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ABSTRACT

Phase retrieval is at the heart of adaptive optics and modern high-resolution imaging. Without phase
information, optical systems are limited to intensity-only measurements, hindering full reconstruction
of object structures and wavefront dynamics essential for advanced applications. Here, we address
a one-dimensional phase problem linking energy and time, which arises in X-ray scattering from
ultrasharp nuclear resonances. We leverage the Mössbauer effect, where nuclei scatter radiation
without energy loss to the lattice, and are sensitive to their magneto-chemical environments. Rather
than using traditional spectroscopy with radioactive gamma-ray sources, we measure nuclear forward
scattering of synchrotron X-ray pulses in the time domain, providing superior sensitivity and faster
data acquisition. Extracting spectral information from a single measurement is challenging due to
the missing phase information, typically requiring extensive modeling. Instead, we use multiple
energetically overlapping measurements to retrieve both the transmission spectrum and the phase of
the scattering response, similar to ptychographic phase retrieval in imaging. Our robust approach can
overcome the bandwidth limitations of gamma-ray sources, opening new research directions with
modern X-ray sources and Mössbauer isotopes.

Keywords phase retrieval · ptychography · nuclear resonant scattering · Mössbauer spectroscopy · X-ray scattering ·
nuclear quantum optics · inverse problems · pytorch

1 Introduction

A fundamental challenge in photon science is the loss of phase information of the electromagnetic wavefield during
measurement. This phase problem plagues the study of light-matter interactions across various energy scales and
disciplines, e.g., in radar imaging [1, 2], astronomy [3, 4], microscopy [5, 6, 7, 8], and crystallography [9]. It also
appears in imaging methods using electrons [10] and neutrons [11]. It arises because no detector can directly sample the
electromagnetic field oscillations of optical and X-ray light. For instance, even the most advanced X-ray detectors, such
as micro-channel plates, can only capture the intensity of the wavefield averaged over time windows greater than 10 ps
[12, 13]. Meanwhile, reliable algorithms have been developed to retrieve the phase in two dimensions (e.g., diffraction
imaging [14, 15, 16]) and higher dimensions (e.g., crystallography [17]). The one-dimensional phase problem is highly
ill-posed and inherently more challenging to solve due to multiple non-trivial ambiguities [18]. The mathematical proof
is derived from D’Alembert’s fundamental theorem of algebra, which states that, unlike single-variable polynomials,
multidimensional polynomials are generally not factorable [19]. Unlike higher-dimensional problems, it is typically not
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possible to uniquely solve a one-dimensional phase problem using only one measurement, even when prior information
such as non-negativity is assumed [20].

One-dimensional phase problems arise, for example, in ultrafast laser pulse diagnostics [21, 22]. The laser pulse is
only a few femtoseconds long, and its temporal response cannot be measured directly. Instead, the pulse is gated with
itself in time with the help of a non-linear optical medium, and its frequency spectrum is measured for different time
delays. The temporal shape and length of the pulse are then retrieved from this two dimensional dataset, which is called
the frequency-resolved optically gated (FROG) trace [23], using a phase retrieval algorithm based on the short-time
Fourier transform [24]. Another example is the Griffin-Lim algorithm, which is used to separate speech signals from
background noise in two-dimensional audio spectrograms [25].

An analogous problem arises in Mössbauer physics, when the nuclear forward scattering (NFS) signal of an object is
measured. The recoilless scattering of X-ray photons by nuclei, known as the Mössbauer effect [26], offers unique
insights [27, 28, 29, 30] into the magnetic and electronic structure of materials. The sharp natural linewidth of the
nuclear transitions allows for extraordinary energy resolutions (10−13 − 10−8 eV) compared to electron spectroscopy
methods (10−2 − 10−1 eV) [31, 32]. For example, the 14.4 keV transition in the iron isotope 57Fe has an extremely
narrow natural linewidth Γ = 4.7 neV, corresponding to a quality factor of ∼ 1012. Conventional lab-based methods
to measure the energy spectrum of these sharp transitions are unsuitable for materials with unavailable or short-lived
radioactive sources [33, 30], and for experiments requiring a small, focused beam [34, 35]. For the energy-resolved
study of 57Fe-containing materials, synchrotron Mössbauer source (SMS) setups [36, 37] that use pure nuclear Bragg
reflections from a 57FeBO3 crystal have been developed. This technique enables 57Fe Mössbauer spectroscopy at
synchrotrons but introduces other challenges. The Doppler motion of the crystal to tune the energy often causes
fluctuations in the reflected beam due to crystal imperfections. Moreover, maintaining the temperature stability of the
setup is critical for achieving high energy resolution (3-6 Γ). In addition, high resolution reduces photon flux, resulting
in a trade-off between resolution and intensity [38].

Instead, the sub-100 ps X-ray pulses from advanced synchrotron sources can be directly used to study the nuclear
transitions in time domain. These pulses, with energy bandwidths monochromatized to approximately 1 meV (≈ 104

times the hyperfine splitting of the resonances), contain fewer than 0.01 resonant photons per pulse. As the synchrotron
pulse traverses an object, the entire nuclear ensemble coherently scatters a single resonant X-ray photon, forming
a nuclear exciton-polariton [39, 40, 41]. Following this excitation, the exciton undergoes collective evolution and
spontaneous decay, resulting in the emission of photons at delayed times. The linear response of the object to the weak

driving field is described in the energy domain as Ês(ω) = Ô(ω)Êin(ω), where Êin and Ês represent the energy spectra

of the input and scattered X-ray fields, respectively, and Ô(ω) is the transmission function of the object. For X-rays of
wavelength 2π/k passing through an object of thickness z, the transmission function is given as follows:

Ô(ω) = e−iχ0(ω)kz. (1)

It is inherently complex due to the complex susceptibility χ0 of the nuclear transition [42, 39]. We can assume that

all spectral components Êin of the input synchrotron pulse have an equal magnitude E0 within the narrow energy

bandwidth of the monochromatizaion. The scattered field Es is then related to the object’s transmission function Ô as

Es(t) ∝ F{Ês(ω)} = E0F{Ô(ω)}, (2)

where F denotes the Fourier transform from the energy to the time domain. In the timing mode of operation, the filling
pattern of the electron storage ring is chosen such that synchrotron pulses are temporally spaced at intervals longer
than the lifetime of the nuclear transitions. Avalanche photodiodes detect delayed photons as a function of time after
excitation, and the measured signal is proportional to the intensity of the scattered field |Es(t)|

2. The hyperfine structure
of the object manifests in the beating patterns of this temporal response.

Despite advances in data analysis software and modeling [43, 44], interpreting the time domain response of NFS to
extract the different hyperfine parameters remains challenging. On the other hand, if phase information of the photons
is available, the inverse Fourier transform can yield the complex energy spectrum of an object from NFS measurements
without relying on a fit model or SMS setups. Furthermore, the energy resolution is not limited by the bandwidth of the
crystal reflection in the SMS setup. However, the phase shift experienced by the scattered X-ray wavefield is lost in
these measurement techniques, presenting a one-dimensional phase problem.

Various methods have been developed to tackle this phase problem in nuclear resonant scattering. For example,
interferometry has been attempted to measure the phase shifts of a nuclear forward scattering object using a triple Laue
interferometer [45, 46]. However, the short wavelengths and near-unity refractive indices of most materials in the X-ray
regime make designing and stabilizing such interferometers highly challenging. Contemporary approaches substitute
the interferometer with a probe sample mounted on a Doppler drive, where the Doppler drive serves as the phase shifter,
and the object and probe samples act as interferometer arms. Techniques such as Heterodyne Phase Reconstruction
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by a lens or aperture that spatially restricts the illumination to a localized spot on the object. In our setup, the probe

transmission function P̂ (ω), must have a spectral width comparable to that of the hyperfine splittings of nuclear levels
in the X-ray regime. A suitable choice is a quasi-single-line absorber such as stainless steel, whose thickness can be
adjusted to achieve the desired spectral width.

Next, a mechanism is required to energetically detune the probe with respect to the object, so that a different energy
range in the object spectrum is illuminated for each ptychographic measurement. This can be achieved via the Doppler
effect if either the object sample or the probe sample is moved with respect to the other along the direction of beam
propagation. This motion induces an additional time-dependent phase shift in the radiation scattered by the probe
sample,

ϕ(D, t) =
2π

λ
|~v|t = Dt (3)

where λ is the wavelength of the X-rays and D = 2π|~v|/λ is the Doppler shift (in angular frequency) induced by the
relative motion with velocity ~v. The combined transmission function of the probe-object sample system is given as

Ẑ(D,ω) = P̂ (ω +D) · Ô(ω). (4)

Assuming that all detected photons are coherently scattered, the intensity at the detector at any time is equal to the
squared magnitude of the scattered wavefield, and can be modeled as

I(D, t) ∝
∣

∣

∣
F{P̂ (ω +D) · Ô(ω)}

∣

∣

∣

2

. (5)

This is the one-dimensional continuous ptychographic forward model. It is non-linear due to the presence of the

modulus squared |·|
2

operator. Inverting Eq. (5) to obtain the complex object function Ô(ω) is impossible using

only one measurement. Even by imposing prior constraints on Ô(ω), such as a compact support or sparsity, the
one-dimensional phase problem can have an infinite number of solutions and is unstable [71, 72]. However, it is possible
to use data diversity to impose the overlap constraint [65] in Eq. (5). Multiple related measurements are taken by
changing the detuning D such that the probed parts of the object overlap in energy, as shown in Fig. 1. This scheme of
time and energy-resolved measurement of the scattering process encodes the phase of the one-dimensional object in a
two-dimensional ptychographic dataset called a "ptychogram" [73], and may be recovered using a decoding algorithm.
It is analogous to a traditional spectrogram that encodes the variation in a signal’s frequency content with time.

In ptychographic imaging setups, smaller spatial features in a sample result in larger scattering angles in detected
diffraction patterns. The largest scattering angle that the detector can capture sets the minimum achievable spatial
resolution for the reconstruction. In the nuclear ptychography setup, an analogous constraint arises due to the maximum
acquisition time Tmax at the detector, which is determined by the finite time interval between synchrotron pulses. This
imposes a limit on the maximum achievable energy resolution of the reconstructed object spectrum (in units of Γ)

~∆ω′ =
2π

Tmax
·
~

Γ
= 2π ·

τ

Tmax
(6)

where τ = ~/ Γ is the lifetime of the excited nuclear state. Because nuclear transitions are extremely sharp in energy,
their time response can extend beyond Tmax, fundamentally limiting the energy resolution of this technique. This
contrasts with imaging experiments in which the resolution is typically constrained by factors such as the radiation dose
on the sample [74], decoherence effects [75] and Poisson noise, rather than detector size.

3 Decoding scheme

The ptychogram can be inverted using numerical algorithms, for which we discretely approximate the continuous phase

problem in Eq. (5). The discrete object and probe functions are expressed as one-dimensional arrays Ô ∈ C
N , P̂ ∈ C

N

on an energy grid of length N and resolution ∆ω. We take j = 1, 2 · · ·M measurements corresponding to different

probe detunings Dj and detuned probe functions P̂ j,i = P̂ (ωi, Dj). The intensity in the time domain is measured

and binned into N time points with a fixed interval ∆t and modeled as Ij ∈ R
N . The phase problem can now be

formulated as an optimization problem to solve for an object Ô that minimizes a cost function ρ : X → [0,∞) given by

ρ(Ô) =

M
∑

j=1

∥

∥

∥

√

Ij −
√

bj

∥

∥

∥

2

=

M
∑

j=1

∥

∥

∥

∣

∣

∣F

{

P̂ j Ô

}∣

∣

∣−
√

bj

∥

∥

∥

2

. (7)
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where F represents the discrete Fourier transform, denotes pointwise multiplication and ‖ · ‖ denotes the ℓ2 norm.
The cost function represents the distance between the measured intensities bj and the modeled intensities Ij of the
ptychogram and is based on the Poisson likelihood model for noise in the ptychogram ([76], Supplement 1: Sec.
S4). In Eq. (7), we optimize an object of grid size N ∼ 103, where global optimization methods struggle due to
the curse of dimensionality [77, 78]. Therefore, a local search with gradient descent is performed to minimize ρ by
using its local gradient with respect to the object [79]. Owing to the non-convexity of the cost function ρ, the gradient
descent algorithm may converge to local minima and the uniqueness of the solution is not guaranteed. To mitigate slow
convergence, we incorporate a stochastic gradient descent (SGD) algorithm where the ptychogram dataset is shuffled
and divided into random “mini-batches" whose gradients are used to update the object [80]. In our case, we observe
that SGD converges noisier than the classic gradient descent, but it achieves an optimum with an order of magnitude
fewer iterations.

We implemented the reconstruction algorithm for Nuclear Ptychography in a software package which we call NuPty
[81]. All NuPty algorithms were implemented using PyTorch [82]. This enables a flexible and faster analysis of the
phase problem because PyTorch uses its automatic differentiation capabilities to efficiently compute gradients and
supports GPU-accelerated computations. The NuPty reconstruction scheme takes into account two key nuances of the
ptychography experiment:

1. Multimodal ptychography model: Thickness variations in the transmitting probe sample may introduce several
incoherent scattering paths into the setup. To account for this, the intensity at the detector is modeled as an incoherent
superposition of the intensities of the scattered fields corresponding to different probe modes m illuminating the object
[83, 84], i.e., in Eq. (7)

Ij =
∑

m

wm

∣

∣

∣F

{

P̂
(m)

j Ô

}∣

∣

∣

2

, (8)

where wm is a scalar denoting the relative weight of each probe mode P̂
(m)

j .

2. Time window: Nuclear resonant scattering occurs with a delay (ns timescale) compared with prompt electronic
scattering (ps timescale). The time-resolving detector is synchronized to the synchrotron bunch clock and resets to zero
when a new X-ray pulse hits the sample. To prevent the prompt signal from saturating the detection system, a veto
interval is set around the bunch clock, establishing a data acquisition time window from Tmin to Tmax for the nuclear
scattered signal. To ensure that the reconstruction result is scale-independent with respect to the number of photons
Nph detected in the time window, the algorithm uses a normalized form of the cost function

ρ̃(Ô) =
1

B · fph · L

B
∑

j=1

∥

∥

∥

∥

∥

√

W Ij −

√

M · ‖F‖2

Nph/fph
· bj

∥

∥

∥

∥

∥

2

. (9)

Here, B is the batch-size, i.e., the number of measurements used at a time to update the gradient, M is the total number
of measurements and L = (Tmax − Tmin)/∆t. To speed up the calculations of the ptychogram and the cost function,
we use the fast Fourier transform (FFT) with the operator norm ‖F‖ = N . The symbol fph denotes the probability of
photon scattering within the time window

W (ti) =

{

1 Tmin ≤ ti ≤ Tmax,

0 otherwise.
(10)

This probability can be calculated through simulations of the experimental setup and an order-of-magnitude estimate is
sufficient for practical purposes.

4 Simulation

To benchmark the phase retrieval algorithm, a simulation of the experiment was performed using the NEXUS software
package [44] and is shown in Fig. 2 (a). A stainless steel foil with an enrichment 95% 57Fe and a thickness 20 µm was
taken as the probe sample. A 95% enriched 57Fe metal foil of thickness 2.5 µm was taken as the object sample. Figures
Fig. 2 (b), (c) and (d), (e) represent the simulated energy spectra of the object and the probe samples, respectively. The
magnetic structure of the simulated samples is based on the foils used in the real experiment, details of which can be
found in Supplement 1: Sec. S1-S2. The probe absorption function has an almost Lorentzian line profile with a full
width half maximum (FWHM) of ∼ 10 Γ. The broad energy spectrum ensures sufficient overlap between adjacent
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Phase information was captured in the ptychogram (Fig. 3(a)), with time and Doppler detuning as its axes. The measured
data closely resemble the simulated ptychogram (Fig. 2(a)), except for the experimental data acquisition window from
Tmin = 17 ns to Tmax = 178 ns. This is due to the vetoing of the electronic scattering signal as described in Sec.
3. The results of the ptychographic reconstruction using the experimental measurements are also shown in Fig. 3.
According to our simulations, the majority of the incident photons undergo prompt electronic scattering within the first
few picoseconds. Only a small fraction, fph ≈ 0.019, is scattered within the delayed time window, resulting in the

detection of approximately 2× 108 total delayed photons. While reconstructing the object, the algorithm can reasonably
extrapolate the missing intensities between 0 and 17 ns by taking advantage of the oversampled measurements. This
is also performed in conventional two-dimensional ptychographic imaging in the presence of a beam stop [85, 86].
However, there is no information in the ptychogram for times beyond Tmax, where extrapolation obviously does not
work. For a maximum acquisition time Tmax = 178 ns at the detector, the energies of the nuclear transitions are
convolved with a sinc function with a main lobe width of 2~∆ω′ ≈ 9.3 Γ, which is roughly 23 times larger than
~∆ω. To evaluate the quality of the reconstruction despite the finite Tmax, we define a filtering window H which is a
discretized Heaviside step function:

H(ti) =

{

1 ti ≤ Tmax,

0 otherwise.
(13)

Applying this filter to the simulated complex transmission spectrum of the object Ô
∗

(from Sec. 4) yields

Ô
∗

H = F
−1{H F{Ô

∗
}}, (14)

where F is the FFT. The resulting transmission spectrum, Ô
∗

H , accounts for sinc artifacts similar to those caused by the
experimental measurement window. In Fig. 3 (b) and 3(c), the reconstructed object is compared with this filtered object.

The reconstruction of the complex transmission spectrum from the full data range ~D ∈ (−210, 210) Γ (orange)
deviates from the true object, while the limited range ~D ∈ (−70, 70) Γ (green) achieves a closer match. We attribute
this behavior to the coupling between the resonance peaks of the probe and the object in this regime (see Supplement 1:
Sec. S5.C). This contrasts to the interference signal used in other techniques [47, 48] where the probe and object spectra

are so detuned that the scattered field at the detector can be approximated as Z(D, t) = F{Ẑ(D,ω)} ≈ P (D, t)+O(t),
where P (D, t) and O(t) are their respective temporal responses. The coupling signal has a higher information density
and is less susceptible to background noise, velocity drive calibration errors and incoherent contributions to the data
due to the thickness variations in the samples.

The reconstructed phase enables the calculation of an energy-domain spectrum for the object which can then be
compared to its measured synchrotron Mössbauer source (SMS) spectrum. The positions of the four most prominent
Lorentzian lines in Fig. 3(d) are fitted using a least squares fitting algorithm and are listed in Table 1. The four peak
positions extracted from the reconstructed object in green match the SMS spectrum up to ± 0.2 Γ, which is comparable
to the resolution of the calculation grid (0.4 Γ). According to Eq. (12), the magnetic hyperfine field extracted from the
reconstructed outer peak positions is 32.62(8) T, compared to 32.73(4) T from the SMS spectrum. To calculate the
preferential orientation of the magnetic domains in the 57Fe foil, other peak properties, such as their relative heights and
symmetry, are needed. Our reconstructed transmission spectrum reveals the presence of a dominant magnetic moment
component parallel to the X-ray polarization direction. In Fig. 3(d), two additional small resonance peaks appear in the
SMS spectrum at roughly ± 31.5 Γ, due to a minor isotropic nuclear spin component of 57Fe (≈ 5.8(3)% from nuclear
forward scattering measurement). Although these smaller peaks cannot be distinguished clearly from the artificial
peaks in the reconstructed spectrum, presence of their subtle signatures indicates that nuclear ptychography is already
approaching the sensitivity required to detect such fine features, implying a strong potential for further improvements in
reconstruction accuracy with longer measurement time windows.

In Fig. 3(e), the time domain response of the reconstructed object shows that the algorithm accurately reconstructs the
measured intensities, except for times between 120 and 140 ns. In this region, "bunch addition" incoherence in the
experimental data is strong due to the finite time gap of 192 ns between the incident X-ray pulses (see Supplement
1: Sec. S3.B). The detector cannot distinguish between photons arriving at t > 192 ns after the incidence of the
current pulse and those arriving from the next pulse at t− 192 ns, causing systematic errors in the measured data. This
incoherent contribution to the data cannot be taken into account by the ptychography algorithm while solving the phase
problem and therefore affects the reconstruction.

The transverse coherence length of the setup is only a few nanometers (see Supplement 1: Sec. S3.A). The NFS fit on the
stainless steel probe foil predicts a root-mean-square surface thickness variation of approximately 0.7 µm. Therefore,
to reconstruct the object spectrum, the multimodal ptychography model was used, where the complex transmission
spectrum of the probe sample was simulated at eleven distinct points sampled from its thickness distribution.

The starting object guess was taken as cells with entry ’one’. As shown in Fig. 4, the algorithm converges to a solution in
approximately 100 iterations. The first 50 iterations use stochastic gradient descent with a batch size of B = 20, leading
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and neglect the constant terms that only depend on bji, we get an approximation of the cost function in Eq. (S8) as

ρ(Ô) ≈ 2
∑

j

∑

i

(

√

Iji −
√

bji

)2

= 2
∑

j

∥

∥

∥

∣

∣

∣
F

{

P̂ j Ô

}∣

∣

∣
−
√

bj

∥

∥

∥

2

. (S10)

The Poisson log-likelihood cost function is thus approximately proportional to the ‘amplitude-based’ cost function
popular in the ptychography community [93, 94]. One advantage of the gradient-based methods is that the phase
problem can now be flexibly solved by using the gradient of the cost function in Eq. (S8). We can calculate the gradient

of ρ with respect to the complex object Ô using Wirtinger calculus [95] as

∇
Ô
ρ = 2

∑

j

P̂
†

j F
−1

{

F

{

Ẑj

}}



1−

√

bj
∣

∣

∣F

{

Ẑj

}∣

∣

∣





= 2
∑

j

P̂
†

j



Ẑj − F
−1







√

bj
∣

∣

∣F

{

Ẑj

}∣

∣

∣

F

{

Ẑj

}











(S11)

where Ẑj = P̂ j Ô. It was shown in Ref. [96] that Rodenburg’s PIE algorithm [52] and its variants are equivalent to
the stochastic gradient descent algorithm with the amplitude cost function in Eq. (S10).

5 Tests on simulated data

A. Varying Poisson noise

We simulate ptychograms with different levels of Poisson noise by changing the total number of delayed photon counts
Nph. As described in Sec. 4, the phase retrieval algorithm maximizes the log likelihood of the simulation to the
observed data under the assumed Poisson conditions. We always start the first iteration with a priori assumption that
our object’s nuclei are mostly transparent to X-rays, as the foil’s nuclear resonant lines are very sharp. Therefore, we

initialize the object Ô
(0)

as cells with entry ’one’. The object is updated for 100 algorithm iterations with stochastic
gradients calculated at B = 20. We can determine if the algorithm has reached a solution by tracking the cost ρ̃ per
iteration. The performance of the algorithm can be quantified by the mean square error

MSE =
1

N
‖|Ô

r
| − |Ô

∗
|‖2 (S12)

between the magnitudes of the transmission spectra of the final reconstructed object Ô
r

and the simulated (true) object

Ô
∗
. In Fig. S6(a), we see that the MSE decreases as the number of delayed photons in the ptychogram increases and

correspondingly the Poisson noise decreases. The algorithm is stable with respect to the increasing levels of Poisson
noise. Orange and green colors mark results for total delayed photons of 106 and 108, respectively. In Fig. S6(b), we
show convergence curves of objects reconstructed from ptychograms with the two different levels of Poisson noise. In
Fig. S6(c), we can see that for low photon counts (orange), the reconstructed resonance peaks are broader and the ratio
of the heights of the peaks (which corresponds to the relative probabilities of the nuclear transitions) is not preserved.
The algorithm reconstructs a "weakly" scattering object, with weaker phase shifts in Fig. S6(d), for the lower signal
to noise ratio. In the ptychogram with higher photon counts, the Poisson noise is low enough that the reconstruction
(green) matches perfectly with the true object. In both the low and high noise cases, the major resonance peaks can be
identified at their correct locations.
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