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Abstract: In this paper we study the IR dynamics of SU(N) gauge theories with

four supercharges in 3d in presence of symmetric or antisymmetric tensor. Using the

tensor deconfinement technique we provide some proofs of results previously claimed in

the literature about confining dualities for SU(N) with two antisymmetric tensors. Fur-

thermore we study 3d confining dualities with symmetric tensors and linear monopole

superpotentials. These confining dualities have been obtained by applying the duplica-

tion formula for the hyperbolic Gamma functions on effective dualities on R
1,2×S1 with

SU(N) gauge groups and antisymmetric tensors. We conclude the analysis providing

an alternative derivation, again using the tensor deconfinement technique.
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1 Introduction

The classification of S-confining gauge theories in supersymmetric gauge theories in 4d

with four supercharges has been shown to be complete for gauge theories with a single

gauge group and vanishing superpotential [1, 2].

A similar classification in 3d theories with the same amount of supersymmetry is

not available yet, and indeed there are more confining gauge theories than in the 4d

parent cases. There are various reasons behind this fact, i.e. the existence of a Coulomb

branch, the absence of global anomalies for the flavor symmetries, the existence of

topological symmetries and the possibility of introducing a Chern-Simons action for

the gauge group. We refer the reader to [3–5] for general review of the basic aspects of

3d supersymmetric theories with four supercharges.
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Despite the larger landscape of 3d confining gauge theories, there is a uniform way

to construct IR dualities and their confining limits both in 4d and in 3d by using the

technique of deconfining two index tensor matter fields, along the lines of the seminal

papers of [6–8].

Such procedure of obtaining dualities from dualities has been largely applied in

the last few years in various dimensions [9–21]. An important result obtained in [10]

has shown that the models classified by [2] for special unitary and symplectic gauge

groups and two index tensors can all be obtained from two basic S-confining dualities,

corresponding to the limiting case of Seiberg [22] and Intriligator-Pouliot [23] duality.

In 3d this approach has allowed various collaborations to obtain new confining dualities,

that do not have necessarily a 4d origin in terms of a parent s-confining duality reduced

on the circle, with the aid of the prescription of [24].

Furthermore other confining dualities have been claimed in the 3d literature by a

deep inspection of the moduli space. For example special unitary gauge groups with

antisymmetric tensors have been fully explored in [25]. Some of the models discussed in

this reference do not have an origin from any known 4d s-confining duality, This is for

example the case SU(N) gauge group with 2 antisymmetric tensors, nf fundamentals

and na antifundamentals, with nf + na = 4.

This duality has been studied from tensor deconfinement for nf = 4 and nf = 3 in

[19], with the analysis for nf < 3 is so far missing in the literature. The motivation of

[19] to study such cases is related to the fact that proving the duality through tensor

deconfinement automatically gives the expected integral identity for the squashed 3-

sphere partition functions of [26]. Then, by an opportune freezing of at least three

mass parameters for the fundamentals and by applying the duplication formula for the

hyperbolic Gamma function on such identities, one obtains new identities associated

to SU(N) gauge theories with symmetric tensors. Then these dualities, claimed from

localization, have been further studied, showing that they can be obtained from tensor

deconfinement as well.

In this paper we aim then to extend the analysis started in [19] by proving the du-

alities of [25] with two antisymmetric tensors for nf < 3. We show that the cases with

nf < 3 behave similarly to the case nf = 3 discussed in [19], i.e. after (i) deconfining

the two antisymmetric tensors, using 3d symplectic SQCD theories, (ii) dualizing the

SU(n) gauge node and (iii) confining the antisymmetric tensors back, we arrive to a

model with two conjugate antisymmetric tensors and four antifundamentals. Up to an

overall conjugation this corresponds to the model with nf = 4, that has been already

studied using the tensor deconfinement technique in [19]. The details of the derivation

are strongly dependent from the parity of the rank of the gauge node and from the

explicit values of nf and na. For this reason we analyze each case separately, giving
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a complete classification. The second part of the paper is devoted to the analysis of

some of the dualities with symmetric tensors claimed in [19]. We restrict our interest to

cases that originate from the application of the duplication formula, for the hyperbolic

Gamma functions, to 3d dualities with an antisymmetric tensor or an antisymmetric

flavor and a 4d origin. The reason is that in such cases it is possible to consider ef-

fective confining dualities on the S1, i.e. in presence of Kaluza-Klein (KK) monopole

superpotential along the discussion of [24]. Translating this dimensional reduction into

the reduction of the relative supersymmetric index [27, 28] to the squashed three sphere

partition function [26], in these cases one can opportunely freeze three or four mass

parameters and then apply the duplication formula for the hyperbolic Gamma func-

tion on these effective confining dualities. This procedure generates new identities, at

the level of the partition function, for theories with symmetric tensors. Such identi-

ties are different from the ones found in [19], having a larger amount of flavors and a

constraint among the fugacities (denoted as balancing condition in the mathematical

literature). Translating the results from localization to the associated field theories

we see that such effective confining dualities have non-trivial monopole deformations,

that indeed enforces the balancing condition on the identities. However such monopole

deformations do not correspond to any KK monopole deformations of any 4d model

in theses cases, and are more similar to other types of linear monopole superpoten-

tial, like the ones first proposed in [29]. Nevertheless such effective confining dualities

can be studied in 3d through tensors deconfinement and furthermore it can be shown

that, through opportune real mass deformations, that remove the constraints from the

monopole superpotentials, they flow to the confining dualities with symmetric tensors

already studied in [19].

2 3d SU(N) with two antisymmetric tensors

In this section we study 3d N = 2 theories with an SU(N) gauge group and two

antisymmetric. Such models have been claimed in [25] to be confining if there are

F ≤ 4 fundamentals and 4 − F antifundamentals and vanishing superpotential. The

cases with F = 4 and F = 3 have been studied in [19] from the point of view of tensor

deconfinement. Here we focus on the other three cases. Our analysis is performed

distinguishing in each case the parity of N , i.e. N = 2n and N = 2n+1. By deconfining

the two antisymmetric tensors we show that in each case we can dualize the special

unitary gauge group and confine the two antisymmetric tensors back. In each case

we obtain a model with an SU(N ′ < N) gauge group, two conjugate antisymmetric

tensors and four antifundamentals. This model, up to conjugation, is confining and the
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Figure 1. In this figure we have summarized the various dual step implemented in the text of

Subsection 2.1. On the top-left corner we provide the quiver for the starting SU(2n) theory,

with two antisymmetric tensors, 2 fundamentals and 2 antifundamentals. On the top-right

corner we show the auxiliary quiver where the antisymmetric tensors are traded with two

USp(2n − 2) gauge group with new bifundamentals P1,2. On the bottom-right corner we

present the quiver of the theory after having dualized the central SU(2n) gauge node to

SU(2n− 2). In the last bottom-left quiver we present the theory after the confinement of the

two USp(2n−2) gauge nodes. We refer to the text for the details regarding the superpotential,

the duality mappings and the singlets appearing at each step.

proof from tensor deconfinement has been discussed in [19]. We have reviewed such

confining duality in Appendix A.

2.1 SU(2n) with 2 fundamentals and 2 antifundamentals

We start our discussion by considering an SU(2n) gauge group with two antisym-

metric tensors A1,2 and two fundamental flavors Q and Q̃. This theory was studied

in [25], where a confining duality was proposed in terms of the singlets M = QQ̃,

B̃ = AQ̃2, T (n) = An, T (n−1) = An−1Q2, P (1) = An−1(AQ̃)Q, P (2) = An−1(AQ̃)2 and

R = An−2(AQ̃)2Q2. There is also a dressed monopole 1 Y dressed = Y bare
SU(2n−2)A

2n−4 and

the superpotential of the dual WZ model in this case is

W = Y d(M2T (n)2 +MP (1)T (n) + T (n)R + T (n−1)P (2) + P (1)2 + B̃T (n−1)T (n)). (2.1)

1We refer the reader to [19] for a long review on such states. See also [5, 25, 30, 31] for discussions.
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Here we want to obtain proof of such confining duality in terms of others (elemen-

tary) dualities along the lines of tensor deconfinement. Actually, instead of considering

a vanishing superpotential, here we flip the operators PfA1,2, the operators A1,2Q̃
2 and

the meson QQ̃. The flippers are denoted as ρ1,2, β1,2 and α respectively. In this way

the superpotential associated to the first quiver in Figure 1 is

W =
2
∑

i=1

(ρi PfAi + βiAiQ̃
2) + αQQ̃. (2.2)

We then deconfine the two tensors A1,2 using two USp(2n− 2) gauge groups. The two

new bifundamentals emerging from the deconfinement are denoted as P1,2 in Figure 1

and the superpotential of this phase is

W =
2
∑

i=1

βiP
2
i Q̃

2 + αQQ̃. (2.3)

The SU(2n) gauge node has 4n − 2 fundamentals and 2 antifundamentals. The dual

theory was proposed in [32] and it was reviewed in appendix D.1.1 of [19]. We refer

the reader to such reference for details. The dual gauge group becomes SU(2n − 2)

and the superpotential is

W =
2
∑

i=1

(LiP̃iq + βiL
2
i ), (2.4)

where we have integrated out the massive meson MQQ̃ and the flipper α.

At this point we observe that the two USp(2n − 2) gauge groups are confining

and each one gives rise to a conjugate antisymmetric, Ã1 and Ã2 respectively and a

field in the antifundamental representation of SU(2n − 2), p̃1 = L1P̃1 and p̃2 = L2P̃2

respectively. Integrating out the massive fields the final superpotential is

W =
2
∑

i=1

ρ̃i ǫ2n−2 · (Ã
n−2
i p̃2−), (2.5)

where p̃− = p̃1 − p̃2.

Next we can use the confinement of SU(2n− 2) with two antisymmetric and four

fundamentals, proposed in [25] and studied from tensor deconfinement in [19]. Such

confining duality has been reviewed in appendix A for completeness. Observe that in

the case at hand here case the SU(4)×SU(2) non abelian flavor symmetry is partially

broken by the superpotential (2.5). Furthermore the model described in the fourth

quiver in Figure 1 differs from the one in appendix A for an overall conjugation. Keeping

in mind these differences here we split the indices of the SU(4) flavor symmetry into the
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indices of two non-abelian SU(2) flavor symmetries, denoting them as SU(2)a×SU(2)b,

in addition to an abelian U(1). Moreover we have the relation m = n − 1 mapping

the ranks of the gauge groups. Using these rules the SU(2n− 2) model is confining in

terms of the following singlets

t
(n−1)
j = Ãj

1Ã
n−1−j
2 , j = 0, ..., n− 1

t
(n−2,aa)
j = Ãj

1Ã
n−2−j
2 p2−, j = 0, ..., n− 2

t
(n−2,ab)
j = Ãj

1Ã
n−2−j
2 p−q̃, j = 0, ..., n− 2

t
(n−2,bb)
j = Ãj

1Ã
n−2−j
2 q̃2, j = 0, ..., n− 2

t
(n−3)
j = Ãj

1Ã
n−3−j
2 p2−q̃

2, j = 0, ..., n− 3

(2.6)

These singlets are mapped to the singlets of the original SU(2n) theory with 2�

and 2�̄ as

t
(n−1)
j → T

(n−1)
n−1−j, t

(n−2,aa)
j → Rn−3−j, t

(n−2,ab)
j → P

(1)
n−1−j,

t
(n−2,bb)
j → T

(n)
n−1−j, t

(n−3)
j → P

(2)
n−3−j, ydj → Y d

2n−4−j.
(2.7)

The final superpotential is given by (A.1) in addition to the deformation (2.5). Using

the singlets in formula (2.6) this gives the following confining superpotential

W = ydk(t
(n−1)
j tn−3

2n−4−k−j+ t
(n−2,aa)
ℓ t

(n−2,bb)
2n−4−k−ℓ+ t

(n−2,ab)
s t

(n−2,ab)
2n−4−k−s)+ ρ̃1t

(n−2,aa)
0 + ρ̃2t

(n−2,aa)
n−2 ,

(2.8)

where the sums over k = 0, ..., 2n− 4, j = 0, ..., n− 1, ℓ = 1, ...n− 3 and s = 0, ..., n− 2

are understood. The deformation (2.5) is mapped in the last two terms in (2.8) where

the monopoles ρ̃1 give mass to t
(m−2,aa)
0 and t

(m−2,aa)
n−2 , which then are not mapped to

any of the R fields. Using the mapping (2.7), the final superpotential is

W =Y d
2n−4−k(T

(n−1)
n−1−jP

(2)
k+j+1−n +Rn−3−ℓT

(n)
k+ℓ+3−n + P

(1)
n−1−sP

(1)
k+s+3−n). (2.9)

We conclude the analysis observing that the superpotential (2.9) is exactly the one that

is obtained by adding the deformation (2.2) to the superpotential (2.1).

We can also reproduce the proof of the confining duality given above by studying

the matching of the three sphere partition function. The relation that we want to prove

in this case is

ZSU(2n)(~µ;~ν; ·; ·;~τ ; ·) =
2
∏

a,b=1

Γh(µa + νb)
2
∏

ℓ=1

Γh(τℓ + ν1 + ν2)
n
∏

j=0

Γh(jτ1 + (n− j)τ2)

n−1
∏

j=0

Γh(τ1(n− 1− j) + jτ2 + µ1 + µ2)
n−4
∏

j=0

Γh

(

τ1(n− j − 2) + (j + 2)τ2 +
2
∑

a=1

(µa + νa)

)
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n−3
∏

j=0

Γh (τ1(n− 1− j) + (j + 2)τ2 + ν1 + ν2)
n−2
∏

j=0

2
∏

a,b=1

Γh (τ1(n− 1− j) + (j + 1)τ2 + µa + νb)

2n−4
∏

j=0

Γh

(

2ω − τ1(2n− j − 2)− (j + 2)τ2 −
2
∑

a=1

(µa + νa)

)

. (2.10)

In order to prove such relation we follow the deconfinement and duality steps dis-

cussed from the field theory approach above. We start by reading the mass parameters

of the flippers α, β and ρ in the first quiver in Figure 1. They are

mα(a,b) = 2ω − µa − νb, mρℓ = 2ω − nτℓ, mβℓ
= 2ω − τℓ − ν1 − ν2, (2.11)

with ℓ = 1, 2 and a, b = 1, 2. Then we deconfine the antisymmetric tensors, by re-

versing the identities associated to Aharony duality for symplectic SQCD, that have

been discussed in a physical language in [33, 34]. The mass parameters for the new

bifundamentals Pℓ are

mPℓ
=
τℓ
2
. (2.12)

The duality step requires to define an auxiliary quantity

X =
(n− 1)(τ1 + τ2) + µ1 + µ2

2n− 2
=
τ1 + τ2

2
+
µ1 + µ2

2(n− 1)
, (2.13)

such that the masses of the fields in the third quiver in Figure 1 are

mq(a) = 2ω −X − νa, mq̃(a) = X − µa, mP̃ℓ
= X −

τℓ
2
, m

L
(a)
ℓ

=
τℓ
2
+ νa. (2.14)

There is a further field with mass parameter m
M

(a,b)

QQ̃

= µa + νb, but it disappears

together with the flipper α, thanks to the inversion relation

Γh(x)Γh(2ω − x) = 1, (2.15)

for the hyperbolic Gamma functions. Then the confinement of the two symplectic nodes

gives rise to the mesonic singlets L
(1)
ℓ · L(2)

ℓ and to the singlets ρ̃ℓ, identified with the

fundamental monopoles of the USp(2n − 2) gauge groups. The real masses for these

singlets are

m
L
(1)
ℓ

·L
(2)
ℓ

= τℓ + ν1 + ν2, mρ̃1,2 = 2ω − (n− 1)τ1,2 + τ2,1 −
2
∑

a=1

(µa + νa). (2.16)

The singlets obtained from L
(1)
ℓ · L(2)

ℓ disappear, due to the holomorphic mass with

the flippers βℓ that can be read from (2.4). At the level of the partition function
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this translates to an application of the inversion relation (2.15), i.e. Γh(mβℓ
)Γh(mL

(1)
ℓ

·

m
L
(2)
ℓ

) = 1 for both ℓ = 1 and ℓ = 2. The mass parameters of the charged matter fields

are

mÃℓ
= 2X − τℓ, m

p̃
(a)
−

= X + νa, mq̃(a) = X − µa, (2.17)

where we can re-organize the four antifundamentals as

m̂ = {mq̃(1) ,mq̃(2) ,mp̃
(1)
−

,m
p̃
(2)
−

}. (2.18)

In this way we have arrived to an identity between the partition function of the first

and the last quivers in Figure 1, that reads

2
∏

ℓ=1

Γh(mρℓ ,mβℓ
)

2
∏

a,b=1

Γh(mα(a,b))ZSU(2n)(~µ;~ν; ·; ·;~τ ; ·)

=
2
∏

ℓ=1

Γh(mρ̃ℓ)ZSU(2n−2)(·; ~̂m; ·; ·; ·; 2X − ~τ). (2.19)

The integral ZSU(2n−2)(·; ~̂m; ·; ·; ·; 2X−~τ) can be evaluated using (A.3), up to an overall

conjugation that does not modify the result. Once such integral is plugged in (2.19) we

apply (2.15), moving the Gamma function of the flippers ρ, β and α on the RHS and

eliminating the singlets ρ̃. Finally we obtained the expected relation (2.10).

2.2 SU(2n+ 1) with 2 fundamentals and 2 antifundamentals

We proceed by considering an SU(2n+1) gauge group with two antisymmetric tensors

A1,2 and two fundamental flavors Q and Q̃. This theory was studied in [25], where a

confining duality was proposed in terms of the singletsM = QQ̃, B̃ = AQ̃2, T (n) = An,

T (n−1) = An−1(AQ̃)2Q, P (n) = An(AQ̃), P (n−1) = An−1(AQ̃)Q2. There is also a dressed

monopole Y dressed = Y bare
SU(2n−1)A

2n−3 and the superpotential of the dual WZ model in

this case is

W = Y d(MT (n)P (n) + B̃T (n)2 + T (n)T (n−1) + P (n)P (n−1)). (2.20)

Here we want to obtain proof of such confining duality in terms of others (elemen-

tary) dualities along the lines of tensor deconfinement. Actually, instead of considering

a vanishing superpotential, here we flip the operators PfA1,2, the operators A1,2Q̃
2 and

the meson QQ̃. The flippers are denoted as ρ1,2, β1,2 and α respectively. In this way

the superpotential associated to the first quiver in Figure 2 is

W =
2
∑

i=1

(ρiA
n
iQi + βiAiQ̃

2) + αQQ̃. (2.21)
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an SU(2n− 1) gauge theory and its superpotential is

W =
2
∑

i=1

(LiP̃iq + UiLiαi + βiL
2
i ), (2.23)

where L1,2 = P1,2Q̃ are the mesons of this duality.

At this point we observe that the two USp(2n) gauge groups are confining and

each one gives rise to a conjugate antisymmetric Ã1,2 = P̃ 2
1,2, an antifundamental q̃1,2 =

U1,2P1,2, another antifundamental p1,2 = L1,2P̃1,2 and a singlet ℓ1,2 = L2
1,2. Integrating

out the massive fields the final superpotential is

W =
2
∑

i=1

ρ̃iÃ
n−2
i q̃ip̃

2
−, (2.24)

where p̃− = p̃1 − p̃2 and ρ̃1,2 correspond to the fundamental monopoles of USp(2n)1,2.

Next we can use the confinement of SU(2n− 1) with two antisymmetric and four

fundamentals, reviewed in appendix A for completeness. Observe that here the SU(4)×

SU(2) non abelian flavor symmetry is partially broken by the superpotential (2.24).

Furthermore the model described in the fourth quiver in Figure 2 differs from the one

in appendix A for an overall conjugation. Keeping in mind these differences here we

split the indices of the SU(4) flavor symmetry into the indices of two abelian U(1)

and a non-abelian SU(2) flavor symmetry, denoting them as U(1)a × U(1)b × SU(2)c.

Moreover we have the relation m = n−1 mapping the ranks of the gauge groups. Using

these rules the SU(2n− 1) model is confining in terms of the following singlets

t
(n−1,a)
j = Ãj

1Ã
n−1−j
2 q̃1,

t
(n−1,b)
j = Ãj

1Ã
n−1−j
2 q̃2, j = 0, ..., n− 1

t
(n−1,c)
j = Ãj

1Ã
n−1−j
2 p̃−,

t
(n−1,abc)
ℓ = Ãℓ

1Ã
n−2−ℓ
2 q̃1q̃2p̃−,

t
(n−1,acc)
ℓ = Ãℓ

1Ã
n−2−ℓ
2 q̃1p̃

2
−, ℓ = 0, ..., n− 2

t
(n−1,bcc)
ℓ = Ãℓ

1Ã
n−2−ℓ
2 q̃2p̃

2
−,

(2.25)

and are mapped to the singlets of the SU(2n+ 1) theory with 2� and 2�̄ as

t
(n−1,a)
j → T

(n)
n−1−j, t

(n−1,b)
j → T

(n)
n−j, t

(n−1,c)
j → P

(n)
n−1−j,

t
(n−2,abc)
j → P

(n−1)
n−2−j, t

(n−2,acc)
j → T

(n−1)
n−3−j, t

(n−2,bcc)
j → T

(n−1)
n−2−j.

(2.26)

The final superpotential is given by (A.4) in addition to the deformation (2.24). Using

the singlets in formula (2.25) this gives the following confining superpotential

W =ydk(t
(n−1,a)
j t

(n−2,acc)
2n−k−j−4 + t

(n−1,a)
j t

(n−2,bcc)
2n−k−j−3 + t

(n−1,b)
j t

(n−2,acc)
2n−k−j−3 + t

(n−1,b)
j t

(n−2,bcc)
2n−k−j−2+

t
(n−1,c)
j t

(n−2,abc)
2n−k−j−3) + ρ̃1t

(n−2,acc)
n−2 + ρ̃2t

(n−2,bcc)
0 ,

(2.27)
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where the sums over k = 0, ..., 2n − 3 and j = 0, ..., n − 1 are understood. The

deformation (2.24) is mapped in the last two terms in (2.27) where the monopoles ρ̃1
give mass to t

(n−2,acc)
n−2 and t

(n−2,bcc)
0 , which then are not mapped to any of the singlets.

Using the mapping (2.26), the final superpotential is

W =
∑

{k,j}

Y d
2n−3−k(T

(n,a)
n−1−jT

(n−1,acc)
k+j+1−n + T

(n,a)
n−1−jT

(n−1,bcc)
k+j+1−n + T

(n,b)
n−j T

(n−1,acc)
k+j−n +

+ T
(n,b)
n−j T

(n−1,bcc)
k+j−n + P

(n)
n−1−jP

(n−1)
k+j+1−n).

(2.28)

We can also reproduce the proof of the confining duality given above by studying the

matching of the three sphere partition function. The relation that we want to prove in

this case is

ZSU(2n+1)(~µ;~ν; ·; ·;~τ ; ·) =
2
∏

a,b=1

Γh(µa + νb)
2
∏

ℓ=1

Γh(τℓ + ν1 + ν2)

n−2
∏

j=0

2
∏

a=1

Γh ((n− 1− j)τ1 + (j + 1)τ2 + µ1 + µ2 + νa)

n−3
∏

j=0

2
∏

a=1

Γh ((n− 1− j)τ1 + (j + 2)τ2 + µa + ν1 + ν2)

2n−3
∏

j=0

Γh

(

2ω − (2n− 1− j)τ1 − (j + 2)τ2 −
2
∑

a=1

(µa + νa)

)

2
∏

a=1

(

n
∏

j=0

Γh (τ1(n− j) + jτ2 + µa) ·
n−1
∏

j=0

Γh (τ1(n− j) + (j + 1)τ2 + νa)

)

.

(2.29)

In order to prove such relation we follow the deconfinement and duality steps discussed

from the field theory approach above. We start by reading the mass parameters of the

flippers α, β and ρ in the first quiver in Figure 2. They are

mρℓ = 2ω − nτℓ, mβℓ
= 2ω − τℓ − ν1 − ν2, mα(a,b) = 2ω − µa − νb, (2.30)

with ℓ = 1, 2 and a, b = 1, 2. Then we deconfine the antisymmetric tensors and the

mass parameter for the new bifundamentals P1,2 and for the fields U1,2 are

mPℓ
=
τℓ
2
, m

U
(a)
ℓ

= µa −
τℓ
2
. (2.31)

The duality step requires to define an auxiliary quantity

X =
n(τ1 + τ2)

2n− 1
, (2.32)
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such that the masses of the fields in the third quiver in Figure 2 are

mP̃ℓ
= X −

τℓ
2
, m(a)

q = 2ω −X − νa, m
L
(a)
ℓ

=
τℓ
2
+ νa. (2.33)

Then the confinement of the two symplectic nodes gives rise to the singlets

m
L
(1)
ℓ

L
(2)
ℓ

= τℓ + ν1 + ν2, m
U

(a)
a L

(b)
a

= µa + νb, (2.34)

mρ̃1,2 = 2ω − nτ2,1 − τ1,2 − ν1 − ν2 − µ1,2,

while the terms in the first line disappear together with the flippers α and β, because

of the inversion relation, the singlets in the second line have to be considered. The

mass parameters of the charged matter fields are

mÃ1,2
= 2X − τ1,2, m

p̃
(a)
−

= X + νa, mq̃(a) = X − τa − µa, (2.35)

where we can reorganize the four antifundamentals as

m̂ = {mq̃(1) ,mq̃(2) ,mp̃
(1)
−

,m
p̃
(2)
−

}. (2.36)

In this way we have arrived to an identity between the partition function of the first

and the last quivers in Figure 2, that reads

2
∏

ℓ=1

Γh(mρℓ ,mβℓ
)

2
∏

a,b=1

Γh(mα(a,b))ZSU(2n+1)(~µ;~ν; ·; ·;~τ ; ·)

=
2
∏

ℓ=1

Γh(mρ̃ℓ)ZSU(2n−1)(·; ~̂m; ·; ·; ·; 2X − ~τ). (2.37)

The integral ZSU(2n−1)(·; ~̂m; ·; ·; ·; 2X−~τ) can be evaluated using (A.6), up to an overall

conjugation that does not modify the result. Once such integral is plugged in (2.37),

we apply the inversion relation to move the Gamma function of the flippers ρ, β and α

on the RHS and eliminate the singlets ρ̃, finally obtaining (2.29).

2.3 SU(2n) with 1 fundamental and 3 antifundamentals

We then consider an SU(2n) gauge group with two antisymmetric tensors A1,2, one

fundamental Q and three antifundamentals Q̃. This theory was studied in [25], where a

confining duality was proposed in terms of the singletsM = QQ̃, B̃ = AQ̃2, T (n) = An,

P (1) = An−1(AQ̃)Q, P (2) = An−1(AQ̃)2 and P (3) = An−2(AQ̃)3Q . There is also a

dressed monopole Y dressed = Y bare
SU(2n−2)A

2n−5 and the superpotential of the dual WZ

model in this case is

W = Y dressed
(

T (n)B̃P (1) + P (1)P (2) + T (n)P (3) + T (n)P (2)M
)

. (2.38)
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SU(2n)

3
Q̃

1
Q

USp(2n − 2) USp(2n − 2)
P2P1

A2
SU(2n)

3
Q̃

1
Q

A1

α

α

SU(2n − 3)

1

q̃

3

USp(2n − 2) USp(2n − 2)
P̃2P̃1

q
L1 L2

SU(2n − 3)

31

Ã2Ã1

q̃ p−

Figure 3. In this figure we have summarized the various dual step implemented in the text of

Subsection 2.3. On the top-left corner we provide the quiver for the starting SU(2n) theory,

with two antisymmetric tensors, 1 fundamental and 3 antifundamentals. On the top-right

corner we show the auxiliary quiver where the antisymmetric tensors are traded with two

USp(2n − 2) gauge group with new bifundamentals P1,2. On the bottom-right corner we

present the quiver of the theory after having dualized the central SU(2n) gauge node to

SU(2n− 3). In the last bottom-left quiver we present the theory after the confinement of the

two USp(2n−2) gauge nodes. We refer to the text for the details regarding the superpotential,

the duality mappings and the singlets appearing at each step.

Here we want to obtain a proof of such confining duality in terms of others (elementary)

dualities along the lines of tensor deconfinement. Actually, instead of considering a

vanishing superpotential, here we flip the operators PfA1,2, the operators A1,2Q̃
2 and

the meson QQ̃. The flippers are denoted as ρ1,2, β1,2 and α respectively. In this way

the superpotential associated to the first quiver in Figure 3 is

W =
2
∑

i=1

(ρi PfAi + βiAiQ̃
2) + αQQ̃. (2.39)

We then deconfine the two tensors A1,2 using two USp(2n− 2) gauge group. The two

new bifundamentals emerging from the deconfinement are denoted as P1,2 in Figure 3
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and the superpotential of this phase is

W =
2
∑

i=1

βiP
2
i Q̃

2 + αQQ̃. (2.40)

The SU(2n) gauge node has 4n − 3 fundamentals and 3 antifundamentals. The dual

theory was proposed in [32] and it was reviewed in appendix D.1.1 of [19]. It is an

SU(2n− 3) gauge theory and its superpotential is

W =
2
∑

i=1

(LiP̃iq + βiL
2
i ), (2.41)

where we have integrated out the massive meson MQQ̃ and the flipper α.

At this point we observe that the two USp(2n − 2) gauge groups are confining

and each one gives rise to a conjugate antisymmetric, Ã1 and Ã2 respectively and a

meson in the antifundamental representation of SU(2n− 3), p̃1 = L1P̃1 and p̃2 = L2P̃2

respectively. Integrating out the massive fields the final superpotential is

W =
2
∑

i=1

ρ̃iÃ
n−3
i p3−, (2.42)

where p̃− = p̃1 − p̃2.

Next we can use again the confinement of SU(2n − 3) with two antisymmetric

tensors and four fundamentals. Observe that in the case at hand here the SU(4) ×

SU(2) non abelian flavor symmetry is partially broken by the superpotential (2.42).

Furthermore the model described in the fourth quiver in Figure 3 differs from the one

in appendix A for an overall conjugation. Keeping in mind these differences, here we

split the indices of the SU(4) flavor symmetry into the indices of a non-abelian SU(3)b
flavor symmetries, in addition to an abelian U(1)a. Using these rules, the SU(2n− 3)

model is confining in terms of the following singlets

tn−2,a
j = Ãj

1Ã
n−2−j
2 q̃, j = 0, ..., n− 2

tn−2,b
j = Ãj

1Ã
n−2−j
2 p−, j = 0, ..., n− 2

tn−3,abb
j = Ãj

1Ã
n−3−j
2 q̃1p

2
−, j = 0, ..., n− 3

tn−3,bbb
j = Ãj

1Ã
n−3−j
2 p3−, j = 0, ..., n− 3

(2.43)

These singlets are mapped to the singlets of the original SU(2n) theory with 1�

and 3�̄ as

tn−2,a
j −→ T n

n−1−j, tn−2,b
j −→ P

(1)
n−j−2, tn−3,abb

j −→ P
(2)
n−3−j,

tn−3,bbb
j −→ P

(3)
n−4−j, ydk −→ Y d

2n−k−5.
(2.44)
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The final superpotential is given by (A.1) in addition to the deformation (2.42). Using

the singlets in formula (2.43) this gives the following confining superpotential

W = ydk(t
n−2,a
j tn−3,bbb

2n−k−j−5 + tn−2,b
j tn−3,abb

2n−k−j−5) + ρ̃1t
n−3,bbb
0 + ρ̃2t

n−3,bbb
n−3 , (2.45)

where the sums over k = 0, ..., 2n − 5 and j = 0, ..., n − 2 are understood. The

deformation (2.42) is mapped in the last two terms in (2.45) where the monopoles ρ̃i
give mass to t

(n−3,bbb)
0 and t

(n−3,bbb)
n−3 , which then are not mapped to any of the P fields.

Using the mapping (2.44), the final superpotential is

W =
∑

{k,j}

Y d
2n−k−5(T

n
n−1−jP

(3)
k+j+1−n + P

(1)
N−j−2P

(2)
k+j+2−n). (2.46)

We conclude the analysis observing that the superpotential (2.46) is exactly the one

that is obtained by adding the deformation (2.39) to the superpotential (2.38).

We can also reproduce the proof of the confining duality given above by studying

the matching of the three sphere partition function. The relation that we want to prove

in this case is

ZSU(2n)(µ;~ν; ·; ·;~τ ; ·) =
2
∏

ℓ=1

∏

1≤a<b≤3

Γh(τℓ + νa + νb)
3
∏

a=1

Γh(µ+ νa)

n−3
∏

j=0

∏

1≤a<b≤3

Γh((n− 1− j)τ1 + (j + 2)τ2 + νa + νb)

n−5
∏

j=0

Γh((n− j − 2)τ1 + (j + 3)τ2 + µ+
3
∑

a=1

νa)

2n−5
∏

j=0

Γh

(

2ω − (2n− j − 2)τ1 − (j + 3)τ2 − µ−
3
∑

a=1

νa

)

n
∏

j=0

Γh ((n− j)τ1 + jτ2)

n−2
∏

j=0

3
∏

a=1

Γh (τ1(n− 1− j) + (j + 1)τ2 + µ+ νa) . (2.47)

In order to prove such relation we follow the deconfinement and duality steps dis-

cussed from the field theory approach above. We start by reading the mass parameters

of the flippers α, β and ρ in the first quiver in Figure 3. They are

mρℓ = 2ω − nτℓ, m
β
(a,b)
ℓ

= 2ω − τℓ − νa − νb, mα(a) = 2ω − µ− νa, (2.48)

– 15 –



with ℓ = 1, 2, a, b = 1, 2, 3 and a < b. Then we deconfine the two antisymmetric tensors

and the mass parameter for the new bifundamentals P1,2 are

mPℓ
=
τℓ
2
. (2.49)

The duality step requires to define an auxiliary quantity

X =
(n− 1)(τ1 + τ2) + µ

2n− 3
, (2.50)

such that the masses of the fields in the third quiver in Figure 4 are

mP̃1,2
= X −

τ1,2
2
, m

L
(a)
1,2

=
τ1,2
2

+ νa, mq(a) = 2ω −X − νa, mq̃ = X − µ. (2.51)

Then the confinement of the two symplectic nodes gives rise to the singlets

m
L
(a)
ℓ

L
(b)
ℓ

= τℓ + νa + νb, mρ̃1,2 = 2ω − (n− 1)τ1,2 − 2τ2,1 −
3
∑

a=1

νa − µ, (2.52)

while the two terms mL2
1,2

disappear together with the flippers and β1,2, because of the

inversion relation, the singlets in the second term have to be considered. The mass

parameters of the charged matter fields are

mÃℓ
= 2X − τℓ, m

p̃
(a)
−

= X + νa, mq̃ = X − µ, (2.53)

where we can reorganize the four antifundamentals as

m̂ = {mq̃,mp̃
(1)
−

,m
p̃
(2)
−

,m
p̃
(3)
−

}. (2.54)

In this way we have arrived to an identity between the partition function of the first

and the last quivers in Figure 4, that reads

(

2
∏

ℓ=1

Γh(mρℓ)
∏

1≤a<b≤3

Γh(mβ
(a,b)
ℓ

)

)

3
∏

a=1

Γh(mα(a))ZSU(2n)(µ;~ν; ·; ·;~τ ; ·)

=
2
∏

ℓ=1

Γh(mρ̃ℓ)ZSU(2n−3)(·; ~̂m; ·; ·; ·; 2X − ~τ). (2.55)

The integral ZSU(2n−1)(·; ~̂m; ·; ·; ·; 2X−~τ) can be evaluated using (A.6), up to an overall

conjugation that does not modify the result. Once such integral is plugged in (2.55)

we apply the inversion relation to move the Gamma function of the flippers ρ, β and α

on the RHS and eliminate the singlets ρ̃, finally obtaining (2.47).
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Figure 4. In this figure we have summarized the various dual step implemented in the text

of Subsection 2.4. On the top-left corner we provide the quiver for the starting SU(2n + 1)

theory, with two antisymmetric tensors, 1 fundamental and 3 antifundamentals. On the top-

right corner we show the auxiliary quiver where the antisymmetric tensors are traded with

two USp(2n− 2) gauge group with new bifundamentals P1,2 and new charged fields U1,2. On

the bottom-right corner we present the quiver of the theory after having dualized the central

SU(2n+ 1) gauge node to SU(2n− 4). In the last bottom-left quiver we present the theory

after the confinement of the two USp(2n−2) gauge nodes. We refer to the text for the details

regarding the superpotential, the duality mappings and the singlets appearing at each step.

2.4 SU(2n+ 1) with 1 fundamental and 3 antifundamentals

Here we consider an SU(2n + 1) gauge group (with n > 1) with two antisymmetric

tensorsA1,2, one fundamentalQ and three antifundamentals Q̃. This theory was studied

in [25], where a confining duality was proposed in terms of the singlets M = QQ̃,

B̃ = AQ̃2, T (n) = AnQ, P (n) = An(AQ̃), P (n−1) = An−1(AQ̃)3 and R = An−1(AQ̃)2Q .

There is also a dressed monopole Y dressed = Y bare
SU(2n−1)A

2n−4 and the superpotential of

the dual WZ model in this case is

W = Y dressed
(

MP (n)2 + B̃P (n)T (n) + T (n)P (n−1) + P (n)R
)

. (2.56)

Here we want to prove such confining duality in terms of others (elementary) duali-
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ties along the lines of tensor deconfinement. Actually, instead of considering a vanishing

superpotential, here we flip the operators the operators A1,2Q̃
2 and the meson QQ̃. The

flippers are denoted as β1,2 and α respectively. In this way the superpotential associated

to the first quiver in Figure 4 is

W =
2
∑

i=1

βiAiQ̃
2 + αQQ̃. (2.57)

We then deconfine the two tensors A1,2 using two USp(2n− 2) gauge groups. The

two new bifundamentals emerging from the deconfinement are denoted as P1,2 in Figure

4. There are also two new USp(2n − 2)1,2 charged fields denoted as U1,2, associated

to the original fundamentals Q1,2 through the relations Q1,2 = U1,2P1,2. There are two

new SU(2n+ 1) antifundamentals V1,2. The superpotential of this phase is

W =
2
∑

i=1

(Y
(i)
USp(2n−2) + PiUiṼi) + αQQ̃+ βiP

2
i Q̃

2. (2.58)

Observe that in this case, differently from the cases studied above, we have deconfined

the two tensors by using symplectic gauge groups with linear monopole superpotentials.

This duality was first discussed in [24], and it corresponds to the effective duality arising

from the circle reduction of the s-confining limit of the Intriligator-Pouliot duality. The

finite size effects are reflected in the presence of the linear monopole superpotential,

corresponding in this case to the Kaluza-Klein monopole, associated to the affine root

of the symplectic algebra when considering the compact Coulomb branch.

The SU(2n+1) gauge node has has 4n− 3 fundamentals and 5 antifundamentals.

The dual theory was proposed in [32] and it was reviewed in appendix D.1.1 of [19].

It is an SU(2n− 4) gauge theory and its superpotential is

W = (L1P̃1 + L2P̃2)q + P̃1V2Z1 + P̃2V1Z2 + (V2W1 + V1W2)q̃ + L2
1β1 + L2

2β2, (2.59)

where we have integrated the massive meson MQQ̃ and the flipper α and the Ui fields

with the mesons MPiṼi
.

At this point we observe that the two USp(2n− 2) gauge groups are confining and

each one gives rise to a conjugate antisymmetric tensor field, Ã1 and Ã2 respectively,

and mesons in the antifundamental representation of SU(2n − 4), p̃1 = L1P̃1 and

p̃2 = L2P̃2 respectively. Integrating out the massive fields the final superpotential is

W =
2
∑

i=1

ρ̃i(Ã
n−3
i p2−MZiLi

+ Ãn−4
i p3−Wiq̃). (2.60)
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Next we can use again the confinement of SU(2n− 4) with two antisymmetric and

four fundamentals. Observe that in the case at hand here the SU(4) × SU(2) non

abelian flavor symmetry is partially broken by the superpotential (2.60). Furthermore

the model described in the fourth quiver in Figure 4 differ from the one in appendix

A for an overall conjugation. Keeping in mind these differences, here we split the

indices of the SU(4) flavor symmetry into the indices of a non-abelian SU(3)b flavor

symmetries, in addition to an abelian U(1)a. Using these rules the SU(2n− 4) model

is confining in terms of the following singlets

tn−2,a
j = Ãj

1Ã
n−2−j
2 q̃, j = 0, ..., n− 2

tn−2,b
j = Ãj

1Ã
n−2−j
2 p−, j = 0, ..., n− 2

tn−3,abb
j = Ãj

1Ã
n−3−j
2 q̃1p

2
−, j = 0, ..., n− 3

tn−3,bbb
j = Ãj

1Ã
n−3−j
2 p3−, j = 0, ..., n− 3

tn−4
j = Ãj

1Ã
n−4−j
2 q̃1p

3
−, j = 0, ..., n− 4

(2.61)

These singlets are mapped to the singlets of the original SU(2n + 1) theory with

1� and 3�̄ as

tn−2
j −→ T n

n−2−j, tn−3,ab
j −→ P

(n)
n−3−j, tn−3,bb

j −→ Rn−3−j,

tn−4
j −→ P

(n−1)
n−4−j, ydk −→ Y d

2n−5−k.
(2.62)

The final superpotential is given by (A.1) in addition to the deformation (2.60). Using

the singlets in formula (2.61) this gives the following confining superpotential

W =ydk(t
n−2
j tn−4

2n−k−j−6 + tn−3,ab
l tn−3,bb

2n−k−l−6) + Y d
0 (T

n
nP

n−1
n−4 + P

(n)
n−1Rn−3)+

Y d
2n−4(T

n
0 P

n−1
0 + P

(n)
0 R0), (2.63)

where the sums over k = 0, ..., 2n−6, j = 1, ..., n−1 and l = 0, ..., n−1 are understood.

The deformation (2.60) is mapped in the last two terms in (2.63) where the monopoles

ρ̃i reconstruct the full symmetry in the monopole superpotential. Using the mapping

(2.62), the final superpotential is

W =Y d
2n−5−k(T

n
j P

(n−1)
2n−4−k−j + P

(n)
l R2n−4−k−l) + Y d

0 (T
n
nP

n−1
n−4 + P

(n)
n−1Rn−3)+

Y d
2n−4(T

n
0 P

n−1
0 + P

(n)
0 R0). (2.64)

We conclude the analysis observing that the superpotential (2.64) is exactly the one

that is obtained by adding the deformation (2.57) to the superpotential (2.56).

We can also reproduce the proof of the confining duality given above by studying

the matching of the three sphere partition function. The relation that we want to prove
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in this case is

ZSU(2n+1)(µ;~ν; ·; ·;~τ ; ·) =
2
∏

ℓ=1

∏

1≤a<b≤3

Γh(τℓ + νa + νb)
3
∏

a=1

Γh(µ+ νa)

n
∏

j=0

Γh ((n− j)τ1 + jτ2 + µ) ·
n−1
∏

j=0

3
∏

a=1

Γh ((n− j)τ1 + (j + 1)τ2 + νa)

n−3
∏

j=0

∏

1≤a<b≤3

Γh ((n− 1− j)τ1 + (j + 2)τ2 + µ+ νa + νb)

2n−4
∏

j=0

Γh

(

2ω − (2n− j − 1)τ1 − (j + 3)τ2 − µ−
3
∑

a=1

νa

)

n−4
∏

j=0

Γh

(

(n− 1− j)τ1 + (j + 3)τ2 +
3
∑

a=1

νa

)

. (2.65)

In order to prove such relation we follow the deconfinement and duality steps discussed

from the field theory approach above. We start by reading the mass parameters of the

flippers α and β in the first quiver in Figure 4. They are

m
β
(a,b)
ℓ

= 2ω − τℓ − νa − νb, mα(a) = 2ω − µ− νa, (2.66)

with ℓ = 1, 2, a, b = 1, 2, 3 and a < b. Then we deconfine the two antisymmetric tensors

and the mass parameter for the new bifundamentals P1,2, Ṽ1,2 and the new fields U1,2

are

mPℓ
=
τℓ
2
, mṼℓ

=
nτℓ
2
, mUℓ

= 2ω −
2n+ 1

2
τℓ. (2.67)

The duality step requires to define an auxiliary quantity

X =
(n− 1)(τ1 + τ2) + µ

2n− 4
, (2.68)

such that the masses of the fields in the third quiver in Figure 4 are

mP̃ℓ
= X −

τℓ
2
, m

L
(a)
ℓ

=
τℓ
2
+ νa, mZ1,2 =

τ1,2
2

+
n

2
τ2,1, mq̃ = X − µ,

mV1,2 = 2ω −mP2,1 −mZ2,1 , mq(a) = 2ω −X − νa, mW1,2 =
n

2
τ2,1 + µ.(2.69)

Then the confinement of the two symplectic nodes gives rise to the singlets

m
L
(a)
ℓ

L
(b)
ℓ

= τℓ + νa + νb,
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mM
Z1,2L

(a)
1,2

= τ1,2 +
n

2
τ2,1 + νa, (2.70)

mρ̃1,2 = 2ω − (n− 1)τ1,2 − 2τ2,1 −
3
∑

a=1

νa − µ,

while the masses m
L
(a)
ℓ

L
(b)
ℓ

disappear together with m
β
(a,b)
ℓ

, due of the inversion relation.

The other singlets in the last two lines have to be considered. The mass parameters of

the charged matter fields are

mÃℓ
= 2X − τℓ, m

p̃
(a)
−

= X + νa, mq̃ = X − µ, (2.71)

where we can reorganize the four antifundamentals as

m̂ = {mq̃,mp̃
(1)
−

,m
p̃
(2)
−

,m
p̃
(3)
−

}. (2.72)

In this way we have arrived to an identity between the partition function of the first

and the last quivers in Figure 4, that reads

2
∏

ℓ=1

∏

1≤a<b≤3

Γh(mβ
(a,b)
ℓ

)
3
∏

a=1

Γh(mα(a))ZSU(2n+1)(µ;~ν; ·; ·;~τ ; ·)

=
2
∏

ℓ=1

(

Γh(mρ̃ℓ)Γh(mWℓ
)

3
∏

a=1

Γh(mM
ZℓL

(a)
ℓ

)

)

ZSU(2n−4)(·; ~̂m; ·; ·; ·; 2X − ~τ). (2.73)

The integral ZSU(2n−4)(·; ~̂m; ·; ·; ·; 2X−~τ) can be evaluated using (A.3), up to an overall

conjugation that does not modify the result. Once such integral is plugged in (2.73),

we apply the inversion relation to move the Gamma function of the flippers β and α

on the RHS, finally obtaining (2.65).

2.5 SU(2n) with 4 antifundamentals

This case corresponds to an SU(2n) gauge group with two antisymmetric tensors A1,2,

four antifundamentals Q̃. This theory was studied in [25], where a confining duality

was proposed in terms of the singlets B̃ = AQ̃2, T (n) = An, T (n−1) = An−1(AQ̃)2 and

T (n−2) = An−2(AQ̃)4. There is also a dressed monopole Y dressed = Y bare
SU(2n−2)A

2n−6 and

the superpotential of the dual WZ model in this case is

W = Y dressed
(

T (n)T (n−2) + T (n−1)2 + B̃2T (n)2 + B̃T (n)T (n−1)
)

. (2.74)

Here we want to obtain proof of such confining duality in terms of others (elemen-

tary) dualities along the lines of tensor deconfinement. Actually, instead of considering
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Figure 5. In this figure we have summarized the various dual step implemented in the text of

Subsection 2.5. On the top-left corner we provide the quiver for the starting SU(2n) theory,

with two antisymmetric tensors and 4 antifundamentals. On the top-right corner we show

the auxiliary quiver where the antisymmetric tensors are traded with two USp(2n− 2) gauge

group with new bifundamentals P1,2. On the bottom-right corner we present the quiver of

the theory after having dualized the central SU(2n) gauge node to SU(2n − 4). In the last

bottom-left quiver we present the theory after the confinement of the two USp(2n− 2) gauge

nodes. We refer to the text for the details regarding the superpotential, the duality mappings

and the singlets appearing at each step.

a vanishing superpotential, here we flip the operators the operators A1,2Q̃
2 and PfA1,2.

The flippers are denoted as β1,2 and ρ1,2 respectively. In this way the superpotential

associated to the first quiver in Figure 5 is

W =
2
∑

i=1

ρi PfAi + (β1A1 + β2A2)Q̃
2. (2.75)

We then deconfine the two tensors A1,2 using two USp(2n− 2) gauge groups. The two

new bifundamentals emerging from the deconfinement are denoted as P1,2 in the second

quiver in Figure 5 and the superpotential of this phase is

W = (β1P
2
1 + β2P

2
2 )Q̃

2. (2.76)

The SU(2n) gauge node has 4n − 4 fundamentals and 4 antifundamentals. The dual

theory, reviewed in appendix D.1.1 of [19], is an SU(2n − 4) gauge theory and its
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superpotential is

W = β1L
2
1 + β2L

2
2 + (P̃1L1 + P̃2L2)q. (2.77)

At this point we observe that the two USp(2n−2) gauge groups are confining and each

one gives rise to a conjugate antisymmetric, Ã1 and Ã2 respectively, and a meson in the

antifundamental representation of SU(2n− 4), p̃1 = L1P̃1 and p̃2 = L2P̃2 respectively.

Integrating out the massive fields we obtain the final superpotential

W =
2
∑

i=1

ρ̃iÃ
N−4
i p4−. (2.78)

Next we can use again the confinement of SU(2n − 4) with two antisymmetric and

four fundamentals. Observe that in the case at hand here the SU(4) × SU(2) non

abelian flavor symmetry is partially broken by the superpotential (2.78). Furthermore

the model described in the fourth quiver in Figure 5 differ from the one in appendix A

for an overall conjugation. Keeping in mind these differences the SU(2n− 4) model is

confining in terms of the following singlets

tn−2
j = Ãj

1Ã
n−2−j
2 , j = 0, ..., n− 2

tn−3
j = Ãj

1Ã
n−3−j
2 q̃2, j = 0, ..., n− 3

tn−4
j = Ãj

1Ã
n−4−j
2 q̃4, j = 0, ..., n− 4

(2.79)

These singlets are mapped to the singlets of the original SU(2n) theory with 4�̄

as

tn−2
j −→ T

(n)
n−1−j, tn−3

j −→ T
(n−1)
n−3−j, tn−4

j −→ T
(n−2)
n−5−j, ydk −→ Y d

2n−6−k. (2.80)

The final superpotential is given by (A.1) in addition to the deformation (2.78). Using

the singlets in formula (2.79) this gives the following confining superpotential

W = ydk(t
n−2
j tn−4

2n−k−j−6 + tn−3
l tn−3

2n−k−l−6) + ρ1t
n−4
n−4 + ρ2t

n−4
0 , (2.81)

where the sums over k = 0, ..., 2n−6, j = 0, ..., n−6 and l = 0, ..., n−3 are understood.

The deformation (2.78) is mapped in the last two terms in (2.81) where the monopoles

ρ̃i give mass to tn−4
0 and tn−4

n−4, which then are not mapped to any of the T (n−2) fields.

Using the mapping (2.80), the final superpotential is

W = Y d
2n−6−k(T

n
n−1−jT

n−2
k+j+1−n + T n−1

n−3−lT
n−1
k+l+3−n). (2.82)

We conclude the analysis observing that the superpotential (2.82) is exactly the one

that is obtained by adding the deformation (2.75) to the superpotential (2.74).
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We can also reproduce the proof of the confining duality given above by studying

the matching of the three sphere partition function. The relation that we want to prove

in this case is

ZSU(2n)(·;~ν; ·; ·;~τ ; ·)=
2
∏

ℓ=1

∏

1≤a<b≤4

Γh(τℓ + νa + νb)·
n−6
∏

j=0

Γh

(

(n−j−2)τ1+(j + 4)τ2+
4
∑

a=1

νa
)

n
∏

j=0

Γh ((n− j)τ1 + jτ2) ·
n−3
∏

j=0

∏

1≤a<b≤4

Γh ((n− j − 1)τ1 + (j + 2)τ2 + νa + νb)

2n−6
∏

j=0

Γh

(

2ω − (2n− j − 2)τ1 − (j + 4)τ2 −
4
∑

a=1

νa

)

. (2.83)

In order to prove such relation we follow the deconfinement and duality steps dis-

cussed from the field theory approach above. We start by reading the mass parameters

of the flippers α and β in the first quiver in Figure 5. They are

m
β
(a,b)
ℓ

= 2ω − τℓ − νa − νb, mρℓ = 2ω − nτℓ, (2.84)

with ℓ = 1, 2, a, b = 1, . . . , 4 and a < b. Then we deconfine the two antisymmetric

tensors and the mass parameter for the new bifundamentals P1,2 are

mP1,2 =
τ1,2
2
. (2.85)

The duality step requires to define an auxiliary quantity

X =
(n− 1)(τ1 + τ2)

2n− 4
, (2.86)

such that the masses of the fields in the third quiver in Figure 5 are

mP̃1,2
= X −

τ1,2
2
, m

(a)
L1,2

=
τ1,2
2

+ νa, m(a)
q = 2ω −X − νa. (2.87)

Then the confinement of the two symplectic nodes gives rise to the singlets

m
L
(a)
1,2L

(b)
1,2

= τ1,2 + νa + νb,

mρ̃1,2 = 2ω − (n− 1)τ1,2 − 3τ2,1 −
3
∑

a=1

νa, (2.88)

while the terms in the first line disappear together with the flippers β, because of

the inversion relation, the singlets in the last lines have to be considered. The mass

parameters of the charged matter fields are

mÃ1,2
= 2X − τ1,2, m

p̃
(a)
−

= X + νa, (2.89)
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where we can re-organize the four antifundamentals as

m̂ = {m
p̃
(1)
−

,m
p̃
(2)
−

,m
p̃
(3)
−

,m
p̃
(4)
−

}. (2.90)

In this way we have arrived to an identity between the partition function of the first

and the last quivers in Figure 5, that reads

2
∏

ℓ=1

Γh(mρℓ)
∏

1≤a<b≤4

Γh(mβ
(a,b)
ℓ

)ZSU(2n)(·;~ν; ·; ·;~τ ; ·)

=
2
∏

ℓ=1

Γh(mρ̃ℓ) · ZSU(2n−4)(·; ~̂m; ·; ·; ·; 2X − ~τ). (2.91)

The integral ZSU(2n−4)(·; ~̂m; ·; ·; ·; 2X−~τ) can be evaluated using (A.3), up to an overall

conjugation that does not modify the result. Once such integral is plugged in (2.91),

we apply the inversion relation to move the Gamma function of the flippers β and ρ

on the RHS and eliminate the monopole ρ̃1,2, finally obtaining (2.83).

2.6 SU(2n+ 1) with 4 antifundamentals

The last case corresponds to an SU(2n + 1) gauge group (with n > 1) with two

antisymmetric tensors A1,2 and four antifundamentals Q̃. This theory was studied

in [25], where a confining duality was proposed in terms of the singlets B̃ = AQ̃2,

P (n) = An(AQ̃), P (n−1) = An−1(AQ̃)3. There is also a dressed monopole Y dressed =

Y bare
SU(2n−1)A

2n−5 and the superpotential of the dual WZ model in this case is

W = Y dressed
(

P (n)P (n−1) + B̃(P (n))2
)

. (2.92)

Here we want to obtain proof of such confining duality in terms of others (elemen-

tary) dualities along the lines of tensor deconfinement. Actually, instead of considering

a vanishing superpotential, here we flip the operators the operators A1,2Q̃
2. The flip-

pers are denoted as β1,2 respectively. In this way the superpotential associated to the

first quiver in Figure 6 is

W = (β1A1 + β2A2)Q̃
2. (2.93)

We then deconfine the two tensors A1,2 using two USp(2n − 2) gauge groups. The

two new bifundamentals emerging from the deconfinement are denoted as P1,2, in the

second quiver in Figure 6. There are also two new auxiliary USp(2n − 2)1,2 charged

fields denoted as U1,2 and also two new auxiliary SU(2n + 1) charged fields V1,2. The

superpotential of this phase is

W = Y
(1)
USp(2n−2) + Y

(2)
USp(2n−2) + P1U1Ṽ1 + P2U2Ṽ2 + (β1P

2
1 + β2P

2
2 )Q̃

2. (2.94)
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Figure 6. In this figure we have summarized the various dual step implemented in the text

of Subsection 2.6. On the top-left corner we provide the quiver for the starting SU(2n + 1)

theory, with two antisymmetric tensors and 4 antifundamentals. On the top-right corner we

show the auxiliary quiver where the antisymmetric tensors are traded with two USp(2n− 2)

gauge group with new bifundamentals P1,2 and new charged fields U1,2. On the bottom-

right corner we present the quiver of the theory after having dualized the central SU(2n+1)

gauge node to SU(2n − 5). In the last bottom-left quiver we present the theory after the

confinement of the two USp(2n−2) gauge nodes. We refer to the text for the details regarding

the superpotential, the duality mappings and the singlets appearing at each step.

Where we have deconfined the two tensors by using symplectic gauge groups with

linear monopole superpotentials. The SU(2n+1) gauge node has 4n− 4 fundamentals

and 6 antifundamentals. The dual theory, reviewed in appendix D.1.1 of [19], is an

SU(2n− 5) gauge theory (see third quiver of Figure 6) and its superpotential is

W = β1L
2
1 + β2L

2
2 + (L1P̃1 + L2P̃2)q + Z2P̃2V1 + Z1P̃1V2. (2.95)

At this point we observe that the two USp(2n−2) gauge groups are confining and each

one gives rise to a conjugate antisymmetric, Ã1 and Ã2 respectively, a meson in the

antifundamental representation of SU(2n − 5), p̃1 = L1P̃1 and p̃2 = L2P̃2 respectively

and two gauge singlets ψ1 = L1Z1, ψ2 = L2Z2. Integrating out the massive fields we

obtain the final superpotential

W = (ρ1Ã
n−4
1 ψ1 + ρ2Ã

n−4
2 ψ2)p

3
−. (2.96)
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Next we can use again the confinement of SU(2n − 5) with two antisymmetric and

four fundamentals. Observe that in the case at hand here the SU(4) × SU(2) non

abelian flavor symmetry is partially broken by the superpotential (2.96). Furthermore

the model described in the fourth quiver in Figure 6 differ from the one in appendix A

for an overall conjugation. Keeping in mind these differences, the SU(2n− 5) model is

confining in terms of the following singlets

tn−3
j = Ãj

1Ã
n−3−j
2 , j = 0, ..., n− 3

tn−4
j = Ãj

1Ã
n−4−j
2 q̃2, j = 0, ..., n− 4

(2.97)

These singlets are mapped to the singlets of the original SU(2n+1) theory with 4�̄ as

tn−3
j −→ P

(n)
n−2−j, tn−4

j −→ P
(n−1)
n−4−j, ydk −→ Y d

2n−6−k. (2.98)

The final superpotential is given by (A.4) in addition to the deformation (2.96). Using

the singlets in formula (2.97) this gives the following confining superpotential

W = ydk(t
n−3
j t

(n−4)
2n−7−k−j) + Y d

0 P
(n)
n−1P

(n−1)
n−4 + Y d

2n−5P
(n)
0 P

(n−1)
0 , (2.99)

where the sums over k = 0, ..., 2n − 7 and j = 0, ..., n − 3 are understood. The

deformation (2.96) is mapped in the last two terms in (2.99) where the monopoles

ρ̃i reconstruct the full symmetry in the monopole superpotential. Using the mapping

(2.98), the final superpotential is

W = Y d
2n−6−k(P

n
n−2−jP

(n−1)
k+j−n+3) + Y d

0 P
(n)
n−1P

(n−1)
n−4 + Y d

2n−5P
(n)
0 P

(n−1)
0 . (2.100)

We conclude the analysis observing that the superpotential (2.100) is exactly the one

that is obtained by adding the deformation (2.93) to the superpotential (2.92).

We can also reproduce the proof of the confining duality given above by studying

the matching of the three sphere partition function. The relation that we want to prove

in this case is

ZSU(2n+1)(·;~ν; ·; ·;~τ ; ·) =
2
∏

ℓ=1

∏

1≤a<b≤4

Γh(τℓ + νa + νb)
n−1
∏

j=0

4
∏

a=1

Γh ((n−j)τ1+(j + 1)τ2+νa)

n−4
∏

j=0

4
∏

a=1

Γh ((n−j−1)τ1 + (j + 3)τ2−νa)
2n−5
∏

j=0

Γh

(

2ω−(2n−j−1)τ1−(j + 4)τ2−
4
∑

a=1

νa
)

. (2.101)

In order to prove such relation we follow the deconfinement and duality steps dis-

cussed from the field theory approach above. We start by reading the mass parameters

of the flippers β in the first quiver in Figure 6. They are

m
β
(a,b)
ℓ

= 2ω − τℓ − νa − νb, (2.102)
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with ℓ = 1, 2, a, b = 1, ..., 4 and a < b. Then we deconfine the two antisymmetric

tensors and the mass parameter for the new bifundamentals P1,2 and for the new fields

Ṽ1,2, U1,2 are

mP1,2 =
τ1,2
2
, mṼ1,2

=
nτ1,2
2

, mU1,2 = 2ω −
2n+ 1

2
τ1,2. (2.103)

The duality step requires to define an auxiliary quantity

X =
(n− 1)(τ1 + τ2)

2n− 5
, (2.104)

such that the masses of the fields in the third quiver in Figure 5 are

mP̃1,2
= X −

τ1,2
2
, m

(a)
L1,2

=
τ1,2
2

+ νa, m(a)
q = 2ω −X − νa,

mZ1,2 =
τ1,2
2

+
n

2
τ2,1, mV1,2 = 2ω −mP2,1 −mZ2,1 . (2.105)

Then the confinement of the two symplectic nodes gives rise to the singlets

m
L
(a)
1,2L

(b)
1,2

= τ1,2 + νa + νb,

m
Ψ

(a)
1,2

= τ1,2 +
n

2
τ2,1 + νa,

mρ̃1,2 = 2ω − (2n− 1)τ1,2 − 4τ2,1 −
4
∑

a=1

νa, (2.106)

while the terms in the first line disappear together with the flippers β, because of the

inversion relation, the other singlets in the last two lines have to be considered. The

mass parameters of the charged matter fields are

mÃ1,2
= 2X − τ1,2, m

p̃
(a)
−

= X + νa, (2.107)

where we can reorganize the four antifundamentals as

m̂ = {m
p̃
(1)
−

,m
p̃
(2)
−

,m
p̃
(3)
−

,m
p̃
(4)
−

}. (2.108)

In this way we have arrived to an identity between the partition function of the first

and the last quivers in Figure 6, that reads

2
∏

ℓ=1

∏

1≤a<b≤4

Γh(mβ
(a,b)
ℓ

)ZSU(2n+1)(·;~ν; ·; ·;~τ ; ·)
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=
2
∏

ℓ=1

Γh(mρ̃ℓ)
4
∏

a=1

Γh(mΨ
(a)
ℓ

)ZSU(2n−5)(·; ~̂m; ·; ·; ·; 2X − ~τ). (2.109)

The integral ZSU(2n−5)(·; ~̂m; ·; ·; ·; 2X − ~τ) can be evaluated using (A.6), up to an

overall conjugation that does not modify the result. Once such integral is plugged in

(2.109), we apply the inversion relation to move the Gamma function of the flippers β

to the RHS, finally obtaining (2.101).

3 3d SU(N) with symmetric tensors and Wmonopole

In this section we support the claim that two 3d SU(N) gauge theories with a two

index symmetric tensor (in addition to an antisymmetric tensor and/or fundamen-

tals) are confining in presence of a non trivial superpotential that includes a linear

monopole deformations. We indeed expect that such theories are confining because

the three sphere partition function can be computed explicitly and it can be reorga-

nized in terms of gauge singlets corresponding to the chiral ring operators of the gauge

theory. The evaluation of the partition function follows from the 4d/3d reduction of

two parent 4d confining gauge theories, with fundamentals and antisymmetric matter

field(s). Once the associated integral identities relating the supersymmetric index of

the 4d confining theories are reduced on the circle they give origin to integral identi-

ties for the squashed three sphere partition function. Then we apply the duplication

formula for the hyperbolic gamma functions by freezing some of the mass parameters

for the fundamentals. The resulting identities are compatible with the claim that the

SU(N) gauge theories with two index symmetric tensors and monopole superpotential

are confining. The claim is then supported by applying the technique of tensor decon-

finement, where a two index tensor becomes equivalent to a new confining gauge node

interacting with the original one through an auxiliary bifundamental field.

We further dualize the original gauge node in such deconfined phase, obtained a

new dual phase where the original gauge node either confines or it is dual to a model

with a different (generically reduced) amount of colors. In the models studied in this

section we show that by deconfining the tensors and then, by sequentially confining the

various gauge nodes, one recovers the dual WZ model expected from the duplication

formula above.

The two dualities obtained in this way can further flow, through opportune real

mass deformations, that remove the linear monopole deformations, to some of the

dualities proposed in [19]. Furthermore the UV picture discussed here, in presence of

linear monopole deformations, clarifies the origin of some terms that were claimed in
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[19] to be dynamically generated, and this represents a check of validity of the results

in that reference as well.

3.1 SU(N) with S, Q, Q̃S and N Q̃

In this section we start by considering a 4d SU(N) gauge theory with an antisymmetric,

four fundamentals and N antifundamentals. The model is s-confining for each parity

of N , i.e. N = 2n and N = 2n + 1, nevertheless the details of such confinements

are different and the two cases require a different analysis. We refer the reader to the

original reference [2] for further discussion on these models and to [10] for a proof of such

s-confining dualities through tensor deconfinement. For completeness in appendix B we

have reported a more detailed description of these models and on their circle reduction,

by providing the explicit expressions relating the three sphere partition function for

the circle reduction of the confining dualities, corresponding to the identities (B.2) and

(B.5) for the case N = 2n+ 1 and N = 2n respectively.

At this point we freeze three out of the four mass parameters for the fundamentals
2. First we re-name the mass parameter τA for the antisymmetric tensor in (B.2) and

(B.5) as τS. Then we fix the values of such masses, in both cases, as

µ2 =
ω1

2
+
τS
2
, µ3 =

ω2

2
+
τS
2
, µ4 =

τS
2
. (3.1)

Then we manipulate the expressions by using the duplication formula for the hyperbolic

Gamma functions, that we report here for completeness

Γh(2z) = Γh(z)Γh

(

z +
ω1

2

)

Γh

(

z +
ω2

2

)

Γh(z + ω). (3.2)

Even if we started with two different identities, (B.2) and (B.5), in presence of an

antisymmetric, here, after the application of the duplication formula, we have obtained

an unified formula for both N = 2n and N = 2n+ 1, corresponding to

ZSU(N)(µ;~ν; τS;−;−;−) =
N
∏

b=1

Γh(µ+ νb)Γh

(

ω −
τS
2

− νb

)

Γh(NτS)Γh((N − 1)τS + 2µ)Γh

(

N
∑

b=1

νb

)

N
∏

b≤c

Γh(τS + νb + νc), (3.3)

2In principe we could have also studied the case with an extra frozen parameter µ1 = τS

2
. We

avoid the analysis for this case here because it does not give origin to an interacting model in the

dual picture where only the fields Φ1 = detS and Φ2 = SQ̃2 survive, and the combination Φ1Φ
N

2
is

uncharged, without giving origin to a 3d superpotential.
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where we re-named the parameter µ1 simply as µ above. Moreover this identity is valid

if the mass parameters satisfy a constraint, often referred to as balancing condition,

that follows from the relations (B.3) and (B.6). Then the balancing condition here

becomes
(

N −
1

2

)

τS + µ+
N
∑

b=1

νb = ω, (3.4)

and corresponds to a constraint on the global symmetries, usually enforced in 3d by the

presence of a monopole superpotential. Indeed such constraint was imposed by the KK

monopole superpotential for the theory with an antisymmetric, 4 fundamentals and N

antifundamentals before the application of the duplication formula.

At this point we provide an interpretation of the identity obtained by the applica-

tion of the duplication formula in terms of a 3d effective confining duality, where the

terminology refers to the fact that we expect a monopole superpotential appearing on

the gauge theory side of the duality. The gauge theory corresponds to SU(N) with

a symmetric S, a fundamental Q, an antifundamental Q̃S and N antifundamentals Q̃

and superpotential

W = SQ2
S + Y bare

SU(N−2), (3.5)

where we checked that the constraint (3.4) in exactly enforced by the linear monopole

deformation Y bare
SU(N−2) in the superpotential. Observe further that using the constraint

(3.4) we can re-write the last term in the first line of (3.3) as

Γh

(

ω −
τS
2

− νb

)

= Γh

(

(N − 1)τS + µ+
N
∑

c=1

νc − νb

)

, (3.6)

implying that this term corresponds to the gauge invariant combination Q(SQ̃)N−1.

Summarizing, the singlets of this confining duality appearing in the RHS of (3.3)

are

Φ1 ≡ detS, Φ2 ≡ QQ̃, Φ3 ≡ Q(SQ̃)N−1

Φ4 ≡ Q̃N , Φ5 ≡ SQ̃2, Φ6 ≡ SN−1Q2. (3.7)

The most general superpotential for the WZ dual description compatible with the

constraints from the global symmetries is

W = Φ6 detΦ5 + Φ5Φ
2
3 + Φ1Φ

2
4Φ6 + Φ1Φ4Φ2Φ3 + ΦN−1

5 Φ2
2Φ1. (3.8)

In the following we show that this confining duality can be derived from tensor decon-

finement, reproducing the expected superpotential (3.8). We start by deconfining the
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Figure 7. In the first figure we provide the quiver description of the SU(N) gauge theory

with a symmetric, one fundamental Q, N antifundamentals Q̃ and one antifundamental Q̃S ,

with superpotential W = SQ2
S . In the second figure we provide the quiver description after

deconfining the symmetric tensor in terms of an SO(N) gauge node.

symmetric tensor using a confining duality for 3d N = 2 SO(N) SQCD discussed in

[12] (see also [34, 35] for related discussions). The duality relates SO(N) with N + 1

vectors and linear monopole superpotential W = Y +
SO(N) and a WZ model with super-

potential W = Sq2 + detS, where S is a symmetric meson of the electric description

and q correspond to the baryons.

Here we use this duality in order to trade the symmetric tensors in favour of an

SO(N) gauge group, by further adding the flippers Ṽ , γ and α. In this way the model

on the RHS of Figure 7 has superpotential

W = Y +
SO(N) + YSU(N) + αU2 + PUṼ + γ ǫN · PN . (3.9)

The SU(N) gauge group is then confining having N +1 pairs of fundamentals and

antifundamentals and a linear monopole superpotential. Its confinement can be read

from 4d, by reducing the s-confining limiting case of SU(N) SQCD Seiberg duality as

shown in [24].

The mesons of the confining phase are MQ̃P , MQ̃Q, MṼ Q and MṼ P while the

baryons3 are B1 = PN , B2 ≡ PN−1Q, B̃1 ≡ Q̃N and B̃2 ≡ Q̃N−1Ṽ . The superpo-

tential of the leftover SO(N) gauge theory is

W = Y +
SO(N) + αU2 +MṼ PU + γB1 +MQ̃PB2B̃2 +MQ̃QB1B̃2 +

+MṼ QB1B̃1 +MṼ PB2B̃1 + det

(

MQ̃P MQ̃Q

MṼ P MṼ Q

)

. (3.10)

3Where the antisymmetric ǫ contractions are left implicit.
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Such superpotential, after integrating out the massive fields, becomes

W = Y +
SO(N) +MQ̃PB2B̃2 + α(B2B̃1 +MN−1

Q̃P
MQ̃Q)

2 +MṼ Q detMQ̃P . (3.11)

The leftover SO(N) gauge theory hasN vectorsMQ̃P and one vector B2, in addition

to the monopole superpotential Y +
SO(N). This node then confines, being a flipped version

(i.e. with superpotential (3.11)) of the confining theory of [12] discussed above. The

confined description is described by the baryons

q0 = ǫNǫN(M
N−1

Q̃P
B2), q1 = det(MQ̃P ), (3.12)

and by the symmetric meson

S =

(

S00 S01

S01 S11

)

=

(

M2
Q̃P

MQ̃PB2

MQ̃PB2 B2
2

)

. (3.13)

The superpotential of the confining theory is

W = detS + S00q
2
0 + S01q0q1 + S11q

2
1 + S01B̃2 + αS11B̃

2
1

+ MṼ Qq1 + αB̃1MQ̃Qq0 + αM2
Q̃Q
SN−1
00 . (3.14)

After integrating out the massive fields, it becomes

W = S11 detS00 + S00q
2
0 + αS11B̃

2
1 + αB̃1MQ̃Qq0 + αM2

Q̃Q
SN−1
00 . (3.15)

At this point of the discussion we can read the duality map

α = detS = Φ1, MQQ̃ = QQ̃ = Φ2, q0 = Q(SQ̃)N−1 = Φ3,

B̃1 = Q̃N = Φ4, S00 = SQ̃2 = Φ5, S11 = SN−1Q2 = Φ6. (3.16)

Observing that (3.15) coincides with (3.8).

Once we have provided a proof of the duality in terms of other dualities we can also

connect the results of this section with the ones of [19] for SU(N) with a symmetric, a

lower amount of fundamentals or antifundamentals and without monopole superpoten-

tial. The two relevant models discussed in [19] corresponds to the cases denoted there

as I-A and I-B .

The duality discussed here flows to those two cases by performing a real mass flow

that removes the monopole superpotential. There are two possibilities:

• The flow to the model I-A requires to assign to two opposite real masses to Q̃N−1

and Q̃N . On the electric side we are left with SU(N) with a symmetric S, one
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fundamental Q, one antifundamental Q̃S and N − 2 antifundamentals Q̃. The

monopole superpotential is lift and the is not any constraint to impose on the

global symmetries, or equivalently on the mass parameters on the on the partition

function.

On the WZ side the fields Φ1, Φ4 and Φ6 are not modified by the real mass

deformation, while only N − 2 some components of the meson Φ2 and of the

baryon Φ3 remain in the low energy spectrum. On the other hand the field Φ5

splits into two massless fields4, one, denoted as Φ̂5, corresponds to the flavor

symmetric combination SQ̃aQ̃b for a, b = 1, . . . , N − 2, the other corresponds

to SQ̃N−1Q̃N with respect of the original variables. The singlets Y and Φ4 are

massless in the dual side but they are not associated to any mesonic or baryonic

gauge invariant combination of the massless elementary fields on the electric side.

These fields are indeed monopoles of the electric theory acting as a singlet in the

dual side. These combinations are Y bare
SU(N−2)S and Y bare

SU(N−2)Q̃
N−2, for Y and Φ4

respectively. The superpotential associated to this WZ model is then

W = Y 2Φ6 det Φ̂5 + Φ̂5Φ
2
3 + Φ1Φ

2
4Φ6 + Φ1Φ4Φ2Φ3. (3.17)

This corresponds to the superpotential expected for model I-A in [19].

• The flow to the model I-B requires to assign to two opposite real masses to Q

and Q̃N . On the electric side we are left with SU(N) with a symmetric S, one

antifundamental Q̃S andN−1 antifundamentals Q̃. The monopole superpotential

is lift and there is not any constraint to impose on the global symmetries, or

equivalently on the mass parameters on the on the partition function. On the

WZ side the fields Φ4 and Φ6 disappear from the low energy spectrum while the

field Φ1 is not modified by the real mass deformation. N(N−1)/2 components of

the symmetric meson Φ5 are massless and remain in the low energy spectrum as

well. Only one component of the meson Φ2 and N − 1 components of the baryon

Φ3 remain in the low energy spectrum. They correspond to the gauge invariant

monopoles Y bare
SU(N−2) and Y bare

SU(N−2)Q̃
N−2SN−1 respectively. The superpotential

associated to this WZ model is then:

W = Φ5Φ
2
3 + Φ1Φ

2
2Φ

N−1
5 , (3.18)

where Φ2,3 are gauge invariant monopoles of the electric phase and Φ1,5 are gauge

invariant combinations of the chiral fields of the electric phase. This corresponds

to the superpotential expected for model I-C in [19].

4There are in addition 2(N − 2) massive combinations arising from Φ5.
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We conclude this section by deriving the identity 3.3 applying the deconfinement

techniques on the partition function. The first step consists of deconfining the sym-

metric tensor S, by trading it with an SO(N) gauge theory. The mass parameters for

the fields in the SU(N)× SO(N) quiver are

mP =
τS
2
, mU = ω −

N

2
τS, mṼ = ω +

N − 1

2
τS, mQ = νb,

mQ̃ = µ, mγ = 2ω −
N

2
τS, mα = NτS, (3.19)

where the constraint imposed by the linear monopole for the SO(N) gauge groups are

automatically satisfied by this parameterization. The singlets arising from confining

the SU(N) gauge node are

mB1 =
N
2
τS

mB2 =
N−1
2
τS + µ

mB̃1
=
∑N

c=1 νc
mB̃2

=
∑N

c=1 νc − νb + ω + N−1
2
τS

mM
Q̃P

= νb +
1
2
τS

mM
Q̃Q

= µ+ νb

mM
Ṽ Q

= ω + N−1
2
τS + µ

mM
Ṽ P

= ω + N
2
τS

(3.20)

with b = 1, . . . , N . The massive combinations in the superpotential are MṼ PU and

γB1 and it reflects in the relations Γh(mM
Ṽ P

)Γh(mU) = Γh(mγ)Γh(mB1) = 1 on the

one loop determinants, which follow from the inversion relation.

We then confine the SO(N) gauge node with N + 1 vectors and linear monopole

superpotential. The constraint imposed by this superpotential corresponds to the con-

straint on the masses ofMQ̃P and B2, that corresponds indeed to the original balancing

condition (3.4). The baryons q0 and q1 and the mesons S00, S01 and S11 of this confining

duality have mass parameters

mq0 = ω − νb −
τS
2
, mq1 = ω − (N − 1)

τS
2

− µ,

mS00 = τS + νb + νc, mS01 =
N

2
τS + µ+ νb, mS11 = (N − 1)τS + 2µ.

The massive combinations in the final superpotential are MṼ Qq1 and S01B̃2 and it

reflects in the relations Γh(mM
Ṽ Q

)Γh(mq1) = Γh(mS01)Γh(mB̃2
) = 1 on the one loop

determinants. We are left in the final WZ model with the combinations of hyperbolic

Gamma functions corresponding to the RHS of (3.3), i.e. we have confirmed the validity

of the identity by using the tensor deconfinement technique.

3.2 SU(2n+ 1) with S, Ã, Q̃S and 3 Q̃

Here we consider a 4d SU(N) gauge theory with an antisymmetric and a conjugate

antisymmetric (from now on an antisymmetric flavor), and three pairs of fundamentals
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and antifundamentals (i.e. three fundamental flavors). The model is s-confining for each

parity of N , i.e. N = 2n and N = 2n + 1, and again the details of such confinements

are different and the two cases require a different analysis. We refer the reader to the

original reference [2] for further discussion on these models and fo [10] for a proof of such

s-confining dualities through tensor deconfinement. For completeness in appendix B we

have reported a more detailed description of these models and on their circle reduction,

by providing the explicit expressions relating the three sphere partition function for

the circle reduction of the confining dualities, corresponding to the identities (B.8) and

(B.11) for the case N = 2n+ 1 and N = 2n respectively.

Here, differently from the case studied above, we need to distinguish the analysis

also after freezing the mass parameters and applying the duplication formula. We

start by applying the duplication formula to (B.8) by freezing the three masses for the

fundamentals as5

µ1 =
ω1

2
+
τS
2
, µ2 =

ω2

2
+
τS
2
, µ3 =

τS
2
. (3.21)

After applying the duplication formula and after some rearrangement we obtain the

following identity

ZSU(2n+1)(−;ω −
τS
2
, ~ν; τS;−;−; τÃ) = Γh((2n+ 1)τS)

n
∏

ℓ=1

Γh (2ℓ(τS + τÃ))

Γh((n− 1)τÃ + ν1 + ν2 + ν3)
∏

1≤a≤b≤3

n−1
∏

j=0

Γh((2j + 1)τS + 2jτÃ + νa + νb)

3
∏

a=1

Γh(nτÃ + νa)
∏

1≤a<b≤3

n−1
∏

j=0

Γh(2(j + 1)τS + (2j + 1)τÃ + νa + νb), (3.22)

with the balancing condition

(

2n+
1

2

)

τS + (2n− 1)τÃ +
3
∑

b=1

νb = ω. (3.23)

We interpret this relation as the fact that a 3d N = 2 SU(2n + 1) gauge theory

with a symmetric S, a conjugate antisymmetric Ã, one antifundamental Q̃S and three

antifundamentals Q̃ is confining in presence of the superpotential

W = SQ̃2
S + Y bare

SU(2n−1). (3.24)

5We could also have chosen to freeze three mass parameters for the three antifundamentals, in such

case we would have obtained, up to an overall charge conjugation, an identical description.
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Figure 8. In the first figure we provide the quiver description of the SU(2n+1) gauge theory

with a symmetric, a conjugate antisymmetric, 3 antifundamentals Q̃ and one antifundamental

Q̃S , with superpotential W = SQ2
S . In the second figure we provide the quiver description

after deconfining the symmetric and the conjugate antisymmetric tensors in terms of an

SO(2n+ 1) and an USp(2n− 2) gauge node respectively.

We summarized the charged field content in the first quiver in Figure 8. We then

look at the RHS of the identity (3.22), where we read the following gauge invariant

combinations

D = detS,

Tℓ = (SÃ)2ℓ, ℓ = 1, . . . , N

b̃3 = Ãn−1Q̃3,

P̃2j = Q̃aS(SÃ)
2jQ̃b, j = 0, . . . , n− 1& a ≤ b

b̃1 = ÃnQ̃,

P̃2j+1 = Q̃aS(SÃ)
2j+1Q̃b, j = 0, . . . , n− 1& a < b (3.25)

with j = 0, . . . , n − 1 and ℓ = 1, . . . , n. We summarized the various gauge invariant

combinations in (3.25) with the same order in which they appear in the arguments of

the hyperbolic Gamma function in the RHS of (3.22). Observe that the singlets P̃2j+1

are antisymmetric in the SU(3) flavor indices while the singlets P̃2j are symmetric in

the SU(3) flavor indices.

We then support the claim about such confining duality conjectured from the hy-

perbolic identity using tensor deconfinement. We start by deconfining the two-index

tensors S and Ã.

We start by deconfining the symmetric tensor using the confining duality for 3d

N = 2 SO(2n + 1) SQCD discussed in [12] already discussed in sub-section 3.1, with

linear monopole superpotential. The (conjugate) antisymmetric tensor on the other

hand is deconfined by using the confining duality for 3d N = 2 USp(2n − 2) SQCD

discussed in [24] already discussed in sub-section 2.4, with linear monopole superpoten-
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tial. The gauge and the field obtained after deconfining the two tensors is represented

in the second quiver in Figure 8. The superpotential for this model is

W = γP 2n+1
2 + αU2

2 + U2Ṽ2P2 + P̃1V1U1 + YSU(2n+1) + Y +
SO(2n+1) + YUSp(2n−2). (3.26)

Then we observe that the SU(2n+1) gauge group has a linear monopole superpotential

and 2n+2 flavors. It then corresponds to the effective s-confining SQCD on S1, where

the IR degrees of freedom are the meson M, the baryons B and the antibaryon B̃.

These fields correspond to the SU(2n+ 1) invariant combinations

M=





M1 M2

M3 M4

M5 M6



=





P̃1P2 P̃1V1
Ṽ2P2 Ṽ2V1
Q̃P2 Q̃V1



, B=

(

B2

B1

)

=

(

P 2n
2 V1
P 2n+1
2

)

, B̃T =





B̃3

B̃1

B̃2



=





P̃ 2n−3
1 Q̃3Ṽ2
P̃ 2n−2
1 Q̃3

P̃ 2n−2
1 Q̃2Ṽ2



 .

(3.27)

The superpotential for the confining duality is

W = MBB̃ + detM+ γB1 + αU2
2 + U2M3 +M2U1 + Y +

SO(2n+1) + YUSp(2n−2). (3.28)

After integrating out the massive fields this superpotential becomes

W = Y +
SO(2n+1) + YUSp(2n−2) + α(B2B̃1 +M6M

2
5M

2n−2
1 )2 +M4M

2n−2
1 M3

5 . (3.29)

Then we observe that the SO(2n+1) gauge group has 2n+2 vectors, corresponding to

the fieldsM1,M5 and B2 and linear monopole superpotential. The SO(2n+1) baryons

are

q1 =M2n−3
1 M3

5B2, q2 =M2n−2
1 M2

5B2, q3 =M2n−2
1 M3

5 , (3.30)

while the components of the SO(2n+ 1) symmetric meson are

S11 =M2
1 , S12 =M1M5, S13 =M1B2,

S22 =M2
5 , S23 =M5B2, S33 = B2

2 . (3.31)

After integrating out the massive fields, the superpotential of the leftover USp(2n− 2)

gauge theory is

W = α(S33B̃
2
1+B̃1M6q2+M

2
6S

2
22S

2n−2
11 )+S11q1q1+S12q1q2+S22q

2
2+YUSp(2n−2). (3.32)

The USp(2n − 2) gauge group has four fundamentals denoted as S12 and q1 and

an adjoint S11. The field S12 is in the fundamental representation of the SU(3) flavor

symmetry, while the fundamental q1 interact with the adjoint through the coupling

S11q
2
1. There is also a linear superpotential for the USp(2n−2) fundamental monopole.
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This model confines and its confinement was studied in [16]. Actually the analysis of

the model is simplified by flipping the tower of traces TrS2k
11 , corresponding to add to

(3.47) the deformation
∑n−1

k=1 βkTrS
2k
11 that corresponds in the original model to add

the contribution
∑n−1

k=1 βkTr(SÃ)
2k.

In this case the singlets of the dual WZ model are constructed from the symmet-

ric and the antisymmetric contractions of two fundamentals S12 with odd and even

powers of the adjoint S11, i.e. S(j)
ab = (S12)a(S12)bS

2j+1
11 and A(j)

ab = (S12)a(S12)bS
2j
11

with j = 0, . . . , n − 2. Furthermore the composite operator q1(S12)a corresponds to
∑n−2

j=0 ǫ
bcdS(j)

ab A
(n−j−2)
cd . The superpotential of the WZ becomes

W = ǫr1r2r3ǫs1s2s3
(

S(ℓ1)
s1,r1

S(ℓ2)
s2,r2

S(ℓ3)
s3,r3

δℓ1+ℓ2+ℓ3,2n−4 +A(ℓ1)
s1,r1

A(ℓ2)
s2,r2

S(ℓ3)
s3,r3

δℓ1+ℓ2+ℓ3,2n−3

)

+ α(S33B̃
2
1 + B̃1M6q2) + S22q

2
2 +

n−2
∑

j=0

qa2ǫ
bcdS(j)

ab A
(n−j−2)
cd , (3.33)

where in the last term we have explicitly written the antifundamental SU(3) index of

the field q2. We can also, by following the duality map, associate the singlets here to

the ones appearing in the original definition (3.25)

• βℓ flip the combinations Tℓ = (SÃ)ℓ for ℓ = 1, . . . , n − 2. The only singlet that

has not been flipped corresponds to S33 that indeed is identified with T2n.

• The singlets {α, B̃1,M6} correspond to the singlets {D, b̃3, b̃1} respectively.

• The tower P2j is associated to the tower S(j−1) for j = 1, . . . , n − 1, while P0

corresponds to S22.

• The tower P2j+1 is associated to the tower A(j) for j = 0, . . . , n− 2, while P2n−1

corresponds to q2.

We can also flow from the duality obtained here to the one denoted as II-B in [19].

Such a flow is triggered by two opposite real masses for two of the fundamentals Q̃.

The fate of the fields appearing in (3.25) after the real mass flow is

• The field D survives and it has been denoted as Ψ1 in [19].

• The fields Tℓ survive and they have been denoted as Ψ
(j)
4 in [19].

• The component of the field b̃3 that survives becomes a monopole and it has been

denoted as Ψ5 in [19]

• The components of the fields P̃2j+1 that survive reconstruct a part of the tower

of monopoles, denoted as Ψ
(m)
6 in [19] .
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• From b̃1 only one field survives, denoted as Ψ2 in [19].

• The fields P̃2j that do not disappear split into a tower of monopoles and a tower

of mesons, denoted respectively as Ψ
(m)
6 and Ψ

(j)
3 in [19]. Observe that the tower

Ψ
(m)
6 is then fully reconstructed from P̃2j and P̃2j+1.

We can also compare the superpotential (3.33) after the real mass flow with the one

proposed in Formula 5.23 of [19], after flipping the tower Ψ
(ℓ)
4 for ℓ = 0, . . . , n−2. By

inspection we can check that all most of the expected terms in are reproduced. For ex-

ample the term αS33B̃
2
1 becomes the term Ψ5Ψ1Ψ

(n−1)
4 and the term αB̃1M6q2 becomes

the term Ψ5Ψ
(0)
6 Ψ2Ψ1. Also the various sums are reproduced through the real mass

flow. The only term that is not obtained consists of the combination Ψ2
2Ψ1Ψ

(m)
6 Ψ

(2n−m)
6 .

Such term, allowed from the symmetries, is neither obtained here nor in [19] from tensor

deconfinement, and its existence and stability deserves more investigations.

We conclude this section by deriving the identity (3.22) applying the deconfine-

ment techniques on the partition function. The first step consists of deconfining the

symmetric tensor S, by trading it with an SO(2n+1) gauge theory and the conjugate

antisymmetric by trading it with an USp(2n− 2). The mass parameters for the fields

in the SU(2n+ 1)× SO(2n+ 1)× USp(2n− 2) quiver are

mP̃1
=
τÃ
2
, mP2 =

τS
2
, mṼ2

= ω + nτS, mV1 = nτÃ, mγ = 2ω −
2n+ 1

2
τS,

mQ̃ = νa, mα = (2n+ 1)τS, mU2 = ω −
2n+ 1

2
τS, mU1 = 2ω −

2n+ 1

2
τÃ.

After confining the SU(2n+1) node we obtain the partition function of the leftover

SO(2n + 1) × USp(2n − 2) quiver gauge theory with the following mass parameters

associated to the SU(2n+ 1) singlets

mM1 =
τS+τA

2
,

mM2 =
(

n+ 1
2

)

τÃ,

mM3 = ω +
(

n+ 1
2

)

τS̃,

mM4 = ω + n(τÃ + τS),

mM5 = νb +
τS
2
,

mM6 = νb + nτÃ,

mB1 =
2n+1

2
τS,

mB2 = n(τS + τÃ),

mB̃1
= (n− 1)τÃ +

∑3
b=1 νb,

mB̃2
= ω + nτS + (n− 1)τÃ + νa + νb,

mB̃3
= 2ω −

(

n+ 1
2

)

(τS + τÃ),

(3.34)

The quadratic combinations in the superpotential are γB1, U2M3 and M2U1 and

these holomorphic masses reflecting the relations Γh(mγ)Γh(mB1) = Γh(mU2)Γh(mM3) =

Γh(mM2)Γh(mU1) = 1 on the one loop determinants.

We then confine the SO(2n+1) gauge node with N+1 vectors and linear monopole

superpotential. The constraint imposed by this superpotential corresponds to the con-

straint on the masses ofMQ̃P and B2, that corresponds indeed to the original balancing
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condition (3.4). The baryons and the mesons of this confining duality have mass pa-

rameters
mq1 = ω −

τS+τ
Ã

2
,

mq2 = 2nτS + (2n− 1)τA + νb + νc (b < c),

mq3 = ω − n(τÃ + τS),

(3.35)

mS11 = τS + τÃ,

mS12 = νb + τS + τA
2
,

mS22 = τS + νb + νc (b ≤ c),

mS13 =
(

n+ 1
2

)

(τS + τÃ),

mS33 = 2n(τS + τÃ),

mS23 = νb +
τS
2
+ n(τS + τÃ),

(3.36)

The quadratic combinations in the superpotential are S23B̃2, S13B̃3 and q3M4 and these

holomorphic masses reflecting the relations Γh(mS23)Γh(mB̃2
) = Γh(mS13)Γh(mB̃3

) =

Γh(mq3)Γh(mM4) = 1 on the one loop determinants. Observe that the first relation

hods provided we impose the balancing condition (3.23).

The last step consists of confining the USp(2n−2) gauge node with an adjoint, four

fundamentals, one of which interacts with the adjoint, and a monopole superpotential.

The necessary identity was given in Formula 4.1 of [16], and it was obtained by

applying the duplication formula to the identities derived in [36, 37]. There are three

towers of singlets, one associated to the combinations (SÃ)ℓ, that have been flipped

by βℓ for ℓ = 1, . . . , n − 2. The only singlet that remains from this tower has mass

(n − 1)(τS + τÃ). On the other hand the other two mesonic towers, of symmetric and

antisymmetric contraction of the three fundamentals S12 have masses

(2j + 3)τS + (2j + 2)τÃ + νa + νb with a ≤ b and j = 0, . . . , n− 2,

(2j + 2)τS + (2j + 1)τÃ + νa + νb with a < b and j = 0, . . . , n− 2, (3.37)

respectively. The first line in (3.37) reconstructs the final towers in last term in the

second line of (3.22) together with Γh(mS22). The second line in (3.37) reconstructs the

final towers in last term in the third line of (3.22) together with Γh(mq2). The other

contributions to the RHS of (3.22) correspond to Γh(mB̃1
,mS33 ,mα,mM6) and once we

consider their contribution we obtain the expected identity.

3.3 SU(2n) with S, Ã, Q̃S and 3 Q̃

We conclude this section by focusing on the case of SU(2n) with an antisymmetric and

three fundamental flavors. In this case we apply the duplication formula to the identity

(B.11) by freezing the three masses for the fundamentals as in formula (3.21). After

some rearrangements we obtain the following identity

ZSU(2n)(−;ω −
τS
2
, ~ν; τS;−;−; τÃ) = Γh(nτÃ)Γh(2nτS) (3.38)
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1

U1V1

K

SO(2n) SU(2n) USp(2n)

B

Figure 9. In the first figure we provide the quiver description of the SU(2n) gauge theory

with a symmetric, a conjugate antisymmetric, 3 antifundamentals Q̃ and one antifundamental

Q̃S , with superpotential W = SQ2
S . In the second figure we provide the quiver description

after deconfining the symmetric and the conjugate antisymmetric tensors in terms of an

SO(2n) and an USp(2n) gauge node respectively.

n−1
∏

ℓ=1

Γh (2ℓ(τS + τÃ))
∏

a<b

n−2
∏

j=0

Γh(2(j + 1)τS + (2j + 1)τÃ + νa + νb)

∏

a<b

Γh((n− 1)τÃ + νa + νb)
∏

a≤b

n−1
∏

k=0

Γh((2k + 1)τS + 2kτÃ + νa + νb),

with the balancing condition

(

2n−
1

2

)

τS + (2n− 2)τÃ +
3
∑

b=1

νb = ω. (3.39)

We interpret this relation as the fact that a 3d N = 2 SU(2n) gauge theory

with a symmetric S, an conjugate antisymmetric Ã one antifundamental Q̃S and three

antifundamentals Q̃ is confining in presence of the superpotential

W = SQ̃2
S + Y bare

SU(2n−2). (3.40)

From the RHS of (3.38) we read the gauge invariant combinations

P̃2j+1 = Q̃aS(SÃ)
2j+1Q̃b, P̃2k = Q̃aS(SÃ)

2kQ̃b,

Tℓ = (SÃ)2ℓ, b̃1 = Ãn, D = detS, b̃2 = Ãn−1Q̃2, (3.41)

with j = 0, . . . , n − 2, k = 0, . . . , n − 1 and ℓ = 1, . . . , n − 1. The singlets P̃2j+1 are

antisymmetric in the SU(3) flavor indices while the singlets P̃2k are symmetric in the

SU(3) flavor indices.
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We then support the claim about such confining duality conjectured from the hy-

perbolic identity using tensor deconfinement. We start by deconfining the two-index

tensors S and Ã using an SO(2n) and an USp(2n) gauge group as in Figure 9. The

superpotential for this model is

W = γP 2n
2 + αU2

2 + U2Ṽ2P2 + P̃1V1U1 +RU1K

+ YSU(2n) + Y +
SO(2n) + YUSp(2n) +BR2. (3.42)

The SU(2n) gauge group has a linear monopole superpotential and 2n+ 1 flavors.

It then confines and the effective degrees of freedom are the meson M, the baryons B

and the antibaryon B̃. These fields correspond to the SU(2n) invariant combinations

M=

(

M1 M2

M3 M4

)

=

(

P̃1P2 P̃1V1
Ṽ2P2 Ṽ2V1

)

, B=

(

B2

B1

)

=

(

P 2n−1
2 V1
P 2n
2

)

, B̃T =

(

B̃2

B̃1

)

=

(

P̃ 2n−1
2 Ṽ2
P̃ 2n
1

)

.

(3.43)

The superpotential for the confining duality is

W = MBB̃+detM+ γB1 +αU2
2 +U2M3 +M2U1 +RU1K + Y +

SO(2n) + YUSp(2n) +BR2

(3.44)

After integrating out the massive fields this superpotential becomes

W = Y +
SO(2n)+YUSp(2n)+B2B̃2M1+M4 detM1+α(B2B̃1+RKM

2n−1
1 )2+BR2. (3.45)

Then we observe that the SO(2n) gauge group has 2n + 1 vectors, corresponding to

the fields M1 and B2 and linear monopole superpotential. This group confines and the

confined degrees of freedom are the SO(2n) baryons q1 = detM1 and q0 = B2M
2n−1
1

and the SO(2n) symmetric mesons S00 = M2
1 , S01 = M1B2 and S11 = B2

2 . The

superpotential for the leftover USp(2n) gauge theory is

W = YUSp(2n) + αB̃2
1S11 + S01B̃2 +M4q1 + αB̃1q0RK

+ α(RK)2S2n−1
00 +BR2S00q

2
0 + S11q

2
1 + S01q0q1 + det

(

S00 S01

ST
01 S11

)

. (3.46)

After integrating out the massive fields this superpotential becomes

W = YUSp(2n)+αB̃
2
1S11+αB̃1q0RK+α(RK)2S2n−1

00 +S00q
2
0+BR

2+S11 detS00. (3.47)

The USp(2n) gauge group has four fundamentals denoted as R and q0 and an adjoint

S00. The field R is in the fundamental representation of the SU(3) flavor symmetry,

while the fundamental q0 interact with the adjoint through the coupling S00q
2
0. There
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is also a linear superpotential for the USp(2n) fundamental monopole. This model

confines and its confinement was studied in [16]. Actually the analysis of the model

is simplified by flipping the tower of traces TrS2k
00 , corresponding to add to (3.47) the

deformation
∑n−1

k=1 βkTrS
2k
00 that corresponds in the original model to add the contri-

bution
∑n−1

k=1 βkTr(SÃ)
2k. Observe that the superpotential (3.47) complete such tower

of flippers βℓ by including the term 6 S00 detS11 ≃ S00TrS
n
11.

In this case the singlets of the dual WZ model are constructed from the symmetric

and the antisymmetric contractions of two fundamentals R with odd and even powers

of the adjoint S00, i.e. S(j)
ab = RaRbS

2j+1
00 and A(j)

ab = RaRbS
2j
00 with j = 0, . . . , n − 1.

Furthermore the composite operator q0Ra corresponds to
∑n−1

j=0 ǫ
bcdS(j)

ab A
(n−j−1)
cd . The

superpotential of the WZ becomes

W = ǫr1r2r3ǫs1s2s3
(

S(ℓ1)
s1,r1

S(ℓ2)
s2,r2

S(ℓ3)
s3,r3

δℓ1+ℓ2+ℓ3,2n−2 +A(ℓ1)
s1,r1

A(ℓ2)
s2,r2

S(ℓ3)
s3,r3

δℓ1+ℓ2+ℓ3,2n−1

)

+ αK2S(n) +BA(0) +
n−1
∑

j=0

αB̃1K
aǫbcdS(j)

ab A
(n−1−j)
cd , (3.48)

where in the last term we have explicitly written the antifundamental SU(3) index of

the singlet K.

We can also, by following the duality map, associate the singlets here to the ones

appearing in the original definition (3.41):

• The fields βℓ flip the combinations Tℓ = (SÃ)ℓ for ℓ = 1, . . . , n− 1.

• The singlets {α, B̃1, K} correspond to the singlets {D, b̃1, b̃2} respectively.

• The tower P̃2j is associated to the tower S(j) for j = 0, . . . , n− 1.

• The tower P̃2j−1 is associated to the tower A(j) for j = 1, . . . , n− 1, while A(0) is

massive because of the quadratic superpotential interaction with the field B.

We can also flow from the duality obtained here to the one denoted as II-B in [19].

Such a flow is triggered by two opposite real masses for two of the fundamentals Q̃.

The fate of the fields appearing in (3.41) after the real mass flow is

• The fields D and b̃1 survive and they have been denoted as Ψ1 and Ψ2 respectively

in [19].

• The fields Tℓ survive and they have been denoted as Ψ
(j)
4 in [19].

6See Footnote 2 of [16] for a more detailed discussion.
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• The component of the field b̃2 that survives becomes a monopole and it has been

denoted as Ψ5 in [19].

• The components of the fields P̃2j+1 that survive reconstruct a part of the tower

of monopoles, denoted as Ψ
(m)
6 in [19] .

• The fields P̃2j that do not disappear split into a tower of monopoles and a tower

of mesons, denoted respectively as Ψ
(m)
6 and Ψ

(j)
3 in [19]. Observe that the tower

Ψ
(m)
6 is then fully reconstructed from P̃2j and P̃2j+1.

We can also compare the superpotential (3.33) after the real mass flow with the one

proposed in Formula 5.22 of [19], after flipping the tower Ψ
(ℓ)
4 for ℓ = 0, . . . , n−1. By

inspection we observe that the expected superpotential is fully reproduced, including

the terms that have not been reconstructed from tensor deconfinement in [19].

We conclude this section by deriving the identity (3.38) applying the deconfinement

techniques on the partition function. We start on the electric side to consider the

addition of the flippers βℓ, with mass parameters mβℓ
for ℓ = 1, . . . , n− 1. The second

step consists of deconfining the symmetric tensor S, by trading it with an SO(2n)

gauge theory and the conjugate antisymmetric by trading it with an USp(2n). The

mass parameters for the fields in the SU(2n)× SO(2n)× USp(2n) quiver are

mR = νb −
τÃ
2
, mP2 =

τS
2
, mP̃1

=
τÃ
2
, mB = 2ω + τÃ − νb − νc, mα = 2nτS,

mV1 = ω −

(

2n−
1

2

)

τS − nτÃ, mṼ2
= ω +

(

n−
1

2

)

τS, mγ = 2ω − nτS, (3.49)

mU1 = ω +

(

n−
1

2

)

τÃ +

(

2n−
1

2

)

τS, mU2 = ω − nτS, (3.50)

mK = νb + νc + (n− 1) τÃ.

where in the fourth and in the last term 1 ≤ b < c ≤ 3.

After confining the SU(2n) node we obtain the partition function of the leftover

SO(2n)×USp(2n) quiver gauge theory with the following mass parameters associated

to the SU(2n) singlets

mB1 = nτS,

mB2 = ω − n(τÃ + τS),

mB̃1
= nτA,

mB̃2
= ω +

(

n− 1
2

)

(τÃ + τS),

mM1 =
τS+τA

2
,

mM2 = ω −
(

2n− 1
2

)

τS −
(

n− 1
2

)

τÃ,

mM3 = ω + nτS,

mM4 = 2ω − n(τS + τÃ).

(3.51)

The quadratic combinations in the superpotential are γB1, U2M3 and M2U1 and these

holomorphic masses reflecting the relations Γh(mγ)Γh(mB1) = Γh(mU2)Γh(mM3) =

Γh(mM2)Γh(mU1) = 1 on the one loop determinants.
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We then confine the SO(2n) gauge node with 2n+ 1 vectors and linear monopole

superpotential. The constraint imposed by this superpotential corresponds to the con-

straint on the masses of M1 and B2, that is imposed by the parametrization (3.51).

The baryons q0 and q1 and the mesons S00, S01 and S11 of this confining duality have

mass parameters

mS11 = 2ω − 2n(τÃ + τS), mS01 = ω −

(

n−
1

2

)

(τS + τA),

mS00 = τS + τÃ, mq0 = ω −
τS + τÃ

2
, mq1 = n(τS + τÃ). (3.52)

The quadratic combinations in the superpotential are S01B̃2 and q1M4 and these holo-

morphic masses reflecting the relations Γh(mS01)Γh(mB̃2
) = Γh(mq1)Γh(mM4) = 1 on

the one loop determinants.

The last step consists of confining the USp(2n) gauge node with an adjoint, four

fundamentals, one of which interacts with the adjoint, and a monopole superpotential.

The necessary identity was given in Formula 4.1 of [16] and it was obtained by applying

the duplication formula to the identities derived in [36, 37]. There are three towers of

singlets, one associated to the combinations (SÃ)ℓ, that have been flipped by βℓ for

ℓ = 1, . . . , n. On the other hand the other two mesonic towers, of symmetric and

antisymmetric contraction of the three fundamentals R have masses

(2j + 1)τS + 2jτÃ + νa + νb, with 1 ≤ a ≤ b ≤ 3

2jτS + (2j − 1)τÃ + νa + νb, with 1 ≤ a < b ≤ 3
and j = 0, . . . , n− 1 (3.53)

respectively. The first line in (3.53) reconstructs the final towers in last term in the

third line of (3.38). The second line in (3.53) reconstructs the final towers in last term

in the second line of (3.38), except the term with j = n − 1, that simplifies together

with the term Γh(mB). The other contributions to the RHS of (3.38) correspond

to Γh(mα,mB̃1
,mK). On the other hand the singlet S11 simplifies in the last step,

because it can be identified with a flipper of tower βℓ, i.e. the one that still misses

with ℓ = n, that flips the n-th power trace of the USp(2n) adjoint. In this way we

have reconstructed the identity (3.38) by applying tensor deconfinement and dualities

on the squashed three sphere partition function.

4 Conclusions

In this paper we have studied 3d N = 2 confining gauge theories with SU(N) gauge

groups and tensor matter, antisymmetric and/or symmetric. He have focused on two

main classes of models, in section 2 and 3. The first class that we have studied has
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two antisymmetric tensors and nf + na = 4 fundamentals and antifundamentals. We

have corroborated the fact that such models are confining by providing a derivation

in terms of other dualities, by deconfining the tensors and by dualizing the gauge

groups. In this way we have completed the analysis, started in [25], for all the models

with two antisymmetric proposed in [19]. The second class consists of model with

symmetric tensors and linear monopole superpotential. These models generalize some

of models studied in [19] and they can be obtained by applying the duplication formula

for the hyperbolic Gamma function on integral identities. These lasts correspond to

the matching of the three sphere partition function for 4d s-confining gauge theories

compactified on a circle. The identities obtained in this way correspond to confining

gauge theories with a symmetric tensor and with (anti)-fundamental and/or a conjugate

antisymmetric tensor. In each case there is a constraint on the masses of such fields

that can is interpreted as a linear monopole superpotential, that needs to be imposed on

the superpotential on the gauge theory side of the duality. Also in these cases we have

corroborated the validity of such dualities by deconfining the tensor(s) and dualizing

the gauge groups, obtaining at the end of the process the expected WZ models.

We conclude by pointing out some possible follow up and open questions. A first

comments is deserved by the models denoted as family II-A in [19], that in this paper

did not have any counterpart with a monopole superpotential turned on. The reason is

that it has not been possible to find any parent 4d duality with an antisymmetric flavor

and at least four fundamental flavors, that would have been necessary in order to apply

the duplication formula once the identity between the elliptic integrals is effectively

reduced on S1 as an identity between the hyperbolic hypergeometric integrals. In

principle the existence of such a 4d parent is just a sufficient condition to find the

candidate 3d identity that we are looking for and one could try to construct the 3d

model independently. However, by inspection we have not found any confining duality

with a monopole superpotential turned on that, upon a real mass deformation, flows

to the models of the II-A family. A more promising approach regards the 4d models

recently discussed in [19], for SU(2n) with one antisymmetric flavor (A, Ã) and four

fundamental flavors (Q, Q̃), with a further superpotential term W = Ãn−1Q̃1Q̃2. This

model is dual in 4d to USp(2n) with eight fundamentals and a series of flippers. Once it

is reduced to 3d we can further apply the duplication formula and obtain a 3d duality

involving SU(n) with a symmetric and a conjugate antisymmetric and an USp(2n)

model with an adjoint. In both cases we further have (anti)-fundamentals and monopole

superpotential. Then, through a real mass flow it is possible to flow to the II-A family

discussed in [19], by observing that the two dual models are also dual to the expected

confining gauge theory. We are currently investigating in this direction.

The discussion is in principle generalizable to the cases with two antisymmetric
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tensors studied in Section 2. In such case finding a 4d non anomalous gauge theory

requires to add a large amount of (anti)-fundamentals, possibly interacting with the

antisymmetric(s), such to find a duality that becomes confining only after considering

a real mass flow that eliminates the 2d monopole superpotential. The discussion can

then be potentially extended to the cases denoted as family III in [19] by applying the

duplication formula for the hyperbolic gamma functions.

A further comment regards the unitarity of the dualities discussed here. In general

it is always possible to flip some of the operators in the electric theories, such to leave

only cubic interactions in the dual WZ models. In this way all the models discussed

in the paper are unitary and there is not any operator in the chiral ring hitting the

unitary bound.

It is also interesting to observe that many of the dualities studied here and in [19, 25]

share some similarities withN = (0, 2) dualities recently studied in [38–40] (see also [41]

for similar dualities with USp(2n) and an antisymmetric chiral). The relation between

the 3d and the 2d dualities is in principle related to the bulk/boundary construction

of [42]. Along these lines it would be interesting to extend the analysis of [43] to the

cases with two antisymmetric (without conjugation) and with symmetric tensors.

A last comments regards the possibility of finding similar dualities in 2d N = (0, 2).

There are indeed dualities with SU(N) gauge group and a symmetric tensor discussed

in [38] that share many similarities with the dualities discussed in [19] and here and

it should be interesting to derive them by using the 4d/2d prescription of [44] and the

duplication formula for the Jacobi theta functions.
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A SU(M) with two antisymmetric tensors and four fundamen-

tals

In this appendix we review the 3d N = 2 duality for SU(N) with two antisymmetric

tensors and four fundamentals, first proposed in [25] and then further studied in [19],
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where the identity between the three sphere partition functions was proved. This

duality has played indeed a crucial role in our analysis, because all the models studied in

Section 2 have been reduced, after deconfining the antisymmetric tensors, and dualizing

the gauge nodes, to the case of SU(N) with two antisymmetric and four fundamental

fields. Then the fact that the dualities of Section 2 directly follows from the confining

duality reviewed here.

In the following we will be review only the basic aspects of this confining duality,

referring the reader to the original references for an extended discussion. The model

requires to separate the case of even and odd gauge rank.

For M = 2m the confining superpotential is

W = ydressed(tmtm−2 + t2m−1) (A.1)

where tm = Am, tm−1 = Am−1Q2 and tm−2 = Am−2Q4. Furthermore the dressed

monopole is defined as

ydressed = ybareSU(2m−2)A
2m−2 (A.2)

The identity between the gauge and the confining phase at the level of the three sphere

partition function is

ZSU(2m)(~µ; ·; ·; ·;~τ ; ·)=
m
∏

j=0

Γh(jτ1 + (m−j)τ2)
m−1
∏

j=0

∏

1≤a<b≤4

Γh(jτ1+(m−j−1)τ2+µa+µb)

m−2
∏

j=0

Γh

(

jτ1+(n−j−2)τ2 +
4
∑

a=1

µa

)

2m−2
∏

j=0

Γh

(

2ω − jτ1− (2m− j − 2)τ2 −
4
∑

a=1

µa

)

.

(A.3)

For N = 2m+ 1 the confining superpotential is

W = ydressedtmtm−1 (A.4)

where tm = Am and tm−1 = Am−1Q3. Furthermore the dressed monopole is defined as

ydressed = ybareSU(2m−1)A
2m−1 (A.5)

The identity between the gauge and the confining phase at the level of the three sphere

partition function is

ZSU(2m+1)(µ; ·; ·; ·;~τ ; ·) =
m
∏

j=0

4
∏

a=1

Γh(jτ1 + (m− j)τ2 + µa)
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×
m−1
∏

j=0

∏

1≤a<b<c≤4

Γh(jτ1 + (m− j − 1)τ2 + µa + µb + µc)

×
2m−1
∏

j=0

Γh

(

2ω − jτ1 + (2m− j − 1)τ2 −
4
∑

a=1

µa

)

. (A.6)

B SU(N) and antisymmetric

Here we review two 4d confining dualities studied in [1, 2], corresponding to

• SU(N) with an antisymmetric, 4 fundamentals and N antifundamentals

• SU(N) with three fundamental flavors and one antisymmetric flavor.

We will also discuss the reduction of the identity between the 4d superconformal indices

(see [45] for a survey of these 4d identities) to the 3d partition function by using the

prescription of [24]. The details of the chiral rings operator describing the confining

dynamics are different in the case of N = 2n and N = 2n+ 1, for this reason we must

treat the four cases separately.

SU(2n+ 1) with A, 4 Q and 2n+ 1 Q̃

We begin by considering the 4d confining duality involving an SU(2n+1) gauge group

with an antisymmetric tensor, four fundamental flavors, 2n + 1 antifundamental fla-

vors and vanishing superpotential. We denote the antisymmetric tensor as A and the

fundamentals as Q and Q̃. The singlet of the 4d confining phase are

M = QQ̃, B̃2 = AQ̃2, B1 = AnQ, B3 = An−1Q3, B̃2n+1 = Q̃2n+1. (B.1)

The superpotential is a complicated function of these singlets. Reducing this theory

on S1, the KK monopole forces the constraint on the global symmetry, which is forced

by the requirement of anomaly freedom on the 4d R-symmetry in turn. At the level of

the superconformal index the reduction gives rise to the following hyperbolic identity

for the squashed three sphere partition function

ZSU(2n+1)(~µ;~ν;−;−; τA;−) =
4
∏

a=1

2n+1
∏

b=1

Γh(µa + νb)
2n+1
∏

b<c

Γh(τA + νb + νc)

4
∏

a=1

Γh(nτA + µa)
4
∏

a<b<c

Γh((n− 1)τA + µa + µb + µc)Γh

(

2n+1
∑

b=1

νb

)

, (B.2)
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where the KK monopole forces the constraint

(2n− 1)τA +
4
∑

a=1

µa +
2n+1
∑

b=1

νb = 2ω. (B.3)

This identity follows from the corresponding balancing condition of the elliptic case.

SU(2n) with A, 4 Q and 2n Q̃

In this section we consider the 4d confining duality involving an SU(2n) gauge group

with an antisymmetric tensor, four fundamental flavors, 2n antifundamental flavors

and vanishing superpotential. We denote the antisymmetric tensor as A and the fun-

damentals as Q and Q̃. The singlet of the 4d confining phase are

M = QQ̃, B̃2 = AQ̃2, B0 = An,

B2 = An−1Q2, B4 = An−2Q4, B̃2n = Q̃2n. (B.4)

The superpotential is a complicated function of these singlets. Here we are interested in

reducing this confining duality on S1, by turning on a KK monopole for the SU(2n+1)

gauge group. At the level of the superconformal index the reduction gives rise to the

following hyperbolic identity for the squashed three sphere partition function

ZSU(2n)(~µ;~ν;−;−; τA;−) =
4
∏

a=1

2n
∏

b=1

Γh(µa + νb)
2n
∏

b<c

Γh(τA + νb + νc)

Γh(nτA)
4
∏

a<b

Γh((n− 1)τA + µa + µb)Γh

(

(n− 2)τA +
4
∑

a=1

µa

)

Γh

(

2n
∑

b=1

νb

)

.(B.5)

The constraint forced by the KK monopole on the mass parameters is

(2n− 2)τA +
4
∑

a=1

µa +
2n
∑

b=1

νb = 2ω. (B.6)

This identity follows from the corresponding balancing condition of the elliptic case.

SU(2n+ 1) with A, Ã, 3 Q and 3 Q̃

Here we consider the 4d confining duality involving an SU(2n + 1) gauge group with

an antisymmetric flavor and three fundamental flavors and vanishing superpotential.

We denote the antisymmetric tensors as A and Ã and the fundamentals as Q and Q̃.

The singlets of the 4d confining phase are

Mk = Q(AÃ)kQ̃, Hk = Ã(AÃ)kQ2, B1 = AnQ, B3 = An−1Q3,

Tm = (AÃ)m, H̃k = A(AÃ)kQ̃2, B̃1 = ÃnQ̃, B̃3 = Ãn−1Q̃3,
(B.7)
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with k = 0, . . . , n− 1 and m = 1, . . . , n. The superpotential is a complicated function

of these singlets, but its expression is simplified by flipping the fields B3, B̃3 and Tm
as shown in [46]. We refer the reader to the original references for details. Here we are

interested in reducing this confining duality on S1, by turning on a KK monopole for

the SU(2n + 1) gauge group. At the level of the superconformal index the reduction

gives rise to the following hyperbolic identity for the squashed three sphere partition

function

ZSU(2n+1)(~µ;~ν;−;−; τA; τÃ) =
3
∏

a,b=1

n−1
∏

k=0

Γh(k(τA + τÃ) + µa + νb)

∏

a<b

n−1
∏

k=0

Γh(τÃ + k(τA + τÃ) + µa + µb, τA + k(τA + τÃ) + νa + νb)

3
∏

a=1

Γh(nτA + µa, nτÃ + νa)
n
∏

m=1

Γh(m(τA + τÃ))

Γh((n− 1)τA + µ1 + µ2 + µ3, (n− 1)τÃ + ν1 + ν2 + ν3), (B.8)

where the KK monopole forces the constraint

(2n− 1)(τA + τÃ) +
3
∑

b=1

(µb + νb) = 2ω. (B.9)

This identity follows from the corresponding balancing condition studied of the elliptic

case.

SU(2n) with A, Ã, 3 Q and 3 Q̃

In this section we consider the 4d confining duality involving an SU(2n) gauge group

with an antisymmetric flavor, three fundamental flavors and vanishing superpotential.

We denote the antisymmetric tensors as A and Ã and the fundamentals as Q and Q̃.

The singlets of the 4d confining phase are

Mk = Q(AÃ)kQ̃, Hm = Ã(AÃ)mQ2, B0 = An, B2 = An−1Q2

Tℓ = (AÃ)ℓ, H̃m = A(AÃ)mQ̃2, B̃0 = Ãn, B̃2 = Ãn−1Q̃2,
(B.10)

with k = 0, . . . , n − 1, m = 0, . . . , n − 2 and ℓ = 1, . . . , n − 2. The superpotential is a

complicated function of these singlets, but its expression is simplified by flipping the

fields B0, B̃0 and Tℓ as shown in [46]. We refer the reader to the original references

for details. Here we are interested in reducing this confining duality on S1, by turning

on a KK monopole for the SU(2n) gauge group. At the level of the superconformal
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index the reduction gives rise to the following hyperbolic identity for the squashed three

sphere partition function

ZSU(2n)(~µ;~ν;−;−; τA; τÃ) =
3
∏

a,b=1

n−1
∏

k=0

Γh(k(τA + τÃ) + µa + νb)

∏

a<b

n−2
∏

m=0

Γh(τÃ +m(τA + τÃ) + µa + µb, τA +m(τA + τÃ) + νa + νb)Γh(nτA, nτÃ)

∏

a<b

Γh((n− 1)τA + µa + µb, (n− 1)τÃ + νa + νb)
n−1
∏

ℓ=1

Γh(ℓ(τA + τÃ)), (B.11)

where the KK monopole forces the constraint

(2n− 2)(τA + τÃ) +
3
∑

b=1

(µb + νb) = 2ω. (B.12)

This identity follows from the corresponding balancing condition of the elliptic case.
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