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We study the use of higher-order resummation for transverse observables to achieve NNLO+PS
matching within the Geneva framework. In particular, we embed qT resummation for colour-
singlet production at N3LL obtained via soft-collinear effective theory and implemented in the
library SCETlib within Geneva. We also study for the first time the use of the generalised N -
jettiness variable in parton shower matching, and achieve the resummation of the one-jettiness
defined with transverse measures up to NLL′ accuracy. As a case study, we use these resummed
calculations to construct a Geneva NNLO+PS generator for Higgs boson production in heavy-quark
annihilation (with beauty or charm-quarks in the initial state). The use of transverse measures
facilitates the matching to showers ordered in transverse momentum, and opens the door to possible
future extensions of this approach to the production of colour singlets in association with final-state
jets.

I. INTRODUCTION

The success of the experimental programme at the
LHC demands theoretical tools at the highest possible ac-
curacy. While fully-differential calculations at fixed-order
in perturbation theory have reached N3LO for simple
processes [1–4], state-of-the-art for predictions matched
to parton shower generators is currently next-to-next-
to-leading order (NNLO+PS). Two main approaches ex-
ist to achieve this accuracy [5, 6], while a third, rather
different approach, is currently under active develop-
ment [7, 8].

An interesting question relevant to the construction of
NNLO+PS generators concerns the choice of resolution
variables, which partition the phase space into jet bins
of differing multiplicity and which must be resummed to
high logarithmic accuracies. While many choices are in
principle possible, the predictions for exclusive observ-
ables will depend on said choice, introducing a source
of systematic uncertainty. A natural way to gauge the
size of this uncertainty would be to compare the predic-
tions of generators constructed using the same method
but different variables. In addition, the availability of
higher-accuracy parton shower algorithms [9–12] means
that one may wish to explore novel variable choices to
ensure the preservation of the shower accuracy in match-
ing.

In this work, we implement a new combination of res-
olution variables in the Geneva approach. The origi-
nal formulation of Geneva [13] used the zero- and one-
jettiness [14] to separate the 0/1- and 1/2- jet bins re-
spectively, and indeed many electroweak processes have
since been examined in this context [15–21]. The jettiness
variable has the advantage of considerable simplicity, ad-
mitting a simple factorisation structure in SCET-I which
facilitates resummation [22, 23]. However, the fact that
the usual definition of the jettiness involves an invari-
ant mass-like measure complicates the matching to com-
monly employed parton shower algorithms, which tend to

be ordered in transverse momentum. An alternative for-
mulation using the colour-singlet transverse momentum
qT to separate the 0/1-jet bins was studied in ref. [24],
with qT resummation at N3LL provided by the RadISH

formalism [25, 26]. The 1/2-jet separation variable re-
mained, however, the one-jettiness. In ref. [27], a gen-
erator for W+W− production was constructed using the
hardest and second-hardest jet transverse momenta as
variables and SCET-based resummation [28, 29]. With
these choices, the need for truncated showering tech-
niques [30] in Geneva was obviated. A summary of the
currently available Geneva implementations is presented
in tab. II.

The new class of generators we initiate in this work
uses transverse observables to separate all jet bins, as
in ref. [27]. As in ref. [24], we use qT as the primary
resolution variable, though exploiting analytic SCET-II
resummation provided by SCETlib [31] rather than the
RadISH approach previously taken. As a secondary res-
olution variable, we choose a generalisation of the one-
jettiness which uses a transverse momentum-like mea-
sure. Though the definition of this observable was in-
troduced in the original N -jettiness paper over 15 years
ago [14], to our knowledge this is the first time that
its resummation has been accomplished beyond leading
logarithmic order. 1 The observable is interesting not
merely because it facilitates matching for colour singlet
processes, but because of the promise it holds for achiev-
ing NNLO+PS matching for colour-singlet production in
association with additional jets. The work we present
here takes a very first step in this direction, achieving
resummation at NLL′.

As a case study, we consider the production of a
Higgs boson through heavy-quark annihilation (cc̄, bb̄ →

1 We note that a similar generalisation of the jettiness has more
recently been proposed in ref. [32].
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H). The requisite qT resummation for this process was
achieved at N3LL in ref. [33], and an NNLO+PS gen-
erator for the bb̄H process in the 5-flavour scheme was
constructed in ref. [34] using the MiNNLOps formalism.
As detailed in e.g. ref. [35], measurements of the Higgs
boson qT spectrum could be used in conjunction with
precision theory predictions for bb̄H to extract a value
for the bottom Yukawa coupling yb. Generalisations to
other colour-singlet processes, though time-consuming,
are in principle straightforward.

The rest of this paper is arranged as follows. In sec-
tion II, we provide a brief recap of the Geneva method
for matching NNLO calculations to parton shower, while
section III summarises qT resummation in SCET. In sec-
tion IV we briefly review the definition of the generalised
jettiness for unacquainted readers, before detailing the
resummation of a specific choice of measures at NLL′.
We present NNLO+PS matched results for bb̄H and cc̄H
in section V, before concluding in section VI.

II. THE GENEVA METHOD

The Geneva method [5, 13] relies on defining infrared
(IR) safe events at a specific perturbative order, which
are obtained by combining fixed-order and resummed cal-
culations. This is achieved by converting IR-divergent fi-
nal states with M partons into IR-finite final states with
N partonic jets, where M ≥ N , ensuring that the diver-
gences cancel on an event-by-event basis. The conversion
is performed using N -jet resolution variables rN to define
slicing parameters rcutN , which divide the phase space into

regions with different numbers of resolved emissions: Φ0

where there is no additional jet, Φ1 with one jet and Φ2

with two or more jets in the final state.

To define the Geneva differential cross sections with
zero, one and two jets, we begin by introducing the fol-
lowing short-hand notation

dσNLO0

dΦ0
(rcut0 ) =B0(Φ0) + V0(Φ0)

+

∫

dΦ1

dΦ0
B1(Φ1) θ(r0 < rcut0 ), (1)

dσNLO1

dΦ2
(rcut1 ) =B1(Φ1) + V1(Φ1)

+

∫

dΦ2

dΦ1
B2(Φ2) θ(r1 < rcut1 ), (2)

dσLO2

dΦ2
=B2(Φ2). (3)

where BM and VM represent the tree-level and one-loop
contributions with M partons in the final state, and we
defined

dΦN+1

dΦN
= dΦN+1 δ[ΦN − Φ̃N (ΦN+1)] (4)

to indicate the integration over the ΦN+1 phase space

points that are projected on ΦN by the Φ̃N mapping.
Following the method first developed in ref. [27], the dif-
ferential cross sections with zero, one and two additional
jets are then defined as

dσMC
0

dΦ0
(rcut0 ) =

dσN3LLr0

dΦ0
(rcut0 ) −

dσN3LLr0

dΦ0
(rcut0 )

∣

∣

∣

∣

∣

NLO0

+
dσNLO0

dΦ0
(rcut0 ) (5)

dσMC
1

dΦ1
(rcut1 ) =

{[

dσN3LLr0

dΦ0 dr0
−

dσN3LLr0

dΦ0 dr0

∣

∣

∣

∣

∣

NLO1

]

P0→1(Φ1)U1(Φ1, r
cut
1 )

+
dσNLO1

dΦ1
(rcut1 ) +

dσNLL′

r1

dΦ1
(rcut1 ) −

dσNLL′

r1

dΦ1
(rcut1 )

∣

∣

∣

∣

∣

NLO1

}

θ(r0 > rcut0 )

+
dσLO1

nonproj

dΦ1
θ(r0 < rcut0 ) (6)

dσMC
≥2

dΦ2
=

{[

dσN3LLr0

dΦ0 dr0
−

dσN3LLr0

dΦ0 dr0

∣

∣

∣

∣

∣

NLO1

]

P0→1(Φ1)U
′

1(Φ1, r1)P1→2(Φ2)

+
dσLO2

dΦ2
+

[

dσNLL′

r1

dΦ1 dr1
−

dσNLL′

r1

dΦ1 dr1

∣

∣

∣

∣

∣

LO2

]

P1→2(Φ2)

}

θ(r1 > rcut1 ) θ(r0 > rcut0 )

+
dσLO2

nonproj

dΦ2
θ(r1 < rcut1 ) θ(r0 > rcut0 ). (7)

In the above equations, dσN3LLrN
,NLL′

rN /dΦN (rN ) and dσN3LLrN
,NLL′

rN /dΦN drN are respectively the cumulant
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and spectrum of the rN N3LL or NLL′ resummed cross
section and the notation |(N)LOM

indicates their fixed-

order expansion at the (N)LO order of the process with
M final-state partons. Furthermore, U1(Φ1, r1) denotes
the NLL r1 Sudakov form factor, U ′

1(Φ1, r1) its derivative
with respect to r1, and the functions PN→N+1(ΦN+1)
(called splitting functions in the Geneva literature) are
used to spread the resummed TN spectrum over the ΦN+1

phase space. They are defined such that

∫

dΦN+1

dΦN drN
PN→N+1(ΦN+1) = 1. (8)

Finally, the ‘nonproj’ label is used to indicate the ΦN+1

phase space points that do not have a ΦN projection
through the Φ̃N mapping.

The Φ̃1 mapping is constructed in such a way that it
preserves the value of r0, i.e.

r0(Φ̃1(Φ2)) = r0(Φ2), (9)

which is crucial to ensure that the r1 resummation does
not spoil the resummed r0 spectrum. Since we use
r0 = qT in this work, we require a qT -preserving map-
ping in our NLO1 calculation. Mappings which satisfy
this criterion have been previously used in refs. [13, 24].
In this work, we construct a new hybrid mapping by com-
bining the ISR part of the T0 − qT preserving mapping
from ref. [13] with the FSR part of the mapping used in
ref. [27] which preserves the transverse momentum of the

jet, pjetT . This has better numerical performance com-
pared to the qT preserving mapping of ref. [24] while still
avoiding unphysical artefacts in exclusive distributions,
which are caused by the FSR part of the T0 − qT map-
ping.

The integration measure introduced in eq. (8) is de-
fined as

dΦN+1

dΦN drN
=dΦN+1 δ[ΦN − Φ̄N (ΦN+1)]

× δ[rN − rN (ΦN+1)] (10)

and indicates the integration over the ΦN+1 phase space
points whose value of the N -jet resolution variable is
rN and which are projected on ΦN by the Φ̄N mapping
(called splitting mapping in the Geneva literature). The

Φ̄N mapping does not need to coincide with Φ̃N . Indeed,
to simplify the implementation of the P1→2 functions,
in this work we employ a splitting mapping Φ̄N 6= Φ̃N ,
whose details are discussed in section IV C.

III. RESUMMATION OF TRANSVERSE

MOMENTUM IN SCET

The factorisation of the leading-power qT spectrum
was first established in refs. [36–38], and extended in
refs. [39–41]. In this paper, we adopt the SCET frame-
work [42–46], where qT factorisation was formulated in

refs. [47–50]. In particular, we employ rapidity renor-
malisation [49, 51] using the exponential regulator [50].
In this formulation, the singular cross section for colour-
singlet production can be written as

dσsing

dqT dΦ0
=
∑

a,b

Hab(Φ0;µ)

∫

d2~ka d2~kb d2~ks (11)

× δ(qT − |~ka − ~kb − ~ks|)Ba(xa, ~ka;µ, ν/ωa)

×Bb(xb, ~kb;µ, ν/ωb)Sab(~ks;µ, ν) .

The hard function Hab is process-dependent and de-
scribes the hard interaction producing the colour sin-
glet ab → F , where a, b denote the available par-
tonic channels at leading order. The beam functions
Ba,b describe collinear radiation with total transverse

momentum ~ka,b and longitudinal momentum fractions
xa,b = (m/Ecm)e±Y (for colour-singlet mass m, rapid-
ity Y and hadronic centre-of-mass energy Ecm), with
ωa,b = xa,bEcm. The soft function Sab describes soft ra-

diation with total transverse momentum ~ks. Finally, the
scales µ and ν denote the virtuality and rapidity renor-
malisation scales.

To achieve all-order resummation, each of the functions
in eq. (11) is first evaluated at its natural scale(s) µH,B,S ,
νB,S , and then evolved to a common set of scales µ, ν by
solving a coupled system of renormalisation group equa-
tions. As shown in ref. [52], the exact solution of said
equations in qT space in terms of distributions is equiv-
alent to the canonical solution in bT space appropriately
transformed. In this work we follow common practice and
employ the latter solution. For details see refs. [52–54].

While the resummed cross section in eq. (11) is appro-
priate when describing events at low qT , for higher values
it is no longer adequate and we must rely on a calcula-
tion at fixed order in perturbation theory. The match-
ing of resummed and fixed order calculations is achieved
additively as detailed in sec. II – we are still required,
however, to specify a prescription which switches off the
resummation at large qT to ensure a smooth transition
between the resummed and fixed-order parts of the cal-
culation. This is achieved using hybrid profile scales [55–
57], which allow µH , µB , µS to take different values in
the resummation region (required to minimise the size
of large logarithms), but which flow to a common scale
with increasing qT , thus naturally ending RG evolution
for qT ∼ Q.

The framework described above is sufficiently general
to describe the production of any colour-singlet final state
(given an appropriate hard function). However, imple-
mentation details are in general process-dependent. In
particular, the shape of the profile scales which deter-
mine the transition between resummation and fixed-order
regions of phase space is normally chosen based on the
relative size of the singular and nonsingular contributions
as a function of qT and differs between e.g. Drell-Yan and
Higgs boson production. In our specific case of Higgs bo-
son production in heavy-quark annihilation, these con-
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siderations were examined in ref. [33]. Since we directly
interface the SCETlib qT module [58] used in that work
to Geneva, we employ the same central scale choices and
profile shapes as used there. We also estimate our un-
certainties via profile scale variation in the same manner.
We note that just as in ref. [21], this allows us to sepa-
rate dependence on the beam and factorisation scales µB

and µF , allowing us to perform 7-point scale variations
for inclusive observables. For the sake of completeness,
we detail our profile scale choices, transition points and
variation prescription in app. A.

IV. RESUMMATION OF ONE-JETTINESS

WITH GENERALISED MEASURES

A. Observable definition

The N -jettiness observable is most often defined as

TN =
∑

i

min
m

{

2qm · pi
Qm

}

, (12)

where the sum runs over the four-momenta of all coloured
particles pµi , the minimisation over m runs over all beam
and jet reference momenta qµm, and the factors Qm are
normalisation factors. This definition uses an invariant
mass-like measure and obeys a SCET-I type factorisa-
tion, which has been well-studied in the literature.

It was remarked in the original N -jettiness paper, how-
ever, that the definition in eq. (12) can be extended to
use generic measures in each beam or jet region [14].
Moreover, N -jettiness can be thought of not merely as
an event-shape, but as a way to define an exclusive jet
algorithm which partitions the phase space into two beam
and N jet regions, to which emissions are assigned. The
measure factors which are used to assign emissions to
each region need not be identical to the value which the
observable returns. In general, therefore, we must de-
fine separate distance measures dm(pi) which assign the
emission i to one of the N + 2 regions m if

dm(pi) = min
{

d1(pi), . . . , dN (pi), da(pi), db(pi)
}

, (13)

and the resulting observable fm which is returned by that
emission once it falls into the region m,

T (m) =
∑

i∈m

fm(ηi, φi)pT,i , (14)

where ηi, φi and pT,i denote the pseudorapidity, azimuth
and transverse momentum associated with i. We remark
that the definitions of the jet regions dj for j ∈ {1, . . . , N}
are themselves dependent on a determination of the jet
axes, which may be performed either by running an ex-
clusive jet algorithm (e.g. anti-kT ) over the final state,
or by a minimisation of the N -jettiness over all possible
axes. The latter definition has the advantage of guar-
anteeing insensitivity to soft-recoil effects, whose correct

treatment requires the introduction of additional trans-
verse momentum convolutions in the factorisation for-
mula. At one-loop, it is equivalent to using the winner-
take-all (WTA) axis [59], in that the jet direction is de-
termined solely by the ‘hardest’ emission.

This generalised definition of the N -jettiness has also
been well-studied in the literature, and the choice of the
measures has important consequences for the structure of
the factorisation. The XCone algorithm implements pre-
cisely the procedure described above to act as an exclu-
sive jet algorithm, and in that context a number of differ-
ent measure choices have been studied [60]. ref. [61] com-
pleted the study of factorisation types (i.e., all possible
combinations of SCET-I/SCET-II measures for beams
and jets) and provided the one-loop soft functions rele-
vant for colour singlet production in association with a
single jet. In addition, the N -subjettiness observable, in-
troduced in ref. [62] as a way to study jet substructure,
uses choices of the fm which are transverse momentum-
like by default.

In this work, we will make specific choices for both
the dm and fm and use N = 1, thus defining a gener-
alised one-jettiness observable which we refer to as T pT

1 .
Specifically, we choose the conical measure [60, 63] for
the region assignment, which (for isolated jets) clusters
in a manner equivalent to the anti-kT algorithm:

d0(pi) = 1, dm≥1(pi) =
R2

im

R2
. (15)

In the above equation, we have defined a single beam
measure,

d0(pi) = min{da(pi), db(pi)} , (16)

and introduced the distance

Rim ≡
√

(ηi − ηm)2 + (φi − φm)2 (17)

and (constant) jet radius R. For the measurement itself,
defining

T pT

1 =
∑

i

{

pT,i fB(ηi), for dB(pi) < dJ(pi),

pT,i fJ(ηi, φi), for dJ(pi) < dB(pi),
(18)

we choose the boost-invariant generalisation of broaden-
ing [61, 64] for the jet region,

fJ(ηi, φi) =
√

2 cosh(ηi − ηJ) − 2 cos(φi − φJ)

≡ RiJ (19)

where the distance is measured with respect to the jet
axis J , and the transverse energy for the beam region,

fB(ηi) = 1 . (20)

Both observables are of SCET-II type – the setup de-
scribed above corresponds to one of the choices made in



5

ref. [61], for which the one-loop soft function was calcu-
lated. It was shown in that work that the cross section
then factorises as

dσκ

dΦ1 dT pT

1

= Hκ(Φ1, µ)

∫

(

∏

n

dkn

)

× Sκ

(

T pT

1 −
∑

i

ki, {nm}, {dm}, µ,
ν

µ

)

×Bκa

(

ka, xa, µ,
ν

ωa

)

Bκb

(

kb, xb, µ,
ν

ωb

)

× Jκj

(

kj , µ,
ν

ωj

)

, (21)

where the channel index κ ≡ {κa, κb, κj} runs over all
possible flavours of incoming and outgoing partons.

B. Ingredients and resummation at NLL′

At NLL′ accuracy, each of the hard, soft, beam and
jet functions are required at one-loop accuracy as are the
noncusp anomalous dimensions, while the cusp anoma-
lous dimension is needed one order higher. The hard
function is easily obtained from the corresponding one-
loop QCD amplitude.2 It satisfies an evolution equation

µ
d

dµ
lnHκ(Φ1, µ) = γκ

H(Φ1, µ) (22)

where the hard anomalous dimension is of the form

γκ
H(Φ1, µ) = Γcusp[αs(µ)]

[

T
2
a ln

ω2
ae

−2ηJ

µ2

+ T
2
b ln

ω2
be

2ηJ

µ2
+ T

2
j ln

ω2
j

(2 cosh ηJ)2µ2

]

+ γκ
H [αs(µ)] , (23)

γκ
H [αs(µ)] = (nq + nq̄)γq[αs(µ)] + ngγ

g[αs(µ)] , (24)

where nq and ng label respectively the number of quarks
and gluons in the channel κ.

The relevant soft function was calculated in ref. [61].
Its evolution equation reads

µ
d

dµ
Sκ

(

kS ,Φ1, µ,
ν

µ

)

=

∫

dk′Sγ
κ
µ,S

(

kS − k′S ,Φ1, µ,
ν

µ

)

Sκ

(

k′S ,Φ1, µ,
ν

µ

)

(25)

where we have suppressed the dependence on the dm for
brevity and translated the dependence on the reference

2 Although in general both hard and soft functions are matrices in
colour space, for the case ofN = 1 the colour algebra diagonalises
and it is possible to rewrite the factorisation in the form eq. (21).

directions nm into a dependence on the phase space Φ1.
The soft virtuality anomalous dimension is given to all
orders by

γκ
µ,S

(

kS ,Φ1, µ,
ν

µ

)

= 2Γcusp[αs(µ)] δ(kS)

×

[

−
(

T
2
a + T

2
b + T

2
j

)

ln
ν

µ

+ T
2
j ln(2 cosh ηJ) + (T2

a −T
2
b)ηJ

]

+ γκ
µ,S [αs(µ)] δ(kS) (26)

where the noncusp term γ
κ (0)
µ,S [αs(µ)] = 0 at one-loop.

The soft function also obeys a rapidity evolution equation

ν
d

dν
Sκ

(

kS ,Φ1, µ,
ν

µ

)

=

∫

dk′Sγ
κ
ν,S (kS − k′S , µ)Sκ

(

k′S ,Φ1, µ,
ν

µ

)

(27)

where the rapidity anomalous dimension at one-loop or-
der is given by

γ
κ (1)
ν,S (kS , µ) = 2Γ0

αs(µ)

4π

[

(

T
2
a + T

2
b + T

2
j

) 1

µ
L0

(

kS
µ

)]

(28)

and the plus distribution L0(x) is defined as in app. B.

The collinear beam functions relevant for the observ-
able are those calculated at one-loop in e.g. refs. [28, 65,
66] while the recoil-free broadening jet function was cal-
culated in ref. [59]. Both beam and jet functions obey a
set of similar evolution equations,

µ
d

dµ
Bi

(

kB , x, µ,
ν

ω

)

=

∫

dk′Bγ
i
µ,B

(

kB − k′B , µ,
ν

ω

)

Bi

(

k′B , x, µ,
ν

ω

)

,

(29)

ν
d

dν
Bi

(

kB , x, µ,
ν

ω

)

=
∫

dk′Bγ
i
ν,B (kB − k′B , µ)Bi

(

k′B , x, µ,
ν

ω

)

, (30)

µ
d

dµ
Ji

(

kJ , µ,
ν

ω

)

=

∫

dk′Jγ
i
µ,J

(

kJ − k′J , µ,
ν

ω

)

Ji

(

k′J , µ,
ν

ω

)

, (31)

ν
d

dν
Ji

(

kJ , µ,
ν

ω

)

=
∫

dk′Jγ
i
ν,J (kJ − k′J , µ) Ji

(

k′J , µ,
ν

ω

)

, (32)

where the virtuality anomalous dimensions take the
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forms

γi
µ,B

(

kB , µ,
ν

ω

)

=
{

2T2
i Γcusp log

ν

ω
+ γi

B [αs(µ)]
}

δ(kB) ,

(33)

γi
µ,J

(

kJ , µ,
ν

ω

)

=
{

2T2
i Γcusp log

ν

ω
+ γi

J [αs(µ)]
}

δ(kJ) ,

(34)

and at one loop γ
i (0)
B/J [αs(µ)] = −2γi (1)[αs(µ)]. The one-

loop rapidity anomalous dimensions are instead given by

γi
ν,B(kB , µ) = −2Γ0

αs(µ)

4π
T

2
i

1

µ
L0

(

kB
µ

)

(35)

γi
ν,J(kJ , µ) = −2Γ0

αs(µ)

4π
T

2
i

1

µ
L0

(

kJ
µ

)

. (36)

The evolution equations in µ and ν are most easily solved
by transforming to Laplace space, first evolving from
νX → ν at fixed µX and subsequently from µX → µ
(for X ∈ {B,S, J}). At NLL, the solution for the soft
function can be written analytically as

Sκ

(

kS ,Φ1, µ,
ν

µ

)

=

exp

{

2(Cκa
+ Cκb

+ Cκj
)KΓ(µS , µ) +

[

2(Cκa
− Cκb

) ηJ + 2Cκj
ln(2 cosh ηJ) + 2(Cκa

+ Cκb
+ Cκj

) ln
µS

ν

]

ηΓ(µS , µ)

}

×

∫

dk′SVηκ
S
(kS − k′S , µS)Sκ

(

k′S ,Φ1, µS ,
νS
µS

)

, (37)

ηκS =
αs(µS)

4π
2Γ0 (Cκa

+ Cκb
+ Cκj

) ln

(

ν

νS

)

, (38)

where the function Va(k, µ) is defined in app. B and the quadratic Casimir factors Ci = T
2
i . Similarly, the solution

for the beam and jet functions can be written as

Bi

(

kB , x, µ,
ν

ω

)

=

exp

{

Kγ(µB , µ) + 2Ci ln
ν

ω
ηΓ(µB , µ)

}

∫

dk′BVηi
B

(kB − k′B , µB)Bi

(

k′B , x, µB ,
νB
µB

)

, (39)

ηiB = −
αs(µB)

4π
2Γ0 Ci ln

(

ν

νB

)

, (40)

Ji

(

kJ , µ,
ν

ω

)

=

exp

{

Kγ(µJ , µ) + 2Ci ln
ν

ω
ηΓ(µJ , µ)

}

∫

dk′JVηi
J
(kJ − k′J , µJ) Ji

(

k′J , µJ ,
νJ
µJ

)

, (41)

ηiJ = −
αs(µJ)

4π
2Γ0 Ci ln

(

ν

νJ

)

. (42)

σNNLO

bb̄→H
[fb] SusHi qcutT = 1GeV qcutT = 5GeV qcutT = 10GeV

µ = mH 543.5± 0.5 544.3± 1.0 544.9± 0.8 548.6± 0.4

µ = mH/2 518.0± 0.5 518.5± 1.1 517.8± 0.8 518.4± 0.5

µ = 2mH 581.7± 0.6 583.3± 0.9 585.1± 0.7 591.4± 0.4

TABLE I: Comparison between SusHi and Geneva of predictions for the NNLO total cross section in bb̄ → H.
Geneva predictions at various values of qcutT are shown, and at various values of µ = µR = µF .

For convenience, we reproduce the one-loop expressions for soft, beam and jet functions in app. C. We note that
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while it is possible to write down the solutions of the
evolution equations analytically at NLL (NLL′) order,
extending the above solutions to higher resummed or-
ders seems challenging. The underlying reason for this
is a combination of the facts that the evolution equa-
tions are solved in Laplace space and that the rapid-
ity anomalous dimensions have a non-trivial dependence
on kB,S,J . At one-loop order, this necessitates taking
an inverse Laplace transform of functions of the form
exp(−a lnx), for constant a. While this is still possible
analytically at this order, the appearance of higher pow-
ers of the logarithm in the exponent (arising ultimately
from higher plus distributions L1,2,... in γν) hinders an
analytic treatment starting at NNLL. Resummation at
this order is therefore likely to require a numerical im-
plementation of the inverse integral transform, as is nor-
mally performed for qT resummation.

C. Splitting mappings

To generate events that are distributed according to
the NLL′ T pT

1 resummed spectrum, Geneva assigns the
events a weight obtained by multiplying the spectrum
by a function (called splitting function in the Geneva

literature) of the dΦ2 phase space that integrates to 1 for
every underlying Φ1 phase space point and T pT

1 value:

∫

dΦ2

dΦ1 dT pT

1

P1→2 (Φ2) = 1. (43)

The details of the numeric implementation and the func-
tional forms of the splitting functions used by Geneva

are provided in refs. [21, 67].
This procedure requires introducing a projection Φ̄1

(called a splitting mapping in the Geneva literature)
from the phase space dΦ2 to the underlying phase space
dΦ1. The choice of such a projection is constrained by
the requirement of infrared safety that univocally fixes
the splitting mapping in the limit of small T pT

1 . At large
T pT

1 , instead, the choice is largely arbitrary, to the point
that not all the phase space points are even required to
be projectable (a non-projectable Φ2 phase space point
would simply imply that P1→2(Φ2) = 0). The arbitrari-
ness of this choice might appear to translate into a large
theoretical uncertainty in the final distributions. This,
however, is not the case, since the splitting functions al-
ways multiply differences between resummed spectra and
their truncated perturbative expansion, which, at large
values of T pT

1 , are beyond the accuracy of the calculation.
In other words, different choices of splitting mappings in-
troduce distortions in the distributions of the generated
events, whose size is formally subleading with respect to
the claimed NNLO accuracy.

For some distributions of particular importance, how-
ever, it might be preferable to avoid these kinds of effects
entirely. To that purpose, we can exploit the freedom in
the choice of the mapping to enforce the preservation of

a set of observables Oi, for which

Oi(Φ2) = Oi

(

Φ̄1(Φ2)
)

. (44)

For these observables, the T pT

1 resummation can be im-
plemented in a unitary fashion, such that their distribu-
tions remain unaffected.

In this work, we require the splitting mapping to pre-
serve the entire colour singlet four-momentum. This
guarantees that the NNLO accuracy of the Higgs ra-
pidity distribution and the N3LL′ accuracy of the Higgs
transverse momentum distribution are not spoiled. This
condition still leaves one degree of freedom that we fix
with the further constraint that the splitting mapping
also preserves the rapidity of the ‘hardest’ final-state par-
ton (i.e., the one that defines the jet direction in the
WTA clustering). The choice of T pT

1 as 1-jet resolu-
tion variable does not constrain the mapping, but affects
the numeric implementation of the splitting functions.
Guaranteeing that eq. (44) is satisfied indeed requires
an analytic computation of the integration limits on Φ2

at fixed Φ1 = Φ̄1(Φ2) and T pT

1 , as well as the measure
dΦ2/dΦ1 dT pT

1 .

V. RESULTS

In this section, we present our numerical results for
the qq̄ → H process in a proton-proton scattering. We
use the following input parameters: Ecm = 13 TeV,
Higgs boson mass mH = 125 GeV and strong coupling
αs(mZ) = 0.118 with mZ = 91.1876 GeV. Unless oth-
erwise indicated we use the MSHT20nnlo PDF set [68].
The Yukawa couplings are computed by evolving the MS
quark masses mq(mq) to the desired scale. The input
values are mb(mb) = 4.18 GeV and mc(mc) = 1.27 GeV
[69]. Finally, we set the Higgs vacuum expectation value
to v = 246.22 GeV.

A. Fixed order validation

We begin by validating our results at fixed order in per-
turbation theory. Before presenting our numerical com-
parisons, we take this opportunity to remind the reader
of a subtlety in choosing the renormalisation scale in a
resummed calculation, which will affect our results. The
profile scales which we employ in Geneva are functions
of the resolution variable qT . The consequence of this
is that the operations of setting the scale and integrat-
ing the qT spectrum to obtain the total cross section (or
an inclusive distribution such as the colour singlet rapid-
ity) do not commute. This leaves some freedom in how
we present our results – we can either set scales in the
spectrum and obtain inclusive quantities by integration,
or instead set scales in the integrated cross section and
obtain the spectrum by differentiation. The two options
differ by formally higher-order terms, which however can
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question. The fact that a direct application of the TNP
approach to the resummed qT spectrum has already been
presented in ref. [81] perhaps suggests that generators of
the kind we have presented in this work (using SCET-
based resummation and qT as resolution variable) may
provide a starting point. We leave this to future work.
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Appendix A: Profile scales and scale variation

The canonical boundary scales in bT space are given
by

virtuality: µH = mH , µB = b0/bT , µS = b0/bT ,

µf = b0/bT , µ0 = b0/bT ,

rapidity: νB = mH , νS = b0/bT ,
(A1)

where b0 ≡ 2e−γE ≈ 1.12291, µH , (µB , νB), and (µS , νS)
are the boundary scales for the hard, beam, and soft func-
tions, and µf is the scale at which the PDFs inside the
beam functions are evaluated. The rapidity anomalous
dimension must also be resummed and µ0 is its associ-
ated boundary scale. Evolution of each of the functions
in eq. (11) from these scales to common scales µ, ν re-
sums all canonical bT -space logarithms lnn[(b0/bT )/mH ].
The corresponding resummed result in qT space is then
obtained via inverse Fourier transform.

Choosing scales which are functions of the variable be-
ing resummed facilitates deactivation of the resummation
in the fixed-order region of phase space. We choose hy-
brid profile scales, depending on both bT and qT , as

µH = νB = µFO = mH ,

µX = mH frun

[ qT
mH

,
1

mH
µ∗

( b0
bT

, µmin
X

)]

,

µ0 = µ∗

( b0
bT

, µmin
0

)

, (A2)

where µX ∈ {µB , µS , νS , µf}. The function µ∗ speci-
fies our nonperturbative prescription, which prevents the

beam and soft scales reaching values 1/bT . ΛQCD and
allows the inverse Fourier transform to qT space to be
performed. It is given by

µ∗(x, y) =
√

x2 + y2 (A3)

frun is the hybrid profile function given by [57]

frun(x, y) = 1 + grun(x)(y − 1) , (A4)

where grun(x) determines the transition as a function of
x = qT /mH ,

grun(x) =























1 0 < x ≤ x1 ,

1 − (x−x1)
2

(x2−x1)(x3−x1)
x1 < x ≤ x2 ,

(x−x3)
2

(x3−x1)(x3−x2)
x2 < x ≤ x3 ,

0 x3 ≤ x ,

(A5)

with transition points xi for i ∈ {1, 2, 3}. The parameters
x1 and x3 determine the start and end of the transition
and x2 = (x1 + x3)/2 corresponds to the turning point.
We use [x1, x2, x3] = [0.1, 0.45, 0.8] as our central values.

The profile scales are varied as follows:

µH = µFO = 2wFO mH ,

νB = µFO f
vνB
vary

( qT
mH

)

,

µX = µFO f
vµX
vary

( qT
mH

)

frun

[

qT
mH

,
1

mH
µ∗

( b0
bT

,
µmin
X

2wFOf
vµX
vary

)

]

,

for µX ∈ {µB , µS , νS} ,

µf = 2wF mH frun

[

qT
mH

,
1

mH
µ∗

( b0
bT

,
µmin
f

2wF

)

]

,

µ0 = µ∗

( b0
bT

, µmin
0

)

. (A6)

Resummation uncertainties are gauged by varying the
exponents vµB

, vνB
, vµS

, and vνS
about their central

values vi = 0 by ±1. The function

fvary(x) =











2(1 − x2/x2
3) 0 ≤ x ≤ x3/2 ,

1 − 2(1 − x/x3)2 x3/2 < x ≤ x3 ,

1 x3 ≤ x ,

(A7)

with x ≡ qT /mH controls the size of the variations, rang-
ing from a factor of 2 for x = 0 to 1 for x ≥ x3. Note that
both the resummation itself and the associated resum-
mation uncertainty is deactivated for qT ≥ x3mH . The
combined resummation uncertainty ∆res is calculated by
enveloping 36 variations of suitable combinations of the
vi. For details, we refer the reader to ref. [53].

For the fixed-order uncertainty ∆FO, we vary µFO by
a factor of 2 by taking wFO = {−1, 0,+1} everywhere.
A separate uncertainty ∆µf

is related to the DGLAP
running of the PDFs, for which we vary the PDF scale
µf by taking wF = {−1, 0,+1}. In the nonsingular
and fixed-order cross sections, this corresponds to tak-
ing µf ≡ µF = 2wFmH . The resulting ∆FO and ∆µf
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by

J (1)
q (k, µ, ν) = CF

[

(

7 −
2π2

3
− 6 log 2

)

δ(k)

+

(

6 + 8 log
ν

Q

)

L0

(

k,
µ

Q

)

]

(C8)

and

J (1)
g (k, µ, ν) =

[

CA

(

25

12
−

2π2

3

)

+ β0

(

17

12
+ 2 log 2

)

]

δ(k)

+

[

2β0 + 8CA log
ν

Q

]

L0

(

k,
µ

Q

)

.

(C9)

The soft function at one-loop order was calculated in
ref. [61]. While the full expression is rather lengthy (and
can be found in that reference after setting β = γ = 1),
the term proportional to δ(kS) is given by

s(1)κ = − (Ca + Cb + CJ)
π2

6

− 2CJ log2 RJ [2 + Θ(RJ − 1)] (C10)

where we have neglected power-suppressed terms in R2
J .

These have been shown to have at worst a moderate nu-
merical impact, even for values of the jet radius RJ up
to 1.5 [61].

Appendix D: Effect of scale setting choices on the qT

spectrum

In fig.10 we show the Higgs boson qT spectrum in
bb̄ → H for spectrum (blue) and cumulant (red) scale
settings. These different scale choices were discussed in

detail in sec. V A. We observe that both spectra are in
good agreement in the peak and the tail region. In par-
ticular for the tail of distribution, this behaviour is ex-
pected as both distributions are matched to the same
fixed-order prediction and therefore must agree in the
fixed-order limit. In the transition region, however, the
higher order terms have a significant effect which can be
as large as 40%. The large size of this effect is peculiar to
the bb̄ → H process, and its origin is discussed in detail
in ref. [33].

Appendix E: Flavour structure of Geneva

The Geneva method is sufficiently general that a num-
ber of different choices for the resolution variables r0 and
r1 may be made, each resulting in an NNLO+PS accu-
rate generator. To date, choices for r0 include the trans-
verse momentum of the colour singlet qT , the 0−jettiness
T0 and the hardest jet transverse momentum pj1,T , while
choices for r1 include the conventional 1−jettiness T1,
the second jet transverse momentum pj2,T and, as of this
work, the 1−jettiness with transverse momentum mea-
sures T pT

1 . It is clear that the number of different per-
mutations now available may cause confusion when one
wishes to refer to a specific implementation of Geneva.
Inspired by the origins of the term ‘flavour’ in parti-
cle physics (due to Gell-Mann), we therefore propose a
nomenclature which should serve to clarify exactly which
choice of resolution variables has been made in a given
case. This appears in tab. II.

Flavour r0 r1 Reference

Vanilla (V) T0 T1 [13]
Raspberry ripple (RR) qT T1 [24]

Tutti frutti (TF) pj
1,T p

j

2,T [27]

Mint choc chip (MCC) qT T
pT
1

This work

TABLE II: Flavours of Geneva implementation.
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