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Fast flavor pendulum: Instability condition
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Even in the absence of neutrino masses, a neutrino gas can exhibit a homogeneous flavor instability that
leads to a periodic motion known as the fast flavor pendulum. A well-known necessary condition is a
crossing of the angular flavor lepton distribution. In an earlier work, some of us showed that homogeneous

flavor instabilities also obey a Nyquist criterion, inspired by plasma physics. This condition, while more

restrictive than the angular crossing, is only sufficient if the unstable branch of the dispersion relation is
bounded by critical points that both lie under the light cone (points with subluminal phase velocity). While
the lepton-number angle distribution, assumed to be axially symmetric, easily allows one to determine the

real-valued branch of the dispersion relation and to recognize if instead superluminal critical points exist,

this graphical method does not translate into a simple instability condition. We discuss the homogeneous

mode in the more general context of the dispersion relation for modes with arbitrary wave number and

stress that it plays no special role on this continuum, except for its regular but fragile long-term behavior,

owed to its many symmetries.

DOI: 10.1103/PhysRevD.111.083028

I. INTRODUCTION

In a dense neutrino gas, neutrino-neutrino refraction
spawns flavor waves that can be unstable and then lead to
flavor conversion. These unstable collective modes do not
require flavor mixing and not even neutrino masses, in which
case they are termed fast flavor modes, namely space and
time dependent solutions of the underlying quantum kinetic
equations. A question of both theoretical and practical
interest is the condition for the appearance of such runaway
modes of flavor conversion. In the fast flavor case, a crossing
of the angular distribution of flavor lepton number carried
by neutrinos is a well-known necessary and sufficient
condition [1-4].

However, one often considers systems that have various
degrees of symmetry, notably axially symmetric distribu-
tions as well as axially symmetric solutions, in which
case Morinaga’s theorem [1,4] does not apply because the
guaranteed unstable modes break axial symmetry. For a
single crossing, an axially symmetric unstable solution
is still guaranteed, as well as for an odd number of
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crossings [5], whereas for an even number of crossings,
all axially symmetric solutions could be stable [6].

One particularly eye-catching solution, both axially sym-
metric and homogeneous, is known as the fast flavor
pendulum [7-10]. This particularly symmetric case is special
because it is technically integrable due to its large number of
conserved quantities, the Gaudin invariants [9—12], although
in practice these symmetries will be spontaneously broken by
the coupling to higher wave number modes and by collisions
that dissipate flavor coherence [13—15]. Despite its extreme
fragility, the fast flavor pendulum remains an intriguing exact
solution, the prototype of a fast instability, and as such
commands particular attention.

Besides the necessity of an angular crossing, which
properties of the angle distribution would guarantee the
appearance of this solution? As the general dispersion
relation involves various integrals over the angle distribution,
there is no simple answer. For a given real wave number k
along the symmetry axis, the potentially complex frequency
of the corresponding normal mode is w(k) and instability
requires w(k) = Imw(k) > 0. For a single-crossed spec-
trum, the existence of a k-interval with complex w(k) is
guaranteed, but not that it includes the homogeneous case.

Actually, for any single-crossed spectrum, in all cases we
have explored, there are either two intervals (ki, k,) and
(k3, k4) of unstable modes with k; < k, < k3 < kg4, or only
a single interval (ky, k4), as first suggested by the examples
of Ref. [16]. In both cases, the limiting points (k)
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and w(k,) lie under the light cone, i.e., they have sub-
luminal phase velocity |wg (k1 4)/k; 4] < 1, where wg (k) =
Rew(k). If the points k, 3 exist, the end points w(k,3) are
superluminal. In other words, if there is a single unstable
interval, it begins and ends under the light cone (but may be
outside in the intermediate range). If there are two intervals,
each of them has a subluminal and a superluminal end
point. Two of us have proven these properties in the more
general context of inhomogeneous, axially breaking insta-
bilities [5]. However, it remains mathematically unproven
whether these properties are truly generic for axially
symmetric solutions or not.

Previously, using methods of plasma physics, two of us
have developed the “Nyquist criterion” for the homogeneous
mode to be unstable [10], and it was thought to be both
necessary and sufficient. However, it was effectively
assumed that the endpoints of the unstable branches are
under the light cone, which implies that some neutrinos are
on resonance with the flavor wave. The possibility of the
branches ending above the light cone was missed because in
the physics of nonrelativistic plasmas, some of the electrons
are always on resonance with the plasma wave. So with
hindsight, the Nyquist criterion only applies if there is a
single unstable interval (ky, k4), whereas in the case of two
intervals, it is still necessary, but no longer sufficient.
Therefore, to understand the conditions for the homogeneous
mode to become unstable, one cannot avoid a general study
of the dispersion relation for all wave numbers; this serves in
itself as a reminder that the homogeneous mode should not
really be regarded as special or more instructive—its beauty
and simplicity can be deceiving.

Therefore, while clarifying the status of the Nyquist
criterion, we use this opportunity to discuss more explicitly
the dispersion relation that follows from a single-crossed
axially symmetric angle distribution, and what it implies
specifically for the homogeneous mode. In Sec. II we recap
the dispersion relation for an axisymmetric fast flavor
system. In Sec. III we explain the Nyquist criterion, which
remains a necessary condition and is more restrictive than
simply a crossing of the angle distribution. In Sec. IV we
illustrate the typical properties of the dispersion relation with
a family of distributions, somewhat parallel to Ref. [16], and
check whether the Nyquist criterion is fulfilled. We also
prove the general properties of the single-crossed dispersion
relation in Sec. V and discuss what they mean for the
homogeneous mode. We follow the formal results introduced
in Ref. [5], but here we apply them practically to specific
angular distributions to show how to actually determine
whether a specific wave number is unstable or not. We finally
conclude in Sec. VI.

II. DISPERSION RELATION

A. Axisymmetric equations of motion

The quantum-kinetic description starts with the flavor
density matrices gp, (X, t), where the diagonal entries are the

usual occupation numbers, whereas the off-diagonal ele-
ments y,(x,#) and complex conjugates encode flavor
coherence. In the linear approach, y/p(x, t) is what we call
flavor field and for which we seek the dispersion relation.
In general, there are three such fields for the coherence
between any pair of flavors, but in the linear limit we can
study each of them separately—in the linear limit there are
no three-flavor effects [17]. In general, there are indepen-
dent density matrices g, (x, f) for antineutrinos and corre-
sponding flavor fields.

The fast flavor limit is defined by neglecting neutrino
masses, implying that the density matrices for lepton
number p, =g, —0p Obey self-contained equations of
motion (EOMs) which descend from the quantum kinetic
equation [18-28]. After neglecting background matter and
collision effects, they are

(0, +Vy)pp = —i\/EGF/%[pP/,pP](l —v-v), (1)

where v = p/|p| is the velocity vector, a unit vector that
represents the direction of motion. The space-time depend-
ence of the p, matrices is not explicitly shown. Moreover,
the EOMs do not depend on energy so that we can use
energy-integrated lepton-number density matrices that
depend only on v instead of p. We neglect any collisional
term potentially connected with novel branches of colli-
sional instabilities [14,15,29-33].

Assuming axial symmetry around the z-direction, the
azimuth angle is integrated out, leaving a dependence
only on v = cosf. Therefore, we may use integrated
density matrices p,(z, ) that depend only on v as well
as on z and t. Moreover, we normalize them to the total
neutrino density so that p, is understood to stand for
(n, +ny)~" [ ppp*d|p|de/(2x)®. The simplified EOMs
then read

+1
(9, + U()Z)py = _i'u/ d”/[Pv/»,Op](l o), (2)

-1

where y = /2Gg(n, + n;) is the effective neutrino-neu-
trino interaction strength. In the literature it is often defined
asymmetrically, using n, only.

B. Linearization

Next we assume that initially neutrinos are in flavor
eigenstates and thus that p, is diagonal aside from small
seeds and we also assume that the diagonal elements are
perfectly homogeneous. Therefore, on the linear level, the
trace of each p, is conserved, allowing us to focus only on
the small off-diagonal pieces and we write

1/1 0 1/ G, wi(z1)
y— = Trp, == , 3
r 2 (0 1) p 2 (Wﬁ(Z’ t) _Gu ) ( )
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where G, is the angular spectrum that is independent of z
and 7 and y,(z, 1) is the space-time dependent flavor field.
If one expresses the density matrix in terms of the usual
polarization vectors, G, = P and y, = P* + iPy, follow-
ing our previous works [4,5]. In the literature, often the
upper-right component y} = P% —iP}, was taken as the
flavor field, explaining certain sign differences.

With these assumptions and notations, we finally find the
linear EOMs in the form
(al + Uaz)l//v = i/’l[l//v(GO - le) - GU(WO - UWI)}' (4)
We use the angular moments G, = [dvG,v" and
w, = [dvy,v", where only the monopole and dipole
terms appear in the EOMs.'

C. Normal modes

One may next seek normal modes that fulfill these
EOMs, namely plane-wave solutions of the form
W, — y,e MKz where the notation for y,(z, ¢) and the
normal-mode amplitude y,(Q, K) is the same. Moreover,
we introduce the shifted frequency w = Q + uG, and wave
vector k = K + uGy, leading to

(0 —kv)y, = uG,(yo — vy 1), (5)

where k is always taken to be real, representing a spatial
Fourier mode of the flavor field, whereas @ = wg + iw;
may have a nonvanishing imaginary part, allowing for
exponential growth or damping.

We need to distinguish two cases. For modes with a
phase velocity w/k that is superluminal, i.e., |wg/k| > 1,
the factor (w — vk) never vanishes for any —1 < » < +1,
whether or not @ is complex, and we may write

_ HG,
Wy

—m(l//o— vy ). (6)

Inserting this form in Eq. (5) leads to the usual self-
consistency condition

(Io-1)IT,+1)-1 =0, (7)

where we introduce the integrals

- +1 G, "
I, = dv—2—. 8
n ”/_1 Ui (8)

Notice that our definition of v, as the lower-left piece of the
density matrix explains that the signs in (7, — 1) and

lUsual]y we express the dependence on v as a subscript such as
G, = G(v), which typically should not lead to confusion with the
moments Gy, G, that do not signify G(0) or G(1). In a few
instances we actually need G(=£1), the value of G(v) at the edges
of the interval —1 < » < +1, and then we write explicitly G(=+1).

(I, + 1) are opposite from some of the previous literature,
e.g., Eq. (34) of Ref. [16], but one finds the same w(k) that
fulfills Eq. (7), which is the dispersion relation for super-
luminal axisymmetric collective modes.

We mention in passing that one can follow analogous
steps for modes for which the initial condition is axisym-
metric, yet the solutions break this symmetry. In other
words, the spectrum G, still depends only on v = cos 6,
whereas y, depends also on the azimuth angle ¢. For these
modes, the dispersion relation has the simpler form

Iy-L+2=0. (9)

The analytic properties of these modes are somewhat
simpler than the axisymmetric ones, because their
dispersion relation is linear in the integrals I, rather than
quadratic. Here we do not further discuss them, since they
are unrelated to the flavor pendulum.

For subluminal modes, i.e., |wg/k| <1, the factor
(wg — vk) vanishes for some v, corresponding to neutrinos
with a velocity along the z-direction that is on resonance
with the wave. If w is complex, we can still proceed as
before and obtain the dispersion relation for subluminal
modes with a growing and damped mode @ = wg + i|wy|.
If the only goal is to find the exponentially growing modes
of the system, there is no further difficulty.

However, to expand a given initial condition in a
complete set of linearly independent eigenfunctions, one
needs to note that in addition, there are real-valued modes
with singular eigenfunctions that cannot be represented in
the form of Eq. (6). For a given k, any frequency —|k| <
® < +|k| is possible for them—there is no dispersion law.
In the context of flavor waves, these “noncollective’” modes
were first discussed in Ref. [6], whereas in plasma physics,
they were discovered decades ago by van Kampen [34] and
today are known as Case-van Kampen modes [34-36].
In the noninteracting limit of g — 0, these are the only
remaining modes and then correspond to individual neu-
trino waves that drift kinematically without being affected
by other neutrinos.

D. Superluminal real-valued modes

Propagating modes (w, k) with purely real @ and k can
only exist outside of the light cone, i.e., with superluminal
phase velocity |u| = |w/k| > 1. In this case, one can derive
an explicit parametric expression for the dispersion relation
[37]. We may express the integrals in Eq. (8) in the form
I, = (u/k)J, with

+1 "
Jn:/ PRy (10)

1 u-—17v

which is a function of the phase velocity u. These expressions
are well defined because for |u| > 1, the integrand has no
singularity. The dispersion relation Eq. (7) then reads
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(Jo—k)(J2+ k) =7} (11)

which is a quadratic equation for k with the solutions

Jo—J Jo +J2\?
k= 02 Zi\/(%> -2 (12)

Here and henceforth we assume that @ and k are given in units
of u, sowe have set k/u — k. For thatrange of 1 < |u| < oo,
when the expression under the root is positive, one finds the
real-valued branches k; ,(u) and w; ,(u) = uk; »(u), repre-
senting real-valued branches (@, k) of the dispersion relation
in parametric form. These equations are more generally valid
for any complex value of u, including the subluminal ones,
butin such cases they are not guaranteed to lead to areal wave
number, since the integrals J, (completed with the ie
prescription, see below), are generally complex. For super-
luminal modes, the integrals J,, are real, so the wave number
will be real provided that the argument of the square root is
positive.

For the axially breaking modes, an analogous, simpler
expression can be found [5,16]

_Ja—=Jy

k
2

(13)
Given that there is no square root, physical modes with real
wave numbers exist for any value of the superluminal phase
velocity u.

E. Discrete modes

Numerical simulations use a discrete representation of
phase space, here of the velocities v; (i = 1, ..., N). For a
given k, one solves a set of N equations, i.e., the
eigenvalues w;(k) of an N x N matrix. Most of them will
be real, but there can be complex ones which are assured if
the spectrum G, has a single crossing [5,6]. As a function
of k, these emerge as the coalescence of two real-valued
modes because the total number N of solutions remains the
same. So a complex branch as a function of k always ends
in a critical point of two coalescing real-valued modes,
which under the light cone are two Case-van Kampen
modes in the continuum limit [6], whereas above the light
cone would be two real-valued collective modes [16]. For a
given G,, one can solve the discrete counterpart and get a
first glimpse of the stable and unstable collective modes in
terms of the functions w; (k).

F. Subluminal physical modes

Above the light cone, the stable and unstable normal
modes found by Eq. (7) provide all the information that we
seek on the level of the dispersion relation. Under the light
cone, the situation is more complicated. The subluminal
unstable growing modes are also physical and if this is all

one wants to know, again one has all the information. On
the other hand, these are not all the physical modes. In the
discrete case, one finds N branches of the dispersion
relation, most of them real, but not physical, because the
medium does not fall into discrete modes. In the same way,
in the continuum case, the singular Case-van Kampen
modes are also not physical because one cannot excite a
singular wave function. Physical waves are superpositions
of normal modes.

In plasma physics, this question was resolved a long time
ago first by Landau [38] and recently introduced to the
flavor community by two of us [4,5,9]. In a nonrelativistic
isotropic plasma, the physically oscillating modes are
Langmuir waves, also known as longitudinal plasmons,
which physically represent a collective oscillation of the
electrons against the positively charged background of
heavy ions. However, some electrons always have the
same speed as the phase velocity of the plasmon and are in
this sense on resonance with the wave. They drain energy
by Cherenkov absorption, an effect widely known as
Landau damping. Conversely, if the electron velocity
distribution is not isotropic but exhibits, for example, the
celebrated bump-on-tail shape, the plasma wave grows
by Cherenkov absorption from the resonant electrons and
thus to an instability by inverse Landau damping [39].
The exact condition on the electron velocity distribution for
this to happen is the Nyquist criterion derived by Oliver
Penrose [40].

The lesson is that physical plasmons are either Landau
damped or grow. How does this picture translate to flavor
waves? As we have reviewed in Ref. [4], this leads to a
surprisingly simple conclusion: the asymptotic collective
behavior at late times is determined by eigenfrequencies
which solve a dispersion relation of the same form as Eq. (7)

(Io-1)(I,+1)-13 =0. (14)
The only difference is that the integrals are modified to

+1 G."
1, = dy——"——, 15
" /_1 Vo —kv+ie (13)

including an infinitesimal shift of the position of the pole in
the denominator. For real frequencies, the ie prescription
can be understood from simple physical arguments; a small
imaginary part corresponds to the perturbation slowly
inserted from t — —oo, so this prescription ensures that
we only obtain the modes that are actually visible in the far
future and respect causality. Equivalently, we can imagine e
to be a small collisional damping inserted by hand to
regularize the dynamics.

The + ie prescription requires that the integral over v
must be done along a path in the complex plane passing
below the pole v = w/k. The modification is analogous for
the axi-breaking modes of Eq. (9). Hence, the solutions of
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Egs. (7) and (14) coincide when Im > 0, since in that
case the integration along the real axis always passes below
the pole. They also coincide for superluminal modes,
since in that case the integrand simply vanishes below
the pole. However, crucially, for damped subluminal
modes (Imw < 0) the two dispersion relations differ. In
the normal-mode approach, damped modes always and
only appear as complex conjugates of unstable modes. In
the Landau approach, this applies only to superluminal
modes. For subluminal modes, on the other hand, an
unstable mode is not accompanied by a complex conjugate
damped mode. Rather, novel damped modes appear which
are not normal modes, but Landau-damped oscillating
modes. The reason they are not normal modes is because it
is not the individual y, that are being damped; rather, the
individual y, remain of the same amplitude, but the
collective behavior, as measured, e.g., by wo = [dwy,,
is exponentially damped due to phase mixing. Yet, since
we are usually interested only in collective behavior, and
not in the flavor of individual velocity modes, Landau
damping is a physical effect.

To summarize, subluminal normal modes with non-
vanishing growth rate are accompanied by a complex
conjugate damped wave, and the pair emerges from the
coalescence of two singular Case-van Kampen modes. In
the Landau picture, under the light cone a collective mode
with given £ is either a Landau-damped oscillating one, or
an exponentially growing (unstable) one without damped
counterpart. For a given k, growth or damping are alter-
natives, not simultaneous forms of evolution. In this
picture, an unstable branch under the light cone does not
simply end as a function of &, but rather continues as a
Landau-damped mode.

The discussion here has been somewhat formal and gives
the gist of what we have derived in more detail in
Refs. [4,5,9]. In Sec. IV, we will underpin this discussion
with explicit examples.

G. Homogeneous mode

An often-studied case is that of a homogeneous mode
(K = 0), seemingly the simplest possible setup, namely a
perfectly homogeneous neutrino gas with an axisymmetric
perturbation. The dynamics is periodic, due to a large set of
conservation laws, the so-called Gaudin invariants [9-11],
and actually it can be mapped to that of a pendulum [7,8],
the fast flavor pendulum. An explicit form of the mapping
is given in Ref. [10]. The special value of wave number
K =0, corresponding to k = Gy, leads to a very simple
form for the dispersion relation for longitudinal modes

d =0. 16
(@ GO)/ Ua) G1v+l€ (16)

This dispersion relation always admits a trivial solution
o =G, and therefore Q =0, which describes a

homogeneous neutrino gas that just advects with uniform
velocity. Such a solution is possible because neutrino self-
interactions locally preserve lepton number. In this sense,
(K =0,Q = 0) may be called a Goldstone mode: a zero-
energy excitation whose existence is guaranteed by con-
servation laws.

Factoring out this term, the remaining solutions satisfy
I, =0, or explicitly

+1
/ d— S (17)

1 w—Gv+ie

This is the dispersion law for the fast flavor pendulum. Can
we determine from the properties of G, if there are unstable
solutions without having to solve this equation? This is our
main question.

We stress that this simplified dispersion relation, as well
as any conclusion about the regularity of the pendular
behavior even in the nonlinear regime, applies only to this
perfectly homogeneous and axisymmetric case. The con-
servation laws associated with the pendular behavior are
strictly protected by these symmetries, and any small
breaking of them destroys its regularity. Moreover, a matter
background with a net flow breaks the conservation of the
Gaudin invariants and destroys the regular behavior [10],
which therefore is probably hopeless to witness in a
realistic environment.

Still, given the attention that the fast flavor pendulum has
commanded in the past, including by some of the present
authors, as an explicit prototypical case of a nonlinear
collective system, it is worth considering its stability
condition, especially to connect with the more modern
viewpoint of the instability as a kinetic phenomenon.

III. NYQUIST CRITERION

The general problem of determining whether an equation
admits unstable solutions, with a positive imaginary part,
can usually be tackled by a simple theorem of complex
analysis, that we will briefly review here. This approach has
led in plasma physics to the so-called Nyquist criterion, to
determine whether a plasma with a given energy and
velocity distribution for the electrons possesses an insta-
bility, without necessarily solving its dispersion relation
[40,41]. Motivated by this analogy, two of us have
proposed a similar Nyquist criterion to determine the
existence of the fast pendulum instability, i.e., of an
unstable homogeneous mode’ [10]

’If v, = 0, then the homogeneous mode is always stable. The
Nyquist criterion states that unstable modes necessarily lie in an
interval (k_,k,), such that u(k.)=wv.. To find the wave
numbers k., one can insert # = v, = 0 in Eq. (10), which shows
that J| = =G, and J, = —G/. Equation (12) then implies that the
physical wave numbers K. = k. — G both have the same sign,
so K = 0 is excluded from the unstable interval.
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+1
S0 and / a1, (18)
Gove -1 Go(v - v.)

where the crossing is at v, i.e., G(v.) = 0. Contrary to this
previous finding, this condition is only necessary: as such,
it is more restrictive than the condition of a single crossing,
but it is not always sufficient. It turns out that the fast flavor
instability is more complicated than the standard case of
nonrelativistic plasmas. Therefore, after reviewing the
original formulation, we will explain how the Nyquist
criterion fails in the flavor context, largely deriving from
the finite range —1 < v <41 of velocity integration.
Somewhat counter-intuitively, in a nonrelativistic plasma,
the integration is over the range —co < v < +o00, there is
no limiting velocity, although the high-velocity tails are
exponentially suppressed for v beyond a typical non-
relativistic electron velocity. Still, in nonrelativistic plasma,
there are no superluminal modes.

Let us assume the dispersion relation is given by an
equation of the form ®(w) =0 for a fixed value of the
wave number k; for a homogeneous setup (K = 0), we
would choose k = G,. We will initially assume ®(w) to be
an analytic function of w. The existence of solutions with
Im(w) > 0, i.e., in the upper half-plane of the complex
variable @, can now be determined by noting that

/*“’q’/(w)d_er lim /”L(Reiw)’eei‘”d‘ﬂ_
e @(w)27i Rt Jo ®(R”) 27

N, (19)

where N is the number of zeroes of ®(w) in the upper half-
plane. This simple result follows directly from the theorem
of residues, when the integrand function is integrated along
a semicircle of radius |w| = R surrounding the complex
upper half-plane (Fig. 1).

In Ref. [10], we have applied this theorem to the special
case of the homogeneous dispersion relation. Actually it is
more convenient to do so by considering the dispersion
relation not as a function of w, but rather of the phase
velocity u = w/k, which for the homogeneous mode is

2.5

20t

15t
2 10
g

0.5 %

0.0

05
-2 —1 0 1 2
Re(w)

FIG. 1. Integration path in the complex plane of frequency w for

the application of Nyquist’s criterion.

u = w/G,. This is a trivial rescaling, but since G; may be
negative, it turns out to be more convenient in practice. The
dispersion relation then reads

+1 G v
D(u) = — —dv=0. 20
(u) /_1 u—v-+ie v (20)

The first difference compared to the plasma case, that
was not sufficiently highlighted in the original derivation
[10], is that the function ®(u) is not analytic. Since the
integral is over the finite interval —1 < » < 41, the
imaginary part of ®(u) clearly is discontinuous when u
passes through £1. The nature of this discontinuity, and the
general analytic structure of the function, was discussed
in Ref. [4]. The function ®(u) has two branch cuts on the
lines Re(u) = £1 and 0 > Im(u) > —oco. Therefore, the
integration path must be distorted as in Fig. 2, left panel.
We will therefore imply by the notation [ du the integral
along the real axis thus deformed.

So, after replacing the asymptotic form of ®(u) for |u| —
+o0 to evaluate the integral along the large semicircle, we
find the identity

/_;Mg((:))%zzv+%. (21)

The final step to apply Nyquist’s criterion is to notice that
the first integral can be rewritten as

/_+oo O (u) du 1 {Cb(u—>+00)]’ (22)

w O(u)2ri 27 o8 D(u - —)

which is simply the phase accumulated by ®(u) as u runs
along the real axis. This phase can be determined by a
simple graphical approach; the (generally complex) func-
tion @ (u) for real u draws a trajectory in the complex plane,
and the number of times this trajectory wraps around the
origin—the winding number W—gives the phase accumu-
lated in units of 2z. The 1/2 term on the right-hand side
simply accounts for the fact that the function ®(u) — G, /u
at oo changes sign, and therefore does not enter the
definition of the winding number. Notice that the integral
along the two small semicircles around u = 41, while
conceptually necessary, in practice vanishes, because ¢ —
oo close to the beginning of the branching line, while
¢’ — 0. So, if the trajectory does not wrap around the
origin, there will be no unstable solution, and more
generally W = N. Based on this geometrical argument,
in Ref. [10] the criterion Eq. (18) was found for the
existence of an unstable homogeneous solution for a
single-crossed angular distribution.

However, there is one simple way in which the above
theorem fails. We have assumed that ®(u) never vanishes
on the integration path. For subluminal |u| < 1 this is
essentially always true, since Im[®(u)] can only vanish if
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FIG. 2. Integration path in the complex plane of the phase velocity u for the application of Nyquist’s criterion. The blue lines are

branch cuts of the function ®(u). We show the integration path for the case of no real-valued superluminal modes (left), and for a
particular example with two real-valued superluminal modes (right).

u=0 or u=uw, (the crossing velocity of G,). The
vanishing of Re[®(u)] at exactly one of these two points
is just the condition separating the regimes in which an
unstable mode does or does not exist. However, it was
overlooked that ®(u) might vanish for real-valued super-
luminal . In this case, Im[®(u)] vanishes identically, so
that Re[®(u)] might in principle vanish at any superluminal
value of u. If some such points exist, corresponding to real-
valued superluminal modes that solve the dispersion
relation, the integration path must be further modified as
in the right panel of Fig. 2 to pass over the poles. At each
small semicircle, ®(u) changes sign and therefore accu-
mulates a phase e, so that ultimately if there are N,
superluminal modes, the winding number W will no longer
equal the number of unstable modes N, but rather
N + N, /2, since the left-hand side of Eq. (21) accumulates
a contribution —1/2 for each zero on the real axis.

Therefore, the Nyquist criterion still applies, but only by
accounting for this modification. Essentially, ®(u) accu-
mulates a phase both when u is subluminal and when it is
superluminal; our previous version only accounted for the
former. Equation (18) still remains true as a necessary
criterion, since in order to have N > 0, we must have W >
N,/2 and therefore W > 0. For a single-crossed distribu-
tion, N, is always even because ®(u) - G;/u for u — oo,
so it has opposite signs at u — Foo. Instead, for u - +17
we have ®(u) - G(1)log[2/(u — 1)], while for u - —1~
we have ®(u) —» G(—1)log[2/(—u—1)], so it also
changes sign at these two points. It follows that the number
of times that ®(u) can change sign in the superluminal
intervals is necessarily even, i.e., ®(u) has an even number
N, of superluminal zeroes. Hence, the number of super-
luminal modes is odd, and is equal to N, + 1, due to the
additional Goldstone mode whose existence we have noted
in Sec. II G.

So we finally reach a generalized strategy to apply the
Nyquist criterion to a given angular distribution. We first

check what is its winding number W in the subluminal
range —1 < u < 1. For a single-crossed angular distribu-
tion, the criterion from Ref. [10] allows us to determine
directly whether W = 0 or W = 1. If W = 0, and therefore
Eq. (18) is violated, there is no instability. If W = 1, we can
graphically plot ®(u) for u < —1 and u > 1, and count the
number of zeroes. If there are none, then there is an
instability, while if there are two zeroes, there is no
instability. More generally, the number of unstable modes
for any given angular distribution, even with more than one
crossing, is given by N = W — N, /2.

While these arguments pertain only to the homogeneous
mode, the same conclusions can be reached on more
general grounds considering how the instability arises as
a function of wave number. In Sec. V, we will provide this
complementary discussion, showing that indeed it leads to
the same results. However, we first examine the branches of
the dispersion relation of a few single-crossed angular
distributions in Sec. IV, and apply the corrected Nyquist
criterion to count the number of unstable modes.

IV. ILLUSTRATING EXAMPLE

To illustrate the generic cases of dispersion of an axially
symmetric system, we are inspired by the angular spectra
G, presented in Ref. [16]. The v, and 7, distributions are

each taken to be Gaussians of the form ae=("=1°/25* such
that overall
—(v—1)%/2b3, —(v=1)%/20,
G, =¢ —af : (23)
N Ve N, 7,

where N, = [ dve=(""1"/?)|_ We use the parameters
b, = 1.1 and b; =0.9, and we vary a to change the
overall shape of G(v); see the specific values in Table L.
Small a values produce no angular crossing, i.e., G, > 0
everywhere; larger ones result in a single crossing at some
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TABLE 1. Properties of the angular distributions in Fig. 3,
where numerically a, = N; /N, = 0.855769.

Case Gl G2 G3 G4 G5 Go6

a 0.84 % 0.87 0.91 0.92 0.94

Gy 0.16 0.14 0.13 0.090  0.080  0.060
-G, 0.035 0.040 0.045 0.058 0.061 0.068
w 0 0 1 1 1 1

N, 0 0 0 0 0 0

N 0 0 1 1 1 1

v = v,. Initially, the “flipped” part of the distribution is
located at » > 0 and grows larger with a, as shown in
Fig. 3. However, as a increases further, the spectrum
becomes negative in most of the angular interval: at that
point, the v < 0 side of the distribution is the one with a
small flipped region, which would eventually disappear for
large enough values of a. Thus, Eq. (23) sweeps over the
generic cases of a single-crossed spectrum.

The branches of the dispersion relation with k€ R and
w€R or C are shown in Figs. 4 and 5 for these
distributions. In agreement with earlier studies [16], the
results can be generically divided into the following
categories:

(1) No crossing (G1, G2).If G, has no crossing, there is
no instability. There are two real-valued branches of
superluminal modes u(k), asymptoting as u(k —
+o00) = =+1 to the light cone. In addition, there are
subluminal branches of Landau-damped modes, not
identified in Ref. [16], who only considered normal
modes. It is only for u = +1 that both a real and a
Landau-damped branch appear close to the light
cone, but not for u = —1, an asymmetry that is
explained by G, having “almost a crossing” at
u = +1. The Landau-damped branches develop in
anticipation, so to speak, of the appearance of a
crossing. We will see shortly that these branches

—0.151
-1.0

-0.5 0.0 05 1.0
v

FIG. 3. Angular spectra G, used for our generic examples,
parametrized according to Eq. (23) and the a values in Table 1.
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evolve into the more familiar unstable modes once a
crossing has developed.

For case G2, when G, = 0 exactly at v = +1, the

Landau-damped branches characteristically do not
stop at Re(u) = 1, but instead smoothly merge with
the real-valued superluminal branches. There is no
discontinuity in G, because it vanishes at v = +1
(although there is one in the derivative), and there-
fore the branch cut mentioned above vanishes,
allowing for a continuous transition from the real
to the Landau-damped modes.
Shallow crossing (G3). When a small part of the
spectrum changes sign, two complex branches
appear: each of them begins under the light cone
as a Landau-damped mode, crosses u = v., and
terminates on a critical point of the real-valued
branch. The latter now passes through the origin:
this creates a triangular feature in the upper half of
the u(k) plot (Fig. 4, top right), which appears as a
characteristic S-shape in the w(k) diagram (Fig. 5,
top right). Consequently, a single value of k may
have three associated frequencies.

The real-valued modes with negative up are
essentially not affected by the instability. This
is particularly clear from the viewpoint of the
instability as a resonant interaction between flavor
waves and neutrinos [4]: since the unstable
flavor waves are resonant with neutrinos in the
“flipped” region, which in this case is very close
to v = +1, nothing new happens in the region close
tou=—1.

We also notice that, in principle, the real-valued
modes with ug > 1 can exhibit pairs of points with
dwg/dk = 0. If they do, it means that there are
stable modes with vanishing group velocity which,
so to speak, remain in the original region. This
implies that the corresponding instability is con-
vective, because the modes with vanishing group
velocity remain in the system. If there are no
pairs of points on the real-valued branch with
dwg/dk =0, then the modes remaining in the
system have turned unstable, so the instability has
become absolute. For case G3, the instability has
already turned absolute, since there are no points
with horizontal tangent in Fig. 5. In Appendix, we
show an explicit example, intermediate between
cases G2 and G3, in which the instability is con-
vective. Generally, for a very weak crossing, the
instability is convective, and only becomes absolute
as the crossing gets deeper. The physics is again
particularly clear in the resonant picture: when the
instability develops for very weak crossings, it
involves only modes resonant with neutrinos close
to the crossing region, with v ~ +1. Therefore, these
modes tend to escape the system as they grow,
implying an initially convective instability.
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FIG. 4. Branches of the dispersion relation for our reference angular spectra. The vertical dotted red line marks k = G, i.e., the
homogeneous mode for each angular distribution. In the first and third row of panels, the vertical axis displays ug, the real part of the
phase velocity. The horizontal dotted red line shows ug = G,/G, i.e., the intersection of the dotted red lines marks the Goldstone mode.
The orange band covers subluminal modes (|ug| < 1) and is delimited by the light cones uz = +1. The dashed black line marks the
crossing velocity, ug = v.. The blue lines correspond to @ € R and have been calculated using Eq. (12). In the second and forth rows, the
imaginary part u; is shown. The green (magenta) lines are branches with w; > 0 (w; < 0). Even in G6, the Goldstone mode is stable
(w; = 0), being a single stable point on the Landau-damped branch.
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FIG. 5. Same as Fig. 4, but now the vertical axis shows the real (imaginary) part of the angular frequency, wg (@y).

(3) Moderate crossing (G4, G5). As the crossing grows
deeper, the asymmetry between the flipped region,
close to ug = +1, and the unflipped one, on the side
of ug = —1, becomes less pronounced. The unstable
modes no longer both escape the light cone at
ugr = +1; they escape on opposite sides. When this

083

028-10

happens, the solutions at kK = 0, which we can find
explicitly and were real before, become complex.
In case G4, the complex modes in the region ug <
—1 do not continue uninterrupted, since they briefly
merge with the real-valued branch and reappear, in a
pair of superluminal branching points. In case G5,
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the pair of branching points has vanished and the
entire interval of wave numbers between the two
subluminal critical points has turned unstable. The
real-valued branch close to ug = —1 remains.

(4) Deep crossing (G6). As the crossing deepens, the
asymmetry between the positive and negative G,
regions becomes even less pronounced. When the
phase velocity of the Goldstone mode eventually
becomes subluminal, i.e., when |Gy/G,| < 1, the
real-valued branch close to ug = —1 disappears as
well, and only complex solutions remain. The Gold-
stone mode, which itself is always stable, is now part
of a new branch of Landau-damped modes which
appears close to ug = —1. These damped solutions
will merge smoothly with the unstable modes when
v, <0, at which point the slope of the complex
branch (dwg/0k) will become negative. This behav-
ior results from backward neutrinos (v < 0) becom-
ing resonant with the flavor waves as the crossing
gets deeper.

As shown in Table I, the angular distributions G1-G6
fulfill Ny = 0. This can be deduced from Fig. 5: in each of
these cases, there is a superluminal real-valued mode with
k = Gy, corresponding to the trivial solution of Eq. (16),
i.e., ® = Gg. The Nyquist criterion thus holds in each of
these cases as stated in [10].

As a counterexample, we briefly turn to an angular
distribution for which ®(u), as defined in Eq. (20), has
additional zeroes on the real axis. This distribution is shown
in the top panel of Fig. 6, and belongs to a slightly different
family

0.1 (v—1)>2
G,=021-— -, 24
: e (-U20) e

with a = 0.35 and b = 0.15. Thus, we consider an iso-
tropic v, distribution instead of a Gaussian. The corre-
sponding branches of the dispersion relation are plotted in
the bottom panel of Fig. 6. We see that the real-valued
branch of the dispersion relation intersects with the vertical
line k = G; at three different values of w. Hence, the
dispersion relation of the homogeneous mode admits
two real-valued superluminal solutions besides the
Goldstone mode described in Sec. II G. This means that
W =1, Ny =2 and, according to our corrected Nyquist
criterion, N = W — N, /2 = 0. Indeed, there are no unsta-
ble modes with k = G;.

Overall, the evolution can be understood intuitively
with the resonance picture previously developed [4,5]:
when the crossing appears, waves can resonantly grow
close to ugp =1, resonantly extracting energy from
neutrinos in the flipped region. Case G3 is precisely
of this type, with a very weak instability. As the crossing
gets deeper, the width of the resonance describing the
particle-wave interaction increases, sO ever more waves

—0.5 0.0 0.5 1.0

0.4

0.3 .

0.2 7
0.11

£ 0.0
—0.11 2

—0.2 :
—034 — :Stable
Lo — Unstable

-0.4
-0.4

—0.2 0.0 0.2 0.4
k

FIG. 6. Top: example of an angular distribution G,, given in
Eq. (24), for which N # 0. Bottom: branches of the correspond-
ing dispersion relation. The real-valued branch is shown in blue,
the unstable one in green. The stable branch intersects with
k = G (red dotted) at N, + 1 = 3 points (we recall that there is
always an additional superluminal Goldstone mode).

with ug > 1 can also grow, until even modes with up <
—1 can nonresonantly grow. At this stage, the distinction
between a dominant and a flipped region in G, becomes
superfluous: they contain comparable amounts of lepton
number, so there can be growth for modes on both sides
of ug < v, or ug > v,.

We prove these properties in Sec. V beyond a single
numerical example. One particularly vexing question is if
the real-valued superluminal mode could have more than
two critical points, equivalent to asking if there could be an
unstable mode that both begins and ends outside the light
cone on two different superluminal critical points. No such
instance arises in any of the cases we have studied,
although we have not been able to prove in a formal sense
that this cannot happen.
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V. GENERAL PROPERTIES

We now turn to a general discussion of the instability
properties of single-crossed angular distributions. Many
properties that were proved using the Nyquist criterion for
the special case of the homogeneous mode (K = 0) can be
understood from a different perspective if one considers
modes with any K. Without pretense of formal rigor, we
will assume some sort of continuity such that for varying K,
a given branch, real or unstable, does not disappear
abruptly, with the exception of it ending on a branch
cut. By this simple assumption, the properties of the
unstable range of wave numbers follow completely. We
use the framework of the causal dispersion relation in the
Landau picture that ensures continuity. In the often-used
normal-modes picture, excitations with vanishing growth
rate can appear and disappear abruptly, somewhat hiding
their physical nature.

We first study the properties of modes in three separate
regimes that can be understood with simple arguments.
Later, we merge them to the complete picture that we have
anticipated in the introduction.

A. Subluminal modes

In the Landau framework, subluminal collective modes
are either Landau damped or unstable. In the normal-modes
approach, on the other hand, the subluminal range is
populated with Case-van Kampen modes, corresponding
to individual neutrino modes slightly perturbed by the
interaction. Pairs of such modes can merge to form unstable
ones. In our framework, without an angular crossing, only
Landau-damped modes exist [5]. They can appear abruptly
only when their phase velocity is Re(u) = +1, as in the top
left panel of Fig. 4, caused by the dispersion relation having
a branch cut along these lines, as we have discussed.

Once G, develops a crossing, instabilities appear. The
transition between unstable and Landau-damped modes
must happen where Im(u) = 0 for a real k. This is a very
special point because it must have |u| < 1 and Im(u) = 0,
while the wave number(s) given by Eq. (12) must be real.
There is only one phase velocity for which this can happen,
the crossing velocity u = v, [5]. For real u, the integrals J,,
are purely real and their imaginary parts are proportional to
G,—_, that vanishes at u = v.. Physically, this special mode
resonates with neutrinos at the crossing, which carries zero
lepton number. Furthermore, for u = v, the argument of
the square root in Eq. (12) is positive. Therefore, a crossing
guarantees two critical points for u = v,.

Moreover, the solutions k., corresponding to the two
sign choices in Eq. (12), actually have opposite signs. This

happens if
Jo+J2\2 Jo—J2\2
(o8) s (B3E).

implying that we need

2

Sy <ﬂ> . (26

Jo \Jo
Since J,, for u = v, corresponds to integrating v" over the
positive-definite distribution G,/(v. — v), the left-hand
side is the average (v?), while the right-hand side is
(v)2. For a positive-definite distribution, (%) > (v)?, so
Eq. (26) is always verified.

Two separate transitions from Landau-damped to unsta-
ble modes on opposite sides of k =0 mean that they
must occur on two separate Landau-damped branches.
Therefore, we learn that the uncrossed G, must show
two such branches, so that once a crossing develops, both
of them can develop a transition to instability.

In summary, for an uncrossed G,, two branches of
Landau-damped modes exist which begin at u = —1 and
end at u = +1. Once a crossing develops, each of them
changes to unstable at u = v.. Importantly, the unstable
modes do not end on the light cone, so they can become
superluminal, unlike the Landau-damped ones. Hence
the unstable branch can escape the subluminal range, at
u = +1 or u = —1; which of them depends on the relative
signs of G, before and after the crossing. Qualitatively, the
unstable modes are on the weak side of the crossing, i.e.,
the one that contains less lepton number. In principle, the
Nyquist criterion or the explicit expressions for the growth
rate [5] allows one to predict on which side of the crossing
this happens, but we will later provide an explicit criterion
based on a different argument.

B. Modes close to the light cone

We now turn to superluminal modes close to the light
cone (# ~ +1) and focus on modes with very large k, where
the dispersion relation is particularly simple. Starting from
Eq. (12), for u close to £1, the term J, — J, converges (the
numerator vanishes for v = 41), whereas the term under
the square root diverges. Thus, for k — +o0, a super-
luminal mode can only exist if that term is positive and
tends to infinity, so that

Jo+J=2J)(Jo+ T +2J))
4

K = ( . (27)
For u =1+ 6 with § <« 1, the first factor converges and
equals (Jo+J, —2J;) = Gy — G,, whereas the second
factor instead diverges.

Following the procedure outlined in Ref. [4], we can
extract the leading singularity as

2
Jo+Jy +2J, z4G(1)log[3}, (28)

where G(1) means G, evaluated at v =1, not to be
confused with the first moment G; (see footnote 1).
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So the dispersion relation for modes close to the light cone
u~—+1latk— oo is

k2
G(1)(Go - GIJ‘ 2)

u=~1+2exp {—
To be a consistent solution with § — 0 as k — co, we must
have G(1)(Gy— G;) > 0. For an uncrossed G, this is
guaranteed, since G, is positive and always G — G| > 0
because 1 —v > 0 for any -1 < v < 1.
We can perform the same operations for u ~—1 —§,
close to the other side of the light cone, obtaining

k2
G(=1)(Go+Gy)]

u~-—1-2exp |— (30)

Again, for G, uncrossed, G(—1)(Gy + G;) > 0, so these
modes exist. Hence, there are two families of real-valued
superluminal modes starting at k - —oco and reaching
k — —+o0, one with u > 1, the other with u < —1. These
are the two branches shown in case G1 in Figs. 4 and 5.

Introducing a G, crossing makes one of G(41) change
sign, while G, &= G at first remains positive, since the bulk
of the distribution is not strongly affected by flipping a
small region. Therefore, one of the two superluminal
branches disappears, depending on which of G(+1)
changes sign. Following our examples in Sec. IV, we take
G(1) <0, so it is the superluminal branch with u > 1 that
disappears. It will be replaced by the unstable subluminal
branch that crosses the light cones and becomes super-
luminal. Once again, u > v, (the weak side of the crossing)
is where an unstable mode initially appears.

Finally, if the distribution is so distorted that both
G(1)(Gy—Gy) <0 and G(-1)(Gy+ G;) <0, both of
the modes starting at the light cone at k — Foo disappear,
corresponding to G6 in Fig. 4.

C. Superluminal modes

Superluminal modes can be either stable or unstable,
the latter only if there is a crossing. By our principle of
continuity, the only possible superluminal modes must be
the ones starting at the light cone at k - +c0. When G,
develops a crossing, on one side of the light cone, the one at
u< -1 for G(1)(Gy—G;) <0, the real-valued super-
luminal mode survives. On the other side of the crossing
are unstable modes originating from within the light cone.
These unstable superluminal modes always come with a
complex conjugate, so while within the light cone, there is
only a single branch, but as soon as they escape, a damped
complex conjugate suddenly appears. This behavior does
not contradict our principle of continuity because the
branch cut at Re(u) = £1 and Im(u) < 0 permits modes
to appear discontinuously on this line.

The behavior of these unstable modes that “leak out” of
the light cone crucially depends on the properties of G,,.

As we have seen, these modes come from opposite sides of
k = 0, a point of infinite phase velocity, that may still be
real or complex. At k =0, the dispersion relation is
completely algebraic of the form

(%-1)(%“)—%:0 (31)

with solutions

w = % [(G0 ~Gy) +1/(Gy~ Go)? - 4Gﬂ . (32)

For (Gy — G,)? > 4G}, this frequency is real so that on
opposite sides of k = 0, the unstable modes emerging from
the light cone must turn real. It was first shown in
Refs. [5,16] that this can happen only at superluminal
points that must have 0®(u, k)/du = 0. Here, ®(u, k) =0
is the dispersion relation for arbitrary k, such that
®(u,G,)=0 yields Eq. (20). The condition 0®(u,k)/
du=0 thus marks the critical points where the unstable
branches merge with a superluminal real-valued branch.
While these two equations provide two conditions for u and
k, they involve integral functions so that the critical points
usually cannot be found analytically.

One way to proceed is to graph k as a function of u for
u>1 using Eq. (12) that does not require solving a
transcendental equation. From this plot, one can find the
k range where a stable mode exists, and by complemen-
tarity, also the range where instead an unstable mode exists.
Indeed, Fig. 4 shows clearly that the unstable branches in
cases G3 and G4 disappear at the points where the real-
valued branches have vertical tangents. These are precisely
the superluminal critical points discussed here.

For a single-crossed G,, these superluminal critical
points always come in pairs. Their ways of appearance
are exemplified by cases G3 and G4. In the former, the two
unstable modes on opposite sides of k = 0 must disappear
at two critical points with ug > 1 on the other sides of
k = 0. In case G4, the unstable modes for uyz < —1 exhibit
a pair of critical points on the same real-valued branch,
which has a characteristic S shape. One may wonder
whether multiple such pairs might exist. We have not been
able to find a corresponding G,, but also not a proof of
nonexistence.

For (G — G,)? < 4G2, the frequency at k =0 turns
complex, marking the transition between cases G3 and G4,
when the unstable branches cross all the way through
k = 0. Instead, throughout cases G5 and GO0, the entire k
interval between the two subluminal critical points has
turned unstable, not only for k£ = 0. This is the situation in
which the original Nyquist criterion of Eq. (18) is both
necessary and sufficient. However, we could not find an
analytic condition to mark the transition between G4 and
G5, because again the superluminal critical points cannot
be easily identified. As described earlier, they can instead
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be found by plotting the real-valued branches and checking
if there are points with dug/dk — 4.

D. Summary

To summarize, we have found that for an uncrossed G,
there are two branches of Landau-damped modes begin-
ning and ending on the light cone, and two superluminal
real-valued ones, also beginning and ending there.

For a weak crossing, one of the real-valued superluminal
modes vanishes, the one at u > 1if G(1)(Gy — G;) < 0, or
the one at u < —1 if G(—1)(Gy + G;) < 0. At the same
time, the Landau-damped modes become unstable and
escape the light cone, where they return to stable at two
critical superluminal points on opposite sides of k = 0. So
there are two intervals of instability (k;, k,) and (ks, k4), as
anticipated in the Introduction. The positions k; and k4, the
subluminal critical points, are given by k. from Eq. (12) for
u = v,. On the other hand, the positions k, and k3, the
superluminal critical points, cannot be identified by an
explicit expression, but can be found by plotting the
function Eq. (12) for u > 1 (or u < —1).

For a deep G, crossing, defined by the condition
(Gy — G,)? < 4G3, the unstable branches pass through
the point k = 0 with unstable modes with both positive
and negative ug. In particular, the entire subluminal range
—1 < ug < 1 now contains unstable modes. As the cross-
ing gets even deeper, the critical superluminal points
disappear and the modes remain unstable throughout the
entire wave number interval.

Finally, when the distribution is distorted so much that
even the second among the condition G(1)(Gy — G;) <0
and G(—1)(Gy + G;) < 0is verified, the real-valued mode
on the other side of the light cone disappears entirely.

Our conclusions qualitatively agree with the ones of
Ref. [16]. In addition, we provide explicit inequalities that
reveal which regime follows from a given G,. Most
importantly, we connect these results with the recently
developed plasma-physics language and explain how the
results from the Nyquist criterion, using entirely different
methods from complex analysis, match completely the
results from our more general treatment here. Further, we
show how the unstable modes’ first appearance is essen-
tially “inherited” from the Landau-damped modes that exist
even before the formation of a crossing. These physical
excitations do not appear in the more traditional normal-
modes approach.

VI. SUMMARY AND CONCLUSIONS

The question that has motivated this study was to
identify the conditions for the homogeneous mode of an
infinitely homogeneous neutrino gas to turn unstable. A
first answer provided by two of us [10], using a Nyquist
criterion for its dispersion relation, was actually incomplete
as we have here clarified. We have stressed that the

homogeneous mode is inseparably connected with the
properties of the general dispersion relation and plays no
special role. Its status as a prototype of flavor conversion
mainly derives from the simplicity of its nonlinear evolu-
tion, a simplicity that however is deceiving because it
descends from the many symmetries forced upon it.
Therefore, we emphasize that the homogeneous mode
can only be understood in the context of the dispersion
relation for modes with arbitrary wave numbers.

The formal properties of the dispersion relation were
studied before [6,16]. Our aim was to connect them with
the plasma-physics inspired picture that we have recently
developed [4,5,9,10,42]. For a single-crossed angular dis-
tribution, the instability develops close to that side of the
light cone where the angular crossing first appears, v = 1 in
our examples. We have connected this finding with the
resonant picture of the instability: it involves modes
resonant with the neutrinos close to the crossing region,
and therefore involves initially only a few modes outside of
the light cone. These unstable modes are directly related
to the Landau-damped ones below the light cone, which
appear even without a crossing, but a nearly vanishing G, at
v = 1. They could not be found in previous works that used
the dispersion relation for normal modes, not physical
ones [4,5], the formal difference being Landau’s ie pre-
scription in integrals of the type of Eq. (15).

Thus the Landau-damped modes, which appear even for
the uncrossed distribution, are the progenitors of the fast
unstable modes. Intriguingly, the stable branches of real
eigenmodes, which also appear for an uncrossed distribu-
tion, have played mainly a spectator role in this work,
without directly influencing the fast unstable modes.
However, as recently shown [43], these stable modes are
instead the progenitors of the slow unstable modes, once a
small vacuum energy splitting between neutrinos and
antineutrinos is introduced.

Following earlier work [16], we used a generic example
for which the depth of the angular crossing is controlled by
a single parameter a. For increasing a, the crossing grows
deeper, and the interval of unstable wave numbers grows, as
well as that of unstable phase velocities, until it encom-
passes k =0 and therefore infinite phase velocity. We
provide explicit conditions for this transition. Finally, the
depth grows to a point where the two intervals of unstable
wave numbers merge to a single one. While we could not
identify a simple criterion for this to happen, and whether
the homogeneous mode k = G, falls into such intervals, it
follows graphically from the existence and shape of the
real-valued branch w(k), i.e., the number of critical points
with vertical tangent.

The Nyquist criterion [10] shown in Eq. (18) remains
valid as a nontrivial necessary condition. But it does not
encompass the possibility that pairs of superluminal critical
points appear, creating an “interval of stability” in which
the homogeneous mode may fall and then become stable
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despite the Nyquist criterion. This possibility is best
understood by looking directly at the global properties
of the modes and their phase velocity. We have showcased
this scenario in Sec. IV (Fig. 6), and tested that the relation
N = W — N,/2 holds for all of our angular distributions.

Our discussion was mostly based on formal properties of
the dispersion relation and its connection with the resonant
picture of the instability. We have illustrated how unstable
modes emerge from Landau-damped ones and provided a
method to count the number of complex-w solutions
associated with a given k. However, our treatment of the
dispersion relation is not exhaustive. More work is needed
to analytically describe some of the behavior that we
observe: we have not been able to find a condition for
the merger of the two unstable branches of the dispersion
relation, i.e., the transition from our case G4 to G5. Further
research could also establish whether the superluminal real-
valued branches may have more than two critical points.

Our examples do show that, for very shallow angular
crossings, only two narrow intervals of large k are actually
unstable. Using the parameter ¢ = (n, —ny)/(n, + ny),
where n, and n; are the neutrino and antineutrino densities
[43], unstable modes have k ~ ¢. This could suggest that
flavor instabilities are initially driven by inhomogeneous
modes with low associated growth rates [4,5,28], similar to
case G3. Our cases G4-G6 may be less relevant for
practical astrophysical environments. A self-consistently
evolving system likely cannot develop a strong instability,
which on the contrary is a signature of inconsistency
[28,44,45]. Within this picture, the homogeneous mode
is phenomenologically secondary: for small angular cross-
ings, the intervals of unstable k are very narrow and likely
exclude k = G;. However, the homogeneous mode retains
its theoretical interest as an exact nonlinear solution of the
equations of motion. In this sense, its place in flavor
conversion research is comparable to that of solitons in
plasma physics, as a completely integrable solution [7-10]
with nontrivial collective features, e.g., the conservation of
the neutrino-neutrino interaction energy [27].
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APPENDIX: ABSOLUTE AND CONVECTIVE
INSTABILITIES

The distinction between absolute and convective insta-
bilities in the context of fast flavor waves was first made in
Ref. [46] and further developed in Ref. [16]. While there is
not much to add on the formal level, here we connect this
general distinction with the resonant picture of the fast
instability, showing that this notion provides intuition as to
why the instability is convective for a weak crossing and
only for a sufficiently deep one becomes absolute. To
discuss these issues, we first need to review the concepts of
convective vs absolute and their physical meaning.

Formally, an instability is absolute if a localized pertur-
bation spawns exponential temporal growth everywhere.
This is assured for a plane wave, which by definition is
completely delocalized, if w(k) is unstable. On the other
hand, all unstable modes can have group velocities so large
along some direction that the unstable components escape
from the localized region of the initial perturbation, leading
to growth only somewhere else. In this case, the instability
is said to be convective. This distinction may have been first
pointed out by Landau and Lifshitz in the context of
hydrodynamical instabilities [47], but it was Sturrock [48]
who studied this topic in detail in the context of kinetic
instabilities, i.e., caused by particles streaming with differ-
ent velocities.

Evidently, the distinction between absolute and con-
vective instabilities must depend on the group velocities of
the unstable waves. Here we do not try to justify Sturrock’s
results, but merely affirm their plausibility. A general
criterion for an instability to be absolute is that
Im(w) > 0 with dw/dk = 0. Such a mode has vanishing
group velocity, and therefore relaxes locally, so this
condition is not too surprising, although its formal justi-
fication is not immediate [48].

In the context of fast flavor conversions, such as our
numerical example in Sec. IV, when in a family of angular
distributions, these first develop a weak crossing, the
instability is always convective. This property can be
understood by considering how the structure of the modes
changes when an angular crossing first appears. As seen in
case G2 of Fig. 5, when G, vanishes at v =1 and the
crossing is about to appear, both real-valued branches have
a point of horizontal tangent (dw/dk = 0). By continuity,
when the crossing first develops, these points cannot
disappear, and the two previously disconnected real-valued
branches merge to a single real one. One easily sees
graphically that when this happens, two additional points
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FIG. 7. Branches of the dispersion relation for a G, of the form
of Eq. (23) with @ = 0.856. The real-valued branches (blue) have
four critical points with dwg/dk =0 (highlighted in red),
implying that the instability is convective.

with horizontal tangent must appear. We illustrate this
circumstance in Fig. 7, where we choose an angular
distribution “G2.1” intermediate between cases G2 and
G3 of the main text. We highlight the four points with
horizontal tangent, corresponding to two pairs of stable
modes with vanishing group velocity. So at this stage the
modes with dw/dk = 0 are stable; the instability is there-
fore of a convective nature.

Only as the crossing grows deeper, each pair of solutions
with @ real and dw/dk =0 disappears when the two
points with horizontal tangent belonging to each pair

merge. From analysis, we know that this happens when
dw/dk = d*w/dk* = 0 simultaneously. When the crossing
is made even deeper, the two stable modes with zero group
velocity have disappeared and moved to the complex plane,
which means that one solution with Im(w) >0 and
dw/dk = 0 has now appeared. The instability has therefore
turned absolute. This transition was first noted in Ref. [16],
which also showed that the points with dw/dk = 0, which
are present when the instability is convective, serve as onset
points for branches of complex & for real w, in the same way
as the superluminal critical points with dk/dw = 0 corre-
spond to the appearance of branches of complex  for real k.

A simple interpretation can be given as to the convective
nature of the instability for our single-crossed spectra. When
the instability first appears, it is caused by the resonant
emission of flavor waves from the neutrinos belonging to the
flipped region [4,5]. This process bears strong resemblance
to beam-plasma instabilities, when a beam of fast particles is
passed through a background plasma. The instability then
ensues when the particles in the beam resonantly emit plasma
waves to get rid of their excess energy, until the velocity
distribution flattens. In the fast flavor case, when the angular
crossing first develops, the angular distribution can be
regarded as a beam of negative lepton number passing
through a medium with positive lepton number. In this case
a key role is played by lepton-number conservation [3,4],
which would impede the conversion without the beam.
Instead, as discussed in Refs. [4,5], the beam of negative
lepton number gets rid of it by resonant emission of flavor
waves, ultimately erasing the angular crossing, an effect
observed numerically [49,50] and predicted for a simple
setup by quasilinear theory [42].

In this picture, when the beam of lepton number (or, in the
plasma analogy, the beam of energetic particles) first
appears, it resonantly produces waves that move with the
same phase velocity as the particles, away from the region
in which they were formed. While the phase velocity does
not directly determine the motion of wave packets, it is
intuitively clear that the growing waves are initially leaving
the system, and the instability is therefore convective. For
deeper crossings, the resonant growth ultimately encom-
passes also modes that do not move with a sufficiently large
group velocity. We do not go here into the question of what
are the physical implications of the instability being absolute
vs convective, which is explored in detail in Ref. [51].
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