospraying, collectively known as electro-flow focusing (EFF),
have demonstrated significant potential for producing sub micrometer
jets and droplets. This capability is particularly relevant to rapidly
evolving fields such as serial femtosecond crystallography3 and micro-
satellite propulsion,4 where extremely fast (>100m/s), slender
(<1lm) jets with precise control over breakup and stability are
required.

While one-dimensional theoretical models have provided valu-
able insight into the physics of micrometer-scale jets under external
forces over the past two decades,5 they lack the ability to fully capture

the complexities of jet dynamics. This limitation has been partially
addressed through numerical simulations,6,7 which have significantly
advanced our understanding of both flow-focusing and electrospraying
phenomena. These developments now lay the groundwork for the
numerical study of more complex microjet systems, including EFF.

Despite the long-standing knowledge of electrohydrodynamic
(EHD) systems,8 their numerical modeling remains an open challenge.
In particular, the accurate treatment of electric property discontinuities
at fluid interfaces—especially in systems involving strong dielectric con-
trast or near-vacuum conditions—represents a key hurdle in the reliable
simulation of gas–liquid EFF processes. A deeper exploration of numer-
ical methods, both existing and novel, is therefore essential to resolve
these challenges and enable predictive modeling of EFF behavior.
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In the first numerical simulations of droplets and jets, the bound-
ary element method9–13 and the finite element method14–17 have been
used by assuming Stokes or inviscid flow, followed by a less common
lattice-Boltzmann approach18 and a meshless approach19 for the
Navier–Stokes flows.

Recently, multiple theoretical EHD models were adapted for sim-
ulations, ranging from a strict electrokinetic approach, which includes
the full Poisson–Nerst–Planck (PNP) equations, to a macroscopic
model, where electrokinetics is reduced to a measurable macroscopic
property such as the electrical conductivity. Strict electrokinetic models
require the characterization of all molecular species and their proper-
ties. A less rigorous approach, which still deals with electrokinetics, is
formulated using volumetric charge density. In this approach, the ther-
mal diffusion of ions is usually neglected. Such simplification is justi-
fied if the mechanism of electric drift is large enough compared to that
of thermal diffusion. If the Debye length is small compared to other
relevant lengths, then the model’s accuracy is not seriously compro-
mised.20 The simplest model, the Taylor–Melcher or the Leaky-
Dielectric model (LDM), presumes that all charge is concentrated on
the free surface while the bulk of the liquid remains neutral. The LDM
is justified when the characteristic electrical relaxation time, te � e=K ,
is much shorter than any hydrodynamic time th involved, meaning the
Ohmic charge migration is presumed to happen instantaneously.
Here, e and K denote the electrical permittivity and electrical conduc-
tivity, respectively. The only relevant electrical variable in the LDM is
thus the surface charge density rE . Using insight provided by Baygets
and Saville,21 a rigorous analysis was done22–24 to show that the LDM
follows from the electrokinetic model after proper simplifications.20

Consequently, with different models and theoretical assumptions
(e.g., a perfectly conducting or a dielectric fluid pair), various forms of
the electric equation and the charge conservation equation were imple-
mented, listed in Table I. Several implementations of the electric force
are specified in Table II. In most publications, the Maxwell stress ten-
sor force (MSTF) and the Coulomb and polarization force (CPF)
forms of the electric force implementation are considered equivalent
(for derivation, see Appendix A).

Symbols in Tables I and II represent the electric field E, Faraday’s
constant F, valence number z, molar concentration n, volumetric
charge density qE , electric potential /, fluid velocity u, elementary
charge e, mobility w, diffusion coefficient D, rate of species production
r, the unit vector in the normal direction n, the electric force per unit
volume FE , the Maxwell stress tensor (MST) sE , the identity tensor I,

and the electric permittivity of the vacuum e0 ¼ 8:854� 10�12 Fm�1.
Operator jjxjj denotes the jump of variable x over an interface, and k
specifies the chemical species index.

The recent widespread adoption of finite volume method (FVM)
solvers, often combined with the volume-of-fluid (VOF) approach for
interface capturing, has significantly shaped the current landscape of
multiphase EHD simulations. As a result, FVM-VOF frameworks
have become the dominant choice for simulating such systems. VOF
utilizes an additional scalar volume fraction function ai ¼ Vi=V ,
where index i specifies the phase, and V is the volume of the cell. In
cells with the interface, ai 2 ð0; 1Þ, the fluid physical properties are
corrected appropriately. Standardly, the physical properties are
adjusted using the weighted arithmetic mean interpolation (WAM),
which we can write for a general property W as W ¼ W1a1 þW2a2.
Tomar et al.25 reported that even though WAM is typically used in the
VOF method to interpolate the density and viscosity values, weighted
harmonic mean interpolation (WHM) should be used when interpo-
lating the electrical properties of fluids. For a general property W; the
WHM is defined as W ¼ 1=ða1=W1 þ a2=W2Þ. This claim was later
disputed by L�opez-Herrera et al.,6 who concluded that WHM offers
no improved accuracy over the WAM for moderately conductive-
dielectric fluid pairs.

We highlight the overlooked difference between the WAM and
WHM methods: the influence of the relative difference between the
interpolated fluid properties. Figure 1 shows the difference between
WAM and WHM interpolation of electric conductivity between a
moderately conducting pair, with the conductivity ratio kK of 101, and
a conductor-dielectric pair with the conductivity ratio kK of 106. The
conductivity ratio kK is determined by dividing the higher conductivity
value by the lower conductivity value of the pair. As seen in Fig. 1, the

TABLE I. Different forms of the electric equation and charge conservation.

Electric equation Conservation of species/free charge

r � eEð Þ ¼ �PkFzknk PNP @nk
@t

þr � nkuþ nkezkwkE � Dkrnkð Þ ¼ rk
PNP

r � eEð Þ ¼ qE Poisson @qE
@t

þr � qEuþ KEð Þ ¼ 0
qE 1

r2/ ¼ 0 Laplace @qE
@t

þr � KEð Þ ¼ 0
qE 2

r � KEð Þ ¼ 0 LDM
@rE
@t

þ u � rsrE � rEn � n � rð Þ � uþ KE � nj jj j ¼ 0
rE

TABLE II. Different forms of the electric force implementation; MSTF, CF, and CPF
stand for Maxwell stress tensor force, Coulomb force, and Coulomb and polarization
force.

Electric force implementation

FE ¼ r � sE ¼ r � eE � E � 1
2
eE2I

� �
MSTF

FE ¼ qEE CF

FE ¼ qEE � 1
2
E2re

CPF
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high conductivity ratio between the phases at the interface essentially
assigns the lower conductivity value to all cells involving the interface
when using WHM. It leads to a very abrupt difference in the physical
properties between neighboring cells. For instance, Huh and Wirz26

recently reported code failure due to abrupt differences while using the
WHM scheme at the vacuum-liquid interface. Consequently, they
used a weighing power mean (WPM) interpolation scheme, which
blends the WAM andWHMmethods.

The remarkable diversity of physical phenomena observed in
coupled EHD systems, even within a specialized area such as liquid
jets, becomes evident when reviewing the publications from the past
two decades. Table III presents recent studies on modeling liquid jets
in high-voltage fields (e.g., electrospray, Taylor cone formation, steady
cone-jet mode, etc.). Abbreviations for the models employed are pro-
vided in Tables I and II. Interface tracking methods, aside from the
already mentioned volume of fluid (VOF) method, are abbreviated as
follows: level set (LS), coupled level set and volume of fluid (CLSVOF),
and solution algorithm and volume of fluid (SOLA-VOF). The simpli-
fication or derivation of the equations outlined in Tables I and II are
not discussed further, as additional details can be found in the pro-
vided references.

Fluid dynamic phenomena are typically governed by a dominant
force or a ratio of competing forces that dictate the physical response
of the system. A notable exception is the production of micrometer-
sized jets via electrospray phenomena in the steady cone-jet mode.
These systems exhibit high dimensional parameter spaces even in
steady or quasi-steady states27 and a complex interplay of hydrody-
namical (viscous, inertial, surface tension) and electrical forces. The
primary challenge in numerical modeling is capturing the delicate
force balance at the interface, where the equilibrium of the system is
determined. As shown in Table III, research in this field is extensive
and ongoing.

In this paper, we evaluate different numerical approaches and
devise new ones to model multiphase EHD problems successfully
using the FVM-VOF framework. By identifying the optimal modeling
strategy, we take a step further and present the first numerical

simulation of EFF jets. These jets utilize a high-velocity co-flowing gas
to additionally focus the Taylor cone jet, which is characteristic of elec-
trosprays. Unlike conventional electrospraying, EFF systems introduce
rapid charge and mass convection coupled with steep velocity gra-
dients at the interface, leading to additional numerical instabilities. To
date, only liquid–liquid EFF systems have been numerically stud-
ied,28,29 where the velocity ratio between phases is close to unity.30 In
contrast, the velocity ratio for gas–liquid systems can reach up to and
over 70.31–33

Liquid–liquid systems provide two important simplifications over
the gas–liquid system. First, the electric conductivity ratio kK for the
liquid–liquid systems28,29 is usually between 103 and 106, with the low-
est conductivity value of around 10�12 Sm�1, which is easily captured
by either the WHM or WAM interpolation method. In dielectric gas–
liquid systems, the electrical conductivity is much lower. For gas mix-
tures like air, which also contains some water vapor, the conductivity
on the order of K � 10�14 Sm�1 is presumed.34 An increase in con-
ductivity can be expected in the ionized gas regions, for example, near
the electro-jet surface. For near or high vacuum conditions, where the
Knudsen continuum limit35 is not yet reached, the conductivity goes
virtually to zero, and kK effectively approaches infinity.

The second simplification of the liquid–liquid systems over gas–
liquid systems is that some free charge will inevitably migrate from the
Debye layer into the focusing fluid in fingerlike structures (see, for
example, Ref. 36) due to the low conductivity ratio of the phases. If the
focusing liquid is conducting, even poorly, the migrated charge will be
transported to the negative electrode and discharged. However, when
dielectric gas is used, the free charges can migrate only by convection.
Combined with the mixing-enhancing vortices of the high-velocity gas
(especially at the simulation startup), one is quickly left with a charge-
saturated gas domain, leading to code failure and nonphysical
phenomena.

The originality of this work lies in a comprehensive analysis of
available EHD modeling approaches, the derivation of a novel interpo-
lation method, and its implementation within OpenFOAM.
Furthermore, a gas-focused EFF process simulation is presented, along
with a discussion on the challenges of simulating gas-focused liquid
jets with a high conductivity ratio between the phases.

In the following, we present the outline of this paper: Section II
establishes EHD model formulation in terms of fluid flow, electrostat-
ics, and interface treatment. The numerical solver setup is explained in
Sec. III. Section IV contains a detailed analysis of verification and vali-
dation procedures used to evaluate the different EHD modeling
approaches. Six different solvers are evaluated, which combine three
different interpolation methods for electric properties and two differ-
ent electric force implementations. Sections V and VI focus on the
application of the EHD solver in the simulation of the EFF jet. A first
numerical insight into EFF phenomena is provided, and the challenges
regarding high electric property ratios between phases are discussed.
In the final section, we summarize the most important findings.

II. MODEL FORMULATION
A. Fluid flow

We consider an incompressible, laminar, Newtonian two-phase
flow under the influence of an electric field, considering surface tension
and electrical body forces. In general, the material properties of the

FIG. 1. Interpolation function shape for WAM and WHM between a pair of similarly
conducting fluids (kK ¼ 101) and a pair with a high conductivity ratio (kK ¼ 106).
The vertical axis is normalized to the highest conductivity value.
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phases are assumed to be different. The continuity and momentum
equations are posed as

@q
@t

þr � quð Þ ¼ 0; (1)

@ quð Þ
@t

þr � quuð Þ ¼ �rP þr � l ruþruTð Þ � 2
3
l r � uð ÞI

� �
þ FST þ FE; (2)

where q and P represent density and pressure, respectively. Surface
tension and the electric force are denoted as FST and FE and are
given as

FST ¼ rjra; (3)

FE ¼ r � sE ¼ qEE � 1
2
E2re; (4)

where r and j represent surface tension and curvature, respectively.
The two terms on the right-hand side (rhs) of Eq. (4) represent the
electric force exerted on free charges in an electric field (Coulombic

force) and the polarization force arising from the molecular polarity.
These terms are derived directly from the divergence of the MST in
the case of electrostatics, as demonstrated in Appendix A. Although
theoretically equivalent, the numerical implementations of the electric
force (via divergence of the MST or a direct calculation) differ and con-
sequently give different results. This is further discussed in Sec. IV.

B. Electrostatics

The electrostatic model involves Maxwell equations, where the
magnetic field can be neglected due to the much longer magnetic charac-
teristic time than the electric one. The relevant governing equations are

r� E ¼ 0; (5)

r � eEð Þ ¼ qE; (6)

where the irrotationality of the electric field allows the electric field to
be expressed with the electric potential E ¼ �r/. The charge conser-
vation equation is derived from the Poisson–Nerst–Planck (PNP)
equation,

TABLE III. Contemporary works on numerical simulations of coupled EHD systems using FVM for liquid jets, bridges, and droplets. N/A is used where information could not be
retrieved from the paper. GFM stands for the ghost fluid method.

Year First author Electric equation Charge Force Interface Averaging Solver

2006 Lastow37 Poisson N/A CF VOF WAM CFX
2007 Tomar25 Laplace rE CF CLSVOF WHM N/A
2011 L�opez-Herrera6 Poisson qE 1 CPF VOF WAM Gerris
2012 Paknemat38 Laplace LDM CPF LS GFM N/A
2012 Herrada39 Poisson LDM CPF VOF WHM Gerris
2013 Berry40 Poisson PNP CPF CLSVOF WHM N/A
2013 Ferrera41 Poisson qE 2 CPF VOF N/A Gerris
2013 Forget42 Poisson qE 1 CPF VOF N/A OpenFOAM
2013 Najjaran43 Poisson qE 1 CF VOF N/A Fluent
2013 Roghair44 Poisson qE 1 MSTF VOF WHM OpenFOAM
2014 Lima45 Poisson qE 1 CPF VOF WAM OpenFOAM
2015 Chen46 Laplace rE CPF VOF WAM Gerris
2015 L�opez-Herrera47 PNP PNP CPF VOF WAM Gerris
2015 Roghair48 Poisson qE 1 MSTF VOF WHM OpenFOAM
2016 Rahmanpour49 Laplace qE 1 CF VOF N/A Fluent
2017 Dastourani50 Poisson qE 1 CPF VOF N/A OpenFOAM
2017 Huang51 Poisson qE 1 MSTF CLSVOF WHM OpenFOAM
2017 Rahmanpour52 Laplace qE 1 CF VOF N/A Fluent
2017 Rahmanpour53 Poisson N/A CPF SOLA-VOF N/A N/A
2017 Wu54 Poisson qE 1 MSTF VOF WAM OpenFOAM
2018 Dastourani36 Poisson qE 1 CPF VOF WAM OpenFOAM
2018 Ghasemi55 Poisson qE 1 CPF VOF WAM Gerris
2019 Guo56 Poisson qE 1 CPF VOF N/A Gerris
2019 Huh57 Poisson qE 1 CPF VOF WHM OpenFOAM
2019 Pan58 Poisson qE 1 CF VOF N/A FLOW-3D
2020 Jiang59 Poisson qE 1 MSTF VOF WAM Fluent
2020 Sahu60 Poisson qE 1 CPF VOF WAM Basilisk
2022 Huh61 Poisson qE 1 CPF VOF WPM OpenFOAM
2022 Huh26 Poisson qE 1 CPF VOF WPM OpenFOAM
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@nk
@t

þr � nkuð Þ ¼ �r � nkezkwkEð Þ þ r � Dkrnkð Þ þ rk; (7)

which governs the conservation of k ionic species. Moles of ionic spe-
cies per unit volume are transformed into charges per unit volume via
Avogadro numberNA,

qE;k ¼ NAezknk ¼ Fzknk; (8)

where the Avogadro number and charge can be merged into the
Faraday constant F ¼ NAe. Symbol qE;k is the charge density of species
k. Summation over all species yields the macroscopic or volumetric
charge density, as used in Eqs. (4) and (6)

qE ¼
X
k

qE;k ¼ F
X
k

zknk: (9)

We can transform the PNP equation into the conservation equation of
macroscopic charge density by multiplying both sides with Fzk and
summing over all k species

@qE
@t

þr � qEuð Þ ¼ �r � KEð Þ þ
X

k
Dkr2qE;k þ

X
k

Fzkrk; (10)

where we introduced another macroscopic variable, the electrical con-
ductivity K ,

K ¼
X
k

wkFez
2
knk: (11)

Two assumptions are made to derive the charge conservation equation
typically employed in EHD simulations: (i) induced ion velocity due to
the thermal diffusion being several orders smaller than the mechanism
of electric drift and (ii) zero rate of species production. The last two
terms in Eq. (10) are thus omitted to produce the final form

@qE
@t

þr � qEuð Þ ¼ �r � KEð Þ: (12)

Assumptions limit our model to systems without ongoing reactions
producing ionic species and fields of relatively high electric potential.
Both simplifications are reasonable in most engineering systems with
liquid jets, droplets, and liquid bridges under the influence of electric
fields and using common organic solvents. Equation (12) represents the
general form of the charge conservation equation in the volumetric
charge density approach (see form qE 1 in Tables I and III). It can be
further simplified in the case of a dielectric-dielectric or a conducting-
conducting fluid pair, but we will use it in its general form as it applies
to all cases. The surface charge convection is also neglected, consistent
with the assumption of a low electric Reynolds number.62,63 This sim-
plification is commonly used when charge relaxation occurs much
faster than the fluid motion, resulting in negligible convective transport
of interfacial charges. While this leads to a more idealized model, it
allows for a coherent comparison with analytical solutions and con-
trolled validation cases. The limitations of this assumption are acknowl-
edged, particularly in the experimental context of EFF jets, where
solvents with very low conductivity (e.g., hexane) are sometimes used.

C. Interface treatment

We use the FVM,64 which strictly conserves transported quanti-
ties, to transform the partial differential equations into a system of

linear algebraic equations. The interface in Eq. (3) is resolved using the
VOF65 method. The VOF method employs an additional interface
advection equation to resolve the spatial and temporal evolution of the
interface

@a
@t

þr � auð Þ ¼ 0; (13)

where the curvature j in Eq. (3) is calculated via the continuum sur-
face force model by Brackbill66

j ¼ �r � ra

raj j
� �

: (14)

Equation (13) must be accurately solved to maintain a sharp interface,
which is not straightforward considering the diffusive nature of the
second term. We employ the algebraic VOF method, where a third
term is added, which limits the spread of the interface in the normal
direction by introducing the compression velocity uC ,

@a
@t

þr � auð Þ þ r � a 1� að ÞuCð Þ ¼ 0; (15)

uC ¼ Ca
/a

jSaj
����

����n; (16)

where Ca is the free parameter for adjusting the compression ratio and
/a, Sa, and n are the velocity flux, face surface area, and the interface
normal, respectively.

Conventionally, in the VOF method, fluid properties, such as
density and viscosity, are interpolated using the WAM. As mentioned
in the introduction, there is an ongoing discussion regarding the inter-
polation method for electrical properties. This discussion is particularly
important in the case of EHD microfluidics, as the resulting physical
phenomena arise from the intricate interplay of interfacial forces. As
Huh andWirz26 pointed out, even a slight adjustment in the interpola-
tion method, from a diffusive WAM to a slightly sharper WPM, can in
some cases increase the maximum charge density at the interface
nearly tenfold. In 2022, Huh and Wirz26 proposed a new interpolation
scheme (WPM), which uses a free parameter f ,

W ¼ a1W
1=f
1 þ a2W

1=f
2

� �f
: (17)

At f ¼ 1 and f ¼ �1, Eq. (17) reduces to WAM and WHM, respec-
tively, while at f > 1 it provides a blend. They reported a sharper vari-
ation of e and K with less false diffusion with a larger f , but concluded
no further significant dependence on f for f > 20. Such behavior sug-
gests that WPM approaches a limit at f ! 1, which would be the
optimal blending function according to their results.

We can derive the limit f ! 1 of Eq. (17) by considering

ln Wð Þ ¼ f � ln a1W
1=f
1 þ a2W

1=f
2

� �
: (18)

Here, we note that terms with the power of 1=f approach 1 as f
approaches infinity, and we can use the first-order approximation for
small powers

W1=f � 1þ ln Wð Þ
f

; (19)

to expand the logarithmic term
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ln Wð Þ � f � ln a1 1þ ln W1ð Þ
f

� �
þ a2 1þ ln W2ð Þ

f

� �� �
: (20)

We can simplify Eq. (20) by collecting similar terms and applying
a1 þ a2 ¼ 1

ln Wð Þ � f � ln 1þ a1ln W1ð Þ þ a2ln W2ð Þ
f

� �
: (21)

For logarithm lnð1þ xÞ where x � 1, a first-order Taylor expansion
ln 1þ xð Þ � x can be used for approximation

ln Wð Þ � a1 ln W1ð Þ þ a2 ln W2ð Þ; (22)

from which the sought limit can be recovered by exponentiation

W � Wa1
1 W

a2
2 : (23)

Derived function W ¼ Wa1
1 W

a2
2 , also called the geometric mean (GM),

follows directly from the WPM when f ! 1. We compare it to
WAM and WHM to find a favorable interpolation method for electri-
cal properties with the VOF method for coupled EHD simulations.

III. NUMERICAL METHOD

We utilized the open-source software OpenFOAM,67 which pro-
vides a FVM implementation of a wide range of physical models and
solvers. Specifically, we adapted the interFoam solver (version v2312),
which employs the algebraic VOF method. To compute the electric
force—Eq. (4), we solved the Poisson equation—Eq. (6), and the con-
servation of charge equation—Eq. (12). For clarity, all numerically
implemented equations are collected in Appendix B. In the present
model, the permittivity and conductivity are treated as continuous
fields by blending the phase values using the volume fraction, which
enables the computation of its gradient within the finite volume frame-
work despite the physical discontinuity at the interface.

Partial differential equations were solved using the PIMPLE algo-
rithm, a hybrid of the PISO (Pressure Implicit with Splitting of
Operators) and SIMPLE (Semi-Implicit Method for Pressure-linked
Equations) algorithms. An adaptive time stepping approach ensured
stability with a global Courant number Co ¼ 0:25. Algebraic equa-
tions were solved using the preconditioned conjugate gradient (PCG)
solver and the diagonal incomplete Cholesky (DIC) solver. For the

volumetric charge density, the algebraic equations were preconditioned
using diagonal incomplete LU decomposition (DILU) and solved
using the preconditioned bi-conjugate gradient solver (PBiCG), which
are often used together where non-symmetric systems arise. All cases
were computed on a 16-core AMD Ryzen 9 7950X processor.

IV. NUMERICAL MODEL VERIFICATION AND
VALIDATION

This section presents a comparative analysis of six different solv-
ers. Solvers vary in their implementation of the electric force (either
MSTF or CPF) and their choice of the interpolation method (WAM,
WHM, or GM). They are compared on three standard benchmark ver-
ification tests and validated on the well-documented droplet deforma-
tion test against analytical solutions and experiments.

A. Verification tests

To verify the implementation of Eqs. (6) and (12), we calculated
three cases introduced in the 2011 paper by L�opez-Herrera et al.:6 the
planar layer test, the conducting cylinder test, and the Gaussian charge
bump relaxation test. The setup and boundary conditions of the test
are shown in Fig. 2.

The domain was discretized using a uniform structured Cartesian
mesh. The resolution of the mesh is denoted by k, which specifies the
number of cells in x and y directions as 2k. The total number of cells is
then 22k.

1. Planar layer test

In the planar layer test, see Fig. 2(a), two fluids with different elec-
trical properties are stacked vertically and share a stable interface. An
electric potential difference is generated between the top and bottom
boundary (/0 is the non-zero specified potential, H is the arbitrary
height), which induces an electric field through the domain. Three
fluid pairs encapsulating the boundary cases are simulated:
conductive-conductive, dielectric-dielectric, and conductive-dielectric.
The induced electric field and pressure difference over the interface are
compared with the dimensionless analytical solutions for MSTF and
CPF implementations of the electric force in Table V. The setup and
analytical solutions are specified in Table IV.

FIG. 2. Verification tests setup: (a) planar layer test, (b) conducting cylinder test, and (c) Gaussian charge bump relaxation test.
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The solution of the electric field converges toward its analytical
value at higher grid resolution and is independent of the electric force
implementation. This is to be expected since the Poisson equation gov-
erns the electric field, Eq. (6). Interestingly, the calculation of the pres-
sure jump over the interface ðDPÞ using direct calculation of the
electric force (CPF) converges to a different value than the conservative
divergence form (MSTF). The magnitude of the erroneous limit
depends on the specific case and arises from the inaccurate estimation
of the polarization term, as noticed also by Welch and Biswas.68 In the
case of the electric permittivity on the order of 10�12 Fm�1, which is
usual for common solvents, gasses, air, and the vacuum, the error in
pressure calculation is also of the same order, which shows that the use
of the CPF does not seriously compromise the solution.

In all cases, a first-order spatial convergence is achieved since the
errors halved with the doubling of grid resolution. Interestingly, the
pressure jump error is roughly the sum of the electric field errors in
the MSTF method. This indicates that the conservative nature of the
MST enables a conservative calculation of electrical stresses in each
grid cell. The selection of the interpolation method did not influence
the results, with changes below 0.5%. Results in Table V were calcu-
lated using the WHM interpolation.

2. Conducting cylinder test

In the conducting cylinder test, see Fig. 2(b), a conducting cylinder
of radius R (fluid 1) is placed in the center of a dielectric domain (fluid
2). Uniform charge distribution qE;0 is prescribed inside the cylinder at
time zero and is repelled toward the interface as time progresses. A dis-
crete jump in the magnitude of the electric field jEj is expected at the
interface since the conducting cylinder is at the same electric potential,
and the permittivity of the surrounding fluid governs the potential
drop outside r 	 R, where r is the radial position. The analytical solu-
tion6 of the electric field magnitude is

Ej j rð Þ ¼
0 for r < R;
Q

2pe2
r�1 for r 	 R;

8<
: (24)

where Q ¼ pR2qE;0 is the total charge per unit cylinder. Test parame-
ters were the following: K1 ¼ 3 Sm�1, e1 ¼ 3 Fm�1, K2 ¼ 0 Sm�1,
e2 ¼ 2 Fm�1, qE;0 ¼ 0:5Cm�3, and R ¼ 0:05m (domain is
1� 1m). Four grid resolutions were tested, with k in the range of 6–9.

The solution of Eq. (24) is compared with numerical results in
Fig. 3(a). The numerical solution converges toward the analytical limit
with increasing grid resolution. Furthermore, the total charge within

the domain is conserved, regardless of grid resolution, as shown in
Fig. 3(b). The total charge also converges to the analytical solution
with higher grid resolution. This was anticipated since the area of the
cylinder’s cross section approaches theoretical value as the interface
becomes more refined. The selection of the interpolation method or
electric force implementation did not influence the results. Results in
Figs. 3(a) and 3(b) were calculated using the CPF-WHM solver.

3. Gaussian charge bump relaxation test

Conservation of charge implementation is further verified in the
Gaussian charge bump relaxation test, as seen in Fig. 2(c). The setup is
the following: consider a two-dimensional Gaussian charge bump cen-
tered in a square domain (size 1� 1m, k ¼ 8) consisting of a single,
conducting liquid with K ¼ 1 Sm�1 and e ¼ 2 Fm�1. The initial
charge density profile is set according to

qE p; t0ð Þ ¼ 1

a
ffiffiffiffiffi
2p

p e
r2

2a2 ; (25)

where p ¼ ðx; yÞ is the position vector, t0 is time zero, r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radius vector from the domain center, and a ¼ 0:05 is a con-
stant. As time proceeds, the charge bump decays exponentially follow-
ing the analytical solution:6

qE p; tð Þ ¼ qE p; t0ð Þe�K
e t : (26)

A comparison between the analytical and numerical solutions is pre-
sented in Fig. 3(c), where the volumetric charge density distribution is

TABLE V. Comparison between numerical results and analytical solutions for the pla-
nar layer test. Four grid resolutions were tested, where the grid number specifies the
number of cells in the direction normal to the interface. Errors were calculated as
Xerr ¼ 1� Xnum=Xan ð%Þ, where X 2 ðjE1j; jE2j;DPÞ. Two implementations of the
electric force are compared in consecutive columns for each variable X. In the
conductive-dielectric pair, the value of jE1j is always smaller than 1 � 10�12, corre-
sponding to the approximate zero value.

k

jE1j Error (%) jE2j Error (%) DP Error (%)

CPF MSTF CPF MSTF CPF MSTF

Conductive–dielectric pair
5 0 0 3.05 3.22 33.00 6.57
6 0 0 1.65 1.60 29.00 3.22
7 0 0 0.65 0.80 26.50 1.65
8 0 0 0.35 0.40 26.00 0.90

Dielectric–dielectric pair
5 0.80 0.80 0.80 0.80 12.16 1.59
6 0.40 0.40 0.40 0.40 11.28 0.79
7 0.20 0.20 0.20 0.20 10.85 0.39
8 0.00 0.00 0.07 0.07 10.64 0.20

Conductive–conductive pair
5 1.13 1.13 1.25 1.25 0.24 2.30
6 0.56 0.56 0.50 0.50 1.37 1.13
7 0.31 0.31 0.25 0.25 1.94 0.56
8 0.12 0.12 0.12 0.12 2.18 0.28

TABLE IV. Dimensionless parameters and dimensionless analytical solutions for the
three cases. Electric potential, length, and pressure jump are scaled with /0, H, and
e2/

2
0=H

2, respectively. Analytical solutions are adapted after L�opez-Herrera et al.6

Fluid pair e1=e2 K1=K2 jE1jan jE2jan DPan

Conductive–dielectric … … 0 2 �2

Dielectric–dielectric 3 …
2

1þ b
2b

1þ b
� 2bðb� 1Þ

1þ bð Þ2

Conductive–conductive 2 0:25
2

1þ g
2g

1þ g � 2ðg2 � bÞ
1þ gð Þ2
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sampled radially at five different time steps and compared to Eq. (26).
Further comparison is shown in Fig. 3(d), where the time decay of
the peak charge density, located at the center of the domain, is
sampled over multiple time steps and compared with the analytical
results. Both tests exhibit an exact match with the analytical predic-
tions, validating the implementation of the charge transport equation.
Likewise, in the conducting cylinder test, no influence of solver selec-
tion on the result was noted. This is expected since we solve only the
electric equations in a computational domain without an interface.
Results in Figs. 3(c) and 3(d) were calculated using the CPF-WHM
solver.

Verification tests confirm the charge-conservative nature of the
proposed solvers and the implementation of the electric equations.
However, they provide limited insight into the influence of the electric

force implementation and show no variation in the results based on
the interpolation method of electric properties.

B. Experimental validation

Validation was performed on the well-studied test of droplet
deformation in an electric field, with results compared against two ana-
lytical models, the linear model by Taylor8 and the later improved
nonlinear model by Ajayi,69 two experimental data sets taken from the
2000 paper by Ha�and Yang,70 and the 2024 paper by Karp et al.71

1. Test setup

The numerical setup for the Ha and Yang70 paper [see Fig. 4(a)
left] includes a droplet with an initial radius r and rheological

FIG. 3. Verification tests: (a) electric field magnitude for the charged cylinder test, (b) total charge in the computational domain for the charged cylinder case, (c) volumetric
charge density distribution for the Gaussian charge bump test, and (d) the decay of the peak volumetric charge density. Time in (c) is in seconds. The analytical solution is
drawn with a solid black line.
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properties l1; K1, and e1 which was placed at the center of a two-
dimensional computational domain of size 2:5 r � 10 r. The buoyancy
effects were ignored by using the same external fluid density as the
droplet. However, the rheological properties of the external fluid were
described with l2; K2; and e2. An electric field of strength E0 was
applied in the vertical direction, which deformed the droplet. A defor-
mation parameter

D ¼ a� b
aþ b

(27)

was calculated from the droplet’s major and minor axis stretch [see
Fig. 4(a) right] together with the electric capillary number CaE, which
varied between 0.01 and 0.2

CaE ¼ e2E2
0r

r
: (28)

Other dimensionless numbers associated with the problem are the
electric conductivity ratio R ¼ K1=K2, the electric permittivity ratio
S ¼ e1=e2 and the dynamic viscosity ratio M ¼ l1=l2, which equaled
R ¼ 10�8, S ¼ 36:36 andM ¼ 0:1 for all calculated cases with surface
tension r ¼ 0:028Nm�1 and density q ¼ 1000 kgm�3.

A uniform, structured Cartesian mesh was employed, and a mesh
sensitivity study was performed using resolutions of 40, 60, 80, and
100 cells across the radius of the droplet. Therefore, the largest and the
smallest cell sizes correspond to 25 and 10lm, respectively. The results
in Fig. 5 indicate that the final droplet deformation remained

consistent between the cases with 80 and 100 cells. Consequently, a
mesh resolution of 80 cells across the droplet radius was adopted.

When a steady state solution is reached, a flow field shown in
Fig. 6 arises. Two characteristic recirculation zones develop, the first in

FIG. 4. A steady-state solution of droplet deformation: (a) initial and boundary conditions (left) and the deformed droplet with attributing dimensions (right), with the steady-state
solutions of the (b) electric potential in volts, (c) electric field magnitude in volts per meter, and (d) the electric force at the surface in newtons per cubic meter. Results in (b)–(d)
were calculated with the CPF-WHM solver and CaE ¼ 0:2.

FIG. 5. Mesh sensitivity study with N specifying the number of cells across the
droplet radius. CPF-WHM solver was used with CaE ¼ 0:2.
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the droplet and the second in the surrounding medium, driven by the
shear forces at the interface.

2. Electric force implementation comparison

A normalized plot of the deformation is shown in Fig. 7. The plot
reveals distinct differences in the performance of the two electric force

implementations. Suppose the deformation is not normalized (see
Fig. 8). In that case, the MSTF implementation predicts only half the
steady-state deformation compared to CPF, indicating a significant
underestimation of the droplet’s deformation. Furthermore, the MSTF
implementation exhibits prolonged and high-amplitude oscillations
during the transient phase, suggesting less numerical damping and
potentially reduced stability. In contrast, the CPF implementation
demonstrates a more stable and physically consistent behavior with
rapid damping of oscillations and smooth convergence to the steady-
state value. Interestingly, despite the differences in transient behavior
and final deformation, both implementations ultimately converge to a
similar normalized steady-state deformation, which is around 60% of
the maximum deformation.

The difference in steady-state deformation is traced to variations
in the peak volumetric charge density predicted by the MSTF and CPF
solvers. This disparity results in the peak charge density for the CPF
solver being up to 68% higher than that of the MSTF solver. The
higher peak charge density in CPF contributes to stronger electric
forces at the interface (300% increase over MSTF), thereby contribut-
ing to the more significant steady-state deformation.

3. Interpolation functions comparison

As shown in Fig. 8, the choice of interpolation method signifi-
cantly affects the results when the CPF force implementation is
employed. WHM interpolation predicts the highest deformation
among the tested methods, closely aligning with experimental data.70

This alignment is particularly noticeable at higher electric capillary
numbers (CaE > 0:1), where WHM captures the steep increase in
deformation observed experimentally. In contrast, both WAM
and GM interpolations consistently underestimate deformation by
�10%–15%. Therefore, validation tests employing only the analytical
models should be limited to CaE < 0:05. Experimental validation is
crucial for verifying numerical models that capture high deformations.

FIG. 6. Comparison of the deformation oscillations in the transient stage between
MSTF and CPF with CaE ¼ 0:16. Both plots are normalized to the maximum defor-
mation value. WHM interpolation was used in both cases. The MSTF continues to
oscillate further than 200ms, settling at the same normalized deformation as CPF.

FIG. 7. Streamlines of the flow field in the droplet deformation study, calculated with
the CPF-WHM solver, with CaE ¼ 0:20. Scale is in millimeters.

FIG. 8. Interpolation function comparison for the MSTF (blue markers) and CPF
(orange markers) solvers. Experimental data are from Ha and Yang70 and analytical
solutions from Taylor8 and Ajayi.69
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For the MSTF force implementation, the interpolation method
has no observable impact on droplet deformation. Under these condi-
tions, the deformation exhibits a roughly linear trend with increasing
electric capillary number, as shown by the overlapping results of all
interpolation methods. Such linear behavior agrees with experimental
data only at very low deformation levels (D < 0:05), where Taylor’s
linear model is conventionally applied.8 Beyond this range, experimen-
tal data70 and predictions from the improved Ajayi’s model69 indicate
a nonlinear increase in deformation, which is not captured by the MST
implementation.

Figure 9 illustrates the interpolation of electric properties across
the fluid interface and their influence on the location of the volumet-
ric charge relative to the computed interface. As anticipated (see
Fig. 10), the WHM interpolation results in the most abrupt transi-
tions in electric properties, while GM and WAM produce increas-
ingly smoothed variations. Concerning the interface position, WHM
assigns the properties of the outer fluid across the entire interface
and even within the droplet. This occurs because even a slight
decrease in the volume fraction parameter triggers a sharp change in
electric properties.

Although this behavior may initially appear inconsistent, WHM
most accurately computes the volumetric charge density at the inter-
face where it physically resides. A similar accuracy is achieved by the
GM interpolation method. WAM, which incorporates gradual transi-
tions in fluid properties across the interface, primarily calculates the
charge distribution within the outer medium. Consequently, WHM
yields electric forces in agreement with experimental data and provides
the most physically accurate volumetric charge distribution, which is
also captured by the GMmethod.

4. The velocity field inside the droplet

The validation of the velocity field inside the droplet was per-
formed on a recent experimental dataset by Karp et at.,71 which
employed particle image velocimetry. The numerical setup is analo-
gous to the case described at the start of the section, with the following
differences. The computational domain size was 6 r � 3 r, with r

FIG. 9. Electric conductivity K and volumetric charge density qE fields for different interpolation functions and electric force implementations imaged in detail marked on the left.
K1 ¼ 1� 10�4; K2 ¼ 1� 10�12, and qE;max ¼ 1:96 Cm�3. Black lines mark the interface (a ¼ 0:5) with CaE ¼ 0:2 and mesh resolution of 80 for all cases. The size of the
detail is 175� 87:5lm. Scale on the left is in millimeters. The imaged section was chosen at the area where the strongest electric force is located [see Fig. 4(d)].

FIG. 10. Comparison of different interpolation functions for kK ¼ 106. The WPM
method is plotted for the case of f equal 2, 5, and 20. At the f ! 1 limit, the
WPM approaches the GM.
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¼ 2:25 mm. Dimensionless numbers were R ¼ 0:029, S ¼ 0:68, and
M ¼ 0:735 for all calculated cases with r ¼ 0:004Nm�1. The density
ratio of used liquids in the experiment was 1.009 and was set to unity
in the simulations. The same number of cells per initial droplet diame-
ter was used.

In addition to the experiment, the results were also compared to
the analytical solution provided by Taylor,8 since the droplet deforma-
tion D was below 0.05. The radial component of the velocity vector is
calculated from the Cartesian coordinates as ur ¼ u � ðcos h; sin hÞ,
where h is the polar angle of the position vector measured from the x
axis.

Figure 11 shows the comparison between the experimental,
numerical and analytical solutions of the second case from the experi-
mental dataset,71 with E0 ¼ 0.50 kV/m applied in the positive x direc-
tion. The difference between the CPF (solid lines) and the MSTF
(dashed lines) solver is negligible, due to the low deformation rate. The
interpolation functions influence both the magnitude and the shape of
the velocity profile with the WHM method consistently yielding the
best agreement with experimental data across both directions, followed
by the GMmethod.

V. ELECTRO-FLOW-FOCUSING SETUP

An axisymmetric domain mimicking the original EFF experi-
mental device by Ga~n�an-Calvo et al.72 was constructed numerically
and is shown in Fig. 12. A charged capillary of diameter D ¼ 100lm
was placed inside a pressurized metal cylinder (electrode) at zero elec-
tric potential, with an orifice of diameter d ¼ 50 lm inline with the
capillary. The distance between the capillary and the orifice was
H ¼ 100 lm. The dimensions of the outlet chamber were
1:575� 0:5mm; and the capillary length-to-radius ratio was 6 to
ensure the development of the velocity profile. Heptane and air were
chosen as the focused and focusing fluids with their properties listed in
Table VI. The process parameters were kept constant in all cases with
the liquid flow rate Q at 0:75ml h�1, gas overpressure DPg at 20mbar,
and electric potential /0 at 2 kV. The overpressure was chosen so that
the gas remained in the incompressible regime throughout the compu-
tational domain (Ma< 0.3, where Ma is the Mach number).

The mesh resolution was chosen based on the mesh indepen-
dence study, where meshes with the finest resolution of
1:25; 0:63; 0:31, and 0:16 lm were tested. The difference in the jet
diameter at the electrode orifice between the 0:31 and 0:16lm mesh
was negligible. Therefore, an axisymmetric structured hexahedral
mesh with five levels of local refinement was employed (see Fig. 12).
Cells at the finest refinement level were 0:31� 0:31 lm, with a total
cell count of �140 000. All cases were first calculated on the 0:63 lm
mesh with the WAM interpolation until a quasi-steady state solution
was obtained (1ms) to shorten the simulation time and ensure a
numerically stable initial solution. After that, the computed fields were
mapped onto the finer mesh, and the intended interpolation method
was employed. The fluid properties were constant for all cases except
for the WHM interpolation, where the conductivity of air was chosen
as K ¼ 1E�12 Sm�1, to prevent code failure. The rheological and elec-
trical properties of heptane and air are listed in Table VI, and the
boundary conditions are listed in Table VII.

The geometry and process parameters were chosen to ensure the
combined effect of the electric and hydrodynamical focusing force.72

Specifically, the similarity in distances D � Lt � H and the ratio
between the electric to mechanical stress exerted on the jet72

v ¼ q1r
2K2

1

e20DP3
g

 !1
3

; (29)

which equals 0.72 in our case. Lt � Q K1q21e
�1
0 r�1


 �1=3
is the transi-

tion length or the length where the electric force exerts maximum
influence.72

VI. RESULTS AND DISCUSSION

For the aforementioned EFF case, we tested the high conductivity
ratios with all three interpolations methods. We found that while the
WAM and GM are robust for any conductivity ratio, the WHM is sta-
ble until the lowest conductivity is roughly 10�12 Sm�1. However, the
conductivity of the gas does not have a significant influence on the
jet dynamics except charge conduction from the interface. Once a

FIG. 11. Radial velocity shown against the
normalized radius at two polar angles,
h ¼ 0 and h ¼ p=2. Solid and dashed
colored lines represent the CPF and
MSTF solver, respectively. The black line
represents the analytical solution by
Taylor,8 while the experimental data from
Karp et al.71 are marked with diamonds.
The inset illustrates the recirculation pat-
tern inside the droplet.
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quasi-steady state solution is computed, the electric permittivity of the
gas could be lowered from 10�12 to 10�50 with the WAM and GM
interpolation, and the difference in jet diameter, jet velocity, or charge
density becomes negligible.

Interestingly, the velocity and pressure field results were indepen-
dent of the interpolation methods but Fig. 13 shows the results
obtained with the WAM interpolation. The highest observed velocity
was 90m/s, which occurred in the early transition regime and then
lowered to 63m/s in the quasi-steady state jetting regime. These values
justify use of a non-compressible solver and correspond to Mach num-
bers of 0.265 and 0.185, respectively.

Electric force and electric magnitude fields are shown in Fig. 14
with the WAM interpolation. The highest electric force magnitude is
observed in the transition region between the Taylor cone and the
developed jet, which is roughly 60–70lm long. This agrees with the
classical electrospray theory,72 which predicts this transition length Lt
on the order of 101 lm. The electric force vectors are shown in Fig. 15,
together with the electric charge density. Similarly to the droplet defor-
mation case, the interpolation method influences the peak charge den-
sity and peak electric force magnitude (see Table VIII), increasing
from WAM to GM and WHM. This change is not significant enough
to disrupt the Taylor cone equilibrium (see Fig. 16) and to influence
the jet diameter (see Table VIII). However, it leads to an earlier jet
breakup. The average jet length in Table VIII was measured from the
electrode orifice exit to the breakup point and was averaged over 500
ls. Jet length variation in time is shown in Fig. 17 for the GM
interpolation.

For all three interpolations, the free charge is well contained at
the interface, with a minor disruption at the Taylor cone, where the
recirculation cell (see Fig. 18) is closest to the interface. Likewise, in the
droplet deformation test, the position of the Debye layer moves toward
the interface when a sharper interpolation function is selected, result-
ing in higher peak charge density (see Table VIII).

FIG. 12. Computational domains of EFF
and mesh refinement detail. Cell dimen-
sion in different refinement areas is
provided in the zoomed-in region. The
device dimensions are: D ¼ 100 lm,
d ¼ 50 lm, and H ¼ 100 lm.

TABLE VI. Rheological and electrical properties of heptane and air used in the EFF
simulation.

Fluid q ðkgm�3Þ � ðm2 s�1Þ K ðSm�1Þ er r ðNm�1Þ
Heptane 684 5.5 � 10�7 1 � 10�6 1:93 0:0186
Air 1:2 1.5 � 10�5 1 � 10�14a 1 � � �
aThe electric conductivity of air was set to 1 � 10�12 Sm�1 for cases with the WHM
interpolation.

TABLE VII. Boundary conditions for the EFF case.

Patch Velocity Pressure Phase fraction Electric Potential Charge density

Liquid inlet u ¼ u0 @nP ¼ 0 a ¼ 1 @n/ ¼ 0 @nqE ¼ 0
Capillary u ¼ 0 @nP ¼ 0 @na ¼ 0 / ¼ /0 @nqE ¼ 0
Gas inlet @nu ¼ 0 P ¼ P0 a ¼ 0 @n/ ¼ 0 @nqE ¼ 0
Electrode u ¼ 0 @nP ¼ 0 @na ¼ 0 / ¼ 0 @nqE ¼ 0
Atmosphere @nu ¼ 0 P ¼ 0 @na ¼ 0 @n/ ¼ 0 @nqE ¼ 0
Outlet @nu ¼ 0 P ¼ 0 @na ¼ 0 / ¼ 0 @nqE ¼ 0
Axis Emptya

Front/back Wedgeb

aA reduced dimension boundary condition for the axisymmetric case setup.
bA boundary condition enforcing cyclic conditions between the two patches.
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The jet velocity profile is shown in Fig. 18 (top), and the jet veloc-
ity field (bottom). Outside of the electrode, the jet undergoes constant
acceleration. We can estimate the acceleration via the material deriva-
tive of the velocity a ¼ @tuþ ðu � rÞu. We retain only the axial com-
ponent of the convective term since the jet is radially symmetric and
steady in time

a xð Þ ¼ u2 x2ð Þ � u2 x1ð Þ
2 x2 � x1ð Þ : (30)

The acceleration is on the order of 105 m s�2, which is in excellent
agreement with the experimental measurements1,73 of EFF jets.

VII. CONCLUSION

We derived a macroscopic charge conservative EHD numerical
model implemented in the FVM-VOF technique from the laws govern-
ing the conservation of ionic species based on two assumptions: (i) no
ongoing reactions producing ionic species and (ii) fields of relatively high

electric potentials where the electric drift of ions is of many orders higher
than the thermal stochastic motion. We compared two commonly used
approaches to model the electric force source term in the momentum
equation and three interpolation methods for the electrical properties of
fluids. Two interpolation methods, WAM and WHM, have been readily
implemented in the past. In contrast, the GM interpolation is a novelty
and was derived as a limit of a previously proposed interpolation26 for
high electrical conductivity ratio EHD problems. The complete set of
equations used in the numerical model is collected in Appendix B.

The six models, combining two force and three interpolation
methods, were tested against benchmark verification tests with the fol-
lowing conclusions:

(1) All implementations correctly compute the electric field and are
charge-conservative. The numerical solution converges toward
the analytical solution with mesh refinement.

(2) The pressure jump over the interface due to the electric force is
correctly computed using the MSTF approach, while the CPF

FIG. 13. Velocity (top) and pressure (bot-
tom) field. Mach number contours are
drawn in the area of maximum velocity.
Radial and axial coordinates are in
micrometers.

FIG. 14. Electric force magnitude (top)
and electric field magnitude with electric
field iso-lines (bottom). Radial and axial
coordinates are in micrometers.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 083353 (2025); doi: 10.1063/5.0281409 37, 083353-14

VC Author(s) 2025

 13 August 2025 10:17:39

pubs.aip.org/aip/phf


approach converges to a different value. The absolute difference
can be neglected in most practical liquid jet and droplet
applications.

(3) The difference in results is below 1% in the WAM, WHM, and
GM comparison for all verification tests.

Experimental validation was done against the droplet deforma-
tion experiment, with data from Ha and Yang70 with the following
conclusions:

(1) MSTF exhibits prolonged and high-amplitude oscillations dur-
ing the transient phase of droplet deformation, suggesting less
damping and potentially reduced numerical stability.

(2) Furthermore, the MSTF computes substantially different peak
charge densities (68% lower) and electric force magnitudes
(300% lower) than the CPF. Changes in the interpolation
method do not influence the MSTF’s result.

(3) The ratio between the initial peak deformation and the steady
state deformation is the same for both force implementations.

Although CPF and MSTF differ in their numerical formulation,
they originate from the same physical stress balance. As a result,
the normalized transient deformation curves (peak to steady-
state ratio) remain consistent across implementations. This sug-
gests that both methods resolve the same dynamical behavior,
and differences are primarily in force magnitude scaling due to
numerical interpolation and discretization.

(4) CPF depends on the interpolation method, with the sharper
functions providing higher peak charge densities, electric forces,
and droplet deformations.

FIG. 15. Volumetric charge density field with electric force vectors at the liquid inter-
face. Radial and axial coordinates are in micrometers.

TABLE VIII. Maximum electric charge density, electric force values, average jet
length l and jet diameter d obtained using different interpolation methods. The peak
charge density and the electric force values are located at the jet interface in the tran-
sition region (see Fig. 15).

WAM GM WHM

qE;max ðCm�3Þ 39.6 42.2 43.8
FE;max ðNmm�3Þ 2.25 2.33 2.42
lavg ðlmÞ 336.6 315.0 283.3
davg ðlmÞ 5.0 5.0 5.0

FIG. 16. Meniscus equilibrium shape for WAM, WHM, and GM interpolation func-
tions. Radial and axial coordinates are in micrometers.

FIG. 17. Jet length as a function of time for the GM case.
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(5) The CPF-WHM combination is in excellent agreement with the
experimental data.

(6) WHM and GM provide a volumetric charge distribution at the
interface, which is physically most accurate. WAM computes
the charge away from the interface location.

The MSTF implementation shows negligible sensitivity to the
interpolation method because it computes the electric force as the
divergence of the Maxwell stress tensor, distributing the effect of per-
mittivity and field gradients across neighboring cells in a conservative
manner. This approach inherently smooths out variations introduced
by different interpolation schemes such as WAM, WHM, or GM,
especially within the smeared interface region typical of VOF methods.
In contrast, the CPF formulation directly uses local values of electric
field and volumetric charge, both of which are highly sensitive to how
sharply electrical properties vary across the interface. As a result, CPF
captures sharper interfacial forces and deformation changes with dif-
ferent interpolation methods, while MSTF remains largely unaffected
due to its global and conservative formulation. It seems that combined
with the naturally diffused interface in the VOF method, MSTF tends
to underestimate the peak values of both charge and electric force, dis-
tributing them more broadly across the interfacial region. Thus, while
both methods conserve total force correctly in theory, CPF is better at
resolving interfacial peaks, whereas MSTF tends to capture a diffuse
average.

To show the robustness of our solver, a simulation of a steady
EFF jet is presented. The following conclusions were drawn based on
the CPF solver with varying interpolation methods:

(1) Interpolation methods influence jet length but not the jet
diameter.

(2) The Taylor cone’s shape is influenced by the interpolation
method to a small extent, with the GM and WHM methods
providing indistinguishable results.

(3) The solver captures the experimentally measured jet velocity
profile.

(4) The results are insensitive to the reduction of the electric con-
ductivity of the gas from 10�12 to zero.

The WHM interpolation fails for high electric conductivity ratios
and dielectric conductivities below 10�12 Sm�1. GM and WAM can
deal with all electrical property ratios.

The reasoning behind the diminished influence of the interpola-
tion method on the EFF jet, which proved substantial in a recent elec-
trospray study,26 is the following. The change in the peak electric force
value was 7% (see Table VIII), which, considering the electric-to-
mechanical stress ratio v ¼ 0:72, increases the overall focusing force
by roughly 3%, but is insufficient to deform the jet considerably.
However, a slight increase in the electric force does advance the jet’s
breakup. Thus, when the electric properties are in the WHM working
range, we suggest performing numerical simulations using the CPF-
WHM solver combination; otherwise, the GM interpolation should be
used.

While this study focuses on simplified electrohydrodynamic
models that neglect surface charge convection and confinement effects,
we acknowledge that these phenomena play a critical role under strong
shear, high conductivity contrast, and microscale confinement condi-
tions. Incorporating such effects would require additional interface
control equations and introduce significant nonlinear coupling, with
implications for numerical stability and model fidelity. Nonetheless,
we believe the present results offer a valuable and underexplored refer-
ence point for assessing the accuracy and conservation properties of
the basic model variants. Our future efforts will extend the presented
framework to include surface charge dynamics and confinement
effects, aiming to capture the complexities of electrohydrodynamic sys-
tems even more comprehensively.

Complementing our focus on model fidelity, we also briefly com-
ment on computational performance. The current implementation
shows first-order spatial convergence (see Table V) and scales effi-
ciently for problems ranging from 400k to 2 � 106 cells. The time step
cost is only marginally higher than the base VOF solver without

FIG. 18. EFF jet’s axial velocity profile from the capillary tip to the jet breakup (top) and the cross section of the jet’s velocity field (bottom). The velocity plot and the velocity
field are scaled to size.
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electrostatics, especially after the electric field stabilizes. No clear com-
putational advantage or disadvantage was observed between interpola-
tion methods, including the newly implemented GM scheme. The
primary time step limitation arises from the electric relaxation time te,
which can be significantly shorter than the hydrodynamic time step
for conductive fluids. A detailed performance comparison with other
methods (e.g., level-set, phase-field) was not included, and we propose
this as a direction for future study.
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APPENDIX A: DERIVATION OF THE ELECTRIC FORCE

Since the exact derivation of CPF from the divergence of the
MST could not be found in the literature by the authors, we provide
a complete derivation here, hoping it will serve the readers as a
helpful reference. The electric force is calculated from the diver-
gence of the Maxwell stress tensor, which for an electric field E in a
medium with permittivity e is given by

FE ¼ r � sE ¼ r � eEE � 1
2
eE2I

� �
: (A1)

Expanding the divergence term

FE ¼ re � EEð Þ þ er � EEð Þ � 1
2
r eE2ð Þ; (A2)

and applying the identity r � EEð Þ ¼ E � r � Eð Þ þ ðE � rÞE, we
resolve the first term

FE ¼ re � EEð Þ þ eE r � Eð Þ þ e E � rð ÞE � 1
2
r eE2ð Þ: (A3)

Using the product rule, r eE2ð Þ ¼ reð ÞE2 þ e � rE2, and the chain
rule rE2 ¼ 2E � rE,

FE ¼ re � EEð Þ þ eE r � Eð Þ þ e E � rð ÞE � 1
2
E2re� e E � rð ÞE;

(A4)

we see that the third and fifth terms on the rhs cancel out, leaving
us with

FE ¼ re � EEð Þ þ eE r � Eð Þ � 1
2
E2re: (A5)

By applying the Gauss law, r � eEð Þ ¼ qE , and expanding and rear-
ranging the divergence term, e r � Eð Þ ¼ qE �re � E, we can
expand the second term in (A5)

FE ¼ re � EEð Þ þ qEE �re � EEð Þ � 1
2
E2re; (A6)

finally obtaining the sought form

FE ¼ qEE � 1
2
E2re: (A7)

APPENDIX B: OVERVIEW OF MODELED EQUATIONS

All equations employed in the extended interFoam solver are
explicitly repeated here for clarity and reproducibility purposes

r � quð Þ ¼ 0; (B1)

@ quð Þ
@t

þr � quuð Þ ¼ �rP þr � l ruþruTð Þ � 2
3
l r � uð ÞI

� �

þ FST þ FE;

(B2)

r � eEð Þ ¼ qE; (B3)

@qE
@t

þr � qEuð Þ ¼ �r � KEð Þ; (B4)

FE ¼ r � eEE � 1
2
eE2I

� �
; (B5)

FE ¼ qEE � 1
2
E2re; (B6)

W ¼ W1a1 þW2a2; (B7)

W ¼ a1
W1

þ a2
W2

� ��1

; (B8)

W ¼ Wa1
1 W

a2
2 : (B9)
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