Journal Article PUBDB-2025-01420

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Nanocrystal Compressive Residual Stresses: A Strategy to Strengthen the Bony Spines of Osteocytic and Anosteocytic Fish

 ;  ;  ;  ;  ;  ;  ;

2025
Wiley-VCH Weinheim

Advanced science 12(20), 2410617 () [10.1002/advs.202410617]
 GO

This record in other databases:        

Please use a persistent id in citations: doi:  doi:

Abstract: Bone is a living tissue in which communicating cells, osteocytes, are assumed to be vital for tissue turnover and adaptation. Interestingly however, most advanced teleost fish do not possess osteocyte-mediated porosity, prompting intriguing questions about alternative material-strategies for these bones to cope with damage. Using advanced imaging techniques, including phase-contrast enhanced (PCE) microtomography (µCT) and nanotomography (nanoCT), X-ray fluorescence (XRF), and diffraction (XRD) tomography, the micro- and nano-architectures of osteocytic zebrafish are compared with anosteocytic medaka fishbone. PCE µCT and Zernike phase-contrast nanoCT showed a lack of porosity in medaka bone and 0.75 – 2.26% osteocytic porosity in zebrafish. Both fish species have similar mineralized collagen fibril arrangements containing calcium (Ca) and traces of strontium (Sr) with increased zinc (Zn) localized on the outer bone regions. Medaka bones exhibit reduced apatite nanocrystal lattice spacings on the outer surfaces. Indeed we find higher compressive residual strains (-0.100 ± 0.02) compared to zebrafish (-0.071 ± 0.03). We propose that medaka bone evolved to replace the mechanosensitive osteocytic network by entrapping protective residual strains between collagen nanofibers and mineral crystals. These strains may enhance fracture toughness while making this nanocomposite well-suited for sustaining repeated loading cycles, thus reducing the metabolic costs associated with housing a large network of cells.

Classification:

Note: German Research Foundation (DFG) grants ZA557/5 and ZA557/16-1.

Contributing Institute(s):
  1. DOOR-User (DOOR ; HAS-User)
  2. Helmholtz-Zentrum Hereon (Hereon)
Research Program(s):
  1. 6G3 - PETRA III (DESY) (POF4-6G3) (POF4-6G3)
Experiment(s):
  1. PETRA Beamline P03 (PETRA III)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DEAL Wiley ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 15 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Collections > >Extern > >HAS-User > HAS-User
Document types > Articles > Journal Article
Private Collections > >Hereon > Hereon
Public records
Publications database
OpenAccess

 Record created 2025-04-23, last modified 2025-07-23


OpenAccess:
Download fulltext PDF Download fulltext PDF (PDFA)
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)