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Abstract: Dense neutrino gases can exhibit collective flavor instabilities, triggering large

flavor conversions that are driven primarily by neutrino-neutrino refraction. One broadly

distinguishes between fast instabilities that exist in the limit of vanishing neutrino masses,

and slow ones, that require neutrino mass splittings. In a related series of papers, we have

shown that fast instabilities result from the resonant growth of flavor waves, in the same

way as turbulent electric fields in an unstable plasma. Here we extend this framework to

slow instabilities, focusing on the simplest case of an infinitely homogeneous medium with

axisymmetric neutrino distribution. The relevant length and time scales are defined by three

parameters: the vacuum oscillation frequency ωE = δm2/2E, the scale of neutrino-neutrino

refraction energy µ =
√

2GF(nν + nν), and the ratio between lepton and particle number

ǫ = (nν −nν)/(nν +nν). We distinguish between two very different regimes: (i) For ωE ≪ µǫ2,

instabilities occur at small spatial scales of order (µǫ)−1 with a time scale of order ǫω−1
E . This

novel branch of slow instability arises from resonant interactions with neutrinos moving along

the axis of symmetry. (ii) For µǫ2 ≪ ωE ≪ µ, the instability is strongly non-resonant, with

typical time and length scales of order 1/
√
ωEµ. Unstable modes interact with all neutrino

directions at once, recovering the characteristic scaling of the traditional studies of slow

instabilities. In the inner regions of supernovae and neutron-star mergers, the first regime

may be more likely to appear, meaning that slow instabilities in this region may have an

entirely different character than usually envisaged.
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1 Introduction

In laboratory settings, the flavor evolution of neutrinos consists of the usual oscillations caused

by masses and mixing [1–3], although matter refraction can play an important role [4, 5],

notably for solar or supernova neutrinos that escape through a density gradient, engendering
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MSW conversion [6–9]. On the other hand, in neutrino-dense astrophysical environments,

neutrino-neutrino refraction [10] spawns very different modes of flavor conversion in the

form of collective flavor waves supported by the interacting neutrino gas. The key insight

was that these waves can be unstable and thus can lead to large degrees of self-induced

flavor coherence [11–14] even without neutrino masses or mixing [15–17] except to seed the

instabilities. Understanding these phenomena and their astrophysical relevance has remained

an unfinished effort since their discovery some thirty years ago.

However, the underlying mean-field equations have remained the same. The flavor

structure of the neutrino gas is represented by 3×3 flavor density matrices ̺(p, r, t), where

the diagonal elements are the usual occupation numbers fα(p, r, t) for flavor α, whereas the

off-diagonal elements, that we will denote as ψαβ(p, r, t), represent the amount of coherence

between flavors α and β. (Here and always we work in the weak-interaction basis, not the

mass basis.) The evolution is governed by the quantum-kinetic equation [18–28]

(∂t + v · ∂r)̺(p, r, t) = −i
[

H(p, r, t), ̺(p, r, t)
]

+ C(̺, ̺) (1.1)

and a similar equation for the antineutrino modes ̺(p, r, t). The Liouville operator on the

left-hand side, also denoted as Vlasov operator in the context of plasma physics, takes care

of free streaming and involves the velocity which, in the ultrarelativistic limit, is v = p/|p|
and thus simply the direction of motion. The collision term C(̺, ̺) depends on complicated

convolutions of ̺(p, r, t) and ̺(p, r, t) and the constituents of the nuclear medium. The

refractive Hamiltonian, really a matrix of oscillation frequencies, is

H(p, r, t) = ±M
2

2E
+

√
2GFN +

√
2GF

∫

d3p′

(2π)3

[

̺(p′, r, t) − ̺(p′, r, t)
]

(1 − v′ · v), (1.2)

where M is the neutrino mass matrix and the negative sign applies to antineutrinos. In the

rest frame of the medium, matter refraction is determined by the matrix N of net charged

fermion densities, i.e., it has ne− − ne+ etc. on the diagonal. It is the commutator term that

takes care of flavor mixing and neutrino-matter and neutrino-neutrino refraction.

A brute-force numerical solution of eq. (1.1) is usually out of the question. On the other

hand, hierarchies of scales can simplify the problem. MSW conversion in the free-streaming

regime is driven by a gradient of the matter density and the conversion is adiabatic when

the vacuum oscillation frequency ωE = δm2/2E is fast by comparison. In the early days

of collective oscillation studies in SNe [29, 30], a similar approach consisted of assuming

a stationary emitting surface (the bulb model) and one looked for static solutions, i.e.,

time-independent variations of the neutrino flavor field as a function of radius. The gradient

of the neutrino density then drove a nearly adiabatic evolution along the radius, spawning

intriguing signatures such as spectral splits (or swaps).

It has long since emerged that a static slow variation along the radial direction was

largely an artifact of too many symmetry assumptions. Unstable collective modes depend

both on their spatial variation, possibly on very small scales relative to overall geometric

ones [31–33], as well as their time variation [34–37]. A small-scale wave can be unstable in a

neutrino gas where a large-scale one is stable. Therefore, a completely opposite philosophy

has recently taken root, looking at self-induced flavor conversion as a local phenomenon
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relative to overall geometric scales, potentially as a basis for numerical implementation on

subgrid scales [38–45]. So what are the relevant spatial and temporal scales?

The answer to this question has also evolved. The original run-away effect of flavor

coherence, Samuel’s bimodal oscillations [12], came from a feedback loop between vacuum

oscillations and neutrino-neutrino refraction. A homogeneous and isotropic gas of νeνe with

monochromatic energy E periodically oscillates as νeνe ↔ νxνx in a fashion similar to a

pendulum with natural frequency
√
ωEµ [46], where µ =

√
2GF(nν + nν) is a measure for the

neutrino-neutrino refractive effect. In contrast to the originally studied environment around

cosmological neutrino decoupling, in the region of spatial neutrino decoupling near a SN

core, the neutrino-antineutrino asymmetry is typically not small so that a new parameter

appears that we express as ǫ = (nν − nν)/(nν + nν) and concomitant refractive energy shift

ǫµ =
√

2GF(nν − nν). In an isotropic monochromatic neutrino gas, the bimodal instability

appears only for ǫ2µ < ωE < µ and, unless ǫ is very small, ωE , µ, and the growth rate√
ωEµ are all of a similar general order. We are assuming here that the gas possesses initially

mostly νe and νe; otherwise, these definitions should be changed as nν → nνe
− nνx

and

nν → nνe
− nνx

.

Unstable modes also exist in the absence of neutrino masses. In this limit, the equation for

lepton number (neutrinos minus antineutrinos) becomes self-contained and is a phenomenon

that only involves the flavor field of lepton number, not particle number. This multi-

angle effect was discovered in homogeneous systems consisting of a few discrete neutrino

directions [15, 16] and generally requires a crossing of the angular flavor lepton number

distribution [47–49]. While historically the bimodal instability was discovered first, the

multi-angle instability [15–17, 49–58] is actually more fundamental as it does not require

neutrino masses and thus is the purest form of collective flavor evolution. The generic scale

is ǫµ, although for the required difference of neutrino and antineutrino distributions, a single

parameter ǫ can only be taken as an approximate overall measure.

A first taxonomy of different scales of flavor conversion was provided by Sawyer [16] who

denoted bimodal oscillations as fast (scale
√
ωEµ) relative to vacuum oscillations (scale ωE),

and the multi-angle effect as very fast (scale µ), whereas the collision rate is the slowest

of all scales. Today, motivated by the hierarchy
√
ωEµ ≪ µ, bimodal conversion is termed

slow flavor conversion, the multi-angle effect as fast flavor conversion (FFC), meaning the

limit of vanishing neutrino masses. We stick to this terminology, although we have already

argued that the actually relevant scales for the different effects in the same neutrino gas

are much more complicated. Later, we will argue that the comparison with
√
ωEµ is not

consistent to begin with, highlighting the subtleties in these distinctions based on the growth

rate. Moreover, one needs to discriminate more carefully between spatial and temporal scales.

Instabilities driven by both ωE and angular crossings have only recently been considered

at all [52, 59]. For us, slow instabilities truly mean the ones that become stable when ωE

is “adiabatically” driven to zero.

Another scale is matter refraction expressed by λ =
√

2GF(ne− − ne+) if only charged

leptons of the electron flavor are present. This scale is usually much larger than all others,

exceeding ωE by some 11 orders of magnitude in a SN core and implying that neutrino

eigenstates of propagation and those of interaction nearly coincide. Therefore, the amplitude
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of mass-driven oscillations are strongly suppressed as first emphasized by Wolfenstein [5],

justifying the traditional neglect of flavor conversion in SN simulations. On the other hand,

the matter effect does not suppress collective flavor instabilities, essentially leading to a

common rotation of all modes in flavor space [14]. Still, one consequence is that neutrino

masses drive instabilities not by directly inducing conversions, but rather by causing an energy

splitting between neutrinos and antineutrinos, and therefore only the mass term projected on

the flavor axis ω̃E = ωE cos 2θV, where θV is the vacuum mixing angle, actually causes the

dynamics. The matter effect also modifies how unstable modes are triggered by the mass

term, potentially by matter inhomogeneities that communicate seeds to the neutrinos on

different length scales [52]. Even neutrinos alone presumably contain inhomogeneities; the

term that sources the instability is proportional to the neutrino density, which probably

has small fluctuations on short length scales that would seed instabilities on these scales.

However, in most studies, matter refraction and vacuum mixing are both ignored and instead

an arbitrary seeding of instabilities is introduced. A first explicit study of the matter effect

for FFC is not entirely conclusive [60].

Looking at collective flavor evolution as waves supported by the underlying neutrino

directional and energy distribution [51, 61, 62] opens new perspectives [49, 57, 58]. Strong

analogies can be drawn from plasma physics where similar questions have come up and

sometimes took decades to sort out. If we consider a flavor wave characterized by a real

wave number k and a potentially complex frequency ω, we can define the complex phase

velocity u = ω/|k|, where homogeneous modes (|k| = 0) have infinite and therefore strongly

superluminal u. On the other hand, subluminal modes have the crucial property that they are

on resonance with those neutrinos that have velocities v such that they are on resonance with

the wave. This Cherenkov condition allows for the exchange of energy between individual

neutrinos and the collective wave and can lead either to Landau damping or exponential

growth. Physical subluminal waves are therefore either Landau damped or grow exponentially,

these being alternatives, not complex-conjugate solutions with a growing and damped branch.

For superluminal waves, on the other hand, the Cherenkov condition cannot be fulfilled and

one has either real ω or two complex conjugate solutions. The resonance picture is at the

core of our proof that an angular crossing guarantees fast flavor instabilities of modes with

k pointing in the direction of a crossing line [49].

Our new perspective on flavor waves, in the linear regime, as analogous to plasma waves

and concomitant Cherenkov-type energy transfer between collective waves and particles,

was developed for fast flavor waves [49, 58] and will be here extended to slow modes. In

other words, we are seeking the dispersion relation for spatial Fourier modes with real k and

concomitant real or complex frequency ω. This approach delivers, in the linear regime, the

behavior of flavor waves in an infinite medium that we will take to be initially homogeneous.

In principle, one could also include a spectrum of spatial inhomogeneities in the matter

and/or the neutrino density, but not global gradients. The scales of the modes entering the

problem are not a priori obvious because all of ωE , µ, ǫµ and ǫ2µ could enter instead of a

single scale ǫµ in fast flavor physics. On the other hand, even the smallest of these scales in

the form of ωE corresponds to an inverse length scale of kilometers (based on the atmospheric

mass splitting) and thus remains somewhat small relative to geometric SN scales, so the
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assumption of modes spatially small compared to global SN scales is generally justified. In

addition, to cleanly separate slow instabilities from fast instabilities, we restrict ourselves here

to situations where the energy-integrated lepton number does not have angular crossings, i.e.,

it does not change sign across different directions. In this way, we ensure that for ωE → 0

there are no fast instabilities. We leave for future work the interplay between fast and slow

instabilities in the case of a crossed angular distribution.

What is the physical relevance of such studies? We are looking at the linear regime and

concomitant scales of a time-dependent problem in infinite space, which however is meant

to represent a small volume on SN scales. In the nonlinear regime, this picture corresponds

to the subgrid volumes that have been numerically studied to understand the possible local

relaxation of the neutrino flavor field within the limits of flavor lepton conservation. The main

assumption in this approach is that the unstable flavor waves grow nonlinear and possibly

relax to equilibrium in the same small volume in which they were born.

As stressed earlier, this approach is entirely opposite to early studies using different

incarnations of the bulb model, i.e., a stationary boundary with static solutions evolving as a

function of radius. The later extension to time-dependent boundary conditions is conceptually

similar in that a real frequency ω 6= 0 is assumed and one looks for real or complex k, i.e.,

spatial instabilities, not temporal ones. Which of these pictures, if any, better captures

reality is a questions that has not been investigated yet. The answer may be provided by

distinguishing more carefully between the character of the instabilities as absolute (local) or

convective, where a growing perturbation moves away from the region where it was born.

This question certainly depends on the underlying neutrino angular distribution that in a SN,

depending on location, could be nearly isotropic or strongly beamed. We plan to address this

second question of whether the instabilities will relax within the region where they were born

in a follow-up work, based on the systematic understanding we develop here.

To develop a systematic understanding of the slow dispersion relation in an infinite

homogeneous medium, we begin in section 2 with a recap of the two-flavor equations of

motion and derive the dispersion relation for a homogeneous but nonisotropic system that is

monochromatic for neutrinos and antineutrinos. In section 3 we review the homogeneous and

isotropic case with homogeneous solutions only. Next we turn in section 4 to inhomogeneous

modes, in a neutrino density range, where the instabilities are not resonant and thus somewhat

resemble the homogeneous solutions. A different class of modes is studied in section 5, the high-

density regime, where the unstable modes derive from resonant interaction with individual

neutrino modes. We explore the different regimes in a numerical example in section 6 with

surprisingly complicated dispersion relations even for a benign neutrino and antineutrino

angle distribution. We summarize our conclusions in section 7.

2 Equations of motion

In this section, we summarize our chosen setup and the equation of motion (EOM) for this

case, forming the basis for our subsequent analysis of slow instabilities.
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2.1 Axially symmetric system

We assume axial symmetry, reducing phase space to the variables time t, spatial coordinate

r, and neutrino velocity along that direction v = cos θ, where this latter choice of notation

is taken from a related early paper [63]. We use the letter r for the spatial coordinate to

save z for the weak-interaction direction in flavor space. However, r should not necessarily

suggest the radial direction in a SN, it is a general symmetry direction. The energy spectrum

is taken to be monochromatic with energy E. The quantum kinetic equation (1.1) implies

the spatially one dimensional EOM

i(∂t + v∂r)̺(v, r, t) =
[

H(v, r, t), ̺(v, r, t)
]

(2.1)

and analogous for antineutrinos. We now neglect collisional interactions among neutrinos or

with external matter, which might lead to novel branches of collisional instabilities [64–70].

The dimensionally reduced Hamiltonian matrices (1.2) driving the evolution become

H(v, r, t) = ±M
2

2E
+

√
2GFN + µ

∫ +1

−1
dv′

[

̺(v′, r, t) − ¯̺(v′, r, t)
]

(1 − v′v). (2.2)

The neutrino density matrices ̺ are now taken to be integrated over most of phase space

and normalized to Tr
∫+1

−1 dv ̺(v, r, t) = nν/(nν + nν), the relative local number density of

neutrinos of all flavors. This normalization makes the density matrices dimensionless, and the

effective neutrino-neutrino interaction strength is µ =
√

2GF(nν + nν), a parameter which

in principle depends on space. However, we will ignore spatial gradients of overall physical

parameters, assuming that the characteristic scales of collective instabilities are much smaller

than overall geometric scales.

2.2 Two-flavor case and mass ordering

We restrict our discussion to two flavors, where it is convenient to express any Hermitian 2×2

matrix A in terms of polarization vectors (A0, ~A) by virtue of A = 1
2(A0σ0 + ~A · ~σ). Here, ~σ

is a vector of Pauli matrices, σ0 is the 2×2 unit matrix, A0 = Tr A, and Ai = Tr(Aσi) with

i = 1, 2, 3. In the flavor basis, the matter term is written as 1
2λσ3 with λ =

√
2GF(ne− − ne+)

if only charged leptons of the electron flavor are present. Moreover, for the vacuum oscillation

piece we write in the usual convention and notation

M
2

2E
=
m2

2 +m2
1

2E

σ0

2
+
m2

2 −m2
1

2E

~B · ~σ
2

, (2.3)

with m1 < m2 being the masses of the two neutrino mass eigenstates. Here the “magnetic

field” is a unit vector in flavor space which in the flavor basis has the components

~B = (sin 2θV, 0,− cos 2θV), (2.4)

where θV is the vacuum mixing angle. The vacuum oscillation frequency is denoted by

ωE =

∣

∣

∣

∣

∣

m2
1 −m2

2

2E

∣

∣

∣

∣

∣

(2.5)
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and defined to be positive. Thus, the Hamiltonian engendering vacuum flavor evolution is

HV =
ωE

2

(

− cos 2θV sin 2θV

sin 2θV cos 2θV

)

. (2.6)

Since ωE is positive, cos 2θV > 0 implies normal mass ordering, while cos 2θV < 0 implies

inverted ordering.

2.3 EOMs in precession form

We assume a system that is initially homogeneous, implying that neutrino densities are

conserved, i.e., only the trace-free part of the density matrices evolves nontrivially under

neutrino-neutrino and matter refraction. In this context one often uses the traditional

polarization vectors ~P = Tr(̺~σ) to express the density matrices in the form ̺− 1
2Tr(̺) = 1

2
~P ·~σ.

In particular, for the z-component this means Pz = ̺ee − ̺xx, where the second flavor is

called x. The usual precession form of the EOMs is

(∂t + v∂r)~P (v) =

{

+ωE
~B + λ~L+ µ

∫ +1

−1
dv′

[

~P (v′) − ~̄P (v′)

]

(1 − v′v)

}

× ~P (v), (2.7a)

(∂t + v∂r) ~̄P (v) =

{

−ωE
~B + λ~L+ µ

∫ +1

−1
dv′

[

~P (v′) − ~̄P (v′)

]

(1 − v′v)

}

× ~̄P (v), (2.7b)

where the space-time dependence is no longer shown explicitly, but always assumed. Following

previous notation, ~L is a unit vector in the flavor direction, identical with ẑ, and λ the

precession caused by a homogeneous matter background.

Notice that we do not use the flavor isospin convention, i.e., if both neutrinos and

antineutrinos are initially in the electron flavor, both ~P and ~̄P initially point “up” in the

positive z direction in flavor space. Therefore, the polarization vector for flavor lepton

number will be ~D = ~P − ~̄P .

These equations can be written more compactly if we introduce angular moments of

the type

~Pn =

∫ +1

−1
dv vn ~P (v) (2.8)

with ~P0 being the density and ~P1 the flux along the r direction. The velocity v′ now disappears

from the equations, being already integrated over. Therefore, for notational convenience, we no

longer need to show the dependence of ~P on v explicitly. With these simplifications one finds

(∂t + v∂r)~P =

{

+ωE
~B + λ~L+ µ

[

(

~P0 − ~̄P0
)

− v
(

~P1 − ~̄P1
)

]}

× ~P , (2.9a)

(∂t + v∂r) ~̄P =

{

−ωE
~B + λ~L+ µ

[

(

~P0 − ~̄P0
)

− v
(

~P1 − ~̄P1
)

]}

× ~̄P. (2.9b)

These equations become even more transparent if we introduce the sum and difference vectors,

denoting particle number and lepton number, respectively, by ~S(v) = ~P (v) + ~̄P (v) and

~D(v) = ~P (v) − ~̄P (v), and analogous for the angular moments, leading to

(∂t + v∂r) ~S = ωE
~B × ~D +

[

λ~L+ µ( ~D0 − v ~D1)
]

× ~S, (2.10a)

(∂t + v∂r) ~D = ωE
~B × ~S +

[

λ~L+ µ( ~D0 − v ~D1)
]

× ~D. (2.10b)
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The pure fast flavor case is defined by ωE = 0, where the second equation becomes self-

contained. The first equation is linear in the ~S variables and can be integrated once the

equation for the ~D variables has been solved.

In the fast flavor case, an instability with wave vector along the axis of symmetry

is certain to appear when the angular lepton-number spectrum Dz(v)|t=0 has a single

crossing [49, 58, 71], i.e., it changes sign once at some value of v. Notice that this statement

is different from, and generally not implied by, Morinaga’s theorem [47, 49], which states

that if the distribution has any angular crossing (even more than one) there will be some

unstable modes. However, they need not be directed along the symmetry axis, and therefore

need not appear in a one-dimensional formulation.

If there is no angular crossing, as we assume here, there are no unstable modes in the

limit ωE → 0. Therefore, any instability for ωE 6= 0 is slow according to the conventional

definition, i.e., must vanish as ωE → 0. We will show here that the properties of such

instabilities are however much less universal than often assumed; the precise way the growth

rate vanishes, the length scales of the unstable modes, and the impact these modes have on

the angular distribution, can have markedly different characteristics from what is sometimes

implied in the literature.

2.4 Linearization

As usual in this context, we assume that the neutrinos are initially in flavor eigenstates so

that ~P (v) and ~̄P (v) are nearly aligned with the z axis, the flavor direction. Therefore, we will

treat the transverse components of the polarization vectors P x and P y as small perturbations,

whereas P z remains fixed at its initial value that we call the spectrum. More specifically,

hopefully without causing notational confusion, we will use

P (v) = P z(v)|t=0 Angular spectrum for neutrinos, (2.11a)

P (v) = P
z
(v)|t=0 Angular spectrum for antineutrinos, (2.11b)

D(v) = P (v) − P (v) Angular spectrum for lepton number, (2.11c)

S(v) = P (v) + P (v) Angular spectrum for particle number, (2.11d)

where P (v) > 0 and P (v) > 0 if both neutrinos and antineutrinos begin in the electron

flavor. Since the perturbed motion is assumed to be completely transverse to the flavor

axis, it is fully described by a single complex variable ψ(v) = P x(v) + iP y(v). Linearizing

the EOM in ψ, we find

(∂t + v∂r)ψ = −i(ωEcV − λ)ψ + iµ
[

ψ(D0 − vD1) − P (Ψ0 − vΨ1)
]

− iωEsVP, (2.12a)

(∂t + v∂r)ψ = +i(ωEcV + λ)ψ + iµ
[

ψ(D0 − vD1) − P (Ψ0 − vΨ1)
]

+ iωEsVP , (2.12b)

where we have introduced the notation Ψ(v) = ψ(v) − ψ(v) for the lepton-number field of

flavor coherence. Moreover, we use angular moments of the type eq. (2.8). The vacuum

mixing angle enters through cV = cos 2θV and sV = sin 2θV and we take the mixing angle to

lie in the interval 0 ≤ θV ≤ π/2, meaning that the octant π/4 < θV ≤ π/2, where cV < 0,

corresponds to inverted mass ordering.
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These equations can be grouped into a homogeneous system, with a source term on

the right-hand side proportional to ωEsV, which therefore acts as the primary perturbation

triggering the motion [52]. We can also regard this term as an external field acting on the

system and potentially triggering its instabilities [49]. Linear stability analysis corresponds to

asking the question: does the homogeneous part of this system admit exponentially growing

solutions? If the answer is yes, then one can decompose the solution of the full inhomogeneous

system of equations into normal modes of the homogeneous system, plus a particular solution

of the inhomogeneous system, to obtain the solution to the initial-value problem, where

the initial value corresponds to ψ(t = 0) = ψ(t = 0) = 0. This strategy is followed for a

discrete set of neutrino beams in ref. [52]. A direct solution can also be found by applying

a Laplace transform to the equations, as we did in ref. [49]. The two approaches lead to a

similar conclusion, namely that after an initial transient phase the transverse components

will asymptotically grow if the homogeneous system possesses unstable eigenmodes, while

they will remain small if no such eigenmode exists. We are thus motivated to continue our

linear stability analysis by looking for the normal modes of the homogeneous system.

To determine these normal modes, we seek a solution ψ → ψe−iΩt+iKr, where we are

only considering solutions with the wave vector along the symmetry axis, where K is the

corresponding wave number. Moreover, we introduce the shifted variables ω = Ω + µD0 + λ

and k = K + µD1 so that the solution is of the form

ψ =
P

ω − kv − ω̃E
(Ψ0 − vΨ1), (2.13a)

ψ =
P

ω − kv + ω̃E
(Ψ0 − vΨ1). (2.13b)

Here we have set µ = 1 by a redefinition of the scales of space and time and we have introduced

the more compact notation ω̃E = ωE cos 2θV, a quantity that is positive for normal mass

ordering and negative for inverted ordering. The matter term λ has disappeared from the

equations, amounting merely to a shift in the real part of the eigenfrequency ω. Yet this

shift has direct physical consequences, as we discuss later in section 2.5.

Inserting these forms of the solution into the homogeneous form of the EOM (2.12)

provides the self-consistency condition, or dispersion relation,

(Ĩ0 − 1)(Ĩ2 + 1) − Ĩ2
1 = 0, (2.14)

where we use

Ĩn =

∫ +1

−1
dv

P (v)vn

ω − kv − ω̃E
−
∫ +1

−1
dv

P (v)vn

ω − kv + ω̃E
. (2.15)

We use the notation Ĩn for the dispersion relation based on normal modes, whereas we will

use In for the physical modes that require Landau’s iǫ prescription as discussed later.

So far we have assumed that ψ depends only on v, and not on the azimuth angle

φ around the symmetry axis. Such axial-symmetry-breaking modes exist even if the un-

perturbed distributions P (v) and P (v) are azimuthally symmetric. They can be found

by noting that for them the quantity ψ1 → ψ1 =
∫+1

−1 dv
∫ 2π

0
dφ
2π

∑

ω̃E
ψ(v, φ)v, where

– 9 –
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v = (
√

1 − v2 cosφ,
√

1 − v2 sinφ, v) is the velocity vector. Therefore, the dispersion re-

lation is generalized to

ψ(v, φ) =
P (v)

ω − kv − ω̃E
(ψ0 − v ·ψ1) (2.16)

and analogous for antineutrinos with P (v) and −ω̃E . The axial symmetry breaking solutions

are found by assuming ψ(v, φ) ∝ cosφ or sinφ, which are degenerate, so that ψ0 = 0 and the

consistency condition after multiplying by cosφ or sinφ respectively becomes

Ĩ0 − Ĩ2 + 2 = 0. (2.17)

Relations (2.14) and (2.17) form the basis for our analysis of slow unstable modes.

So far, we have discussed the normal modes of the homogeneous system with the goal of

finding the unstable (exponentially growing) ones. On the other hand, in ref. [49] we showed

that, if one solves the full initial-value problem including the inhomogeneous source term,

the behavior of the system at late times is given by effective modes with eigenfrequencies

coming from a modified dispersion relation. The reason is that, while unstable eigenmodes

are correct normal modes of the system, when we have a continuum of velocities for the

neutrinos we can also have an asymptotic behavior where the perturbation is damped in time

because of decoherence among different velocity modes. This form of damping, known as

Landau damping, is reversible, since there is no scattering process involved in the equations,

and does not correspond to a normal mode of the system.

The modified dispersion relation is formally identical to the one derived above, but the

integrals Ĩn must be modified to

In =

∫ +1

−1
dv

P (v)vn

ω − kv − ω̃E + iǫ
−
∫ +1

−1
dv

P (v)vn

ω − kv + ω̃E + iǫ
. (2.18)

Landau’s iǫ prescription introduced here ensures causality, i.e., the eigenfrequencies from

the dispersion relation are the ones actually describing the evolution into the far future of

the system. From the practical point of view, the introduction of this term means that the

integration contour along the v variable from −1 to +1 should also be deformed so as to pass

below the singular point of the denominator v = (ω ± ω̃E)/k. Neutrino modes matching this

Cherenkov condition can resonantly extract or deposit energy, leading to Landau damping

or instability. We will later use this modified form of the dispersion relation to obtain the

collective solutions which include the Landau-damped branches, since only in this way the

analytical properties of the system are easily tractable.

2.5 Large mixing angles and matter effect

So far, we have treated the term proportional to sin 2θV in eq. (2.12) as a source term, and

we have explicitly stated that the asymptotic behavior at late times is entirely independent

of this term, which acts only as a normalization for the induced perturbation; the question of

whether such perturbation grows or not has been completely linked with the normal modes

of the homogeneous system. Is this always the case? The answer to this question cannot be

yes, since we are in fact well aware of cases where this is not true. The simplest example
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consists of vacuum oscillations with maximal mixing (θV = π/4). Neutrinos beginning

in the νe state completely convert to the other flavor and back and therefore large flavor

coherence develops without any collective instability. On the linear level, the EOM in this

case (µ = λ = k = 0) reduces to

∂tψ = −iωE sin 2θVP, (2.19)

showing that ψ grows linearly with time even though the homogeneous system is obviously

stable, and similar for ψ.

As a slightly less trivial example, we now include neutrino-neutrino refraction µ (which

we temporarily restore explicitly in the equations), but still ignore the neutrino-matter term

λ, i.e., we consider the well-known flavor pendulum [46], but with the unusual choice of

maximal mixing. We assume a single velocity mode v, so that Ψ1 = vΨ0 = v(ψ − ψ), and

similarly for P and P , so that the linear EOMs become

∂tψ = iµ(1 − v2)ψD − iµ(1 − v2)P (ψ − ψ) − iωE sin 2θVP, (2.20a)

∂tψ = iµ(1 − v2)ψD − iµ(1 − v2)P (ψ − ψ) + iωE sin 2θVP . (2.20b)

If we take the difference of these equations, the terms proportional to µ drop out and what

remains is ∂t(ψ − ψ) = −iωE sin 2θV(P − P ) so that ψ − ψ grows linearly in time.

These simple examples show that there can be power-law growth induced by the term

proportional to sin 2θV even when linear stability analysis does not predict unstable eigen-

modes. However, these examples also reveal the conditions for this to happen, namely

that the homogeneous system of equations should have a mode with zero eigenfrequency.

Indeed, the homogeneous form of eq. (2.19) is ∂tψ = 0 and therefore has zero eigenfrequency.

Likewise, the homogeneous form of the difference of eqs. (2.20) is ∂t(ψ − ψ) = 0, which

again corresponds to a zero eigenfrequency. If the system does not possess normal modes

with vanishing eigenfrequencies (or more exactly with eigenfrequencies of order ωE), this

secular growth of perturbations is impossible.

Actually, this fact is well known, although here somewhat masked in the formalism of

linear stability analysis. To see why this is the case, let us consider again the example of

a single, non self-interacting neutrino beam from eq. (2.19), but now introduce a matter

effect, so that

∂tψ = iλψ − iωE sin 2θVP (2.21)

with the explicit solution

ψ =
ωE sin 2θVP

λ

(

1 − eiλt). (2.22)

We now see that if λ ≫ ωE , the perturbation always remains small; large matter refraction

precludes non-collective forms of flavor conversion, as well known. On the other hand, if

λ . ωE , for times of order t ∼ ω−1
E , we may expand the exponential in parenthesis and

recover the linear growth, so the perturbation grows to become of order ψ ∼ sin 2θVP .

Therefore, our main takeaway is that, if the frequencies of the homogeneous system

satisfy the condition ω ≫ ωE , then the only possible growth of the perturbation comes from
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unstable normal modes. This insight justifies our use of linear stability analysis throughout

the text. The possibility of having normal modes with frequency ω . ωE in the full system is

possible but fine tuned, as the examples above show. In the case of the flavor pendulum, the

existence of a zero-frequency eigenmode is guaranteed by the law of conservation of lepton

number; by integrating eq. (2.10b) over v we find

∂t
~D0 + ∂r

~D1 = ωE
~B × ~S0 + λ~L× ~D0. (2.23)

Thus, if λ = 0 and if we focus only on homogeneous modes, we see that the vector ~D0

changes only over timescales of order ω−1
E , thus very slowly. However, once matter refraction

is introduced, and once a degree of inhomogeneity K ∼ µ is considered, this protected slow

variation disappears and all the modes change over timescales much shorter than ω−1
E . In the

presence of inhomogeneities, matter, and anisotropies, the possibility of having fine-tuned

situations with vanishing eigenfrequencies essentially disappears. The flavor pendulum is

a unique example, illustrating just how fragile this possibility is, since it requires perfect

homogeneity and isotropy.

Another comment pertains to the argument used at times that matter refraction λ

can be removed in exchange for introducing an effectively small mixing angle. As we have

discussed, this is generally not true. The unstable modes entering the dispersion relation

are determined by ω̃E = ωE cos 2θV, the projected eigenfrequency, where θV is the vacuum

mixing angle. In the same way, the forcing term in eq. (2.12) is proportional to ωE sin 2θV,

again depending on the vacuum mixing angle. Matter will suppress the amplitude of the

induced perturbation, but this must be done self-consistently by solving the inhomogeneous

system, and not by mimicking its effect through a small effective mixing angle. First, this

procedure is not predictive, since one cannot in general know in advance how much matter

will suppress the amplitude of the conversions, which depends on the precise solution of

eq. (2.12). Second, the unstable eigenmodes depend on ω̃E , and using a suppressed mixing

angle would therefore incorrectly reproduce the growth rate of these eigenmodes; since this

growth rate appears in the exponent, this would end up dramatically changing the solution

if θV is not already very small.

3 Homogeneous and isotropic neutrino gas

In this section, we will review the instability pattern of a homogeneous and isotropic neutrino

gas, focusing on homogeneous instabilities (K = 0). One of them, the slow flavor pendulum

that occurs for inverted mass ordering, is well known in the literature [11, 46, 72, 73]. Another

branch that occurs for normal mass ordering was identified a long time ago [63], but is

much less familiar. In any case, a systematic discussion of these instabilities in modern

language seems to be lacking, so we summarize here the main properties of what is the

simplest neutrino system to exhibit an instability.

– 12 –



J
H
E
P
0
4
(
2
0
2
5
)
1
4
6

3.1 Dispersion relation

In the homogeneous and isotropic case we have D1 = 0 and therefore K = k = 0, implying

that all the integrals Ĩn become simple functions of the moments of the angular distributions

Ĩn =
Pn

ω − ω̃E
− Pn

ω + ω̃E
. (3.1)

Moreover, also for the separate ν and ν̄ distributions we have P1 = P 1 = 0, implying

Ĩ1 = 0. Therefore, the dispersion relation for longitudinal modes eq. (2.14) factorizes as

(Ĩ0 − 1)(Ĩ2 + 1) = 0 or explicitly

Ĩ0 = +1 or Ĩ2 = −1. (3.2)

Moreover, isotropy implies P2 = P0/3 and P 2 = P 0/3 and thus Ĩ2 = Ĩ0/3 so that eq. (3.2)

eventually falls into two families of solutions with

Ĩ0(ω) = +1, (3.3a)

Ĩ0(ω) = −3, (3.3b)

which we call monopole and dipole, respectively. To understand the meaning of this terminol-

ogy, we notice that the monopole mode is obtained assuming ψ(v) independent of v, so that

ψ1 = 0 and eq. (2.13) immediately leads to eq. (3.3a). If instead we assume ψ(v) ∝ v, we

have ψ0 = 0; after multiplying eq. (2.13) by v and integrating, we find eq. (3.3b).

In addition, for the transverse modes obeying eq. (2.17) we find Ĩ0 = −3, exactly as for

the dipole mode. Indeed, these transverse modes are also of the dipole form; for them, we

have ψ(v, φ) ∝
√

1 − v2 cosφ or
√

1 − v2 sinφ, so they are the same dipole mode oriented

along different axes. It is of course obvious that if the background distribution is homogeneous

and isotropic, its eigenmodes must be defined by spherical harmonics. So we conclude that

this simple problem admits one monopole and three degenerate dipole eigenmodes.

3.2 Monopole mode

To determine whether one of these modes can become unstable, we proceed to find explicitly

their eigenfrequencies. For the monopole mode, we find from eq. 3.3a

ω =
P0 − P 0

2
±

√

(P0 − P 0)2 + 4(P0 + P 0)ω̃E + 4ω̃2
E

2
. (3.4)

In our normalization, where µ =
√

2GF(nν + nν̄), we effectively have P0 + P 0 = 1 as well as

ǫ = (P0 − P 0)/(P0 + P 0) = (P0 − P 0) for the neutrino-antineutrino asymmetry introduced

earlier. After restoring µ explicitly, we thus find

ω =
ǫµ

2
±

√

(ǫµ)2 + 4µω̃E + 4ω̃2
E

2
. (3.5)

By our convention, ω̃E > 0 for normal mass ordering, in which case the discriminant under

the square root is always positive and the two eigenfrequencies ω are real. Conversely, ω̃E < 0

for inverted mass ordering and the discriminant is negative for

−µ

2

(

1 +
√

1 − ǫ2
)

< ω̃E < −µ

2

(

1 −
√

1 − ǫ2
)

, (3.6)
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implying two complex conjugate eigenfrequencies ω. In practice, we are interested in a dense

neutrino gas with µ ≫ |ω̃E | so that only the second inequality is relevant which implies a

maximal µ for fixed ω̃E < 0 to have an instability. If the asymmetry parameter ǫ is not

too large, we may expand the square root and the condition for instability is 1
4ǫ

2µ < |ω̃E |,
which for small ǫ is consistent with the requirement |ω̃E | ≪ µ. In this case we may neglect

ω̃2
E under the square root and the growth rate is

Imω =

√

µ

(

|ω̃E | − ǫ2µ

4

)

. (3.7)

Therefore, the threshold value for |ω̃E | is ǫ2µ/4 and for significantly larger values, the

growth rate is Im(ω) ≃
√

|ω̃E |µ, leading to the characteristic scaling sometimes identified

as symptomatic of slow flavor conversions [74, 75]. As we will see, however, this is not

generally true for inhomogeneous modes, and even in the simplest case of this homogeneous

and isotropic system, this scaling applies only for |ω̃E | ≫ ǫ2µ/4.

To complete the discussion of the monopole instability, we mention that in the nonlinear

regime it continues as a regular periodic solution with a dynamical behavior analogous to

a spherical gyroscopic pendulum or spinning top [11, 46, 72]. Underlying this remarkable

behavior is that for a perfectly homogeneous and isotropic neutrino gas, and only for the

monopole instability — so the initial perturbation is isotropic — the system shows an

infinity of conservation laws, the Gaudin invariants, and thus is technically integrable [73, 76].

Actually, this “slow flavor system” can be mapped on an equivalent fast flavor system

that is homogeneous but anisotropic, the fast flavor pendulum [53, 54], having analogous

Gaudin invariants [56]. However, we stress that this regular dynamics, as well as the

corresponding flavor soliton [55], is extremely fragile. Any deviation from perfect symmetry

(slight inhomogeneities, inhomogeneous perturbations, slight anisotropy) will break the

regularity of the nonlinear dynamics and ultimately lead to some form of decoherence and

flavor turbulence [31, 63]. Moreover, collisions will damp the pendular motion [69, 70].

Therefore, the regular pendulum behavior is never expected to arise in a realistic system.

3.3 Dipole mode

Let us now turn to the dipole mode that has the dispersion relation given by eq. (3.3b),

providing the eigenfrequency

ω = −P0 − P 0

6
±

√

(P0 − P 0)2 − 12(P0 + P 0)ω̃E + 36ω̃2
E

6

= −ǫµ

6
±

√

(ǫµ)2 − 12µω̃E + 36ω̃2
E

6
, (3.8)

where in the second line we have once more restored µ. For negative ω̃E (inverted mass

ordering), the discriminant is positive, there are two real eigenfrequencies, and no instability.

Conversely, for positive ω̃E (normal ordering), the discriminant is negative for

µ

6

(

1 −
√

1 − ǫ2
)

< ω̃E <
µ

6

(

1 +
√

1 − ǫ2
)

. (3.9)
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Expanding once more in powers of small ǫ implies 1
12ǫ

2µ < ω̃E as a requirement for instability

and in the limit ω̃E ≪ µ the growth rate is

Imω =

√

µ

3

(

ω̃E − ǫ2µ

12

)

. (3.10)

Being intrinsically anisotropic, the dipole instability never leads to a regular or periodic

behavior [63].

3.4 Final remarks

One further feature of these instabilities relevant for their physical interpretation is that

under the integral the denominator ω − kv ± ω̃E does not vanish for any value of v because

k = 0. In terms of the plasma-physics analogy that we have introduced earlier [57, 58], we

say these instabilities are non-resonant. In contrast, resonant instabilities grow out of the

interaction with specific neutrino modes for which the denominator vanishes, but for k → 0,

this would require neutrino modes with infinite velocity that do not exist. As we will see,

the non-resonant nature of the instabilities will allow us to generalize their main features

to generally anisotropic neutrino systems.

The main message of this simple homogeneous and isotropic example is that instabilities

with large length scales, in the limit studied here homogeneous, appear in normal mass

ordering, provided that 1
12ǫ

2µ < ω̃E , and in inverted ordering for ω̃E < −1
4ǫ

2µ, always

assuming |ω̃E | ≪ µ. In normal ordering (positive ω̃E), the unstable modes are three

degenerate dipole modes, whereas the monopole mode is stable. For inverted ordering

(negative ω̃E), it is the other way around and the monopole mode is unstable, the usual

slow flavor pendulum, whereas the three degenerate dipole modes are stable. The typical

growth rate is of the order of
√

|ω̃E |µ with different coefficients in both cases. We notice,

though, that the real part of the eigenfrequency is actually of the order of ǫµ ≪
√

|ω̃E |µ,

i.e., of the same order as the typical frequencies of fast modes. In the next section, we will

explore this regime of vacuum frequencies in more general terms, without restricting to the

background distribution being necessarily isotropic.

4 Non-resonant slow instabilities

As we have discovered in the previous section, the well-known slow pendulum instability is a

special example of a superluminal, non-resonant instability, for the case of a homogeneous and

isotropic neutrino gas. Let us now consider generic angular distributions P (v) and P (v) that

we still take to be axially symmetric and restrict ourselves to the regime µǫ2 ≪ |ω̃E | ≪ µ.

Moreover, we now consider generically inhomogeneous modes with wavenumber k = K +D1.

Can we generalize some of the features of the homogeneous and isotropic example studied

earlier? We will see that indeed many features of the instability stay unchanged in this regime.

4.1 Small-flux expansion

Motivated by the homogeneous case, we first consider wavenumbers of the order of k ≃ µǫ

and assume that |ω| ≫ k, which was certainly the case in the previous example since
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Im(ω) ≃
√

|ω̃E |µ ≫ µǫ. If |ω| ≫ k, we are assuming the instability to be strongly non-

resonant. We may therefore safely expand the denominators

1

ω − kv ± ω̃E
=

1

ω ± ωE
+

kv

(ω ± ωE)2
+

k2v2

(ω ± ωE)3
+ . . . (4.1)

Thus, each of the integrals Ĩn can be expanded as

Ĩn =
∞
∑

m=0

km

[

Pn+m

(ω − ω̃E)1+m
− Pn+m

(ω + ω̃E)1+m

]

. (4.2)

Close to k = 0, we can keep only the lowest orders of the expansion, so that the dispersion

relation becomes an algebraic one which can be solved explicitly in terms of the moments

of the angular distributions.

This property is analogous to what we found earlier for fast instabilities [58], and generally

descends from non-resonant instabilities interacting simultaneously with the entire angular

distribution, so its global properties measured by the moments are sufficient to obtain the

instability properties. The algebraic equation that results even for k = 0 is quartic in ω,

and therefore its explicit solution is usually too complicated to be particularly illuminating.

For distributions that are not too anisotropic, for which P1 ≪ P0, P2, and similarly for

antineutrinos, one may initially neglect P1 and P 1 so that the quartic equation decouples

again into the two equations Ĩ0 = 1 and Ĩ2 = −1, as for the isotropic case shown in eq. (3.2).

The effect of the small flux encoded in P1 and P 1 can then be incorporated perturbatively.

We do not perform this calculation explicitly here, since it is not particularly instructive; we

only note that the unperturbed solutions for P1 → 0 and P 1 → 0 are guaranteed to exhibit

an instability, either for the near-monopole mode with Ĩ0 = 1 in inverted ordering, or for

the near-dipole mode with Ĩ2 = 0 in normal ordering. Of course, as soon as there is a small

flux, the flavor pendulum will quickly decohere [63]. Still, on the linear level, the majority

of the properties of the non-resonant instabilities are inherited from the homogeneous and

isotropic case, which acts as some sort of prototype.

4.2 Large-scale slow modes are fast

As in the homogeneous and isotropic case, Re(ω) is generally expected to be of the order of

µǫ ≪ Im(ω). We have not excluded the possibility that our anisotropic distributions could

produce a crossing of D(v) and thus imply the emergence of fast-unstable modes. While we

do not consider explicitly this case in detail here, the growth rate for these modes would be

of the order of µǫ ≪
√

|ω̃E |µ. Therefore, in the regime in which large-scale modes are slow

unstable, requiring |ω̃E | ≫ µǫ2, the slow modes are actually faster than the fast modes.

The often-made argument that slow modes are slower because
√

|ω̃E |µ ≪ µ misses the

point that fast modes have a growth rate of the order of µǫ and that the scaling for slow

modes
√

|ω̃E |µ is only valid for |ω̃E | ≫ µǫ2. The corrected version of this argument shows

that it is slow modes that are the fastest-growing ones in this regime. On the other hand,

whether this regime has any relevance for realistic environments in SN cores is a different

question that we do not tackle here. We only mention here that in the neutrino decoupling

region of a SN core, µ is on the order of 105 km−1, whereas ω̃E ≃ 0.4 km−1. Therefore, this
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regime would require a fractional difference between the νe and νe angular distributions of

the order of ǫ ∼
√

ω̃E/µ ∼ 0.1% and thus unnaturally small.

Finally, we should stress the regime of applicability of our conclusions. We have so far

assumed small deviations from isotropy, i.e., P1 . P0 and P2 and similarly for antineutrinos.

In this case, a monopole and dipole mode can still be defined in an approximate way, and

they maintain similar conditions of stability as the isotropic case. Thus, for this case, ǫ can

still be used approximately as the asymmetry in the zeroth moment, and for ω̃E ≫ µǫ2 a

slow instability appears. This conclusion is true even for a distribution with an angular

crossing, provided that the latter does not cause too large an anisotropy. On the other hand,

if the angular distribution develops a large anisotropy, with P1 & P0 and P2 and similarly

for antineutrinos, the concept of monopole and dipole mode loses meaning, and one should

return to an explicit solution of eq. (2.14) for k = 0. In this case, the definition of ǫ as the

asymmetry in the zeroth moments of the angular distribution is not helpful, since the other

moments are involved as well, and ω̃E ≫ µǫ2 does not generally guarantee non-resonant

instabilities. We do not consider this case further here.

5 Resonant slow instabilities

In this section, we consider the regime opposite to the previous section, namely when

|ω̃E | ≪ µǫ2. This is the regime of large neutrino density, where the slow flavor pendulum

would be stable even in the inverted position (“sleeping top” regime), whereas inhomogeneities

can introduce unstable modes. Our approach will be completely analytical, and we will

validate our conclusions by a numerical analysis of a specific example in section 6. As before,

we assume that both the neutrino and antineutrino angle distributions P (v) and P (v) are

positive everywhere and also assume that there is no angular crossing of D(v) = P (v) −P (v),

which is also taken to be positive. Therefore, in the limit ω̃E → 0 there is no fast instability.

We stress that, since these instabilities will turn out to be resonant, depending on the angular

distribution evaluated at specific directions, the definition of ǫ as the asymmetry in the

zeroth moments of the angular distribution is not helpful. Rather, with ǫ we will mean the

order of magnitude of the asymmetry between Pv and P v across the entire angular range,

assuming that the distribution is reasonably regular.

Since ω̃E is smaller than any other scale in the problem, one might expect its impact

to be perturbative, in the sense of weakly renormalizing the properties of the modes for

ω̃E = 0. This conclusion is, however, too naive and ultimately wrong. It turns out that an

infinitesimally small ω̃E can by itself alter dramatically the properties of some of the modes.

The catch to the argument of perturbativity is that, in the limit ω̃E = 0, there are some

modes with a phase velocity arbitrarily close to the speed of light (near luminal). For these

modes, an infinitesimally small perturbation is enough to change completely their properties,

and even turn them from stable to unstable.

5.1 Resonance cones

Before proceeding with our mathematical treatment, let us notice a fundamental physical

difference to the case of fast instabilities, where neutrinos can resonate with flavor waves

only when ω = kv, where −1 ≤ v ≤ +1 is the neutrino velocity along the symmetry axis.

– 17 –



J
H
E
P
0
4
(
2
0
2
5
)
1
4
6

Hence there is a resonance cone, delimited by ω = ±k, in which flavor waves can resonate

with neutrinos, namely subluminal waves. Instead, in the slow case, a wave can resonate with

neutrinos if ω = kv + ω̃E , while it can resonate with antineutrinos if ω = kv − ω̃E . These

conditions differ, opening the possibility of an instability even for very small ω̃E .

We thus need to introduce two resonance cones, delimited by ω = ±k + ω̃E and ω =

±k − ω̃E , for neutrinos and antineutrinos, respectively. These two cones no longer coincide

with the light cone, but are slightly shifted up or down. This structure introduces a much

richer phenomenology than for fast flavor waves, for which a wave could either resonate with

neutrino modes, if it is subluminal, or not resonate, if it is superluminal. In the slow case, new

possibilities open because a mode may resonate with only neutrinos or only antineutrinos. We

will follow this trail of physical ideas to prove mathematically the existence of an instability

in the limit of small ω̃E .

5.2 Near-luminal modes

Motivated by these arguments, we will consider the impact of |ω̃E | ≪ µǫ2 only on near-luminal

modes, for which ω ≃ ±k + χ, where χ is a small number. We first consider the case with

+k. The integrals In defined in eq. (2.15) can then be expanded close to the luminal sphere

by the procedure introduced in ref. [49]

In =
P (1) log

(

2k
χ−ω̃E

)

− P (1) log
(

2k
χ+ω̃E

)

k
+
dn

k
, (5.1)

where

dn =

∫ +1

−1
dv

D(v)vn −D(1)

1 − v
(5.2)

is a convergent integral. The logarithms are unambiguously defined for positive arguments,

whereas for complex ones, one needs their phase from a prescription that descends directly

from the iǫ prescription in eq. (2.15). (Of course, Landau’s ǫ is not the lepton asymmetry

parameter.) By comparing the imaginary part originating from the iǫ prescription for

negative (χ − ω̃E)/k, we find that

log

[

2k

χ− ω̃E

]

→ log

[

− 2k

χ− ω̃E

]

− iπ sign(k). (5.3)

This prescription fixes the interpretation of the logarithms in the complex plane; the same

expression holds for antineutrinos with χ + ω̃E .

This expansion separates the dominant logarithmic singularity under the assumption

ω̃E , χ ≪ k. Inserting these expansions in the dispersion relation eq. (2.14), we obtain

[

P (1) log

(

2k

χ− ω̃E

)

− P (1) log

(

2k

χ+ ω̃E

)]

(

d0 + d2 − 2d1
)

+d0d2 − d2
1 + k(d0 − d2) − k2 = 0. (5.4)

Notice that d0 + d2 − 2d1 = D0 −D1, which for an uncrossed distribution is always positive,

assuming D(v) > 0. This form of the dispersion relation is generally true very close to

the positive half of the light cone.
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5.3 Infinitely large k

To proceed, we separate the further discussion in different regimes of wavenumbers and begin

with the limit of large k, where eq. (5.4) becomes

(

χ− ω̃E

2k

)P (1) (χ+ ω̃E

2k

)

−P (1)

= exp

[

− k2

D0 −D1

]

. (5.5)

In the fast flavor limit, where ω̃E = 0, the solution is

χ = 2k exp

[

− k2

D(1)(D0 −D1)

]

. (5.6)

Therefore, in the fast limit there are always two branches of purely real modes, neither

damped nor growing, that get asymptotically close to being luminal.

What happens now if ω̃E is very small but non-zero? Let us first take the case of normal

ordering, with ω̃E > 0. In principle, we might expect two different solutions, with χ = ±ω̃E

for asymptotically large k. However, the choice χ ≃ −ω̃E does not actually lead to a solution,

since the left-hand side of eq. (5.5) diverges while the right-hand side tends to 0. So there

is only one possible solution with χ = ω̃E + δ, with δ ≪ ω̃E . We can now find the value

of δ perturbatively. Let us first take k > 0, which gives

δ = 2k exp

[

− k2

P (1)(D0 −D1)

]

(

ω̃E

k

)P (1)/P (1)

. (5.7)

This mode is purely real and therefore stable. Notice that this mode lies above the resonance

cone of neutrinos, and therefore also of antineutrinos; it is effectively not resonating with

any particle, and therefore is expected to be stable.

If k < 0, the solution must be modified, because (χ + ω̃E)/2k ≃ ω̃E/k < 0, so that

log(k/ω̃E) → log(−k/ω̃E) + iπ. This means that the value of δ is modified to

δ = 2k exp

[

− k2

P (1)(D0 −D1)

]

(

− ω̃E

k

)P (1)/P (1)

e
−iπ

P (1)
P (1) . (5.8)

Crucially, the frequency has developed an imaginary part

Im(ω) = −2k exp

[

− k2

P (1)(D0 −D1)

]

(

− ω̃E

k

)P (1)/P (1)

sin

(

π
P (1)

P (1)

)

. (5.9)

This imaginary part, determining the growth or damping of the mode, is entirely resonant, and

comes from the neutrinos and antineutrinos moving along the light cone. If P (1) = P (1), the

imaginary part vanishes; the wave interacts in the same way with neutrinos and antineutrinos,

so the net growth rate vanishes. We find that if P (1) > P (1) the mode grows, while if

P (1) < P (1) the imaginary part becomes negative and the mode is damped. In turn, the

real part

Re(ω) = k + ω̃E + 2k exp

[

− k2

P (1)(D0 −D1)

]

(

− ω̃E

k

)P (1)/P (1)

cos

(

π
P (1)

P (1)

)

. (5.10)
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This is inside the resonance cone both for neutrinos and for antineutrinos, so it resonates

with both species.

Let us now turn to the case of inverted ordering (ω̃E < 0). In this case, χ ≃ ω̃E = −|ω̃E |
is still an asymptotic solution in the limit of k → ∞, but now the cases k > 0 and k < 0 are

switched. We write χ = ω̃E +δ and seek solutions with δ ≪ ω̃E . For negative k, the argument

of the logarithm 2k/(χ+ ω̃E) ≃ k/ω̃E > 0 so the solution is purely real and coincides with

eq. (5.8). For positive k, the argument of log(k/ω̃E) becomes negative again, but since now

k is positive, the replacement rule is log(k/ω̃E) → log(−k/ω̃E) + iπ so that

δ = 2k exp

[

− k2

P (1)(D0 −D1)

]

(

− ω̃E

k

)P (1)/P (1)

e
iπ

P (1)
P (1) ; (5.11)

for the imaginary part we find

Im(ω) = 2k exp

[

− k2

P (1)(D0 −D1)

]

(

− ω̃E

k

)P (1)/P (1)

sin

(

π
P (1)

P (1)

)

. (5.12)

So also for this mode we find that for P (1) > P (1) > 0 there is an instability, that is sourced

by the resonance with the antineutrinos close to the light cone. Notice that the real part of

Re(δ) < 0, so that these modes are within the resonance cone of antineutrinos, but outside

the resonance cone of neutrinos. An analogous reasoning can be made for the other side of

the resonance cone, with ω ≃ −k; in this case, one finds similar conclusions with inverted

trends for the orderings, with the normal ordering showing an instability for k > 0 and the

inverted ordering for k < 0. For these modes, the role of P (1) and P (1) is inverted, so that

the growth rate is proportional to sin
[

πP (1)/P (1)
]

.

5.4 Boundary of unstable regions

We have shown that at infinitely large k, unstable modes with a phase velocity very close to

the speed of light exist, with a growth rate exponentially decreasing with k. As |k| is lowered,

the growth rate increases, but at some point it will decrease back to zero, marking the end

of the unstable range of wavenumbers. The value of k at the edge of the instability region

provides an estimate for the minimum wavenumber that is unstable. To obtain it, we make

the ansatz, confirmed by the result and motivated by numerical examples, that the unstable

modes terminate with a superluminal velocity. In this case, we have shown elsewhere [58]

that if the dispersion relation has the form Φ(ω, k) = 0, the value of k marking the edge of

an unstable region is determined by the simultaneous condition ∂Φ(ω, k)/∂ω = 0. In this

case, using eq. (5.4), we immediately see that the frequency at which this happens is

χthr = −ω̃E
P (1) + P (1)

P (1) − P (1)
= −ω̃E

S(1)

D(1)
; (5.13)

notice that this is of order ωthr ∼ ω̃E/ǫ. Therefore, the wavenumber is now determined

by the condition

P (1) log

(

− kD(1)

P (1)ω̃E

)

− P (1) log

(

− kD(1)

P (1)ω̃E

)

=
k2 − k(d0 − d2) + d2

1 − d0d2

D0 −D1
. (5.14)
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Notice that for the unstable branches identified above, the arguments of the logarithms

are always positive, as they should for a superluminal mode: for normal ordering (ω̃E > 0)

and P (1) > 0 and P (1) > 0, the unstable modes are at k < 0, while for inverted ordering

(ω̃E < 0) they are at k > 0.

This equation provides implicitly the value of k at which the branch of unstable modes

disappears. We are not interested in the precise value, but we will prove that for ǫ ≪ 1,

this value is of the order of k ∼ µǫ. This is an important physical statement: the typical

wavelengths becoming unstable are very short, of the same order of magnitude as those

of fast-unstable modes. To show this, we note that in the limit ǫ ≪ 1 we may write

P (1) ≃ P (1) ≃ S(1)/2, and introducing κ = −kD(1)/S(1)ω̃E > 0 we find

log(2κ) − S(1)2κ2ω̃2
E +D(1)(D0 −D2)S(1)κω̃E +D(1)2(D2

1 −D0D2)

D(1)3(D0 −D1)
= 0. (5.15)

The function on the left-hand side is negative for κ → 0 and passes through zero near κ ≃ 1/2,

where the logarithm vanishes and the remaining terms are of order ω̃2
E/µ

2ǫ4 ≪ 1. However,

this solution is not acceptable, since it gives a wavenumber in order of magnitude k ∼ ω̃E/ǫ,

but χ is also χ ∼ ω̃E/ǫ from eq. (5.13), violating our original assumption that χ ≪ k.

However, at larger values of κ, the function on the left-hand side of eq. (5.15) is certain to

vanish again, since at κ → ∞ it becomes again negative due to the term proportional to

κ2. Thus, the function, after passing through zero at κ ≃ 1/2, will have a maximum and

then decrease, passing through zero again. The position of this second zero can be found in

order of magnitude by finding the value of κ at which the function has a maximum, since

the zero will be at comparable values of κ. By the condition of vanishing derivative, we find

that the maximum of the function is at a value of κ such that

D(1)3(D0 −D1) +D(1)(D2 −D0)S(1)κω̃E − 2S(1)2κ2ω̃2
E = 0. (5.16)

From the structure of this equation, we see that the solution will be at values of κ ≃ µǫ2/ω̃E ≫
1, in turn implying k ∼ ǫ. Therefore, the unstable modes will terminate, in the limit ǫ ≪ 1

and ω̃E ≪ µǫ2, at very large wavenumbers of order k ∼ µǫ.

5.5 Luminal unstable wavenumbers

As we have seen, the unstable modes pass from being superluminal to subluminal. We can

therefore guess that the maximum growth rate will be when the phase velocity is very close to

luminal. This motivates us to look into solutions with χ purely imaginary, so we write χ = iχI.

We now assume, confirmed by the result, that for ǫ ≪ 1 we have χI ≫ ωE . Therefore, in

eq. (5.4), we can expand the logarithmic term to find

D(1) log

[

2k

iχI

]

+
S(1)ω̃E

iχI
+ f(k) = 0, (5.17)

with

f(k) =
d0d2 − d2

1 + k(d0 − d2) − k2

D0 −D1
. (5.18)
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From the imaginary part of this equation, we can now extract the growth rate; the sign of

the imaginary part of the logarithm is fixed by the prescription in eq. (5.3), so that

χI = −2ω̃ES(1)sign(k)

πD(1)
. (5.19)

We find correctly that for k > 0, the modes are unstable in inverted ordering (ω̃E < 0),

whereas for k < 0, the modes are unstable in normal ordering (ω̃E > 0). More importantly,

we find that the typical growth rate is of the order of magnitude χI ∼ ω̃E/ǫ ≫ ω̃E , as we had

initially assumed. The growth rate for these modes vanishes when P (1) + P (1) = 0.

5.6 Summary

The main novelty found in this section is that in the limit of very small vacuum frequency,

|ω̃E | ≪ µǫ2, there exist slow instabilities. Their physical nature is however completely different

from the usual ones. These instabilities appear at rather large wavenumbers (small spatial

scales) of the order of k ∼ µǫ, comparable with the length scales of fast instabilities. The

growth rates can reach a maximum of the order of Im(ω) ∼ ω̃E/ǫ; thus, for distributions with a

nearly equal amount of neutrinos and antineutrinos, they can be much faster than the vacuum

oscillation frequency, yet not as fast as the often-quoted
√
ω̃Eµ scaling. These unstable modes

survive up to arbitrarily large wavenumbers, but with exponentially suppressed growth rates.

In the next section, we will put together the pieces proved in sections 4 and 5 and show

how these modes appear in a specific example.

We have not discussed the axial-breaking modes. One can perform an analogous expansion

near the light cone, but the results are less illuminating because these modes cannot exist

close to the light cone at arbitrarily large k. The reason is seen from eq. (2.17); at very

large k, the integrals I0 − I2 converge to 0, because the integrand function does not have any

divergence when ω is very close to the light cone given the factor (1 − v2) in the numerator.

Numerically we will still find that modes close to the light cone generally exist at finite

k, and that for normal ordering they do become unstable, as expected since they provide

the initial unstable modes which, at ωE ≫ µǫ2, turn into the non-resonant unstable dipole

modes we have found in section 4.

6 Pattern of slow instabilities

In this section, we summarize our conclusions on the extreme regimes |ω̃E | ≪ µǫ2 and

|ω̃E | ≫ µǫ2, and extend them to the intermediate regime, on the basis of an explicit numerical

example for a benchmark angular distribution. It is uncrossed so that the nature of the slow

instability is not contaminated by any interplay with the fast one.

6.1 Setup of the benchmark system

The functional form of our uncrossed benchmark distribution is inspired by examples used

in the previous literature [54, 62, 77] and shown in figure 1. Specifically, for the neutrinos,

we use an isotropic distribution, whereas for the antineutrinos, we use a small deviation

from isotropy, overall of the form

P (v) = 0.5 and P (v) = 0.47 + 0.025 exp
[

−(1 − v)2
]

. (6.1)
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Figure 1. The benchmark angular distribution for neutrinos and antineutrinos defined in eq. (6.1)

and used to exemplify the pattern of collective modes.

If there is no crossing, why not use a completely isotropic distribution? The motivation

for our choice is that on the one hand, an isotropic distribution does not have simpler

analytical properties for the collective modes, but on the other hand, it is too specialized.

The singular character of the isotropic distribution is found even in the fast limit (ω̃E = 0),

where no Landau-damped modes exist.1 In the fast case, the latter can only appear or

disappear on the light cone, namely for ω/|k| = ±1, an argument which actually applies

for k modes along any direction, not just along the axis of symmetry. But for an isotropic

distribution, the luminal sphere ω/|k| = ±1 does not have any privileged direction, and

therefore Landau-damped modes cannot originate anywhere on it. The absence of such modes

is special for a perfectly isotropic distribution; even a small amount of anisotropy introduces

Landau-damped modes which greatly simplify the analytical properties of the collective

modes. For our example, the difference between neutrino and antineutrino distributions is

on the percent level of their sum (actually ǫ ≃ 0.019), a value that we will use to verify the

scaling laws predicted in the previous sections.

In the following sections, we will show the collective modes that are found for different

ω̃E values by solving the dispersion relation in eq. (2.14). Before presenting the results, we

stress that finding these solutions is numerically far from trivial. Using a dense set of discrete

velocity modes rather than a continuous distribution is not a good strategy in the context of

slow instabilities. Even for fast instabilities, one loses the Landau-damped modes, which are

natural continuations of the unstable modes but only appear in the continuous limit. More

importantly, in the absence of slow instabilities, the majority of modes are Case-Van-Kampen

modes that lie below the light cone [49, 55]. If the system has slow instabilities, these modes

1We emphasize that this is true only for the longitudinal modes; the axial-breaking modes exhibit a

Landau-damped branch even for an isotropic distribution.
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acquire imaginary parts, seemingly becoming unstable, providing spurious instabilities that

disappear as the number of modes grows.

Therefore, we solve the transcendental equation eq. (2.14) directly. While the required

numerical integration fundamentally involves a discretization, one does not solve a polynomial

equation and spurious modes do not show up. On the other hand, for a given value of k it

may admit many different true solutions of complex ω, so it is not easy to ensure that all

of them are found. In other words, here one may miss existing modes instead of producing

spurious ones. We use automatic numerical algorithms of root finding, that require a starting

point to seek the zero of the dispersion relation. To this end, we first find the solutions for

k = 0, where the dispersion relation is algebraic and has exactly four solutions (that become

two degenerate solutions in the fast limit of ω̃E = 0). We then increase or decrease k slowly,

using for each value of k the previous solution as a starting point. However, this procedure

does not find those branches that disappear before reaching k = 0. Such branches generally

exist [49] because Landau-damped modes can disappear abruptly when they touch one of

the branch roots Re(ω) = k ± ω̃E . In these cases, we explicitly search for solutions with

negative imaginary part with the numerical root-finding algorithm, but it is not necessarily

guaranteed that one finds all solutions.

6.2 Fast case (ω̃E = 0)

Turning now to our explicit numerical results, we begin with the case of vanishing vacuum

frequency (ω̃E = 0). The panels in the left column of figure 2 show both Re(ω) and Im(ω) as

a function of k. In addition to the full structure over a wide range of k (upper panels) we

also show a zoomed-in version focusing on a smaller range of k and ω close to the crossings

of the light cone (lower panels).

Qualitatively, the fast case (ω̃E = 0) can be easily understood using the concepts

introduced in refs. [49, 58]. There are two branches of purely stable modes that asymptotically

approach the light cone for Re(ω) → ±∞. We have already proved the existence of these

modes in eq. (5.6). In addition, we identify two branches of Landau-damped modes that

originate on the luminal sphere. The left branch (k < 0) covers only a small range of

wavenumbers, being born and dying very rapidly on the light cone. The right branch leaves

the light cone very rapidly, and does not turn back towards it. We have verified that this

trend proceeds up to very large k.

The reason for this behavior, which is so asymmetrical between the left and right branch

of Landau-damped modes, comes ultimately from the exponential term in the distribution

P (v); when Im(ω) < 0, the integrals In receive a contribution from the part of the integration

path surrounding the pole in the lower half-plane u = ω/k. Since P (v) ∝ e−(1−v)2
, this

contribution P (u) becomes exponentially large as Im(ω) grows. Thus for k > 0, even when

k becomes very large, the functions In can remain finite because their numerator becomes

increasingly large, leading to the existence of Landau-damped modes up to very large k. The

fact that Landau-damped modes can depend so sensitively on the specific functional form of

P (v) and P (v), and on its analytic continuation for complex v, may at first seem unphysical.

On the other hand, the modes that depend so sensitively on the analytic continuation of

the function far from its real argument are essentially the modes with a very large damping
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Figure 2. Dispersion relation for inverted mass ordering following from eq. (2.14) and the angular

spectrum of eq. (6.1). The vacuum oscillation frequency ω̃E < 0 is indicated in the panels. We

distinguish real branches (blue), unstable ones (green), and Landau-damped ones (red). With the

same color as the unstable branches, we also show the damped superluminal modes that are complex

conjugate to an unstable mode. We also show as black diagonal lines the resonance cones discussed in

section 5.1 and defined by the condition ω = ±k ± ω̃E .
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rate, which therefore become irrelevant over timescales so short as to be inessential. The

Landau-damped modes that are physically most relevant are those with a small value of Im(ω),

and they are determined by the functions P (v) and P (v) evaluated close to the real axis.

6.3 Inverted ordering (ω̃E < 0)

Figure 2 also shows the changes in the structure of the dispersion relation as we increase |ω̃E |
in the regime of inverted ordering (ω̃E < 0). As soon as a small nonvanishing ω̃E = −10−5

is introduced, the branch in the upper part of the light cone effectively splits into pairs of

modes. At large |k|, in the upper light cone, the unstable modes that we had anticipated in

section 5 appear. In this region, the modes are subluminal and originate from the resonant

wave-particle interaction with collinear particles. As expected, their typical wavenumbers are

of order |k| ∼ µǫ, and as their wavenumber decreases they transition into two branches of real

modes that remain very close to the light cone. We recall here that unstable superluminal

modes always come with a complex conjugate, which is visible in the panels showing Im(ω)

— we show it in the same color as the unstable modes — but the latter disappears when

the mode passes through the light cone. This behavior is as expected, since the dispersion

relation has a branch cut for Re(ω) = k± ω̃E and Im(ω) < 0, so damped superluminal modes

can disappear into the branch cut. We should also stress that the two unstable bumps on

the two sides are asymmetrical because they originate from the resonant interaction with

collinear neutrinos, which are moving with v ≃ −1 for k < 0 and with v ≃ +1 for k > 0, and

the amount of neutrinos along v = ±1 is different. Thus, if the angular distribution were

“flipped,” with P (v) → P (−v) and P (v) → P (−v), the two bumps would exchange place.

At very small k, a third branch of real modes appears, which is only visible in the

zoomed version, because it disappears at extremely small k. While this real branch is not

fundamental, since it does not develop any instability, it is still relevant since it ensures

that at k = 0 we have, as expected, four solutions, corresponding to the four solutions of

the algebraic dispersion relation. Meanwhile, the Landau-damped modes and the branch

of real modes in the lower part of the light cone are only weakly affected by |ω̃E |, as we

had also predicted in section 5.

As we increase |ω̃E |, the unstable modes extend to lower |k|, while the stable branch

of real modes between them shrinks. The growth rate of the unstable eigenmodes also

visibly increases, essentially linearly, remaining of the order of magnitude of |ω̃E |/ǫ, again

as predicted; for ω̃E = −10−4, we find a growth rate of order Im(ω) ∼ 0.01, consistent since

ǫ ∼ 0.01. Notice that with this value of ǫ we also expect |ω̃E | ∼ µǫ2 ∼ 10−4 to lie at the

transition of the emergence of non-resonant modes. Indeed, we find that for ω̃E = −10−3, the

branches of unstable modes at large wavenumbers have finally merged into a single branch of

unstable modes at all wavenumbers, including k = 0. At this point, we recover the scaling

Im(ω) ∼
√

|ω̃E |µ well known from the case of the flavor pendulum.

At larger wavenumbers, the unstable branch merges with the right Landau-damped

branch, which effectively disappears. The other branch of Landau-damped modes, which

originally lied close to the lower light cone, remains only perturbed by ω̃E but is not

qualitatively affected; this is all consistent with our general finding that in the case of inverted

ordering, ω̃E primarily affects the branches close to the upper light cone (ω > 0), but not

close to the lower light cone (ω < 0).
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Figure 3. Same as figure 2 for normal ordering (ω̃E > 0).

6.4 Normal ordering (ω̃E > 0)

Next we turn to normal ordering (ω̃E > 0) and show the analogous results for the dispersion

relation in figure 3. Similar to the previous case, as soon as ω̃E becomes nonzero, unstable

branches appear, but this time around the lower light cone, as expected. Compared to

inverted ordering, the unstable branches now reach very rapidly down to very small values of

|k|, presumably because in the fast limit (ω̃E = 0) the lower real branch sticks much closer to

the light cone than the upper one. As we see from the zoomed version, we still have three

real branches for ω̃E = 10−5 in the lower light cone, while the real branch in the upper light

cone is only quantitatively, but not qualitatively, affected by ω̃E > 0.

Since the unstable modes reach much faster to low wavenumbers than for inverted

ordering, it is not surprising that at ω̃E = 10−4 the two unstable modes have already merged
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Figure 4. Same as figure 2 for axial-breaking modes in normal ordering (ω̃E > 0).

into a single branch; close to k = 0, this branch is by definition non-resonantly unstable. The

Landau-damped modes around the upper light cone are at this stage unaffected.

However, as ω̃E increases to 10−3, we find that in normal ordering the transition to the

fully non-resonant regime, again happening around ω̃E ∼ µǫ2 ∼ 10−4, is quite different. The

unstable branch at ω̃E = 10−3 here absorbs both of the previous Landau-damped branches,

effectively passing from the lower to the upper light cone. The difference to inverted ordering,

where instead the unstable branch remained close to the upper light cone, is therefore quite

noticeable. An instability at very large positive k still exists, but it does not belong to

the same branch as the non-resonant unstable modes. Rather, it smoothly continues into

the real band in the lower light cone, which previously (at ω̃E = 10−5) existed only at

very small wavenumbers.

The simple conclusion that the vacuum frequency in inverted ordering mostly affects the

upper part of the light cone (ω > 0), while in normal ordering mostly affects the lower part

(ω < 0), can be understood through various arguments. The analytical expansions we have

performed in section 5 show this explicitly, and provide a straightforward approximation for

the growth rates and regions of instability. On the other hand, a simple and less rigorous

argument can be made. As we have seen in sections 3 and 4, in inverted ordering the mode

that becomes unstable for a near-isotropic distribution in the non-resonant regime is the

monopole mode. In the fast limit, this mode satisfies ω ≃ D0 > 0. Thus, since this mode

must ultimately become unstable as we increase ω̃E , we reasonably expect that the modes

with ω > 0 are the ones qualitatively changed by the introduction of ω̃E . On the contrary,

for normal ordering, it is the dipole mode that will ultimately become unstable. In the fast

limit, this mode satisfied ω ≃ −D2 < 0, and therefore we expect qualitative changes induced

by the vacuum frequency primarily around the lower light cone ω < 0.
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6.5 Axial-breaking modes in normal ordering

Finally, we turn to axial-breaking modes that must satisfy eq. (2.17) and show the dispersion

relation in figure 4. We consider only normal ordering, since for inverted ordering no unstable

modes appear. This result is consistent with our earlier finding in section 4 that for |ω̃E | ≫ µǫ2

the axial-breaking modes become unstable only for normal ordering, and this conclusion

is found to pertain also for smaller values of |ω̃E |.
In the fast case (ω̃E = 0), we correctly find that at very large wavenumbers there are

no stable modes close to the light cone. Instead, there are two branches of Landau-damped

modes close to the lower light cone, which smoothly connect with the Landau-damped modes

on both sides. The reason that there can be a smooth connection between these modes across

the light cone is easy to understand once we notice that the combination of integrals I0 − I2,

appearing in eq. (2.17), does not have a discontinuity or an infinity at the light cone (ω = ±k),

because the numerator of the integrand function contains the factor 1 − v2 which vanishes on

the light cone. Notice that in the fast case there is no branch close to the upper light cone.

As we turn on the vacuum frequency ω̃E = 10−5, the Landau-damped modes at large k are

not strongly affected, but close to the light cone, where they were previously transitioning to

real modes, they now pass through a brief phase of instability. Once entering the superluminal

regime, out of the light cone, the pairs of complex conjugate unstable modes split into two

real branches which stick close to the lower light cone. As we increase ω̃E to 10−4, the two

unstable branches on the two sides of the light cone merge, providing a single unified branch

across the lower light cone. Finally, when ω̃E = 10−3, the growth rate of the mode starts

to increase in the typical Im(ω) ∼
√

|ω̃E |µ fashion, effectively reproducing the non-resonant

unstable dipole mode in normal ordering.

7 Summary and discussion

The phenomenology of collective unstable modes of flavor conversion has had a somewhat

scattered historical development. The original discovery of unstable modes came from studies

of neutrinos in the early universe with an assumed homogeneous and isotropic distribution

and the instability was driven by the vacuum frequency splitting between neutrinos and

antineutrinos, what today we would call the slow flavor pendulum. Later these ideas were

mapped on the spatial evolution of SN neutrinos, assuming static solutions driven by a

stationary source in the form of the bulb model of emission. At the time when the idea

of purely static solutions was slowly recognized to be unsustainable, the relevance of fast

dynamics, driven by crossed angle distributions, was finally acknowledged (although had

been proposed much earlier) and took up the attention of our community to develop the

theory and phenomenology of fast flavor conversion in the limit of vanishing neutrino masses.

We here bridge the gap between the theory of fast and slow modes, i.e., apply the novel

language of space-dependent temporal growth, inspired by plasma physics, to understand

how the vacuum frequency can induce instabilities despite being so much smaller than the

refractive energy scale. We show that many seemingly generic features of homogeneous and

isotropic slow instabilities are actually special to large-scale modes.
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We have also stressed that the driving parameter ω̃E = (δm2/2E) cos θV, that we call the

vacuum oscillation frequency, actually involves the projection by the vacuum mixing angle on

the weak-interaction direction in flavor space. Even in the presence of large matter refraction,

this projection involves the true vacuum mixing angle, not an effective in-medium mixing

angle. We have not investigated the impact of matter on the slow-oscillation phenomenology

that would manifest in the nonlinear regime.

Our first new insight is that the behavior of slow instabilities depends on a parameter

whose relevance is usually under-emphasized, namely the ratio between lepton number and

particle number, which we dub ǫ. The impact of the vacuum frequency on the pattern of

slow instabilities is completely different in the regimes of |ω̃E | ≪ µǫ2 or |ω̃E | ≫ µǫ2. We

have restricted our study to a few simplifying assumptions, including axisymmetric angular

distributions with no angular crossing, allowing for a clean separation of the slow modes

from the potential fast ones.

The first regime with very small vacuum frequencies |ω̃E | ≪ µǫ2 is physically the regime

of large neutrino density if the vacuum oscillation frequency is taken as a fixed parameter. In

this regime, large-scale modes, and notably the slow flavor pendulum, are stable even in the

inverted position, what has been dubbed the sleeping-top regime. Instabilities here depend on

inhomogeneous solutions that break the initial homogeneity. The growth rates Im(ω) of such

modes are of the order of |ω̃E |/ǫ, but only for very small-scale modes, with a length scale

comparable to that of fast unstable modes (µǫ)−1. The main feature we have highlighted

is the resonant nature of these modes, since they come primarily from the wave-particle

interaction with neutrinos moving close to the axis of symmetry.

However, this conclusion descends primarily from our consideration of modes directed only

along the axis of symmetry. Modes in other directions would resonate with neutrinos along

these directions; this is particularly evident for an isotropic distribution, which is axisymmetric

in any direction. Thus there are small-scale modes resonating with neutrinos along any

direction; their main feature is a phase velocity close to the speed of light. This version of

slow unstable modes has not been highlighted before and is phenomenologically particularly

relevant. It allows, in principle, for local relaxation even for large neutrino densities as in a

SN core, over a timescale of order ǫ/ω̃E , which is generally short compared to the collisional

one. Notice also that, while our benchmark example was for a near-isotropic distribution,

our analytical treatment shows that these distributions are resonant, and therefore depend

on local properties of the angular distribution for neutrinos moving in phase with the mode.

Thus, even if the distribution is not near-isotropic, the existence and general properties of

these modes as inferred in section 5 remain similar. Therefore, phenomenologically these

slow instabilities can be relevant both in deeper SN regions where the angular distribution

is nearly isotropic or at larger radii where it is more forward peaked. Since ω̃E is much

smaller than the collision rate, these instabilities, despite being very slow compared to the

fast ones, might still allow for a collisionless relaxation.

In the opposite regime with |ω̃E | ≫ µǫ2 (but still |ω̃E | ≪ µ), the system exhibits

instabilities of the same nature as the well-studied slow flavor pendulum. These modes

can be unstable on all length scales down to values of order (µǫ)−1, thus also including

large-scale modes. Their nature is non-resonant, at least in the large-scale region where
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their growth rate is largest, meaning that they arise from wave-particle interactions with

the entire neutrino angular range. This is why they were the first to be discovered — they

appear easily also in cases of homogeneous and isotropic setups. The typical growth rate

for these instabilities corresponds to the often-cited scaling Im(ω) ∼
√

|ω̃E |µ. This scaling

motivates the terminology of slow modes and suggests a lesser relevance than fast modes

driven purely by refraction. However, this scaling applies only in the regime |ω̃E | ≫ µǫ2

and therefore Im(ω) is actually much larger than the growth rate of fast instabilities, which

usually is of the order of µǫ. Thus, in the regime in which the
√

|ω̃E |µ scaling applies, slow

modes are more rapidly growing than fast modes.

The catch to this argument is that, unless ǫ is very small, in a SN core we usually expect to

be in the first regime (|ω̃E | ≪ µǫ2), where slow modes are even slower than usually envisioned,

with Im(ω) ∼ |ω̃E |/ǫ. The difference between the regimes of resonant and non-resonant

instabilities may have deep consequences on the final outcome, although we have here not

pursued the question of non-linear evolution. However, following the general quasi-linear

picture of relaxation [57], in addition to producing turbulent flavor fluctuations, the instability

affects primarily the spatially averaged angular distribution along the directions that interact

with the growing waves. In the non-resonant case, the entire angular distribution should be

affected, and so to remove the original cause of instability, equipartition along any direction

is generally expected over timescales 1/
√
ω̃Eµ. This is indeed what was found, e.g., in a

homogeneous setup with spontaneous breaking of isotropy [63], where the outcome was an

average equipartition across the entire angular distribution, together with fluctuations which,

in the framework of ref. [57], we can interpret as turbulent in nature. This conclusion follows

even if only the modes directed along the axis of symmetry are considered, as we do here.

On the other hand, in the resonant regime, with |ω̃E | ≪ µǫ2, only neutrinos resonant

with the unstable modes should be affected. If we include only the modes along the axis of

symmetry, as we do here, we might expect only neutrinos along that direction to be affected.

However, as discussed above, other modes resonate with neutrinos in these other directions,

and therefore we expect again an effect on the entire angular distribution, but only when

homogeneity is spontaneously broken along all directions, as generally expected. Therefore, a

space-averaged distribution would be obtained only by breaking all symmetries, in marked

difference to the fast instabilities of a single-crossed distribution, for which the most relevant

unstable modes are usually directed along the axis of symmetry and are therefore captured

even in a one-dimensional treatment. The more general topic of what is the space-time

development of slow instabilities, in contrast to fast instabilities, as a consequence of their

intrinsically resonant nature is discussed in detail in Part II of this series of papers [78].

To summarize, we have introduced a comprehensive treatment of the linear growth of

slow instabilities in dense neutrino gases. We have thus brought the theory of slow flavor

conversions to a comparable language and state as the theory of fast flavor conversions

previously developed [49, 58], allowing one in principle to treat both on the same footing.

In both cases, our framework allows for an intuitive understanding of what triggers the

instability, namely the interaction between flavor waves and individual neutrino modes.

Developing such an intuition may hopefully serve as a guide to tackle the much more complex

problem of understanding what is the practical outcome of these instabilities in realistic

astrophysical environments.

– 31 –



J
H
E
P
0
4
(
2
0
2
5
)
1
4
6

Acknowledgments

We thank Basudeb Dasgupta, Ian Padilla-Gay, Shashank Shalgar, Günter Sigl, Meng-Ru Wu,

and Zewei Xiong for comments on the manuscript that have led to significant clarifications.

DFGF is supported by the Alexander von Humboldt Foundation (Germany), whereas GGR

acknowledges partial support by the German Research Foundation (DFG) through the

Collaborative Research Centre “Neutrinos and Dark Matter in Astro- and Particle Physics

(NDM)”, Grant SFB-1258–283604770, and under Germany’s Excellence Strategy through

the Cluster of Excellence ORIGINS EXC-2094-390783311.

Data Availability Statement. This article has no associated data or the data will not

be deposited.

Code Availability Statement. This article has no associated code or the code will not

be deposited.

Open Access. This article is distributed under the terms of the Creative Commons Attri-

bution License (CC-BY4.0), which permits any use, distribution and reproduction in any

medium, provided the original author(s) and source are credited.

References

[1] P.F. de Salas et al., 2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021)

071 [arXiv:2006.11237] [INSPIRE].

[2] F. Capozzi et al., Unfinished fabric of the three neutrino paradigm, Phys. Rev. D 104 (2021)

083031 [arXiv:2107.00532] [INSPIRE].

[3] I. Esteban et al., The fate of hints: updated global analysis of three-flavor neutrino oscillations,

JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].

[4] L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

[5] L. Wolfenstein, Neutrino Oscillations and Stellar Collapse, Phys. Rev. D 20 (1979) 2634

[INSPIRE].

[6] S.P. Mikheyev and A.Y. Smirnov, Resonance Amplification of Oscillations in Matter and

Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

[7] S.P. Mikheev and A.Y. Smirnov, Resonant amplification of neutrino oscillations in matter and

solar neutrino spectroscopy, Nuovo Cim. C 9 (1986) 17 [INSPIRE].

[8] S.P. Mikheev and A.Y. Smirnov, Neutrino Oscillations in a Variable Density Medium and

Neutrino Bursts Due to the Gravitational Collapse of Stars, Sov. Phys. JETP 64 (1986) 4

[arXiv:0706.0454] [INSPIRE].

[9] A.S. Dighe and A.Y. Smirnov, Identifying the neutrino mass spectrum from the neutrino burst

from a supernova, Phys. Rev. D 62 (2000) 033007 [hep-ph/9907423] [INSPIRE].

[10] J.T. Pantaleone, Neutrino oscillations at high densities, Phys. Lett. B 287 (1992) 128 [INSPIRE].

[11] S. Samuel, Neutrino oscillations in dense neutrino gases, Phys. Rev. D 48 (1993) 1462 [INSPIRE].

[12] S. Samuel, Bimodal coherence in dense selfinteracting neutrino gases, Phys. Rev. D 53 (1996)

5382 [hep-ph/9604341] [INSPIRE].

– 32 –



J
H
E
P
0
4
(
2
0
2
5
)
1
4
6

[13] H. Duan, G.M. Fuller and Y.-Z. Qian, Collective neutrino flavor transformation in supernovae,

Phys. Rev. D 74 (2006) 123004 [astro-ph/0511275] [INSPIRE].

[14] H. Duan, G.M. Fuller, J. Carlson and Y.-Z. Qian, Simulation of Coherent Non-Linear Neutrino

Flavor Transformation in the Supernova Environment. 1. Correlated Neutrino Trajectories, Phys.

Rev. D 74 (2006) 105014 [astro-ph/0606616] [INSPIRE].

[15] R.F. Sawyer, ’Classical’ instabilities and ‘quantum’ speed-up in the evolution of neutrino clouds,

hep-ph/0408265 [INSPIRE].

[16] R.F. Sawyer, The multi-angle instability in dense neutrino systems, Phys. Rev. D 79 (2009)

105003 [arXiv:0803.4319] [INSPIRE].

[17] S. Chakraborty, R.S. Hansen, I. Izaguirre and G. Raffelt, Self-induced neutrino flavor conversion

without flavor mixing, JCAP 03 (2016) 042 [arXiv:1602.00698] [INSPIRE].

[18] A.D. Dolgov, Neutrinos in the Early Universe, Sov. J. Nucl. Phys. 33 (1981) 700 [INSPIRE].

[19] M.A. Rudzsky, Kinetic equations for neutrino spin- and type-oscillations in a medium, Astrophys.

Space Sci. 165 (1990) 65 [INSPIRE].

[20] G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, Nucl. Phys. B

406 (1993) 423 [INSPIRE].

[21] M. Sirera and A. Perez, Relativistic Wigner function approach to neutrino propagation in matter,

Phys. Rev. D 59 (1999) 125011 [hep-ph/9810347] [INSPIRE].

[22] S. Yamada, Boltzmann equations for neutrinos with flavor mixings, Phys. Rev. D 62 (2000)

093026 [astro-ph/0002502] [INSPIRE].

[23] A. Vlasenko, G.M. Fuller and V. Cirigliano, Neutrino Quantum Kinetics, Phys. Rev. D 89 (2014)

105004 [arXiv:1309.2628] [INSPIRE].

[24] C. Volpe, D. Väänänen and C. Espinoza, Extended evolution equations for neutrino propagation

in astrophysical and cosmological environments, Phys. Rev. D 87 (2013) 113010

[arXiv:1302.2374] [INSPIRE].

[25] J. Serreau and C. Volpe, Neutrino-antineutrino correlations in dense anisotropic media, Phys.

Rev. D 90 (2014) 125040 [arXiv:1409.3591] [INSPIRE].

[26] A. Kartavtsev, G. Raffelt and H. Vogel, Neutrino propagation in media: flavor-, helicity-, and

pair correlations, Phys. Rev. D 91 (2015) 125020 [arXiv:1504.03230] [INSPIRE].

[27] D.F.G. Fiorillo, G.G. Raffelt and G. Sigl, Inhomogeneous Kinetic Equation for Mixed Neutrinos:

Tracing the Missing Energy, Phys. Rev. Lett. 133 (2024) 021002 [arXiv:2401.05278] [INSPIRE].

[28] D.F.G. Fiorillo, G.G. Raffelt and G. Sigl, Collective neutrino-antineutrino oscillations in dense

neutrino environments?, Phys. Rev. D 109 (2024) 043031 [arXiv:2401.02478] [INSPIRE].

[29] H. Duan and J.P. Kneller, Neutrino flavour transformation in supernovae, J. Phys. G 36 (2009)

113201 [arXiv:0904.0974] [INSPIRE].

[30] H. Duan, G.M. Fuller and Y.-Z. Qian, Collective Neutrino Oscillations, Ann. Rev. Nucl. Part.

Sci. 60 (2010) 569 [arXiv:1001.2799] [INSPIRE].

[31] G. Mangano, A. Mirizzi and N. Saviano, Damping the neutrino flavor pendulum by breaking

homogeneity, Phys. Rev. D 89 (2014) 073017 [arXiv:1403.1892] [INSPIRE].

[32] H. Duan and S. Shalgar, Flavor instabilities in the neutrino line model, Phys. Lett. B 747 (2015)

139 [arXiv:1412.7097] [INSPIRE].

– 33 –



J
H
E
P
0
4
(
2
0
2
5
)
1
4
6

[33] S. Abbar, H. Duan and S. Shalgar, Flavor instabilities in the multiangle neutrino line model,

Phys. Rev. D 92 (2015) 065019 [arXiv:1507.08992] [INSPIRE].

[34] S. Abbar and H. Duan, Neutrino flavor instabilities in a time-dependent supernova model, Phys.

Lett. B 751 (2015) 43 [arXiv:1509.01538] [INSPIRE].

[35] B. Dasgupta and A. Mirizzi, Temporal Instability Enables Neutrino Flavor Conversions Deep

Inside Supernovae, Phys. Rev. D 92 (2015) 125030 [arXiv:1509.03171] [INSPIRE].

[36] F. Capozzi, B. Dasgupta and A. Mirizzi, Self-induced temporal instability from a neutrino

antenna, JCAP 04 (2016) 043 [arXiv:1603.03288] [INSPIRE].

[37] A. Mirizzi, G. Mangano and N. Saviano, Self-induced flavor instabilities of a dense neutrino

stream in a two-dimensional model, Phys. Rev. D 92 (2015) 021702 [arXiv:1503.03485]

[INSPIRE].

[38] S. Bhattacharyya and B. Dasgupta, Fast Flavor Depolarization of Supernova Neutrinos, Phys.

Rev. Lett. 126 (2021) 061302 [arXiv:2009.03337] [INSPIRE].

[39] M. Zaizen and H. Nagakura, Simple method for determining asymptotic states of fast

neutrino-flavor conversion, Phys. Rev. D 107 (2023) 103022 [arXiv:2211.09343] [INSPIRE].

[40] H. Nagakura, L. Johns and M. Zaizen, Bhatnagar-Gross-Krook subgrid model for neutrino

quantum kinetics, Phys. Rev. D 109 (2024) 083013 [arXiv:2312.16285] [INSPIRE].

[41] Z. Xiong et al., Evaluating approximate asymptotic distributions for fast neutrino flavor

conversions in a periodic 1D box, Phys. Rev. D 108 (2023) 063003 [arXiv:2307.11129]

[INSPIRE].

[42] S. Shalgar and I. Tamborra, Neutrino flavor conversion, advection, and collisions: toward the

full solution, Phys. Rev. D 107 (2023) 063025 [arXiv:2207.04058] [INSPIRE].

[43] M. Cornelius, S. Shalgar and I. Tamborra, Perturbing fast neutrino flavor conversion, JCAP 02

(2024) 038 [arXiv:2312.03839] [INSPIRE].

[44] S. Abbar, M.-R. Wu and Z. Xiong, Application of neural networks for the reconstruction of

supernova neutrino energy spectra following fast neutrino flavor conversions, Phys. Rev. D 109

(2024) 083019 [arXiv:2401.17424] [INSPIRE].

[45] S. Richers et al., Asymptotic-state prediction for fast flavor transformation in neutron star

mergers, Phys. Rev. D 110 (2024) 103019 [arXiv:2409.04405] [INSPIRE].

[46] S. Hannestad, G.G. Raffelt, G. Sigl and Y.Y.Y. Wong, Self-induced conversion in dense neutrino

gases: pendulum in flavour space, Phys. Rev. D 74 (2006) 105010 [Erratum ibid. 76 (2007)

029901] [astro-ph/0608695] [INSPIRE].

[47] T. Morinaga, Fast neutrino flavor instability and neutrino flavor lepton number crossings, Phys.

Rev. D 105 (2022) L101301 [arXiv:2103.15267] [INSPIRE].

[48] B. Dasgupta, Collective Neutrino Flavor Instability Requires a Crossing, Phys. Rev. Lett. 128

(2022) 081102 [arXiv:2110.00192] [INSPIRE].

[49] D.F.G. Fiorillo and G.G. Raffelt, Theory of neutrino fast flavor evolution. Part I. Linear

response theory and stability conditions, JHEP 08 (2024) 225 [arXiv:2406.06708] [INSPIRE].

[50] R.F. Sawyer, Neutrino cloud instabilities just above the neutrino sphere of a supernova, Phys.

Rev. Lett. 116 (2016) 081101 [arXiv:1509.03323] [INSPIRE].

[51] I. Izaguirre, G. Raffelt and I. Tamborra, Fast Pairwise Conversion of Supernova Neutrinos: a

Dispersion-Relation Approach, Phys. Rev. Lett. 118 (2017) 021101 [arXiv:1610.01612]

[INSPIRE].

– 34 –



J
H
E
P
0
4
(
2
0
2
5
)
1
4
6

[52] S. Airen et al., Normal-mode Analysis for Collective Neutrino Oscillations, JCAP 12 (2018) 019

[arXiv:1809.09137] [INSPIRE].

[53] L. Johns, H. Nagakura, G.M. Fuller and A. Burrows, Neutrino oscillations in supernovae:

angular moments and fast instabilities, Phys. Rev. D 101 (2020) 043009 [arXiv:1910.05682]

[INSPIRE].

[54] I. Padilla-Gay, I. Tamborra and G.G. Raffelt, Neutrino Flavor Pendulum Reloaded: the Case of

Fast Pairwise Conversion, Phys. Rev. Lett. 128 (2022) 121102 [arXiv:2109.14627] [INSPIRE].

[55] D.F.G. Fiorillo and G.G. Raffelt, Slow and fast collective neutrino oscillations: invariants and

reciprocity, Phys. Rev. D 107 (2023) 043024 [arXiv:2301.09650] [INSPIRE].

[56] D.F.G. Fiorillo and G.G. Raffelt, Flavor solitons in dense neutrino gases, Phys. Rev. D 107

(2023) 123024 [arXiv:2303.12143] [INSPIRE].

[57] D.F.G. Fiorillo and G.G. Raffelt, Fast Flavor Conversions at the Edge of Instability in a

Two-Beam Model, Phys. Rev. Lett. 133 (2024) 221004 [arXiv:2403.12189] [INSPIRE].

[58] D.F.G. Fiorillo and G.G. Raffelt, Theory of neutrino fast flavor evolution. Part II. Solutions at

the edge of instability, JHEP 12 (2024) 205 [arXiv:2409.17232] [INSPIRE].

[59] P. Dedin Neto, I. Tamborra and S. Shalgar, Energy Dependence of Flavor Instabilities Stemming

from Crossings in the Neutrino Flavor Lepton Number Angular Distribution, arXiv:2312.06556

[INSPIRE].

[60] G. Sigl, Simulations of fast neutrino flavor conversions with interactions in inhomogeneous

media, Phys. Rev. D 105 (2022) 043005 [arXiv:2109.00091] [INSPIRE].

[61] F. Capozzi et al., Fast flavor conversions of supernova neutrinos: classifying instabilities via

dispersion relations, Phys. Rev. D 96 (2017) 043016 [arXiv:1706.03360] [INSPIRE].

[62] C. Yi, L. Ma, J.D. Martin and H. Duan, Dispersion relation of the fast neutrino oscillation wave,

Phys. Rev. D 99 (2019) 063005 [arXiv:1901.01546] [INSPIRE].

[63] G.G. Raffelt and G. Sigl, Self-induced decoherence in dense neutrino gases, Phys. Rev. D 75

(2007) 083002 [hep-ph/0701182] [INSPIRE].

[64] L. Johns, Collisional Flavor Instabilities of Supernova Neutrinos, Phys. Rev. Lett. 130 (2023)

191001 [arXiv:2104.11369] [INSPIRE].

[65] Z. Xiong, L. Johns, M.-R. Wu and H. Duan, Collisional flavor instability in dense neutrino gases,

Phys. Rev. D 108 (2023) 083002 [arXiv:2212.03750] [INSPIRE].

[66] J. Liu, M. Zaizen and S. Yamada, Systematic study of the resonancelike structure in the

collisional flavor instability of neutrinos, Phys. Rev. D 107 (2023) 123011 [arXiv:2302.06263]

[INSPIRE].

[67] Y.-C. Lin and H. Duan, Collision-induced flavor instability in dense neutrino gases with

energy-dependent scattering, Phys. Rev. D 107 (2023) 083034 [arXiv:2210.09218] [INSPIRE].

[68] L. Johns and Z. Xiong, Collisional instabilities of neutrinos and their interplay with fast flavor

conversion in compact objects, Phys. Rev. D 106 (2022) 103029 [arXiv:2208.11059] [INSPIRE].

[69] I. Padilla-Gay, I. Tamborra and G.G. Raffelt, Neutrino fast flavor pendulum. II. Collisional

damping, Phys. Rev. D 106 (2022) 103031 [arXiv:2209.11235] [INSPIRE].

[70] D.F.G. Fiorillo, I. Padilla-Gay and G.G. Raffelt, Collisions and collective flavor conversion:

integrating out the fast dynamics, Phys. Rev. D 109 (2024) 063021 [arXiv:2312.07612]

[INSPIRE].

– 35 –



J
H
E
P
0
4
(
2
0
2
5
)
1
4
6

[71] F. Capozzi, G. Raffelt and T. Stirner, Fast Neutrino Flavor Conversion: Collective Motion vs.

Decoherence, JCAP 09 (2019) 002 [arXiv:1906.08794] [INSPIRE].

[72] H. Duan, G.M. Fuller, J. Carlson and Y.-Z. Qian, Analysis of Collective Neutrino Flavor

Transformation in Supernovae, Phys. Rev. D 75 (2007) 125005 [astro-ph/0703776] [INSPIRE].

[73] G.G. Raffelt, N-mode coherence in collective neutrino oscillations, Phys. Rev. D 83 (2011)

105022 [Erratum ibid. 104 (2021) 089902] [arXiv:1103.2891] [INSPIRE].

[74] I. Tamborra and S. Shalgar, New Developments in Flavor Evolution of a Dense Neutrino Gas,

Ann. Rev. Nucl. Part. Sci. 71 (2021) 165 [arXiv:2011.01948] [INSPIRE].

[75] M. Sen, Supernova Neutrinos: Flavour Conversion Mechanisms and New Physics Scenarios,

Universe 10 (2024) 238 [arXiv:2405.20432] [INSPIRE].

[76] Y. Pehlivan, A.B. Balantekin, T. Kajino and T. Yoshida, Invariants of Collective Neutrino

Oscillations, Phys. Rev. D 84 (2011) 065008 [arXiv:1105.1182] [INSPIRE].

[77] S. Shalgar, On the length scale of collective neutrino oscillations, arXiv:2408.06422 [INSPIRE].

[78] D.F.G. Fiorillo and G.G. Raffelt, Theory of neutrino slow flavor evolution. Part II. Space-time

evolution of linear instabilities, arXiv:2501.16423 [INSPIRE].

– 36 –


